1
|
Lavezzi AM, Piscioli F, Pusiol T, Jorizzo G, Ferrero S. Sudden intrauterine unexplained death: time to adopt uniform postmortem investigative guidelines? BMC Pregnancy Childbirth 2019; 19:526. [PMID: 31888538 PMCID: PMC6936151 DOI: 10.1186/s12884-019-2603-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/14/2019] [Indexed: 01/30/2023] Open
Abstract
Background Worldwide approximately 2.6 million are stillborn, mostly occurring in developing countries. In the great part these deaths are inexplicable. The evenness and standardisation of the diagnostic criteria are prerequisites to understand their pathogenesis. The core goal of this article is to propose new evidence based investigative post-mortem guidelines that should be adopted in all the Institutions especially when a fetal death, after a routine autopsy procedure, is diagnosed as “unexplained”. The proposed protocol is mainly focused on the anatomopathological examination of the autonomic nervous system and in particular of the brainstem where the main centers that control vital functions are located. Methods Updated investigative guidelines for the examination of unexplained stillbirths, prevalently focused on the histological examination of the brainstem, where the main centers that are involved in monitoring the vital functions are located, are here presented. A section of this protocol concerns the Immunohistochemical evaluation of specific functional markers such as the neuronal nuclear antigen, nicotinic acetylcholine receptors, serotonin, orexin, apoptosis and gliosis. The important role of risk factors, having regard in particular to maternal smoking and air pollution is also contemplated in these guidelines. Results Specific morphological and/or functional alterations of vital brainstem structures have been found with high incidence in over 100 cases of unexplained fetal death sent to the “Lino Rossi Research Center” of the Milan University according to the Italian law. These alterations were rarely detected in a group of control cases. Conclusions We hope this protocol can be adopted in all the Institutions notably for the examination of unexplained fetal deaths, in order to make uniform investigations. This will lead to identify a plausible explanation of the pathogenetic mechanism behind the unexplained fetal deaths and to design preventive strategies to decrease the incidence of these very distressing events for both parents and clinicians. Trial registration not applicable for this study.
Collapse
Affiliation(s)
- Anna M Lavezzi
- "Lino Rossi" Research Center for the study and prevention of unexpected perinatal death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 19, 20122, Milan, Italy.
| | | | - Teresa Pusiol
- Institute of Pathology, Hospital of Rovereto (Trento), Rovereto, Italy
| | | | - Stefano Ferrero
- "Lino Rossi" Research Center for the study and prevention of unexpected perinatal death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via della Commenda 19, 20122, Milan, Italy.,Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
2
|
Toxic Effect of Cigarette Smoke on Brainstem Nicotinic Receptor Expression: Primary Cause of Sudden Unexplained Perinatal Death. TOXICS 2018; 6:toxics6040063. [PMID: 30340403 PMCID: PMC6316297 DOI: 10.3390/toxics6040063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/26/2018] [Accepted: 10/16/2018] [Indexed: 11/17/2022]
Abstract
Among the neurotoxicants contained in tobacco smoke, if absorbed during pregnancy, nicotine significantly affects α7-nicotinic acetylcholine receptors, which play essential roles in the development of the brainstem regions receiving cholinergic projections in perinatal life. Immunohistochemical procedures for analysing formalin-fixed and paraffin-embedded brainstem samples from 68 fetuses and early newborns, with smoking and non-smoking mothers, who died of known and unknown causes, were carried out in order to determine if nicotine had activated the α7-nicotinic acetylcholine receptors. High α7-nicotinic acetylcholine receptor expression levels were only observed in the victims with smoking mothers. Frequently, these findings were associated with the hypoplasia of the brainstem structures controlling vital functions. The results of this study indicate that the exposition to nicotine in pregnancy exerts a strong direct effect on α7-nicotinic acetylcholine receptor activity especially in perinatal life and may be one of the primary risk factors leading to the sudden unexplained death of fetuses and newborns.
Collapse
|
3
|
Shi L, Xu H, Wu Y, Li X, Zou L, Gao J, Chen H. Alpha7-nicotinic acetylcholine receptors involve the imidacloprid-induced inhibition of IgE-mediated rat and human mast cell activation. RSC Adv 2017. [DOI: 10.1039/c7ra07862e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although our recent study indicated that imidacloprid, a widely used neonicotinoid insecticide, inhibited IgE-mediated mast cell activation, the inhibition mechanism still remains unclear.
Collapse
Affiliation(s)
- Linbo Shi
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- Sino-German Joint Research Institute
| | - Huaping Xu
- Department of Rehabilitation
- The First Affiliated Hospital of Nanchang University
- Nanchang
- China
| | - Yujie Wu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- Sino-German Joint Research Institute
| | - Xin Li
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- School of Food Science and Technology
| | - Li Zou
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- Sino-German Joint Research Institute
| | - Jinyan Gao
- School of Food Science and Technology
- Nanchang University
- Nanchang
- China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
- Sino-German Joint Research Institute
| |
Collapse
|
4
|
Shi L, Zou L, Gao J, Xu H, Shi X, Chen H. Imidacloprid inhibits IgE-mediated RBL-2H3 cell degranulation and passive cutaneous anaphylaxis. Asia Pac Allergy 2016; 6:236-244. [PMID: 27803884 PMCID: PMC5088260 DOI: 10.5415/apallergy.2016.6.4.236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022] Open
Abstract
Background Imidacloprid has been commonly used as a pesticide for crop protection and acts as nicotinic acetylcholine receptor agonists. Little information about the relationship between imidacloprid and allergy is available. Objective This study aims to examine the effects of imidacoprid on IgE-mediated mast cell activation. Methods The rat basophilic leukemia cell line RBL-2H3 (RBL-2H3 cells) were treated with 10-3 – 10-12 mol/L imidacloprid, followed by measuring the mediator production, influx of Ca2+ in IgE-activated RBL-2H3 cells, and the possible effects of imidacoprid on anti-dinitrophenyl IgE-induced passive cutaneous anaphylaxis (PCA). Results It was shown that imidacoprid suppressed the production of histamine, β-hexosaminidase, leukotriene C4, interleukin-6, tumor necrosis factor-α, and Ca2+ mobilization in IgE-activated RBL-2H3 cells and decreased vascular extravasation in IgE-induced PCA. Conclusion It is the first time to show that imidacloprid suppressed the activation of RBL-2H3 cells.
Collapse
Affiliation(s)
- Linbo Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Li Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- School of Food Science, Nanchang University, Nanchang 330047, China
| | - Huaing Xu
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaoyun Shi
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
5
|
Lavezzi AM, Cappiello A, Pusiol T, Corna MF, Termopoli V, Matturri L. Pesticide exposure during pregnancy, like nicotine, affects the brainstem α7 nicotinic acetylcholine receptor expression, increasing the risk of sudden unexplained perinatal death. J Neurol Sci 2014; 348:94-100. [PMID: 25433450 DOI: 10.1016/j.jns.2014.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/24/2014] [Accepted: 11/10/2014] [Indexed: 12/16/2022]
Abstract
This study indicates the impact of nicotine and pesticides (organochlorine and organophosphate insecticides used in agriculture) on neuronal α7-nicotinic acetylcholine receptor expression in brainstem regions receiving cholinergic projections in human perinatal life. An in-depth anatomopathological examination of the autonomic nervous system and immunohistochemistry to analyze the α7-nicotinic acetylcholine receptor expression in the brainstem from 44 fetuses and newborns were performed. In addition, the presence of selected agricultural pesticides in cerebral cortex samples of the victims was determined by specific analytical procedures. Hypodevelopment of brainstem structures checking the vital functions, frequently associated with α7-nicotinic acetylcholine receptor immunopositivity and smoke absorption in pregnancy, was observed in high percentages of victims of sudden unexpected perinatal death. In nearly 30% of cases however the mothers never smoked, but lived in rural areas. The search for pesticides highlighted in many of these cases traces of both organochlorine and organophosphate pesticides. We detain that exposition to pesticides in pregnancy produces homologous actions to those of nicotine on neuronal α7-nicotinic acetylcholine receptor, allowing to developmental alterations of brainstem vital centers in victims of sudden unexplained death.
Collapse
Affiliation(s)
- Anna Maria Lavezzi
- "Lino Rossi" Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy.
| | | | - Teresa Pusiol
- Institute of Anatomic Pathology, Hospital of Rovereto (Trento), Italy
| | - Melissa Felicita Corna
- "Lino Rossi" Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| | | | - Luigi Matturri
- "Lino Rossi" Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy
| |
Collapse
|
6
|
Lavezzi AM, Corna MF, Alfonsi G, Matturri L. Possible role of the α7 nicotinic receptors in mediating nicotine's effect on developing lung - implications in unexplained human perinatal death. BMC Pulm Med 2014; 14:11. [PMID: 24484641 PMCID: PMC3926856 DOI: 10.1186/1471-2466-14-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/24/2014] [Indexed: 12/23/2022] Open
Abstract
Background It is well known that maternal smoking during pregnancy is very harmful to the fetus. Prenatal nicotine absorption, in particular, is associated with alterations in lung development and functions at birth and with respiratory disorders in infancy. Many of the pulmonary disorders are mediated by the interaction of nicotine with the nicotinic receptors (nAChRs), above all with the α7 nAChR subunits that are widely expressed in the developing lung. To determine whether the lung hypoplasia frequently observed in victims of sudden fetal and neonatal death with a smoker mother may result from nicotine interacting with lung nicotinic receptors, we investigated by immunohistochemistry the possible presence of the α7 nAChR subunit overexpression in these pathologies. Methods In lung histological sections from 45 subjects who died of sudden intrauterine unexplained death syndrome (SIUDS) and 15 subjects who died of sudden infant death syndrome (SIDS), we applied the radial alveolar count (RAC) to evaluate the degree of lung maturation, and the immunohistochemical technique for nAChRs, in particular for the α7 nAChR subunit identification. In the same cases, an in-depth study of the autonomic nervous system was performed to highlight possible developmental alterations of the main vital centers located in the brainstem. Results We diagnosed a “lung hypoplasia”, on the basis of RAC values lower than the normal reference values, in 63% of SIUDS/SIDS cases and 8% of controls. In addition, we observed a significantly higher incidence of strong α7 nAChR immunostaining in lung epithelial cells and lung vessel walls in sudden fetal and infant death cases with a smoker mother than in age-matched controls. Hypoplasia of the raphe, the parafacial, the Kölliker-Fuse, the arcuate and the pre-Bötzinger nuclei was at the same time present in the brainstem of these victims. Conclusions These findings demonstrate that when crossing the placenta, nicotine can interact with nicotinic receptors of both neuronal and non-neuronal cells, leading to lung and nervous system defective development, respectively. This work stresses the importance of implementing preventable measures to decrease the noxious potential of nicotine in pregnancy.
Collapse
Affiliation(s)
- Anna M Lavezzi
- Department of Biomedical, Surgical and Dental Sciences, "Lino Rossi" Research Center for the study and prevention of unexpected perinatal death and SIDS, University of Milan, Via della Commenda 19, 20122 Milan, Italy.
| | | | | | | |
Collapse
|
7
|
Yenugonda VM, Xiao Y, Levin ED, Rezvani AH, Tran T, Al-Muhtasib N, Sahibzada N, Xie T, Wells C, Slade S, Johnson JE, Dakshanamurthy S, Kong HS, Tomita Y, Liu Y, Paige M, Kellar KJ, Brown ML. Design, synthesis and discovery of picomolar selective α4β2 nicotinic acetylcholine receptor ligands. J Med Chem 2013; 56:8404-21. [PMID: 24047231 DOI: 10.1021/jm4008455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Developing novel and selective compounds that desensitize α4β2 nicotinic acetylcholine receptors (nAChRs) could provide new effective treatments for nicotine addiction, as well as other disorders. Here we report a new class of nAChR ligands that display high selectivity and picomolar binding affinity for α4β2 nicotinic receptors. The novel compounds have Ki values in the range of 0.031-0.26 nM and properties that should make them good candidates as drugs acting in the CNS. The selected lead compound 1 (VMY-2-95) binds with high affinity and potently desensitizes α4β2 nAChRs. At a dose of 3 mg/kg, compound 1 significantly reduced rat nicotine self-administration. The overall results support further characterizations of compound 1 and its analogues in preclinical models of nicotine addiction and perhaps other disorders involving nAChRs.
Collapse
Affiliation(s)
- Venkata M Yenugonda
- Center for Drug Discovery, Georgetown University Medical Center , 3970 Reservoir Road NW, Research Building, EP-07, Washington, D.C. 20057, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Brust A, Sunagar K, Undheim EAB, Vetter I, Yang DC, Yang DC, Casewell NR, Jackson TNW, Koludarov I, Alewood PF, Hodgson WC, Lewis RJ, King GF, Antunes A, Hendrikx I, Fry BG. Differential evolution and neofunctionalization of snake venom metalloprotease domains. Mol Cell Proteomics 2012; 12:651-63. [PMID: 23242553 DOI: 10.1074/mcp.m112.023135] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Snake venom metalloproteases (SVMP) are composed of five domains: signal peptide, propeptide, metalloprotease, disintegrin, and cysteine-rich. Secreted toxins are typically combinatorial variations of the latter three domains. The SVMP-encoding genes of Psammophis mossambicus venom are unique in containing only the signal and propeptide domains. We show that the Psammophis SVMP propeptide evolves rapidly and is subject to a high degree of positive selection. Unlike Psammophis, some species of Echis express both the typical multidomain and the unusual monodomain (propeptide only) SVMP, with the result that a lower level of variation is exerted upon the latter. We showed that most mutations in the multidomain Echis SVMP occurred in the protease domain responsible for proteolytic and hemorrhagic activities. The cysteine-rich and disintegrin-like domains, which are putatively responsible for making the P-III SVMPs more potent than the P-I and P-II forms, accumulate the remaining variation. Thus, the binding sites on the molecule's surface are evolving rapidly whereas the core remains relatively conserved. Bioassays conducted on two post-translationally cleaved novel proline-rich peptides from the P. mossambicus propeptide domain showed them to have been neofunctionalized for specific inhibition of mammalian a7 neuronal nicotinic acetylcholine receptors. We show that the proline rich postsynaptic specific neurotoxic peptides from Azemiops feae are the result of convergent evolution within the precursor region of the C-type natriuretic peptide instead of the SVMP. The results of this study reinforce the value of studying obscure venoms for biodiscovery of novel investigational ligands.
Collapse
Affiliation(s)
- Andreas Brust
- ‡Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gupta RC. Brain regional heterogeneity and toxicological mechanisms of organophosphates and carbamates. Toxicol Mech Methods 2012; 14:103-43. [PMID: 20021140 DOI: 10.1080/15376520490429175] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The brain is a well-organized, yet highly complex, organ in the mammalian system. Most investigators use the whole brain, instead of a selected brain region(s), for biochemical analytes as toxicological endpoints. As a result, the obtained data is often of limited value, since their significance is compromised due to a reduced effect, and the investigators often arrive at an erroneous conclusion(s). By now, a plethora of knowledge reveals the brain regional variability for various biochemical/neurochemical determinants. This review describes the importance of brain regional heterogeneity in relation to cholinergic and noncholinergic determinants with particular reference to organophosphate (OP) and carbamate pesticides and OP nerve agents.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Murray State University, Breathitt Veterinary Center, Toxicology Department, Hopkinsville, Kentucky, USA
| |
Collapse
|
11
|
Gundavarapu S, Wilder JA, Mishra NC, Rir-Sima-Ah J, Langley RJ, Singh SP, Saeed AI, Jaramillo RJ, Gott KM, Peña-Philippides JC, Harrod KS, McIntosh JM, Buch S, Sopori ML. Role of nicotinic receptors and acetylcholine in mucous cell metaplasia, hyperplasia, and airway mucus formation in vitro and in vivo. J Allergy Clin Immunol 2012; 130:770-780.e11. [PMID: 22578901 DOI: 10.1016/j.jaci.2012.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 03/29/2012] [Accepted: 04/03/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Airway mucus hypersecretion is a key pathophysiologic feature in a number of lung diseases. Cigarette smoke/nicotine and allergens are strong stimulators of airway mucus; however, the mechanism of mucus modulation is unclear. OBJECTIVES We sought to characterize the pathway by which cigarette smoke/nicotine regulates airway mucus and identify agents that decrease airway mucus. METHODS IL-13 and γ-aminobutyric acid type A receptors (GABA(A)Rs) are implicated in airway mucus. We examined the role of IL-13 and GABA(A)Rs in nicotine-induced mucus formation in normal human bronchial epithelial (NHBE) and A549 cells and secondhand cigarette smoke-induced, ovalbumin-induced, or both mucus formation in vivo. RESULTS Nicotine promotes mucus formation in NHBE cells; however, the nicotine-induced mucus formation is independent of IL-13 but sensitive to the GABA(A)R antagonist picrotoxin. Airway epithelial cells express α7-, α9-, and α10-nicotinic acetylcholine receptors (nAChRs), and specific inhibition or knockdown of α7- but not α9/α10-nAChRs abrogates mucus formation in response to nicotine and IL-13. Moreover, addition of acetylcholine or inhibition of its degradation increases mucus in NHBE cells. Nicotinic but not muscarinic receptor antagonists block allergen- or nicotine/cigarette smoke-induced airway mucus formation in NHBE cells, murine airways, or both. CONCLUSIONS Nicotine-induced airway mucus formation is independent of IL-13, and α7-nAChRs are critical in airway mucous cell metaplasia/hyperplasia and mucus production in response to various promucoid agents, including IL-13. In the absence of nicotine, acetylcholine might be the biological ligand for α7-nAChRs to trigger airway mucus formation. α7-nAChRs are downstream of IL-13 but upstream of GABA(A)Rα2 in the MUC5AC pathway. Acetylcholine and α7-nAChRs might serve as therapeutic targets to control airway mucus.
Collapse
|
12
|
Tammimäki A, Horton WJ, Stitzel JA. Recent advances in gene manipulation and nicotinic acetylcholine receptor biology. Biochem Pharmacol 2011; 82:808-19. [PMID: 21704022 DOI: 10.1016/j.bcp.2011.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 11/26/2022]
Abstract
Pharmacological and immunological methods have been valuable for both identifying some native nicotinic acetylcholine receptor (nAChR) subtypes that exist in vivo and determining the neurobiological and behavioral role of certain nAChR subtypes. However, these approaches suffer from shortage of subtype specific ligands and reliable immunological reagents. Consequently, genetic approaches have been developed to complement earlier approaches to identify native nAChR subtypes and to assess the contribution of nAChRs to brain function and behavior. In this review we describe how assembly partners, knock-in mice and targeted lentiviral re-expression of genes have been utilized to improve our understanding of nAChR neurobiology. In addition, we summarize emerging genetic tools in nAChR research.
Collapse
Affiliation(s)
- Anne Tammimäki
- Institute for Behavioral Genetics, University of Colorado at Boulder, UCB 447, Boulder, CO 80309, United States.
| | | | | |
Collapse
|
13
|
Improgo MRD, Scofield MD, Tapper AR, Gardner PD. From smoking to lung cancer: the CHRNA5/A3/B4 connection. Oncogene 2010; 29:4874-84. [PMID: 20581870 PMCID: PMC3934347 DOI: 10.1038/onc.2010.256] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/17/2010] [Accepted: 05/27/2010] [Indexed: 12/21/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that modulate key physiological processes ranging from neurotransmission to cancer signaling. These receptors are activated by the neurotransmitter, acetylcholine, and the tobacco alkaloid, nicotine. Recently, the gene cluster encoding the alpha3, alpha5 and beta4 nAChR subunits received heightened interest after a succession of linkage analyses and association studies identified multiple single-nucleotide polymorphisms in these genes that are associated with an increased risk for nicotine dependence and lung cancer. It is not clear whether the risk for lung cancer is direct or an effect of nicotine dependence, as evidence for both scenarios exist. In this study, we summarize the body of work implicating nAChRs in the pathogenesis of lung cancer, with special focus on the clustered nAChR subunits and their emerging role in this disease state.
Collapse
Affiliation(s)
- Ma. Reina D. Improgo
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont St., Worcester, Massachusetts USA 01604
| | - Michael D. Scofield
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont St., Worcester, Massachusetts USA 01604
| | - Andrew R. Tapper
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont St., Worcester, Massachusetts USA 01604
| | - Paul D. Gardner
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont St., Worcester, Massachusetts USA 01604
| |
Collapse
|
14
|
Mishra NC, Rir-sima-ah J, Boyd RT, Singh SP, Gundavarapu S, Langley RJ, Razani-Boroujerdi S, Sopori ML. Nicotine inhibits Fc epsilon RI-induced cysteinyl leukotrienes and cytokine production without affecting mast cell degranulation through alpha 7/alpha 9/alpha 10-nicotinic receptors. THE JOURNAL OF IMMUNOLOGY 2010; 185:588-96. [PMID: 20505147 DOI: 10.4049/jimmunol.0902227] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Smokers are less likely to develop some inflammatory and allergic diseases. In Brown-Norway rats, nicotine inhibits several parameters of allergic asthma, including the production of Th2 cytokines and the cysteinyl leukotriene LTC(4). Cysteinyl leukotrienes are primarily produced by mast cells, and these cells play a central role in allergic asthma. Mast cells express a high-affinity receptor for IgE (FcepsilonRI). Following its cross-linking, cells degranulate and release preformed inflammatory mediators (early phase) and synthesize and secrete cytokines/chemokines and leukotrienes (late phase). The mechanism by which nicotine modulates mast cell activation is unclear. Using alpha-bungarotoxin binding and quantitative PCR and PCR product sequencing, we showed that the rat mast/basophil cell line RBL-2H3 expresses nicotinic acetylcholine receptors (nAChRs) alpha7, alpha9, and alpha10; exposure to exceedingly low concentrations of nicotine (nanomolar), but not the biologically inactive metabolite cotinine, for > or = 8 h suppressed the late phase (leukotriene/cytokine production) but not degranulation (histamine and hexosaminidase release). These effects were unrelated to those of nicotine on intracellular free calcium concentration but were causally associated with the inhibition of cytosolic phospholipase A(2) activity and the PI3K/ERK/NF-kappaB pathway, including phosphorylation of Akt and ERK and nuclear translocation of NF-kappaB. The suppressive effect of nicotine on the late-phase response was blocked by the alpha7/alpha9-nAChR antagonists methyllycaconitine and alpha-bungarotoxin, as well as by small interfering RNA knockdown of alpha7-, alpha9-, or alpha10-nAChRs, suggesting a functional interaction between alpha7-, alpha9-, and alpha10-nAChRs that might explain the response of RBL cells to nanomolar concentrations of nicotine. This "hybrid" receptor might serve as a target for novel antiallergic/antiasthmatic therapies.
Collapse
Affiliation(s)
- Neerad C Mishra
- Immunology and Asthma Division, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Abstract
The entorhinal cortex (EC) is a part of the hippocampal complex that is essential to learning and memory, and nicotine affects memory by activating nicotinic acetylcholine receptors (nAChRs) in the hippocampal complex. However, it is not clear what types of neurons in the EC are sensitive to nicotine and whether they play a role in nicotine-induced memory functions. Here, we have used voltage-sensitive dye imaging methods to locate the neuronal populations responsive to nicotine in entorhino-hippocampal slices and to clarify which nAChR subtypes are involved. In combination with patch-clamp methods, we found that a concentration of nicotine comparable to exposure during smoking depolarized neurons in layer VI of the EC (ECVI) by acting through the non-alpha7 subtype of nAChRs. Neurons in the subiculum (Sb; close to the deep EC layers) also contain nicotine-sensitive neurons, and it is known that Sb neurons project to the ECVI. When we recorded evoked EPSCs (eEPSCs) from ECVI neurons while stimulating the Sb near the CA1 region, a low dose of nicotine not only enhanced synaptic transmission (by increasing eEPSC amplitude) but also enhanced plasticity by converting tetanus stimulation-induced short-term potentiation to long-term potentiation; nicotine enhanced synaptic transmission and plasticity of ECVI synapses by acting on both the alpha7 and non-alpha7 subtypes of nAChRs. Our data suggest that ECVI neurons are important regulators of hippocampal function and plasticity during smoking.
Collapse
|
17
|
Chen Y, Cui Y, Lin JW, Xiang QL, Liu WF, Wang TH. Modulatory role of estradiol in nicotinic antinociception in adult female rats. Life Sci 2009; 85:91-6. [DOI: 10.1016/j.lfs.2009.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/30/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
|
18
|
Allosteric interaction of the anticholinergic drug [N-(4-phenyl)-phenacyl-l-hyoscyamine] (Phenthonium) with nicotinic receptors of post-ganglionic sympathetic neurons of the rat vas deferens. Eur J Pharmacol 2009; 616:229-35. [PMID: 19540221 DOI: 10.1016/j.ejphar.2009.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/27/2009] [Accepted: 06/08/2009] [Indexed: 11/22/2022]
Abstract
Phenthonium (Phen), a quaternary analog of hyoscyamine, is a blocker of muscarinic activity and an allosteric blocker of alpha(1)2betagammaepsilon nicotinic receptors. Specifically, Phenthonium increases the spontaneous release of acetylcholine at the motor endplate without depolarizing the muscle or inhibiting cholinesterase activity. This paper compares Phenthonium's effects on sympathetic transmission and on ganglionic nicotinic receptor activation. Neurotransmitter release and twitch of the rat vas deferens were induced either by electrical stimulation or by 1,1-dimethyl-4-phenylpiperazine (DMPP) activation of nicotinic receptors. Contractions independent of transmitter release were induced by noradrenaline and adenosine 5'-triphosphate (ATP). Phenthonium inhibited transmitter release and depressed twitch without changing the responsiveness to noradrenaline or ATP. Twitch depression did not occur after K(+)-channel blockade with 4-aminopyridine (4-AP) or charybdotoxin. DMPP had a similar effect, but high concentrations induced contraction of non-stimulated organs. Incubation of Phenthonium inhibited further DMPP twitch depression and non-competitively depressed the contractile responses elicited by DMPP. Furthermore, mecamylamine, but neither methyllycaconitine nor atropine, blocked the contraction elicited by DMPP. Phenthonium and DMPP are K(+)-channel openers that primarily inhibit sympathetic transmission. Contraction induced by DMPP was probably mediated by neuronal nicotinic receptor other than the alpha7 subtype. The blockade of DMPP contractile response was unrelated to Phenthonium's antimuscarinic or K(+)-channel opening activities. Since Phenthonium's quaternary chemical structure limits its membrane diffusion, the non-competitive inhibition of DMPP excitatory responses should be linked to allosteric interaction with neuronal nicotinic receptors that putatively qualify Phenthonium as a novel modulator of cholinergic synapses.
Collapse
|
19
|
Lucas-Meunier E, Monier C, Amar M, Baux G, Frégnac Y, Fossier P. Involvement of nicotinic and muscarinic receptors in the endogenous cholinergic modulation of the balance between excitation and inhibition in the young rat visual cortex. Cereb Cortex 2009; 19:2411-27. [PMID: 19176636 DOI: 10.1093/cercor/bhn258] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study aims to clarify how endogenous release of cortical acetylcholine (ACh) modulates the balance between excitation and inhibition evoked in visual cortex. We show that electrical stimulation in layer 1 produced a significant release of ACh measured intracortically by chemoluminescence and evoked a composite synaptic response recorded intracellularly in layer 5 pyramidal neurons of rat visual cortex. The pharmacological specificity of the ACh neuromodulation was determined from the continuous whole-cell voltage clamp measurement of stimulation-locked changes of the input conductance during the application of cholinergic agonists and antagonists. Blockade of glutamatergic and gamma-aminobutyric acid (GABAergic) receptors suppressed the evoked response, indicating that stimulation-induced release of ACh does not directly activate a cholinergic synaptic conductance in recorded neurons. Comparison of cytisine and mecamylamine effects on nicotinic receptors showed that excitation is enhanced by endogenous evoked release of ACh through the presynaptic activation of alpha(*)beta4 receptors located on glutamatergic fibers. DHbetaE, the selective alpha4beta2 nicotinic receptor antagonist, induced a depression of inhibition. Endogenous ACh could also enhance inhibition by acting directly on GABAergic interneurons, presynaptic to the recorded cell. We conclude that endogenous-released ACh amplifies the dominance of the inhibitory drive and thus decreases the excitability and sensory responsiveness of layer 5 pyramidal neurons.
Collapse
Affiliation(s)
- Estelle Lucas-Meunier
- Laboratoire de neurobiologie cellulaire et moléculaire, UPR CNRS 9040, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
20
|
Crump D, Jagla MM, Kehoe A, Kennedy SW. Detection of polybrominated diphenyl ethers in herring gull (Larus argentatus) brains: effects on mRNA expression in cultured neuronal cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:7715-7721. [PMID: 18983098 DOI: 10.1021/es801145j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In recent years, polybrominated diphenyl ethers (PBDEs) have been detected at increasing levels in the environment due to their widespread use as flame retardants. PBDEs can affect thyroid hormone homeostasis and the cholinergic neurotransmitter system. In this study, several PBDE congeners were detected in whole brain samples and neuronal cells of herring gulls (Larus argentatus). A herring gull neuronal cell culture method was used to determine the effects of PBDEs on cytotoxicity and mRNA expression. Real-time RT-PCR assays were developed for genes associated with the thyroid hormone pathway (thyroid hormone receptors [TR alpha and beta], transthyretin [TTR]), and the cholinergic system (neuronal nicotinic acetylcholine receptor alpha-7 [nAChR alpha-7]). Administration of T3 resulted in a significant up-regulation of the two TRs and a significant down-regulation of TTR. TTR was also down-regulated by the commercial penta-BDE mixture, DE-71. In contrast, neither DE-71, nor BDE-47, -99, or -100 altered the mRNA levels of the TRs or nAChR alpha-7. The in vitro approach was a relevant model system for assessing the effects of PBDEs on cytotoxicity and mRNA expression. Herring gull neuronal cells were responsive to both T3 and PBDEs although, receptors associated with two predicted mechanisms of PBDE action were not effective molecular biomarkers of exposure.
Collapse
Affiliation(s)
- Doug Crump
- Environment Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
21
|
Dehkordi O, Millis RM, Dennis GC, Jazini E, Williams C, Hussain D, Jayam-Trouth A. Expression of alpha-7 and alpha-4 nicotinic acetylcholine receptors by GABAergic neurons of rostral ventral medulla and caudal pons. Brain Res 2007; 1185:95-102. [DOI: 10.1016/j.brainres.2007.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/05/2007] [Accepted: 09/06/2007] [Indexed: 11/17/2022]
|
22
|
Medel YFF, Gardner PD. Transcriptional Repression by a Conserved Intronic Sequence in the Nicotinic Receptor α3 Subunit Gene. J Biol Chem 2007; 282:19062-70. [PMID: 17504758 DOI: 10.1074/jbc.m702354200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The genes encoding the nicotinic acetylcholine receptor alpha3, alpha5, and beta4 subunits are genomically clustered. These genes are co-expressed in a variety of cells in the peripheral and central nervous systems. Their gene products assemble in a number of stoichiometries to generate several nicotinic receptor subtypes that have distinct pharmacological and physiological properties. Signaling through these receptors is critical for a variety of fundamental biological processes. Despite their importance, the transcriptional mechanisms underlying their coordinated expression remain to be completely elucidated. By using a bioinformatics approach, we identified a highly conserved intronic sequence within the fifth intron of the alpha3 subunit gene. Reporter gene analysis demonstrated that this sequence, termed "alpha3 intron 5," inhibits the transcriptional activities of the alpha3 and beta4 subunit gene promoters. This repressive activity is position- and orientation-independent. Importantly, repression occurs in a cell type-specific manner, being present in cells that do not express the receptor genes or expresses them at very low levels. Electrophoretic mobility shift assays demonstrate that nuclear proteins specifically interact with alpha3 intron 5 at two distinct sites. We propose that this intronic repressor element is important for the restricted expression patterns of the nicotinic receptor alpha3 and beta4 subunit genes.
Collapse
Affiliation(s)
- Yuly F Fuentes Medel
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | | |
Collapse
|
23
|
de Jonge WJ, Ulloa L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol 2007; 151:915-29. [PMID: 17502850 PMCID: PMC2042938 DOI: 10.1038/sj.bjp.0707264] [Citation(s) in RCA: 470] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The physiological regulation of the immune system encompasses comprehensive anti-inflammatory mechanisms that can be harnessed for the treatment of infectious and inflammatory disorders. Recent studies indicate that the vagal nerve, involved in control of heart rate, hormone secretion and gastrointestinal motility, is also an immunomodulator. In experimental models of inflammatory diseases, vagal nerve stimulation attenuates the production of proinflammatory cytokines and inhibits the inflammatory process. Acetylcholine, the principal neurotransmitter of the vagal nerve, controls immune cell functions via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). From a pharmacological perspective, nicotinic agonists are more efficient than acetylcholine at inhibiting the inflammatory signaling and the production of proinflammatory cytokines. This 'nicotinic anti-inflammatory pathway' may have clinical implications as treatment with nicotinic agonists can modulate the production of proinflammatory cytokines from immune cells. Nicotine has been tested in clinical trials as a treatment for inflammatory diseases such as ulcerative colitis, but the therapeutic potential of this mechanism is limited by the collateral toxicity of nicotine. Here, we review the recent advances that support the design of more specific receptor-selective nicotinic agonists that have anti-inflammatory effects while eluding its collateral toxicity.
Collapse
Affiliation(s)
- W J de Jonge
- Department of Gastroenterology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
24
|
Thompson SA, Smith O, Linn DM, Linn CL. Acetylcholine neuroprotection against glutamate-induced excitotoxicity in adult pig retinal ganglion cells is partially mediated through alpha4 nAChRs. Exp Eye Res 2006; 83:1135-45. [PMID: 16928373 DOI: 10.1016/j.exer.2006.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 05/21/2006] [Accepted: 05/31/2006] [Indexed: 01/10/2023]
Abstract
In the mammalian retina, excess glutamate release has been shown to be involved in retinal ganglion cell (RGC) death associated with various diseases. Recent studies have determined that activation of alpha7 nicotinic acetylcholine receptors (nAChRs) partially protect isolated RGCs from glutamate-induced excitotoxicity. In this study, we further classify the types of nAChRs involved in neuroprotection against glutamate-induced excitotoxicity using isolated adult pig RGCs. Cells were isolated with a modified two-step immunoselective panning technique designed to isolate RGCs from other retinal neurons. Once isolated, nAChR subunits were identified using a combination of pharmacological and immunocytochemical techniques. In cell culture experiments, a variety of alpha4 nAChR specific agonists were found to have a partial neuroprotective against glutamate-induced excitotoxicity. This neuroprotection was abolished in the presence of the alpha4 nAChR antagonist, dihydro-beta-erythroidine (DHbetaE). Immunocytochemical results localized several nAChR subunits on isolated adult pig RGCs; in particular alpha4, alpha7 and beta2 nAChR subunits. Large RGCs exclusively immunostained with antibodies against alpha7 nAChR subunits whereas alpha4 and beta2 subunits exclusively immunostained only small RGCs. Double label experiments provided evidence that alpha4 and beta2 subunits co-localize on small RGCs. Knowledge of the receptor subtypes responsible for neuroprotection may lead to treatments associated with glutamate-induced excitotoxicity.
Collapse
Affiliation(s)
- S A Thompson
- Department of Biological Sciences, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008, USA
| | | | | | | |
Collapse
|
25
|
Danthi S, Boyd RT. Cell specificity of a rat neuronal nicotinic acetylcholine receptor α7 subunit gene promoter. Neurosci Lett 2006; 400:63-8. [PMID: 16546320 DOI: 10.1016/j.neulet.2006.02.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 02/06/2006] [Indexed: 10/24/2022]
Abstract
Neuronal nAChRs are pentameric transmembrane proteins which function as ligand-gated ion channels and are composed of multiple alpha and beta subunits. Nine neuronal nAChR alpha subunit genes (alpha2-alpha10) and three nAChR beta subunit genes (beta2-beta4) have been identified. nAChR subtypes are heteromers, composed of various combinations of nAChR subunits or homomers composed of alpha7, alpha8, or alpha9 subunits. nAChR subtypes are widely expressed in the nervous system, yet each subunit has a distinct and unique pattern of expression. This report focuses on the expression of the nAChR alpha7 gene since homomeric nAChRs can be formed from this one subunit, simplifying a study of the expression of a specific nAChR subtype. Alpha7 nAChRs are involved in several important biological activities in addition to synaptic transmission including mediating neurite outgrowth, neuronal development and cell death, and in presynaptic control of neurotransmitter release. Transcriptional regulation of alpha7 gene expression may be important to control the location and timing of these events. We previously isolated a rat alpha7 nAChR promoter and studied expression in PC12 cells. In this study we examined the expression of the alpha7 promoter in PC12, HEK293, L6, SN17 and Neuro-2A cells in order to define elements necessary for cell-specific expression. Elements promoting expression of alpha7 in muscle and fibroblasts were identified. We also demonstrated that several other nAChR genes are also expressed in SN 17 and Neuro-2A cells, supporting use of these cell lines as models to study transcriptional control of nAChR genes.
Collapse
Affiliation(s)
- Sanjay Danthi
- Department of Neuroscience, The Ohio State University College of Medicine and Public Health, Columbus, OH 43210, USA
| | | |
Collapse
|
26
|
|
27
|
Bunnelle WH, Decker MW. Neuronal nicotinic acetylcholine receptor ligands as potential analgesics. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.7.1003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Lin NH, Meyer MD. Recent developments in neuronal nicotinic acetylcholine receptor modulators. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.8.8.991] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Centeno ML, Luo J, Lindstrom JM, Caba M, Pau KYF. Expression of alpha 4 and alpha 7 nicotinic receptors in the brainstem of female rabbits after coitus. Brain Res 2004; 1012:1-12. [PMID: 15158155 DOI: 10.1016/j.brainres.2004.03.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2004] [Indexed: 02/02/2023]
Abstract
Coital signaling in the female rabbit involves sequential events in the brainstem and hypothalamus, resulting in a massive release of hypothalamic gonadotropin-releasing hormone (GnRH) that peaks within 1-2 h after mating. The neural connections between coitus and GnRH release involves norepinephrine (NE) and acetylcholine (ACh) since administration of antagonists against NE (dibenamine or phentolamine) or ACh (atropine, alpha-bungarotoxin (alpha-BTX) or scopolamine) blocks or attenuates ovulating events. Moreover, hypothalamic NE release and brainstem tyrosine hydroxylase (TH, the rate-limiting enzyme for NE synthesis) expression in the noradrenergic areas increase prior to, or in concert with, the preovulatory GnRH surge. How ACh is involved in the control of ovulation in the rabbit is lesser known. In the present study, the number of brainstem neurons expressing TH, alpha4 and alpha7 subunits of the nicotinic ACh receptor (nAChR) before and after coitus was determined by immunocytochemistry. Compared to non-mated female rabbits, the number of alpha4, alpha7 and TH single-labeled neurons as well as alpha4/TH and alpha7/TH double-labeled neurons increased in the A1, A2 and A6 brainstem noradrenergic areas at 1 h, but not 2 h, after coitus. The results suggest that the participation of ACh in the control of coitus-induced ovulation may include activation of alpha4beta2 and alpha7 nAChRs in neurons within or adjacent to the brainstem noradrenergic areas in female rabbits.
Collapse
Affiliation(s)
- Maria Luisa Centeno
- Division of Reproductive Sciences and Neuroscience, Oregon National Primate Research Center/Oregon Health and Science University, Beaverton 97006, USA
| | | | | | | | | |
Collapse
|
30
|
Khiroug SS, Khiroug L, Yakel JL. Rat nicotinic acetylcholine receptor alpha2beta2 channels: comparison of functional properties with alpha4beta2 channels in Xenopus oocytes. Neuroscience 2004; 124:817-22. [PMID: 15026122 DOI: 10.1016/j.neuroscience.2004.01.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2004] [Indexed: 11/20/2022]
Abstract
Rat hippocampal interneurons express diverse subtypes of nicotinic acetylcholine receptors (nAChRs), including alpha7- and non-alpha7-containing receptors. Although the major subtype of non-alpha7 nAChRs in the hippocampus is thought to be composed of alpha4beta2 subunits, the molecular makeup of these non-alpha7 receptors is likely to be more complicated. Previously, we reported a high level of expression of the alpha2 nAChR subunit in individual rat hippocampal CA1 stratum oriens interneurons. In addition, the non-alpha7 nAChRs from these neurons are less sensitive to block by dihydro-beta-erythroidine (DHbetaE; the broad spectrum non-alpha7 nAChR antagonist) than that expected for alpha4beta2 receptors. We studied the functional properties of rat alpha2beta2 channels expressed in Xenopus oocytes using two-electrode voltage-clamp, and compared these to those properties of the more widely expressed and studied alpha4beta2 channels. Dose-response curves for both receptor subtypes indicated that there are at least two different affinity sites for ACh, the fractional contribution of which depended on the ratio of injected RNA. DHbetaE blocked both receptor subtypes, although the sensitivity to block of alpha4beta2 channels was significantly higher than that for alpha2beta2. Finally, the current-voltage (I-V) relationship for the alpha2beta2 channels more strongly rectified than for the alpha4beta2 channels. These data suggest that functional properties, in particular the sensitivity to block by DHbetaE, might be useful indicators to differentiate between native alpha4beta2 and alpha2beta2 channels. In addition, these data suggest that the relative balance between the high- and low-affinity components being determined by the relative levels of the alpha and beta subunits might be a general property of the heteromeric non-alpha7 nAChRs. By comparing the properties of expressed nAChRs with those of the native channels, we might be able to learn what role alpha2-containing nAChRs may be playing in forming functional channels in the hippocampus.
Collapse
Affiliation(s)
- S S Khiroug
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, F2-08, P.O. Box 12233, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
31
|
Henderson LP, Jorge JC. Steroid modulation of GABAA receptors:from molecular mechanisms to CNS roles in reproduction, dysfunction and drug abuse. MOLECULAR INSIGHTS INTO ION CHANNEL BIOLOGY IN HEALTH AND DISEASE 2004. [DOI: 10.1016/s1569-2558(03)32010-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Yakel JL, Shao Z. Functional and molecular characterization of neuronal nicotinic ACh receptors in rat hippocampal interneurons. PROGRESS IN BRAIN RESEARCH 2004; 145:95-107. [PMID: 14650909 DOI: 10.1016/s0079-6123(03)45006-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jerrel L Yakel
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, F2-08, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
33
|
Enoch MA. Pharmacogenomics of alcohol response and addiction. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2003; 3:217-32. [PMID: 12930156 DOI: 10.2165/00129785-200303040-00001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Alcoholism is a complex psychiatric disorder that has high heritability (50-60%) and is relatively common; in the US the lifetime prevalence of alcohol dependence is 20% in men and 8% in women. Current psychosocial and pharmacological therapies have relatively modest effects. Treatment is complicated by the fact that alcoholism is often co-morbid with other disorders, including anxiety, depression, and antisocial personality disorder. Approximately 80% of alcoholics smoke cigarettes and there is considerable genetic overlap between nicotine and alcohol addiction. Convergent evidence supports the classification of alcoholics into two broad categories: type 1 - later onset with feelings of anxiety, guilt, and high harm avoidance; and type 2 - early age of onset, usually men, impulsive, antisocial, and with low levels of brain serotonin. The pharmacogenomics of alcohol response is well established; genetic variants for the principal enzymes of alcohol metabolism influence drinking behavior and protect against alcoholism. Vulnerability to alcoholism is likely to be due to multiple interacting genetic loci of small to modest effects. First-line therapeutic targets for alcoholism are neurotransmitter pathway genes implicated in alcohol use. Of particular interest are the 'reward pathway' (serotonin, dopamine, GABA, glutamate, and beta endorphin) and the behavioral stress response system (corticotrophin-releasing factor and neuropeptide Y). Common functional polymorphisms in these genes are likely to be predictive (although each with small effect) of individualized pharmacological responses. Genetic studies, including case-control association studies and genome wide linkage studies, have identified associations between alcoholism and common functional polymorphisms in several candidate genes. Meanwhile, the current pharmacological therapies for alcoholism are effective in some alcoholics but not all. Some progress has been made in elucidating the pharmacogenomic responses to these drugs, particularly in the context of the type 1/type 2 classification system for alcoholics.
Collapse
Affiliation(s)
- Mary-Anne Enoch
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, Maryland 20892-8110, USA.
| |
Collapse
|
34
|
Fu W, Jhamandas JH. Beta-amyloid peptide activates non-alpha7 nicotinic acetylcholine receptors in rat basal forebrain neurons. J Neurophysiol 2003; 90:3130-6. [PMID: 12890800 DOI: 10.1152/jn.00616.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition characterized by profound deficits in memory and cognitive function. Neuropathological hallmarks of the disease include a loss of basal forebrain cholinergic neurons and the deposition of beta-amyloid peptide (Abeta) in neuritic plaques. At a cellular level, considerable attention has focused on a study of Abeta interactions with the neuronal nicotinic acetylcholine receptor (nAChR) subtypes. In this study, using cell-attached and outside-out single channel recordings from acutely dissociated rat basal forebrain neurons, we report that Abeta and nicotine activate nAChRs with two distinct levels of single-channel conductance. Whole cell recordings from these neurons reveal Abeta and nicotine, in a concentration-dependent and reversible manner, evoke brisk depolarizing responses and an inward current. The effects of Abeta on both single channel and whole cell are blocked by the noncompetitive nAChR antagonist mecamylamine and competitive nAChR antagonist dihydro-beta-erythroidine, but not the specific alpha7-selective nAChR antagonist methyllycaconitine, indicating that Abeta activated non-alpha7 nAChRs on basal forebrain neurons. In addition, the non-alpha7 nAChR agonists UB-165, epibatidine, and cytisine, but not the selective alpha7 agonist AR-R17779, induced similar responses as Abeta and nicotine. Thus non-alpha7 nAChRs may also represent a novel target in mediating the effects of Abeta in AD.
Collapse
Affiliation(s)
- Wen Fu
- Department of Medicine, Centre for Alzheimer and Neurodegenerative Research, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | |
Collapse
|
35
|
Liu X, Koren AO, Yee SK, Pechnick RN, Poland RE, London ED. Self-administration of 5-iodo-A-85380, a beta2-selective nicotinic receptor ligand, by operantly trained rats. Neuroreport 2003; 14:1503-5. [PMID: 12960773 DOI: 10.1097/00001756-200308060-00020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It is widely accepted that nicotine is the active ingredient of tobacco smoke that promotes tobacco dependence. Nicotine interacts with several subtypes of nicotinic acetylcholine receptors (nAChRs). In brain, it primarily targets nAChRs that contain beta2 and alpha4 subunits in combination and those composed of solely alpha7 subunits. The present study tested whether operantly trained rats would self-administer a ligand active at beta2-containing (i.e. not alpha7) nAChRs. Male Sprague-Dawley rats were trained to lever press for i.v. cocaine self-administration. After 2 weeks of cocaine washout, rats were given operant access to 5-iodo-A-85380 (5IA), a beta2-selective nAChR ligand, in daily 1 h sessions. The rats rapidly developed a stable level of 5IA self-administration behavior (unit dose = 5 nmol/kg/infusion). This finding suggests that interaction with beta2-containing nAChRs, without direct involvement of alpha7 receptors, can produce reinforcement and thereby can support self-administration behavior.
Collapse
Affiliation(s)
- Xiu Liu
- Department of Psychiatry, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Kotecha SA, MacDonald JF. Signaling molecules and receptor transduction cascades that regulate NMDA receptor-mediated synaptic transmission. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 54:51-106. [PMID: 12785285 DOI: 10.1016/s0074-7742(03)54003-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Suhas A Kotecha
- Department of Physiology, Faculty of Medicine, University of Toronto, Canadian Institute of Health Research Group, The Synapse, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
37
|
Lucas-Meunier E, Fossier P, Baux G, Amar M. Cholinergic modulation of the cortical neuronal network. Pflugers Arch 2003; 446:17-29. [PMID: 12690458 DOI: 10.1007/s00424-002-0999-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2002] [Indexed: 01/15/2023]
Abstract
Acetylcholine (ACh) is an important neurotransmitter of the CNS that binds both nicotinic and muscarinic receptors to exert its action. However, the mechanisms underlying the effects of cholinergic receptors have still not been completely elucidated. Central cholinergic neurons, mainly located in basal forebrain, send their projections to different structures including the cortex. The cortical innervation is diffuse and roughly topographic, which has prompted some authors to suspect a modulating role of ACh on the activity of the cortical network rather than a direct synaptic role. The cholinergic system is implicated in functional, behavioural and pathological states including cognitive function, nicotine addiction, Alzheimer's disease, Tourette's syndrome, epilepsies and schizophrenia. As these processes depend on the activation of glutamatergic and GABAergic systems, the cholinergic terminals must exert their effects via the modulation of excitatory and/or inhibitory neurotransmission. However, the understanding of cholinergic modulation is complex because it is the result of a mixture of positive and negative modulation, implying that there are various types, or even subtypes, of cholinergic receptors. In this review, we summarize the current knowledge on central cholinergic systems (projections and receptors) and then aim to focus on the implications for ACh in the modulation of cortical neuronal activity.
Collapse
Affiliation(s)
- E Lucas-Meunier
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, INAF-CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| | | | | | | |
Collapse
|
38
|
Jones AK, Sattelle DB. Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode,Caenorhabditis elegans. Bioessays 2003; 26:39-49. [PMID: 14696039 DOI: 10.1002/bies.10377] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that bring about a diversity of fast synaptic actions. Analysis of the Caenorhabditis elegans genome has revealed one of the most-extensive and diverse nAChR gene families known, consisting of at least 27 subunits. Striking variation with possible functional implications has been observed in normally conserved motifs at the acetylcholine-binding site and in the channel-lining region. Some nAChR subunits are particular to neurons whilst others are present in both neurons and muscles. The localization of subunits in non-synaptic regions suggests novel roles for nAChRs. Genetic and heterologous expression studies have identified a subset of nAChR subunits that are important drug targets while the study of mutants has identified genes functionally-linked to nAChRs. Future studies using C. elegans offer the prospect of increasing our understanding of the functional diversity of a complex nAChR gene family as well as addressing the role of nAChRs and associated proteins in human disorders.
Collapse
Affiliation(s)
- Andrew K Jones
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX
| | | |
Collapse
|
39
|
Khiroug SS, Harkness PC, Lamb PW, Sudweeks SN, Khiroug L, Millar NS, Yakel JL. Rat nicotinic ACh receptor alpha7 and beta2 subunits co-assemble to form functional heteromeric nicotinic receptor channels. J Physiol 2002; 540:425-34. [PMID: 11956333 PMCID: PMC2290261 DOI: 10.1113/jphysiol.2001.013847] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rat hippocampal interneurons express diverse subtypes of functional nicotinic acetylcholine receptors (nAChRs), including alpha7-containing receptors that have properties unlike those expected for homomeric alpha7 nAChRs. We previously reported a strong correlation between expression of the alpha7 and of the beta2 subunits in individual neurons. To explore whether co-assembly of the alpha7 and beta2 subunits might occur, these subunits were co-expressed in Xenopus oocytes and the functional properties of heterologously expressed nAChRs were characterized by two-electrode voltage clamp. Co-expression of the beta2 subunit, both wild-type and mutant forms, with the alpha7 subunit significantly slowed the rate of nAChR desensitization and altered the pharmacological properties. Whereas ACh, carbachol and choline were full or near-full agonists for homomeric alpha7 receptor channels, both carbachol and choline were only partial agonists in oocytes expressing both alpha7 and beta2 subunits. In addition the EC(50) values for all three agonists significantly increased when the beta2 subunit was co-expressed with the alpha7 subunit. Co-expression with the beta2 subunit did not result in any significant change in the current-voltage curve. Biochemical evidence for the co-assembly of the alpha7 and beta2 subunits was obtained by co-immunoprecipitation of these subunits from transiently transfected human embryonic kidney (TSA201) cells. These data provide direct biophysical and molecular evidence that the nAChR alpha7 and beta2 subunits co-assemble to form a functional heteromeric nAChR with functional and pharmacological properties different from those of homomeric alpha7 channels. This co-assembly may help to explain nAChR channel diversity in rat hippocampal interneurons, and perhaps in other areas of the nervous system.
Collapse
Affiliation(s)
- Serguei S Khiroug
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Eddins D, Lyford LK, Lee JW, Desai SA, Rosenberg RL. Permeant but not impermeant divalent cations enhance activation of nondesensitizing alpha(7) nicotinic receptors. Am J Physiol Cell Physiol 2002; 282:C796-804. [PMID: 11880268 DOI: 10.1152/ajpcell.00453.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuronal alpha(7) nicotinic acetylcholine receptors (nAChRs) are permeable to Ca(2+) and other divalent cations. We characterized the modulation of the pharmacological properties of nondesensitizing mutant (L(247)T and S(240)T/L(247)T) alpha(7) nAChRs by permeant (Ca(2+), Ba(2+), and Sr(2+)) and impermeant (Cd(2+) and Zn(2+)) divalent cations. alpha(7) receptors were expressed in Xenopus oocytes and studied with two-electrode voltage clamp. Extracellular permeant divalent cations increased the potency and maximal efficacy of ACh, whereas impermeant divalent cations decreased potency and maximal efficacy. The antagonist dihydro-beta-erythroidine (DHbetaE) was a strong partial agonist of L(247)T and S(240)T/L(247)T alpha(7) receptors in the presence of divalent cations but was a weak partial agonist in the presence of impermeant divalent cations. Mutation of the "intermediate ring" glutamates (E(237)A) in L(247)T alpha(7) nAChRs eliminated Ca(2+) conductance but did not alter the Ca(2+)-dependent increase in ACh potency, suggesting that site(s) required for modulation are on the extracellular side of the intermediate ring. The difference between permeant and impermeant divalent cations suggests that sites within the pore are important for modulation by divalent cations.
Collapse
Affiliation(s)
- Donnie Eddins
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
41
|
Valor LM, Campos-Caro A, Carrasco-Serrano C, Ortiz JA, Ballesta JJ, Criado M. Transcription factors NF-Y and Sp1 are important determinants of the promoter activity of the bovine and human neuronal nicotinic receptor beta 4 subunit genes. J Biol Chem 2002; 277:8866-76. [PMID: 11742001 DOI: 10.1074/jbc.m110454200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta4 subunit is a component of the neuronal nicotinic acetylcholine receptors which control catecholamine secretion in bovine adrenomedullary chromaffin cells. The promoter of the gene coding for this subunit was characterized. A proximal region (from minus sign99 to minus sign64) was responsible for the transcriptional activity observed in chromaffin, C2C12, and COS cells. Within this region two cis-acting elements that bind transcription factors Sp1 and NF-Y were identified. Mutagenesis of the two elements indicated that they cooperate for the basal transcription activity of the promoter. The human beta4 promoter, that was also characterized, shared structural and functional homologies with the bovine promoter. Thus, two adjacent binding elements for Sp1 and NF-Y were detected. Whereas the Sp1 site was an important determinant of the promoter activity, the NF-Y site may have cell-specific effects. Given that these promoters showed no structural or functional homology with the previously characterized rat beta4 subunit promoter (Bigger, C. B., Casanova, E. A., and Gardner, P. D. (1996) J. Biol. Chem. 271, 32842--32848) except for the involvement of an Sp1 binding element, we propose that constitutive expression of the beta4 subunit gene in these three close species may be controlled by the general transcription factor Sp1. Nevertheless, other components could determine species-specific beta4 subunit expression.
Collapse
Affiliation(s)
- Luis M Valor
- Department of Biochemistry, Universidad Miguel Hernández-C.S.I.C., 03550-San Juan, Alicante, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Sgard F, Charpantier E, Bertrand S, Walker N, Caput D, Graham D, Bertrand D, Besnard F. A novel human nicotinic receptor subunit, alpha10, that confers functionality to the alpha9-subunit. Mol Pharmacol 2002; 61:150-9. [PMID: 11752216 DOI: 10.1124/mol.61.1.150] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We present herein the cloning of the human nicotinic acetylcholine receptor alpha9-ortholog and the identification of a new alpha-like subunit (alpha10) that shares 58% identity with alpha9. Whereas alpha10 fails to produce functional receptors alone, it promoted robust acetylcholine-evoked currents when coinjected with alpha9. The presence of alpha10 modifies the physiological and pharmacological properties of the alpha9 receptor indicating that the two subunits coassemble in a single functional receptor. Fusing the N-terminal domain of alpha9 with the rest of the alpha10-cDNA yielded a functional alpha9:alpha10-chimera that displays the acetylcholine binding properties of alpha9 and ionic pore characteristics of alpha10-containing receptors. In addition, alpha9- and alpha10-subunit mRNAs show limited similar tissue distribution patterns and are expressed in cochlea, pituitary gland, and keratinocytes. These data suggest that, in vivo, alpha9-containing receptors coassemble with alpha10-subunit.
Collapse
Affiliation(s)
- Frédéric Sgard
- Sanofi-Synthélabo, Department of Molecular and Functional Genomics, Rueil-Malmaison, France.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Decker MW, Meyer MD, Sullivan JP. The therapeutic potential of nicotinic acetylcholine receptor agonists for pain control. Expert Opin Investig Drugs 2001; 10:1819-30. [PMID: 11772288 DOI: 10.1517/13543784.10.10.1819] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Due to the limitations of currently available analgesics, a number of novel alternatives are currently under investigation, including neuronal nicotinic acetylcholine receptor (nAChR) agonists. During the 1990s, the discovery of the antinociceptive properties of the potent nAChR agonist epibatidine in rodents sparked interest in the analgesic potential of this class of compounds. Although epibatidine also has several mechanism-related toxicities, the identification of considerable nAChR diversity suggested that the toxicities and therapeutic actions of the compound might be mediated by distinct receptor subtypes. Consistent with this view, a number of novel nAChR agonists with antinociceptive activity and improved safety profiles in preclinical models have now been identified, including A-85380, ABT-594, DBO-83, SIB-1663 and RJR-2403. Of these, ABT-594 is the most advanced and is currently in Phase II clinical evaluation. Nicotinically-mediated antinociception has been demonstrated in a variety of rodent pain models and is likely mediated by the activation of descending inhibitory pathways originating in the brainstem with the predominant high-affinity nicotine site in brain, the alpha4beta2 subtype, playing a critical role. Thus, preclinical findings suggest that nAChR agonists have the potential to be highly efficacious treatments in a variety of pain states. However, clinical proof-of-principle studies will be required to determine if nAChR agonists are active in pathological pain.
Collapse
Affiliation(s)
- M W Decker
- Dept. 4N5, Building AP-9A/3, 100 Abbott Park Rd., Abbott Park, IL 60064-6125, USA.
| | | | | |
Collapse
|
44
|
Campos-Caro A, Carrasco-Serrano C, Valor LM, Ballesta JJ, Criado M. Activity of the nicotinic acetylcholine receptor alpha5 and alpha7 subunit promoters in muscle cells. DNA Cell Biol 2001; 20:657-66. [PMID: 11749724 DOI: 10.1089/104454901753340640] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The acetylcholine receptor alpha5 and alpha7 subunits are components of different nicotinic receptor subtypes expressed in the nervous system. However, they are also present in non-neuronal tissues. We have detected alpha5 and alpha7 transcripts in mouse C2C12 muscle cells. Moreover, on differentiation of myoblasts into myotubes, the amount of alpha7 transcripts increased significantly, whereas alpha5 remained unchanged. In order to explore how the expression of these neuronal genes is regulated in muscle, we have characterized their promoter activities. Deletion and mutagenesis analysis with transfected reporter genes showed that transcriptional activity was controlled by regulatory elements also operative in neuronal-like cells. Thus, the activity of the alpha5 subunit core promoter decreased to approximately 50% on alteration of one, two, or three of the five Sp1 binding sites present in this region and was almost abolished when four or five sites were mutated simultaneously. In the case of the alpha7 subunit promoter, the upstream stimulatory factor and the early growth response gene transcription factor were involved in regulating its transcriptional activity. In addition, the alpha7 promoter was activated during the differentiation process, in a mechanism partially dependent on the mentioned factors.
Collapse
Affiliation(s)
- A Campos-Caro
- Instituto de Neurociencias, Centro Mixto CSIC-Universidad Miguel Hernández, Alicante, Spain
| | | | | | | | | |
Collapse
|
45
|
Sekhon HS, Keller JA, Benowitz NL, Spindel ER. Prenatal nicotine exposure alters pulmonary function in newborn rhesus monkeys. Am J Respir Crit Care Med 2001; 164:989-94. [PMID: 11587984 DOI: 10.1164/ajrccm.164.6.2011097] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epidemiological studies have shown that offspring of women who smoke during pregnancy have abnormal lung function and associated higher incidences of lower respiratory disorders. The recent identification of nicotinic acetylcholine receptors (nAChR) in fetal lung suggests that the direct interaction between nicotine and nAChR in fetal lung may underlie the postnatal pulmonary abnormalities seen in such infants. This hypothesis was tested in monkeys to determine if maternal nicotine exposure would produce changes in lung mechanics in newborn monkeys similar to those observed in human infants whose mothers smoked during pregnancy. Timed pregnant rhesus monkeys were infused with either nicotine (1.5 mg/kg/d, n = 7) or saline (n = 7) using subcutaneous osmotic pumps from Day 26 to 160 of gestation. On Day 160 of pregnancy (term = 165 d), fetuses were delivered by C-section, and the following day were subjected to pulmonary function testing. After testing, animals were sacrificed, and lungs weighed and fixed. Lung weight and fixed lung volume decreased (16% and 14%, respectively) significantly following in utero nicotine exposure. Peak tidal expiratory flow, FEV(0.2), mean mid-expiratory flow, forced expiratory volume at peak expiratory flow (FEV(PEF)), and FEV(PEF)/FVC% were significantly lower in newborns exposed to nicotine during gestation. Absolute and specific pulmonary resistance increased significantly whereas absolute and specific dynamic compliance remained unchanged in prenatally nicotine-treated pups. These changes in pulmonary function are strikingly similar to the changes observed in offspring of human smokers. This suggests that the interaction of nicotine with nAChR in developing lung is responsible for the altered pulmonary mechanics observed in human infants whose mothers smoked during pregnancy.
Collapse
Affiliation(s)
- H S Sekhon
- Division of Neuroscience, Oregon Regional Primate Research Center, Beaverton, Oregon 97006, USA.
| | | | | | | |
Collapse
|
46
|
Storr M, Geisler F, Neuhuber WL, Schusdziarra V, Allescher HD. Characterization of vagal input to the rat esophageal muscle. Auton Neurosci 2001; 91:1-9. [PMID: 11515794 DOI: 10.1016/s1566-0702(01)00290-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
There is recent morphological evidence for an interaction of autonomic nerve fibers and extrinsic motor nerves of the rat esophagus. The aim of the present study was to investigate a possible functional role of this autonomic innervation of vagal motor fibers on rat esophageal smooth and striated muscle function in vitro. The entire esophagus with both Nn vagi, including the Nn recurrentes, was dissected and placed in an organ bath with oxygenated Krebs-Ringer buffer. Contractile activity was measured in longitudinal direction with a force transducer. Both Nn vagi were placed on a bipolar platinum electrode 2 cm apart from the esophagus. Vagal stimulation, applied for 1 s (40 V, 0.5 ms, 20 Hz) resulted in a biphasic contractile response, which was completely blocked by tetrodotoxin (10(-6) M). The first part consisted of a tetanic striated muscle contraction, which was abolished by tubocurarin (10(-5) M) but unaffected by atropine (10(-6) M) or hexamethonium (10(-4) M). In contrast, the second part was completely abolished by hexamethonium (10(-4) M) and atropine (10(-6) M), whereas tubocurarine (10(-5) M) showed no influence, suggesting a stimulation of preganglionic nerve fibers supplying esophageal smooth muscle (muscularis mucosae). In order to characterize possible autonomic transmitters of the ENS of the esophagus, the following experiments were carried out. The magnitude of the striated muscle response was unaffected by VIP (10(-7) M), 5-HT (10(-6) M) and galanin (10(-8) - 10(-7) M), whereas they caused an inhibition of the smooth muscle response (VIP: -53.8 +/- 4.2%; galanin 10(-8) M: - 18.5 +/- 2.2%; 10(-7) M: -40.4 +/- 2.9%; 5-HT: -78.2 +/- 2.1%). The inhibitory effects of VIP and galanin on smooth muscle were reversible by the antagonists VIP 10-28 and galanin 1-15. In the presence of the nitric oxide synthase (NOS) inhibitor L-NNA (10(-4) M), the smooth and striated muscle contraction were not significantly influenced. Exogenous application of the NO-donor DEA-NO (10(-4) M) reduced the smooth muscle contraction by -81.6 +/- 7.4%, but had no significant effect on the striated muscle contraction. Though immunohistochemical findings are highly suggestive of an nitrergic autonomic modulation of striated muscle contraction by enteric neurons, we could not demonstrate a NO-mediated action on striated muscle activity. Therefore, the physiological relevance of the immunohistochemical findings remain unclear.
Collapse
Affiliation(s)
- M Storr
- Department of Internal Medicine II, Technical University of Munich, Germany.
| | | | | | | | | |
Collapse
|
47
|
Melnikova IN, Gardner PD. The signal transduction pathway underlying ion channel gene regulation by SP1-C-Jun interactions. J Biol Chem 2001; 276:19040-5. [PMID: 11262397 DOI: 10.1074/jbc.m010735200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During neuronal differentiation, an exquisitely controlled program of signal transduction events takes place, leading to the temporally and spatially regulated expression of genes associated with the differentiated phenotype. A critical class of genes involved in this phenomenon is that made up of genes encoding neurotransmitter-gated ion channels that play a central role in signal generation and propagation within the nervous system. We used the well established PC12 cell line to investigate the molecular details underlying the expression of the neuronal nicotinic acetylcholine receptor class of ion channels. Neuronal differentiation of PC12 cells can be induced by nerve growth factor, leading to an increase in neuronal nicotinic acetylcholine receptor gene expression. Nerve growth factor initiates several signal transduction cascades. Here, we show that the Ras-dependent mitogen-activated protein kinase and phosphoinositide 3-kinase pathways are critical for the nerve growth factor-mediated increase in the transcriptional activity of a neuronal nicotinic acetylcholine receptor gene promoter. In addition, we show that a component of the Ras-dependent mitogen-activated protein kinase pathway, nerve growth factor-inducible c-Jun, exerts its effects on receptor gene promoter activity most likely through protein-protein interactions with Sp1. Finally, we demonstrate that the target for nerve growth factor signaling is an Sp1-binding site within the neuronal nicotinic acetylcholine receptor gene promoter.
Collapse
Affiliation(s)
- I N Melnikova
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01613, USA
| | | |
Collapse
|
48
|
Abstract
Cholinergic innervation of the hippocampus has been implicated in memory formation and retrieval. Here we study cholinergic modulation of excitatory transmission in the CA3 area of the rat hippocampus. We used a combination of optical measurements of presynaptic calcium and electrophysiological measurements of synaptic currents to study associational-commissural (A/C) and mossy fiber (MF) synapses in brain slices. Direct synaptic modulation mediated by ACh receptors is only evident at the A/C synapse, where synaptic inhibition primarily reflects presynaptic calcium channel inhibition mediated by muscarinic receptors. MF synapses can, however, be indirectly modulated by muscarinic receptor activation. Muscarine elevates the firing rate of inhibitory cells, which increases GABA release and inhibits MF synapses by activating presynaptic GABA(B) receptors. Muscarine also depolarizes dentate granule cells and elevates their rate of firing. This leads to synaptic enhancement when combined with the use-dependent facilitation of MF synapses. In addition we were unable to evoke an increase in presynaptic calcium levels in MF boutons with local application of nicotinic receptor agonists. This finding does not support a leading hypothesis for MF modulation in which activation of presynaptic nicotinic receptors enhances transmission directly by elevating presynaptic calcium levels. However, indirect synaptic modulation could arise from nicotinic excitation of inhibitory neurons. Thus, to understand cholinergic modulation within the CA3 region, it is necessary to take into account secondary actions on synapses arising from other chemical messengers released by other cell types and to consider effects on firing patterns of presynaptic cells, which in turn influence release via use-dependent synaptic plasticity.
Collapse
|
49
|
Rogers SW, Gregori NZ, Carlson N, Gahring LC, Noble M. Neuronal nicotinic acetylcholine receptor expression by O2A/oligodendrocyte progenitor cells. Glia 2001. [DOI: 10.1002/1098-1136(20010315)33:4<306::aid-glia1029>3.0.co;2-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Kenny PJ, File SE, Neal MJ. Evidence for a complex influence of nicotinic acetylcholine receptors on hippocampal serotonin release. J Neurochem 2000; 75:2409-14. [PMID: 11080192 DOI: 10.1046/j.1471-4159.2000.0752409.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of nicotine on 5-hydroxytryptamine (5-HT) release from serotonergic nerve endings in rat dorsal hippocampal slices were studied. Nicotine (50-500 microM:) caused a concentration-dependent increase in 5-HT release. This effect was antagonised by mecamylamine (0.5 microM:), indicating an action at nicotinic receptors. Nicotine-evoked 5-HT release was not affected by tetrodotoxin (3 microM:), cadmium chloride (0.1 mM:), or the absence of Ca(2+) or Na(+) in the superfusion medium. Unexpectedly, higher concentrations of mecamylamine alone (1-50 microM:) increased 5-HT release. This suggested the presence of inhibitory input to 5-HT neurones and that these inhibitory neurones possess tonically active nicotinic receptors. The effect of mecamylamine (50 microM:) on 5-HT release was reduced by the muscarinic M(1) receptor agonist, McN-A-343 (100 microM:), but pirenzepine (0.005-1 microM:), which blocks M(1) receptors, alone increased 5-HT release. Hippocampal serotonergic neurones are known to possess both excitatory nicotinic receptors and inhibitory M(1) receptors. Although there may be several explanations for our results, one possible explanation is that nicotine stimulates 5-HT release by activating nicotinic heteroreceptors on 5-HT terminals. Mecamylamine (0.5 microM:) antagonises this effect, but higher concentrations increase 5-HT release indirectly by blocking the action of endogenous acetylcholine on nicotinic receptors situated on cholinergic neurones that provide muscarinic inhibitory input to 5-HT neurones.
Collapse
Affiliation(s)
- P J Kenny
- Psychopharmacology Research Unit, Centre for Neuroscience, GKT School of Biomedical Sciences, King's College London, London, England
| | | | | |
Collapse
|