1
|
Guo W, Makarov AA, Buevich AV, Jiang Y. Strategy for improving circular dichroism spectra deconvolution accuracy for macrocyclic peptides in drug discovery. J Pharm Biomed Anal 2025; 252:116476. [PMID: 39298840 DOI: 10.1016/j.jpba.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Peptide therapeutics have emerged as an appealing modality in the pharmaceutical industry. Understanding peptide conformation in solution remains one of the most critical areas for peptide drug development. Circular dichroism (CD) spectroscopy is a useful technique to study the secondary structure of proteins and peptides, but the current approaches are limited to protein-focused models to predict high-order structures of peptides, and the models were built based on X-ray crystallography instead of solution-based technique, as a result, such models may have poor predictions for peptides. In this study, we present a novel CD deconvolution model to determine peptide conformation in solution. To quantitatively obtain secondary structure information using CD, a calibration model is needed beforehand to establish the relationship between each secondary structure feature and the corresponding CD response. A reference set containing the majority of cyclic peptides with known structures from solution-state NMR spectroscopy was used to build the calibration model for CD deconvolution. Improved prediction accuracy on the secondary structure determination for cyclic peptides was achieved by this model compared to the commercial standard model using commercially available platforms. This new CD deconvolution method is crucial for peptide conformational analysis in solution, and has the potential to greatly accelerate peptide drug candidate optimization in the pharmaceutical drug discovery field.
Collapse
Affiliation(s)
- Wen Guo
- Analytical Research & Development, Merck & Co., Inc., Boston, MA 02115, USA
| | - Alexey A Makarov
- Analytical Research & Development, Merck & Co., Inc., Boston, MA 02115, USA.
| | - Alexei V Buevich
- Analytical Research & Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Yuan Jiang
- Analytical Research & Development, Merck & Co., Inc., Boston, MA 02115, USA.
| |
Collapse
|
2
|
Hossain R, Thiele CM. Exciting Novel Polyaspartates: Design, Synthesis, and Photo-Responsive Behavior in Solution and Lyotropic Liquid Crystalline Phase Upon Irradiation with Visible Light. Macromol Rapid Commun 2024; 45:e2400513. [PMID: 39162697 PMCID: PMC11583294 DOI: 10.1002/marc.202400513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Many polypeptides form stable, helical secondary structures enabling the formation of lyotropic liquid crystalline (LLC) phases. Contrary to the well-studied polyglutamate, their counterparts based on polyaspartates exhibit a much lower helix inversion barrier. Therefore, the helix sense is not solely dictated by the chirality of the amino acid used, but additionally by the nature and conformation of the polymer sidechain. In this work, polymers responsive to irradiation with visible light are designed achieving conformational transitions from helix-to-coil and helix-to-helix. The synthesis and the application as LLC mesogens of several (co-)polyaspartates bearing ortho-fluorinated azobenzene (FAB) as a photochromic group are presented. Many of the obtained polymers undergo changes in their secondary structure upon E-Z-isomerization of the FAB-containing sidechain. Of special interest are copolymers that exhibit photo-responsive helix inversion without loss of their helical secondary structure. These copolymers form stable LLC phases in helicogenic solvents, where the effect of photo-switching on the macroscopic behavior is studied by NMR spectroscopy. Especially, the irradiation of the different LLC phases of the helix inversion polymers displays a change in the LLC order experienced by the solvent. These peculiar properties are promising for future applications as photo-responsive alignment media for structure elucidation in NMR.
Collapse
Affiliation(s)
- Rimjhim Hossain
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 16, 64287, Darmstadt, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 16, 64287, Darmstadt, Germany
| |
Collapse
|
3
|
Stylianakis I, Zervos N, Lii JH, Pantazis DA, Kolocouris A. Conformational energies of reference organic molecules: benchmarking of common efficient computational methods against coupled cluster theory. J Comput Aided Mol Des 2023; 37:607-656. [PMID: 37597063 PMCID: PMC10618395 DOI: 10.1007/s10822-023-00513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/03/2023] [Indexed: 08/21/2023]
Abstract
We selected 145 reference organic molecules that include model fragments used in computer-aided drug design. We calculated 158 conformational energies and barriers using force fields, with wide applicability in commercial and free softwares and extensive application on the calculation of conformational energies of organic molecules, e.g. the UFF and DREIDING force fields, the Allinger's force fields MM3-96, MM3-00, MM4-8, the MM2-91 clones MMX and MM+, the MMFF94 force field, MM4, ab initio Hartree-Fock (HF) theory with different basis sets, the standard density functional theory B3LYP, the second-order post-HF MP2 theory and the Domain-based Local Pair Natural Orbital Coupled Cluster DLPNO-CCSD(T) theory, with the latter used for accurate reference values. The data set of the organic molecules includes hydrocarbons, haloalkanes, conjugated compounds, and oxygen-, nitrogen-, phosphorus- and sulphur-containing compounds. We reviewed in detail the conformational aspects of these model organic molecules providing the current understanding of the steric and electronic factors that determine the stability of low energy conformers and the literature including previous experimental observations and calculated findings. While progress on the computer hardware allows the calculations of thousands of conformations for later use in drug design projects, this study is an update from previous classical studies that used, as reference values, experimental ones using a variety of methods and different environments. The lowest mean error against the DLPNO-CCSD(T) reference was calculated for MP2 (0.35 kcal mol-1), followed by B3LYP (0.69 kcal mol-1) and the HF theories (0.81-1.0 kcal mol-1). As regards the force fields, the lowest errors were observed for the Allinger's force fields MM3-00 (1.28 kcal mol-1), ΜΜ3-96 (1.40 kcal mol-1) and the Halgren's MMFF94 force field (1.30 kcal mol-1) and then for the MM2-91 clones MMX (1.77 kcal mol-1) and MM+ (2.01 kcal mol-1) and MM4 (2.05 kcal mol-1). The DREIDING (3.63 kcal mol-1) and UFF (3.77 kcal mol-1) force fields have the lowest performance. These model organic molecules we used are often present as fragments in drug-like molecules. The values calculated using DLPNO-CCSD(T) make up a valuable data set for further comparisons and for improved force field parameterization.
Collapse
Affiliation(s)
- Ioannis Stylianakis
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771, Athens, Greece
| | - Nikolaos Zervos
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771, Athens, Greece
| | - Jenn-Huei Lii
- Department of Chemistry, National Changhua University of Education, Changhua City, Taiwan
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Antonios Kolocouris
- Department of Medicinal Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771, Athens, Greece.
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece.
| |
Collapse
|
4
|
Liu D, Bardaud JX, Imani Z, Robin S, Gloaguen E, Brenner V, Aitken DJ, Mons M. Length-Dependent Transition from Extended to Folded Shapes in Short Oligomers of an Azetidine-Based α-Amino Acid: The Critical Role of NH···N H-Bonds. Molecules 2023; 28:5048. [PMID: 37446709 DOI: 10.3390/molecules28135048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Hydrogen bonds (H-bonds) are ubiquitous in peptides and proteins and are central to the stabilization of their structures. Inter-residue H-bonds between non-adjacent backbone amide NH and C=O motifs lead to the well-known secondary structures of helices, turns and sheets, but it is recognized that other H-bonding modes may be significant, including the weak intra-residue H-bond (called a C5 H-bond) that implicates the NH and C=O motifs of the same amino acid residue. Peptide model compounds that adopt stable C5 H-bonds are not readily available and the so-called 2.05-helix, formed by successive C5 H-bonds, is an elusive secondary structure. Using a combination of theoretical chemistry and spectroscopic studies in both the gas phase and solution phase, we have demonstrated that derivatives of 3-amino-1-methylazetidine-3-carboxylic acid, Aatc(Me) can form sidechain-backbone N-H···N C6γ H-bonds that accompany-and thereby stabilize-C5 H-bonds. In the capped trimer of Aatc(Me), extended C5/C6γ motifs are sufficiently robust to challenge classical 310-helix formation in solution and the fully-extended 2.05-helix conformer has been characterized in the gas phase. Concurrent H-bonding support for successive C5 motifs is a new axiom for stabilizing the extended backbone secondary structure in short peptides.
Collapse
Affiliation(s)
- Dayi Liu
- Université Paris-Saclay, CNRS, ICMMO, 91400 Orsay, France
| | | | - Zeynab Imani
- Université Paris-Saclay, CNRS, ICMMO, 91400 Orsay, France
| | - Sylvie Robin
- Université Paris-Saclay, CNRS, ICMMO, 91400 Orsay, France
- Université Paris Cité, Faculté de Pharmacie, 75006 Paris, France
| | - Eric Gloaguen
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - Valérie Brenner
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| | - David J Aitken
- Université Paris-Saclay, CNRS, ICMMO, 91400 Orsay, France
| | - Michel Mons
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
| |
Collapse
|
5
|
de Brevern AG. An agnostic analysis of the human AlphaFold2 proteome using local protein conformations. Biochimie 2023; 207:11-19. [PMID: 36417962 DOI: 10.1016/j.biochi.2022.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/14/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
Knowledge of the 3D structure of proteins is a valuable asset for understanding their precise biological mechanisms. However, the cost of production of 3D structures and experimental difficulties limit their obtaining. The proposal of 3D structural models is consequently an appealing alternative. The release of the AlphaFold Deep Learning approach has revolutionized the field. The recent near-complete human proteome proposal makes it possible to analyse large amounts of data and evaluate the results of the approach in greater depth. The 3D human proteome was thus analysed in light of the classic secondary structures, and many less-used protein local conformations (PolyProline II helices, type of γ-turns, of β-turns and of β-bulges, curvature of the helices, and a structural alphabet). Without questioning the global quality of the approach, this analysis highlights certain local conformations, which maybe poorly predicted and they could therefore be better addressed.
Collapse
Affiliation(s)
- Alexandre G de Brevern
- Université Paris Cité and Université des Antilles and Université de la Réunion, INSERM UMR_S 1134, BIGR, DSIMB Bioinformatics team, F-75014, Paris, France.
| |
Collapse
|
6
|
Biondi B, Formaggio F, Toniolo C, Peggion C, Crisma M. Isolated α-turns in peptides: a selected literature survey. J Pept Sci 2023:e3476. [PMID: 36603599 DOI: 10.1002/psc.3476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
The results of classifying into various types the 68 examples of isolated α-turns in the X-ray diffraction crystal structures of peptides documented in the literature are presented and discussed in this review article. α-Turns characterized by the trans disposition of all ω torsion angles are common for the backbone linear peptides investigated. In contrast, the cis arrangement of the N-terminal (ωi + 1 ) torsion angle, among those generated by the three residues internal to the α-turn, is a peculiar feature of 65% of the cyclic peptides. Among linear and cyclic peptides featuring the all-trans disposition of the ω torsion angles, only one third of the α-turns display φ,ψ values not too far from those characterizing regular α-helices. In general, our findings, taken together, suggest that a significant conformational diversity is compatible with the formation of an intramolecularly H-bonded C13 -member pseudocycle (α-turn) in linear and cyclic peptides.
Collapse
Affiliation(s)
- Barbara Biondi
- CNR-Institute of Biomolecular Chemistry, Padova Unit, Padua, Italy
| | - Fernando Formaggio
- CNR-Institute of Biomolecular Chemistry, Padova Unit, Padua, Italy.,Department of Chemical Sciences, University of Padova, Padua, Italy
| | - Claudio Toniolo
- CNR-Institute of Biomolecular Chemistry, Padova Unit, Padua, Italy.,Department of Chemical Sciences, University of Padova, Padua, Italy
| | - Cristina Peggion
- CNR-Institute of Biomolecular Chemistry, Padova Unit, Padua, Italy.,Department of Chemical Sciences, University of Padova, Padua, Italy
| | - Marco Crisma
- CNR-Institute of Biomolecular Chemistry, Padova Unit, Padua, Italy
| |
Collapse
|
7
|
Rohmer M, Freudenberg J, Binder WH. Secondary Structures in Synthetic Poly(Amino Acids): Homo- and Copolymers of Poly(Aib), Poly(Glu), and Poly(Asp). Macromol Biosci 2022; 23:e2200344. [PMID: 36377468 DOI: 10.1002/mabi.202200344] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/02/2022] [Indexed: 11/16/2022]
Abstract
The secondary structure of poly(amino acids) is an excellent tool for controlling and understanding the functionality and properties of proteins. In this perspective article the secondary structures of the homopolymers of oligo- and poly-glutamic acid (Glu), aspartic acid (Asp), and α-aminoisobutyric acid (Aib) are discussed. Information on external and internal factors, such as the nature of side groups, interactions with solvents and interactions between chains is reviewed. A special focus is directed on the folding in hybrid-polymers consisting of oligo(amino acids) and synthetic polymers. Being part of the SFB TRR 102 "Polymers under multiple constraints: restricted and controlled molecular order and mobility" this overview is embedded into the cross section of protein fibrillation and supramolecular polymers. As polymer- and amino acid folding is an important step for the utilization and design of future biomolecules these principles guide to a deeper understanding of amyloid fibrillation.
Collapse
Affiliation(s)
- Matthias Rohmer
- Macromolecular Chemistry, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | - Jan Freudenberg
- Macromolecular Chemistry, Von-Danckelmann-Platz 4, 06120, Halle, Germany
| | | |
Collapse
|
8
|
Kumar S, Borish K, Dey S, Nagesh J, Das A. Sequence dependent folding motifs of the secondary structures of Gly-Pro and Pro-Gly containing oligopeptides. Phys Chem Chem Phys 2022; 24:18408-18418. [PMID: 35880873 DOI: 10.1039/d2cp01306a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Folding motifs of the secondary structures of peptides and proteins are primarily based on the hydrogen bonding interactions in the backbone as well as the sequence of the amino acid residues present. For instance, the β-turn structure directed by the Pro-Gly sequence is the key to the β-hairpin structure of peptides/proteins as well as a selective site for the enzymatic hydroxylation of pro-collagen. Herein, we have investigated the sequence dependent folding motifs of end-protected Gly-Pro and Pro-Gly dipeptides using a combination of gas phase laser spectroscopy, quantum chemistry calculations, solution phase IR and NMR spectroscopy and single crystal X-Ray diffraction (XRD). All three observed conformers of the Gly-Pro peptide in the gas phase have been found to have extended β-strand or polyproline-II (PP-II) structures with C5-C7 hydrogen bonding interactions, which correlates well with the structure obtained from solution phase spectroscopy and XRD. On the other hand, we have found that the Pro-Gly peptide has a C10/β-turn structure in the solution phase in contrast to the C7-C7 (i.e. 27-ribbon) structure observed in the gas phase. Although the lowest energy structure in the gas phase is not C10, we find that C7-C7 is an abundantly found structural motif of Pro-Gly containing peptides in the Cambridge Structural Database, indicating that the gas phase conformers are not sampling any unusual forms. We surmise that the role of the solvent could be crucial in dictating the preferential stabilization of the C10 structure in the solution phase. The present investigation provides a comprehensive picture of the folding motifs of the Gly-Pro and Pro-Gly peptides observed in the gas phase and condensed phase weaving a fine interplay of the intrinsic conformational properties, solvation, and crystal packing of the peptides.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Kshetrimayum Borish
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Sanjit Dey
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Jayashree Nagesh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore-560012, India.
| | - Aloke Das
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
9
|
Pierri G, Schettini R, Summa FF, De Riccardis F, Monaco G, Izzo I, Tedesco C. Right- and left-handed PPI helices in cyclic dodecapeptoids. Chem Commun (Camb) 2022; 58:5253-5256. [PMID: 35388839 DOI: 10.1039/d2cc00682k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Enantiomorphic right- and left-handed polyproline type I helices in four cyclic dodecapeptoids with methoxyethyl and propargyl side chains are observed for the first time by single crystal X-ray diffraction. The peculiar absence of NH⋯OC hydrogen bonds in peptoids unveils the role of intramolecular backbone-to-backbone CO⋯CO interactions and CH⋯OC hydrogen bonds in the stabilization of the macrocycle conformation. Moreover, intramolecular backbone-side chain C5 CH⋯OC hydrogen bonds emerge as a stabilizing factor.
Collapse
Affiliation(s)
- Giovanni Pierri
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, I-84084 Fisciano, Italy.
| | - Rosaria Schettini
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, I-84084 Fisciano, Italy.
| | - Francesco F Summa
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, I-84084 Fisciano, Italy.
| | - Francesco De Riccardis
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, I-84084 Fisciano, Italy.
| | - Guglielmo Monaco
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, I-84084 Fisciano, Italy.
| | - Irene Izzo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, I-84084 Fisciano, Italy.
| | - Consiglia Tedesco
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, via Giovanni Paolo II, 132, I-84084 Fisciano, Italy.
| |
Collapse
|
10
|
Benavides I, Raftery ED, Bell AG, Evans D, Scott WA, Houk KN, Deming TJ. Poly(dehydroalanine): Synthesis, Properties, and Functional Diversification of a Fluorescent Polypeptide. J Am Chem Soc 2022; 144:4214-4223. [DOI: 10.1021/jacs.2c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Isaac Benavides
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Eric D. Raftery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexandra G. Bell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Declan Evans
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Wendell A. Scott
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Timothy J. Deming
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Roy Chowdhury S, Haldar D. A gama-turn mimetic for selective sensing of Cu(II) and combinatorial multiple logic gate. CrystEngComm 2022. [DOI: 10.1039/d2ce00462c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have designed and synthesized a gama-turn mimetic using fenamic acid and α-aminoisobutyricacid (Aib), the conformation and optoelectronic properties of which can be changed by appropriate external stimuli. From single-crystal...
Collapse
|
12
|
Mundlapati VR, Imani Z, D'mello VC, Brenner V, Gloaguen E, Baltaze JP, Robin S, Mons M, Aitken DJ. N-H⋯X interactions stabilize intra-residue C5 hydrogen bonded conformations in heterocyclic α-amino acid derivatives. Chem Sci 2021; 12:14826-14832. [PMID: 34820098 PMCID: PMC8597926 DOI: 10.1039/d1sc05014a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Nature makes extensive and elaborate use of hydrogen bonding to assemble and stabilize biomolecular structures. The shapes of peptides and proteins rely significantly on N–H⋯O
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C interactions, which are the linchpins of turns, sheets and helices. The C5 H-bond, in which a single residue provides both donor and acceptor, is generally considered too weak to force the backbone to adopt extended structures. Exploiting the synergy between gas phase (experimental and quantum chemistry) and solution spectroscopies to decipher IR spectroscopic data, this work demonstrates that the extended C5-based conformation in 4-membered ring heterocyclic α-amino acid derivatives is significantly stabilized by the formation of an N–H⋯X H-bond. In this synergic system the strength of the C5 interaction remains constant while the N–H⋯X H-bond strength, and thereby the support provided by it, varies with the heteroatom. In 4-membered ring heterocyclic α-amino acid derivatives, extended conformations based on intraresidue C5 H-bonds can be stabilized by N–H⋯X H-bonds, making the combined C5–C6γ structures prominent in both gas phase and in weakly polar solutions.![]()
Collapse
Affiliation(s)
| | - Zeynab Imani
- Université Paris-Saclay, CNRS, ICMMO 91405 Orsay France
| | - Viola C D'mello
- Université Paris-Saclay, CEA, CNRS, LIDYL 91191 Gif-sur-Yvette France
| | - Valérie Brenner
- Université Paris-Saclay, CEA, CNRS, LIDYL 91191 Gif-sur-Yvette France
| | - Eric Gloaguen
- Université Paris-Saclay, CEA, CNRS, LIDYL 91191 Gif-sur-Yvette France
| | | | - Sylvie Robin
- Université Paris-Saclay, CNRS, ICMMO 91405 Orsay France .,Université de Paris, Faculté de Pharmacie 75006 Paris France
| | - Michel Mons
- Université Paris-Saclay, CEA, CNRS, LIDYL 91191 Gif-sur-Yvette France
| | | |
Collapse
|
13
|
Mundlapati VR, Imani Z, Goldsztejn G, Gloaguen E, Brenner V, Le Barbu-Debus K, Zehnacker-Rentien A, Baltaze JP, Robin S, Mons M, Aitken DJ. A theoretical and experimental case study of the hydrogen bonding predilection of S-methylcysteine. Amino Acids 2021; 53:621-633. [PMID: 33743071 DOI: 10.1007/s00726-021-02967-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/12/2021] [Indexed: 12/17/2022]
Abstract
S-containing amino acids can lead to two types of local NH···S interactions which bridge backbone NH sites to the side chain to form either intra- or inter-residue H-bonds. The present work reports on the conformational preferences of S-methyl-L-cysteine, Cys(Me), using a variety of investigating tools, ranging from quantum chemistry simulations, gas-phase UV and IR laser spectroscopy, and solution state IR and NMR spectroscopies, on model compounds comprising one or two Cys(Me) residues. We demonstrate that in gas phase and in low polarity solution, the C- and N-capped model compound for one Cys(Me) residue adopts a preferred C5-C6γ conformation which combines an intra-residue N-H···O=C backbone interaction (C5) and an inter-residue N-H···S interaction implicating the side-chain sulfur atom (C6γ). In contrast, the dominant conformation of the C- and N-capped model compound featuring two consecutive Cys(Me) residues is a regular type I β-turn. This structure is incompatible with concomitant C6γ interactions, which are no longer in evidence. Instead, C5γ interactions occur, that are fully consistent with the turn geometry and additionally stabilize the structure. Comparison with the thietane amino acid Attc, which exhibits a rigid cyclic side chain, pinpoints the significance of side chain flexibility for the specific conformational behavior of Cys(Me).
Collapse
Affiliation(s)
- Venkateswara Rao Mundlapati
- Laboratoire Interactions, Dynamiques Et Lasers (LIDYL), CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
- Institut de Recherche en Astrophysique Et Planétologie (IRAP), Université de Toulouse (UPS), CNRS, CNES, 9 Avenue du Colonel Roche, 31028, Toulouse, France
| | - Zeynab Imani
- Institut de Chimie Moléculaire Et Des Matériaux D'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Gildas Goldsztejn
- Laboratoire Interactions, Dynamiques Et Lasers (LIDYL), CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
- Institut Des Sciences Moléculaires D'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Eric Gloaguen
- Laboratoire Interactions, Dynamiques Et Lasers (LIDYL), CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Valérie Brenner
- Laboratoire Interactions, Dynamiques Et Lasers (LIDYL), CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Katia Le Barbu-Debus
- Institut Des Sciences Moléculaires D'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Anne Zehnacker-Rentien
- Institut Des Sciences Moléculaires D'Orsay (ISMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Jean-Pierre Baltaze
- Institut de Chimie Moléculaire Et Des Matériaux D'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
| | - Sylvie Robin
- Institut de Chimie Moléculaire Et Des Matériaux D'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405, Orsay, France
- Faculté de Pharmacie, Université de Paris, 75006, Paris, France
| | - Michel Mons
- Laboratoire Interactions, Dynamiques Et Lasers (LIDYL), CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France.
| | - David J Aitken
- Institut de Chimie Moléculaire Et Des Matériaux D'Orsay (ICMMO), Université Paris-Saclay, CNRS, 91405, Orsay, France.
| |
Collapse
|
14
|
Prabhakaran EN, Reddy DN, Banerjee S. A kinetic method for detecting intramolecular peptide H-bonds. NEW J CHEM 2021. [DOI: 10.1039/d1nj03544d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current method for the detection of peptide hydrogen bond (PHB) formation places charge donors/acceptors (D/A) at the N-/C-termini of the peptides involved in the putative PHB.
Collapse
Affiliation(s)
- Erode N. Prabhakaran
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Damodara N. Reddy
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shreya Banerjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| |
Collapse
|
15
|
De Zotti M, Corvi G, Gatto E, Di Napoli B, Mazzuca C, Palleschi A, Placidi E, Biondi B, Crisma M, Formaggio F, Toniolo C, Venanzi M. Controlling the Formation of Peptide Films: Fully Developed Helical Peptides are Required to Obtain a Homogenous Coating over a Large Area. Chempluschem 2020; 84:1688-1696. [PMID: 31943881 DOI: 10.1002/cplu.201900456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/18/2019] [Indexed: 01/17/2023]
Abstract
The influence of conformational dynamics on the self-assembly process of a conformationally constrained analogue of the natural antimicrobial peptide Trichogin GA IV was analysed by spectroscopic methods, microscopy imaging at nanometre resolution, and molecular dynamics simulations. The formation of peptide films at the air/water interface and their deposition on a graphite or a mica substrate were investigated. A combination of experimental evidence with molecular dynamics simulation was used to demonstrate that only the fully developed helical structure of the analogue promotes formation of ordered aggregates that nucleate the growth of micrometric rods, which give rise to homogenous coating over wide regions of the hydrophilic mica. This work proves the influence of helix flexibility on peptide self-organization and orientation on surfaces, key steps in the design of bioinspired organic/inorganic hybrid materials.
Collapse
Affiliation(s)
- Marta De Zotti
- Department of Chemistry, University of Padova, 35131, Padova, Italy
| | - Gabriele Corvi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Emanuela Gatto
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Benedetta Di Napoli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Antonio Palleschi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Ernesto Placidi
- ISM Unit, CNR, Department of Physics, University of Rome Sapienza, 00185, Rome, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131, Padova, Italy
| | - Marco Crisma
- Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131, Padova, Italy
| | - Fernando Formaggio
- Department of Chemistry, University of Padova, 35131, Padova, Italy
- Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131, Padova, Italy
| | - Claudio Toniolo
- Department of Chemistry, University of Padova, 35131, Padova, Italy
- Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131, Padova, Italy
| | - Mariano Venanzi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
16
|
Misra R, George G, Reja RM, Dey S, Raghothama S, Gopi HN. Structural insight into hybrid peptide ε-helices. Chem Commun (Camb) 2020; 56:2171-2173. [PMID: 31970340 DOI: 10.1039/c9cc07413a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unique ε-helical organizations (11-helices) from β,γ-hybrid peptides composed of chiral β3-amino acids along with achiral 3,3- or 4,4-dimethyl substituted γ-amino acids are disclosed.
Collapse
Affiliation(s)
- Rajkumar Misra
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411021, India.
| | - Gijo George
- NMR Research Center, Indian Institute of Science, Bangalore-560012, India.
| | - Rahi M Reja
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411021, India.
| | - Sanjit Dey
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411021, India.
| | | | - Hosahudya N Gopi
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411021, India.
| |
Collapse
|
17
|
Marafon G, Moretto A, Zanuy D, Alemán C, Crisma M, Toniolo C. Effect on the Conformation of a Terminally Blocked, ( E) β,γ-Unsaturated δ-Amino Acid Residue Induced by Carbon Methylation. J Org Chem 2020; 85:1513-1524. [PMID: 31769989 DOI: 10.1021/acs.joc.9b02544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptides are well-known to play a fundamental therapeutic role and to represent building blocks for numerous useful biomaterials. Stabilizing their active 3D-structure by appropriate modifications remains, however, a challenge. In this study, we have expanded the available literature information on the conformational propensities of a promising backbone change of a terminally blocked δ-amino acid residue, a dipeptide mimic, by replacing its central amide moiety with an (E) Cβ═Cγ alkene unit. Specifically, we have examined by DFT calculations, X-ray diffraction in the crystalline state, and FT-IR absorption/NMR spectroscopies in solution the extended vs folded preferences of analogues of this prototype system either unmodified or possessing single or multiple methyl group substituents on each of its four -CH2-CH═CH-CH2- main-chain carbon atoms. The theoretical and experimental results obtained clearly point to the conclusion that increasing the number of adequately positioned methylations will enhance the preference of the original sequence to fold, thus opening interesting perspectives in the design of conformationally constrained peptidomimetics.
Collapse
Affiliation(s)
- Giulia Marafon
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy
| | - Alessandro Moretto
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy.,Institute of Biomolecular Chemistry , Padova Unit, CNR , 35131 Padova , Italy
| | - David Zanuy
- Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering , Universitat Polytècnica de Catalunya , 08019 Barcelona , Spain
| | - Carlos Alemán
- Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering , Universitat Polytècnica de Catalunya , 08019 Barcelona , Spain.,Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona Spain
| | - Marco Crisma
- Institute of Biomolecular Chemistry , Padova Unit, CNR , 35131 Padova , Italy
| | - Claudio Toniolo
- Department of Chemical Sciences , University of Padova , 35131 Padova , Italy.,Institute of Biomolecular Chemistry , Padova Unit, CNR , 35131 Padova , Italy
| |
Collapse
|
18
|
Sarnowski MP, Del Valle JR. N-Hydroxy peptides: solid-phase synthesis and β-sheet propensity. Org Biomol Chem 2020; 18:3690-3696. [DOI: 10.1039/d0ob00664e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Backbone amide hydroxylation of peptide strands enhances β-hairpin folding.
Collapse
Affiliation(s)
| | - Juan R. Del Valle
- Department of Chemistry & Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| |
Collapse
|
19
|
Shibuya R, Miyafusa T, Honda S. Stabilization of backbone-circularized protein is attained by synergistic gains in enthalpy of folded structure and entropy of unfolded structure. FEBS J 2019; 287:1554-1575. [PMID: 31605655 DOI: 10.1111/febs.15092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/22/2019] [Accepted: 10/10/2019] [Indexed: 11/30/2022]
Abstract
Backbone circularization is an effective technique for protein stabilization. Here, we investigated the effect of a connector, an engineered segment that connects two protein termini, on the conformational stability of previously designed circularized variants of granulocyte colony-stimulating factor (G-CSF). Heat tolerance and chemical denaturation analyses revealed that aggregation resistance and thermodynamic stability of the circularized variants were superior to those of linear G-CSF. Crystal structure and molecular dynamics (MD) simulation of the most thermodynamically stable variant (C166) revealed a high number of intramolecular hydrogen bonds in both the connector region and Helix D adjacent to the connector region in the folded structure. MD simulations and theoretical calculations involving different force fields indicated a reduction in the main chain entropy of C166 in the unfolded state and increase in the intramolecular hydrogen bond energy of C166 in the folded structure. Although backbone circularization is usually considered to alter chain entropy of the unfolded state, the data indicated that it could also improve the conformational enthalpy of the folded state. Further structural examination of the connector region confirmed that protein design based on a statistical analysis of local structures is an effective approach for predicting an optimum connector length to improve the conformational stability of backbone-circularized proteins. Protein design using backbone circularization with an optimum connector length will be useful for the development of effective and safe protein therapeutics. DATABASE: Structural data are available in Protein Data Bank under the accession number 5ZO6.
Collapse
Affiliation(s)
- Risa Shibuya
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takamitsu Miyafusa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shinya Honda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
20
|
Dhar J, Kishore R, Chakrabarti P. Delineation of a new structural motif involving NHN γ-turn. Proteins 2019; 88:431-439. [PMID: 31587358 DOI: 10.1002/prot.25820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 10/25/2022]
Abstract
Macromolecules are characterized by distinctive arrangement of hydrogen bonds. Different patterns of hydrogen bonds give rise to distinct and stable structural motifs. An analysis of 4114 non-redundant protein chains reveals the existence of a three-residue, (i - 1) to (i + 1), structural motif, having two hydrogen-bonded five-membered pseudo rings (the first, an NH···OC involving the first residue, and the second being NH∙∙∙N involving the last two residues), separated by a peptide bond. There could be an additional hydrogen bond between the side-chain at (i-1) and the main-chain NH of (i + 1). The average backbone torsion angles of -76(±21)° and - 12(±17)° at i creates a tight turn in the polypeptide chain, akin to a γ-turn. Indeed, a search of three-residue fragments with restriction on the terminal Cα ···Cα distance and the existence of the two pseudo rings on either side revealed the presence 14 846 cases of a variant, termed NHN γ-turn, distinct from the NHO γ-turn (2032 cases) that has traditionally been characterized by the presence of NHO hydrogen bond linking the terminal main-chain atoms. As in the latter, the newly identified γ-turns are also of two types-classical and inverse, occurring in the ratio of 1:6. The propensities of residues to occur in these turns and their secondary structural features have been enumerated. An understanding of these turns would be useful for structure prediction and loop modeling, and may serve as models to represent some of the unfolded state or disordered region in proteins.
Collapse
Affiliation(s)
- Jesmita Dhar
- Bioinformatics Centre, Bose Institute, Kolkata, India
| | - Raghuvansh Kishore
- Department of Zoology and Department of Biotechnology, Mizoram University, Aizawl, India
| | - Pinak Chakrabarti
- Bioinformatics Centre, Bose Institute, Kolkata, India.,Department of Biochemistry, Bose Institute, Kolkata, India
| |
Collapse
|
21
|
Saigo N, Izumi K, Kawano R. Electrophysiological Analysis of Antimicrobial Peptides in Diverse Species. ACS OMEGA 2019; 4:13124-13130. [PMID: 31460440 PMCID: PMC6705042 DOI: 10.1021/acsomega.9b01033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/24/2019] [Indexed: 05/25/2023]
Abstract
This study describes a technical platform that allows us to measure the pore-forming activity of antimicrobial peptides (AMPs) in the lipid bilayer and estimate antimicrobial activity. We selected six different AMPs of diverse species from urochordata to vertebrata and measured the channel current signals using a microfabricated lipid bilayer system. As a result of the electrophysiological measurements, we were able to estimate the pore-forming activity and roughly predict the antimicrobial activity although there was not a strong correlation between the pore-forming activity and the variety of species. Our method will be a unique tool for analyzing a wide variety of diverse AMPs.
Collapse
Affiliation(s)
- Naoki Saigo
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Kayano Izumi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| |
Collapse
|
22
|
Abstract
A complete inventory of the forces governing protein folding is critical for productive protein modeling, including structure prediction and de novo design, as well as understanding protein misfolding diseases of clinical significance. The dominant contributors to protein folding include the hydrophobic effect and conventional hydrogen bonding, along with Coulombic and van der Waals interactions. Over the past few decades, important additional contributors have been identified, including C-H···O hydrogen bonding, n→π* interactions, C5 hydrogen bonding, chalcogen bonding, and interactions involving aromatic rings (cation-π, X-H···π, π-π, anion-π, and sulfur-arene). These secondary contributions fall into two general classes: (1) weak but abundant interactions of the protein main chain and (2) strong but less frequent interactions involving protein side chains. Though interactions with high individual energies play important roles in specifying nonlocal molecular contacts and ligand binding, we estimate that weak but abundant interactions are likely to make greater overall contributions to protein folding, particularly at the level of secondary structure. Further research is likely to illuminate additional roles of these noncanonical interactions and could also reveal contributions yet unknown.
Collapse
Affiliation(s)
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Mir FM, Crisma M, Toniolo C, Lubell WD. Influence of the C‐terminal substituent on the crystal‐state conformation of Adm peptides. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fatemeh M. Mir
- Département de ChimieUniversité de Montréal Montréal Québec Canada
| | - Marco Crisma
- Institute of Biomolecular ChemistryPadova Unit Padova Italy
| | - Claudio Toniolo
- Institute of Biomolecular ChemistryPadova Unit Padova Italy
- Department of ChemistryUniversity of Padova Padova Italy
| | | |
Collapse
|
24
|
Drouillat B, Peggion C, Biondi B, Wright K, Couty F, Crisma M, Formaggio F, Toniolo C. Heterochiral Ala/(
αMe)Aze
sequential oligopeptides:
S
ynthesis and conformational study. J Pept Sci 2019; 25:e3165. [DOI: 10.1002/psc.3165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Bruno Drouillat
- Institut Lavoisier de Versailles, UMR CNRS 8180University of Versailles St‐Quentin en Yvelines Versailles 78035 France
| | | | - Barbara Biondi
- Institute of Biomolecular Chemistry Padova Unit, CNR Padova 35131 Italy
| | - Karen Wright
- Institut Lavoisier de Versailles, UMR CNRS 8180University of Versailles St‐Quentin en Yvelines Versailles 78035 France
| | - François Couty
- Institut Lavoisier de Versailles, UMR CNRS 8180University of Versailles St‐Quentin en Yvelines Versailles 78035 France
| | - Marco Crisma
- Institute of Biomolecular Chemistry Padova Unit, CNR Padova 35131 Italy
| | - Fernando Formaggio
- Department of ChemistryUniversity of Padova Padova 35131 Italy
- Institute of Biomolecular Chemistry Padova Unit, CNR Padova 35131 Italy
| | - Claudio Toniolo
- Department of ChemistryUniversity of Padova Padova 35131 Italy
- Institute of Biomolecular Chemistry Padova Unit, CNR Padova 35131 Italy
| |
Collapse
|
25
|
Byrne C, Belnou M, Baulieu E, Lequin O, Jacquot Y. Electronic circular dichroism and nuclear magnetic resonance studies of peptides derived from the FKBP52‐interacting β‐turn of the hERα ligand‐binding domain. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Cillian Byrne
- Sorbonne Université, Ecole Normale SupérieurePSL University, CNRS UMR 7203, Laboratoire des Biomolécules Paris France
- Institut Baulieu, Université Paris‐SaclayINSERM UMR 1195, Neuroprotection and Neuroregeneration Le Kremlin Bicêtre France
| | - Mathilde Belnou
- Sorbonne Université, Ecole Normale SupérieurePSL University, CNRS UMR 7203, Laboratoire des Biomolécules Paris France
| | - Etienne‐Emile Baulieu
- Institut Baulieu, Université Paris‐SaclayINSERM UMR 1195, Neuroprotection and Neuroregeneration Le Kremlin Bicêtre France
| | - Olivier Lequin
- Sorbonne Université, Ecole Normale SupérieurePSL University, CNRS UMR 7203, Laboratoire des Biomolécules Paris France
| | - Yves Jacquot
- Sorbonne Université, Ecole Normale SupérieurePSL University, CNRS UMR 7203, Laboratoire des Biomolécules Paris France
| |
Collapse
|
26
|
Drouillat B, Peggion C, Biondi B, Wright K, Couty F, Crisma M, Formaggio F, Toniolo C. A novel peptide conformation: the γ-bend ribbon. Org Biomol Chem 2018; 16:7947-7958. [PMID: 30318540 DOI: 10.1039/c8ob02279h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unlike the extensively investigated relationship between the peptide β-bend ribbon and its prototypical 310-helix conformation, the corresponding relationship between the narrower γ-bend ribbon and its regular γ-helix counterpart still remains to be studied, as the latter 3D-structures have not yet been experimentally authenticated. In this paper, we describe the results of the first characterization, both in the crystal state and in solution, of the γ-bend ribbon conformation using X-ray diffraction and FT-IR absorption, electronic CD and 2D-NMR spectroscopies applied to an appropriate set of synthetic, homo-chiral, sequential dipeptide oligomers based on (S)-Ala and the known γ-bend inducer, Cα-tetrasubstituted, N-alkylated α-amino acid residue (S)-Cα-methyl-azetidine-carboxylic acid.
Collapse
Affiliation(s)
- Bruno Drouillat
- Institut Lavoisier de Versailles, UMR CNRS 8180, University of Versailles St-Quentin en Yvelines, 78035 Versailles, France.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Thakkar BS, Svendsen JSM, Engh RA. Density Functional Studies on Secondary Amides: Role of Steric Factors in Cis/Trans Isomerization. Molecules 2018; 23:molecules23102455. [PMID: 30257481 PMCID: PMC6222500 DOI: 10.3390/molecules23102455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022] Open
Abstract
Cis/trans isomerization of amide bonds is a key step in a wide range of biological and synthetic processes. Occurring through C-N amide bond rotation, it also coincides with the activation of amides in enzymatic hydrolysis. In recently described QM studies of cis/trans isomerization in secondary amides using density functional methods, we highlighted that a peptidic prototype, such as glycylglycine methyl ester, can suitably represent the isomerization and complexities arising out of a larger molecular backbone, and can serve as the primary scaffold for model structures with different substitution patterns in order to assess and compare the steric effect of the substitution patterns. Here, we describe our theoretical assessment of such steric effects using tert-butyl as a representative bulky substitution. We analyze the geometries and relative stabilities of both trans and cis isomers, and effects on the cis/trans isomerization barrier. We also use the additivity principle to calculate absolute steric effects with a gradual increase in bulk. The study establishes that bulky substitutions significantly destabilize cis isomers and also increases the isomerization barrier, thereby synergistically hindering the cis/trans isomerization of secondary amides. These results provide a basis for the rationalization of kinetic and thermodynamic properties of peptides with potential applications in synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Balmukund S Thakkar
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | | | - Richard A Engh
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
28
|
Crisma M, Formaggio F, Alemán C, Torras J, Ramakrishnan C, Kalmankar N, Balaram P, Toniolo C. The fully‐extended conformation in peptides and proteins. Pept Sci (Hoboken) 2018. [DOI: 10.1002/bip.23100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Marco Crisma
- Institute of Biomolecular Chemistry, Padova Unit, CNRPadova35131 Italy
| | - Fernando Formaggio
- Institute of Biomolecular Chemistry, Padova Unit, CNRPadova35131 Italy
- Department of ChemistryUniversity of PadovaPadova35131 Italy
| | - Carlos Alemán
- Departament d'Enginyeria QuímicaEEBE, Universitat Politècnica de CatalunyaBarcelona08019 Spain
- Barcelona Research Center in Multiscale Science and EngineeringUniversitat Politècnica de CatalunyaBarcelona08019 Spain
| | - Joan Torras
- Departament d'Enginyeria QuímicaEEBE, Universitat Politècnica de CatalunyaBarcelona08019 Spain
- Barcelona Research Center in Multiscale Science and EngineeringUniversitat Politècnica de CatalunyaBarcelona08019 Spain
| | | | - Neha Kalmankar
- National Centre for Biological Sciences (TIFR), GKVK CampusBangalore560065 India
| | | | - Claudio Toniolo
- Institute of Biomolecular Chemistry, Padova Unit, CNRPadova35131 Italy
- Department of ChemistryUniversity of PadovaPadova35131 Italy
| |
Collapse
|
29
|
Thakkar BS, Engh RA. Comparative conformational analyses and molecular dynamics studies of glycylglycine methyl ester and glycylglycine N-methylamide. RSC Adv 2018. [DOI: 10.1039/c7ra13712e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amide–ester substitution and water models significantly alter conformational and solvation properties of glycine–glycine dipeptides.
Collapse
Affiliation(s)
| | - Richard A. Engh
- Department of Chemistry
- UiT the Arctic University of Norway
- 9037-Tromsø
- Norway
| |
Collapse
|
30
|
Biondi B, Peggion C, De Zotti M, Pignaffo C, Dalzini A, Bortolus M, Oancea S, Hilma G, Bortolotti A, Stella L, Pedersen JZ, Syryamina VN, Tsvetkov YD, Dzuba SA, Toniolo C, Formaggio F. Conformational properties, membrane interaction, and antibacterial activity of the peptaibiotic chalciporin A: Multitechnique spectroscopic and biophysical investigations on the natural compound and labeled analogs. Biopolymers 2017; 110. [PMID: 29127716 DOI: 10.1002/bip.23083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 02/28/2024]
Abstract
In this work, an extensive set of spectroscopic and biophysical techniques (including FT-IR absorption, CD, 2D-NMR, fluorescence, and CW/PELDOR EPR) was used to study the conformational preferences, membrane interaction, and bioactivity properties of the naturally occurring synthetic 14-mer peptaibiotic chalciporin A, characterized by a relatively low (≈20%), uncommon proportion of the strongly helicogenic Aib residue. In addition to the unlabeled peptide, we gained in-depth information from the study of two labeled analogs, characterized by one or two residues of the helicogenic, nitroxyl radical-containing TOAC. All three compounds were prepared using the SPPS methodology, which was carefully modified in the course of the syntheses of TOAC-labeled analogs in view of the poorly reactive α-amino function of this very bulky residue and the specific requirements of its free-radical side chain. Despite its potentially high flexibility, our results point to a predominant, partly amphiphilic, α-helical conformation for this peptaibiotic. Therefore, not surprisingly, we found an effective membrane affinity and a remarkable penetration propensity. However, chalciporin A exhibits a selectivity in its antibacterial activity not in agreement with that typical of the other members of this peptide class.
Collapse
Affiliation(s)
- Barbara Biondi
- Institute of Biomolecular, Chemistry, Padova Unit, CNR, Padova, 35131, Italy
| | - Cristina Peggion
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Chiara Pignaffo
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Annalisa Dalzini
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Simona Oancea
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, Sibiu, 550012, Romania
| | - Geta Hilma
- Department of Medicine, "Lucian Blaga" University of Sibiu, Sibiu, 550012, Romania
| | - Annalisa Bortolotti
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Jens Z Pedersen
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Victoria N Syryamina
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090, Russian Federation
| | - Yuri D Tsvetkov
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090, Russian Federation
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Novosibirsk, 630090, Russian Federation
| | - Claudio Toniolo
- Institute of Biomolecular, Chemistry, Padova Unit, CNR, Padova, 35131, Italy
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| | - Fernando Formaggio
- Institute of Biomolecular, Chemistry, Padova Unit, CNR, Padova, 35131, Italy
- Department of Chemical Sciences, University of Padova, Padova, 35131, Italy
| |
Collapse
|
31
|
Injectable silk fibroin hydrogels functionalized with microspheres as adult stem cells-carrier systems. Int J Biol Macromol 2017; 108:960-971. [PMID: 29113887 DOI: 10.1016/j.ijbiomac.2017.11.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/30/2022]
Abstract
Hydrogels are good candidate materials for cell delivery scaffolds because they can mimic the physical, chemical, electrical and biological properties of most of the native tissues. In this study, composite biosynthetic hydrogels were produced by combining the bio-functionality of silk fibroin (SF) with the structural versatility of polyethylene-glycol-diacrylated (PEGDa). The formation of a photopolymerizable PEGDa-SF hydrogel (PSFHy) was optimized for 3D-cell culture. Functionalization of the 3D-PSFHy with protein microspheres (MS) was required to increase the porosity and cell-adhesive properties of the material. Cardiac mesenchymal stem cells, which were cultured within the MS-embedding PSFHy, exhibited good viability and expression of proteins that are characteristic of the initial phases of the cardiac muscle differentiation process. Further, the addition of chondroitin sulfate into the scaffolds improved the cell viability. A cell-preconditioning of the scaffold was also performed, suggesting a potential application of these sponge-like scaffolds for analysing the effects of several extracellular microenvironments, produced by different kinds of cells, on the stem cells fate. The results presented herein highlight on the possibility to use the PSFHys functionalized with MS as stem cell-carrier systems with sponge-like properties, potential ultrasound-imaging contrast agents and controlled biochemical factor delivery.
Collapse
|
32
|
Marafon G, Menegazzo I, De Zotti M, Crisma M, Toniolo C, Moretto A. Tuning morphological architectures generated through living supramolecular assembly of a helical foldamer end-capped with two complementary nucleobases. SOFT MATTER 2017; 13:4231-4240. [PMID: 28509927 DOI: 10.1039/c7sm00764g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two appropriately functionalized nucleobases, thymine and adenine, have been covalently linked at the N- and C-termini, respectively, of two α-aminoisobutyric acid-rich helical peptide foldamers, aiming at driving self-assembly through complementary recognition. A crystal-state analysis (by X-ray diffraction) on the shorter, achiral foldamer 1 unambiguously shows that adeninethymine base pairing, through Watson-Crick intermolecular H-bonding, does take place between either end of each peptide molecule. In the crystals, π-stacking between base pairs is also observed. Evidence for time-dependent foldameroldamer associations for the longer, chiral foldamer 2 in solution is provided by circular dichroism measurements. The self-assembly of foldamer 2, through living supramolecular polymerization, eventually leads to the formation of twisted fibers. Such a supramolecular organization can be affected by addition of either pristine adenine or thymine, that acts as a "terminator" by selectively matching a pairing nucleobase at one end of the foldamer. The co-assembly of foldamer 2 with a porphyrin-derivatized thymine, under appropriate experimental conditions, leads to the formation of vesicles which, in turn, can be converted to the fiber morphology by changing the environmental polarity. Conversely, dendrimeric, star polymer-like microstructures are generated when the supramolecular assembly of foldamer 2 is seeded by adenine-capped gold nanoparticles.
Collapse
Affiliation(s)
- Giulia Marafon
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Chakravorty D, Khan MF, Patra S. Multifactorial level of extremostability of proteins: can they be exploited for protein engineering? Extremophiles 2017; 21:419-444. [PMID: 28283770 DOI: 10.1007/s00792-016-0908-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Abstract
Research on extremostable proteins has seen immense growth in the past decade owing to their industrial importance. Basic research of attributes related to extreme-stability requires further exploration. Modern mechanistic approaches to engineer such proteins in vitro will have more impact in industrial biotechnology economy. Developing a priori knowledge about the mechanism behind extreme-stability will nurture better understanding of pathways leading to protein molecular evolution and folding. This review is a vivid compilation about all classes of extremostable proteins and the attributes that lead to myriad of adaptations divulged after an extensive study of 6495 articles belonging to extremostable proteins. Along with detailing on the rationale behind extreme-stability of proteins, emphasis has been put on modern approaches that have been utilized to render proteins extremostable by protein engineering. It was understood that each protein shows different approaches to extreme-stability governed by minute differences in their biophysical properties and the milieu in which they exist. Any general rule has not yet been drawn regarding adaptive mechanisms in extreme environments. This review was further instrumental to understand the drawback of the available 14 stabilizing mutation prediction algorithms. Thus, this review lays the foundation to further explore the biophysical pleiotropy of extreme-stable proteins to deduce a global prediction model for predicting the effect of mutations on protein stability.
Collapse
Affiliation(s)
- Debamitra Chakravorty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohd Faheem Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
34
|
Krieger V, Ciglia E, Thoma R, Vasylyeva V, Frieg B, de Sousa Amadeu N, Kurz T, Janiak C, Gohlke H, Hansen FK. α-Aminoxy Peptoids: A Unique Peptoid Backbone with a Preference for cis-Amide Bonds. Chemistry 2017; 23:3699-3707. [PMID: 28090689 DOI: 10.1002/chem.201605100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 12/13/2022]
Abstract
α-Peptoids, or N-substituted glycine oligomers, are an important class of peptidomimetic foldamers with proteolytic stability. Nevertheless, the presence of cis/trans-amide bond conformers, which contribute to the high flexibility of α-peptoids, is considered as a major drawback. A modified peptoid backbone with an improved control of the amide bond geometry could therefore help to overcome this limitation. Herein, we have performed the first thorough analysis of the folding propensities of α-aminoxy peptoids (or N-substituted 2-aminoxyacetic acid oligomers). To this end, the amide bond geometry and the conformational properties of a series of model α-aminoxy peptoids were investigated by using 1D and 2D NMR experiments, X-ray crystallography, natural bond orbital (NBO) analysis, circular dichroism (CD) spectroscopy, and molecular dynamics (MD) simulations revealing a unique preference for cis-amide bonds even in the absence of cis-directing side chains. The conformational analysis based on the MD simulations revealed that α-aminoxy peptoids can adopt helical conformations that can mimic the spatial arrangement of peptide side chains in a canonical α-helix. Given their ease of synthesis and conformational properties, α-aminoxy peptoids represent a new member of the peptoid family capable of controlling the amide isomerism while maintaining the potential for side-chain diversity.
Collapse
Affiliation(s)
- Viktoria Krieger
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Emanuele Ciglia
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Roland Thoma
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Vera Vasylyeva
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Benedikt Frieg
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Nader de Sousa Amadeu
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Christoph Janiak
- Institute of Inorganic and Structural Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Finn K Hansen
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany.,Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Leipzig University, Brüderstrasse 34, 04103, Leipzig, Germany
| |
Collapse
|
35
|
Toniolo C, Crisma M, Formaggio F, Alemán C, Ramakrishnan C, Kalmankar N, Balaram P. Intramolecular backbone···backbone hydrogen bonds in polypeptide conformations. The other way around: ɛ-turn. Biopolymers 2017; 108. [DOI: 10.1002/bip.22911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 01/27/2023]
Affiliation(s)
- Claudio Toniolo
- Department of Chemistry; University of Padova; Padova 35131 Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; Padova 35131 Italy
| | - Marco Crisma
- Institute of Biomolecular Chemistry, Padova Unit, CNR; Padova 35131 Italy
| | - Fernando Formaggio
- Department of Chemistry; University of Padova; Padova 35131 Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; Padova 35131 Italy
| | - Carlos Alemán
- Departament d'Enginyeria Quimica; ETSEIB, Universitat Politècnica de Catalunya; Barcelona 08028 Spain
| | | | - Neha Kalmankar
- National Centre for Biological Sciences (TIFR); GKVK Campus Bangalore 560065 India
| | - Padmanabhan Balaram
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore 560012 India
| |
Collapse
|
36
|
St-Cyr DJ, García-Ramos Y, Doan ND, Lubell WD. Aminolactam, N-Aminoimidazolone, and N-Aminoimdazolidinone Peptide Mimics. TOPICS IN HETEROCYCLIC CHEMISTRY 2017. [DOI: 10.1007/7081_2017_204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Mazzier D, Grassi L, Moretto A, Alemán C, Formaggio F, Toniolo C, Crisma M. En route towards the peptideγ-helix: X-ray diffraction analyses and conformational energy calculations of Adm-rich short peptides. J Pept Sci 2016; 23:346-362. [DOI: 10.1002/psc.2957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Daniela Mazzier
- Department of Chemistry; University of Padova; 35131 Padova Italy
| | - Luigi Grassi
- Department of Chemistry; University of Padova; 35131 Padova Italy
| | - Alessandro Moretto
- Department of Chemistry; University of Padova; 35131 Padova Italy
- Institute of Biomolecular Chemistry; Padova Unit, CNR 35131 Padova Italy
| | - Carlos Alemán
- Departament d'Enginyeria Quimica, ETSEIB; Universitat Politècnica de Catalunya; 08028 Barcelona Spain
| | - Fernando Formaggio
- Department of Chemistry; University of Padova; 35131 Padova Italy
- Institute of Biomolecular Chemistry; Padova Unit, CNR 35131 Padova Italy
| | - Claudio Toniolo
- Department of Chemistry; University of Padova; 35131 Padova Italy
- Institute of Biomolecular Chemistry; Padova Unit, CNR 35131 Padova Italy
| | - Marco Crisma
- Institute of Biomolecular Chemistry; Padova Unit, CNR 35131 Padova Italy
| |
Collapse
|
38
|
A prevalent intraresidue hydrogen bond stabilizes proteins. Nat Chem Biol 2016; 12:1084-1088. [PMID: 27748749 PMCID: PMC5110370 DOI: 10.1038/nchembio.2206] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/10/2016] [Indexed: 11/08/2022]
Abstract
Current limitations in de novo protein structure prediction and design suggest an incomplete understanding of the interactions that govern protein folding. Here we demonstrate that previously unappreciated hydrogen bonds occur within proteins between the amide proton and carbonyl oxygen of the same residue. Quantum calculations, infrared spectroscopy, and nuclear magnetic resonance spectroscopy show that these interactions share hallmark features of canonical hydrogen bonds. Biophysical analyses demonstrate that selective attenuation or enhancement of these C5 hydrogen bonds affects the stability of synthetic β-sheets. These interactions are common, affecting approximately 5% of all residues and 94% of proteins, and their cumulative impact provides several kcal/mol of conformational stability to a typical protein. C5 hydrogen bonds stabilize, especially, the flat β-sheets of the amyloid state, which is linked with Alzheimer’s disease and other neurodegenerative disorders. Inclusion of these interactions in computational force fields would improve models of protein folding, function, and dysfunction.
Collapse
|
39
|
Pepin R, Laszlo KJ, Marek A, Peng B, Bush MF, Lavanant H, Afonso C, Tureček F. Toward a Rational Design of Highly Folded Peptide Cation Conformations. 3D Gas-Phase Ion Structures and Ion Mobility Characterization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1647-60. [PMID: 27400696 PMCID: PMC5031493 DOI: 10.1007/s13361-016-1437-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 05/18/2023]
Abstract
Heptapeptide ions containing combinations of polar Lys, Arg, and Asp residues with non-polar Leu, Pro, Ala, and Gly residues were designed to study polar effects on gas-phase ion conformations. Doubly and triply charged ions were studied by ion mobility mass spectrometry and electron structure theory using correlated ab initio and density functional theory methods and found to exhibit tightly folded 3D structures in the gas phase. Manipulation of the basic residue positions in LKGPADR, LRGPADK, KLGPADR, and RLGPADK resulted in only minor changes in the ion collision cross sections in helium. Replacement of the Pro residue with Leu resulted in only marginally larger collision cross sections for the doubly and triply charged ions. Disruption of zwitterionic interactions in doubly charged ions was performed by converting the C-terminal and Asp carboxyl groups to methyl esters. This resulted in very minor changes in the collision cross sections of doubly charged ions and even slightly diminished collision cross sections in most triply charged ions. The experimental collision cross sections were related to those calculated for structures of lowest free energy ion conformers that were obtained by extensive search of the conformational space and fully optimized by density functional theory calculations. The predominant factors that affected ion structures and collision cross sections were due to attractive hydrogen bonding interactions and internal solvation of the charged groups that overcompensated their Coulomb repulsion. Structure features typically assigned to the Pro residue and zwitterionic COO-charged group interactions were only secondary in affecting the structures and collision cross sections of these gas-phase peptide ions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Robert Pepin
- Department of Chemistry, Bagley Hall, University of Washington, Seattle, WA, USA
| | - Kenneth J Laszlo
- Department of Chemistry, Bagley Hall, University of Washington, Seattle, WA, USA
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Bo Peng
- Department of Chemistry, Bagley Hall, University of Washington, Seattle, WA, USA
| | - Matthew F Bush
- Department of Chemistry, Bagley Hall, University of Washington, Seattle, WA, USA
| | - Helène Lavanant
- Laboratoire COBRA CNRS UMR 6014 & FR 3038, Université de Rouen, INSA de Rouen, Mont St Aignan Cedex, France
| | - Carlos Afonso
- Laboratoire COBRA CNRS UMR 6014 & FR 3038, Université de Rouen, INSA de Rouen, Mont St Aignan Cedex, France
| | - František Tureček
- Department of Chemistry, Bagley Hall, University of Washington, Seattle, WA, USA.
| |
Collapse
|
40
|
A novel secondary structure based on fused five-membered rings motif. Sci Rep 2016; 6:31483. [PMID: 27511362 PMCID: PMC4980606 DOI: 10.1038/srep31483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/19/2016] [Indexed: 02/03/2023] Open
Abstract
An analysis of protein structures indicates the existence of a novel, fused five-membered rings motif, comprising of two residues (i and i + 1), stabilized by interresidue Ni+1–H∙∙∙Ni and intraresidue Ni+1–H∙∙∙O=Ci+1 hydrogen bonds. Fused-rings geometry is the common thread running through many commonly occurring motifs, such as β-turn, β-bulge, Asx-turn, Ser/Thr-turn, Schellman motif, and points to its structural robustness. A location close to the beginning of a β-strand is rather common for the motif. Devoid of side chain, Gly seems to be a key player in this motif, occurring at i, for which the backbone torsion angles cluster at ~(−90°, −10°) and (70°, 20°). The fused-rings structures, distant from each other in sequence, can hydrogen bond with each other, and the two segments aligned to each other in a parallel fashion, give rise to a novel secondary structure, topi, which is quite common in proteins, distinct from two major secondary structures, α-helix and β-sheet. Majority of the peptide segments making topi are identified as aggregation-prone and the residues tend to be conserved among homologous proteins.
Collapse
|
41
|
Crisma M, Peggion C, Moretto A, Banerjee R, Supakar S, Formaggio F, Toniolo C. The 2.0₅-helix in hetero-oligopeptides entirely composed of C(α,α)-disubstituted glycines with both side chains longer than methyls. Biopolymers 2016; 102:145-58. [PMID: 24307568 DOI: 10.1002/bip.22450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/15/2013] [Accepted: 12/02/2013] [Indexed: 02/02/2023]
Abstract
The existence of the very uncommon, but potentially quite interesting, multiple, consecutive fully-extended conformation (2.0₅-helix) has been already clearly demonstrated in homo-oligopeptides based on quaternary α-amino acids with both side chains longer than methyls, but not cyclized on the α-carbon atom. To extend the scope of this research, in this work we investigated the occurrence of this flat 3D-structure in hetero-oligopeptides, each composed of two or three different residues of that class. The synthesis of a terminally protected peptide series to the tetrapeptide level was carried out by solution methods. The resulting oligomers were chemically and conformationally characterized. The data obtained point to an overwhelming population of the fully-extended conformation in CDCl3. However, a solvent-driven switch to a predominant 3₁₀-helical structure was seen in CD3CN. A delicate, local balance between these two conformations is confirmed to occur in the crystalline state. Molecular dynamics simulations in CHCl3 on a hetero-tetrapeptide converged to the fully-extended conformation even starting from the 3₁₀-helical structure.
Collapse
Affiliation(s)
- Marco Crisma
- Department of Chemistry, ICB, Padova Unit, CNR, University of Padova, 35131, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Peggion C, Moretto A, Formaggio F, Crisma M, Toniolo C. Multiple, consecutive, fully-extended 2.0₅-helix peptide conformation. Biopolymers 2016; 100:621-36. [PMID: 23893391 DOI: 10.1002/bip.22267] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 02/01/2023]
Abstract
The peptide 2.0(5)-helix does exist. It has been experimentally authenticated both in the crystalline state (by X-ray diffraction) and in solution (by several spectroscopic techniques). It is the most common conformation for C(α)-tetrasubstituted α-amino acids with at least two atoms in each side chain, provided that cyclization on the C(α)-atom is absent. X-Ray diffraction has allowed a detailed description of its geometrical and three-dimensional (3D)-structural features. The infrared absorption and the nuclear magnetic resonance parameters characteristics of this multiple, consecutive, fully-extended structure have been described. Conformational energy calculations are in agreement with the experimental findings. As the contribution per amino acid residue to the length of this helix is the longest possible, its exploitation as a molecular spacer is quite promising. However, it is a rather fragile 3D-structure and particularly sensitive to solvent polarity. Interestingly, in such a case, it may reversibly convert to the much shorter 3(10)-helix, thus generating an attractive molecular spring.
Collapse
Affiliation(s)
- Cristina Peggion
- Institute of Biomolecular Chemistry, CNR, Padova Unit, Department of Chemistry, University of Padova, 35131, Padova, Italy
| | | | | | | | | |
Collapse
|
43
|
Wani NA, Kant R, Gupta VK, Aravinda S, Rai R. Ribbon structure stabilized by C10
and C12
turns in αγ
hybrid peptide. J Pept Sci 2016; 22:208-13. [DOI: 10.1002/psc.2864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Naiem Ahmad Wani
- Medicinal Chemistry Division; Indian Institute of Integrative Medicine; Canal Road Jammu Tawi 180001 India
| | - Rajni Kant
- X-ray Crystallography Laboratory, Post-Graduate Department of Physics and Electronics; University of Jammu; Jammu Tawi 180 006 India
| | - Vivek Kumar Gupta
- X-ray Crystallography Laboratory, Post-Graduate Department of Physics and Electronics; University of Jammu; Jammu Tawi 180 006 India
| | - Subrayashastry Aravinda
- Medicinal Chemistry Division; Indian Institute of Integrative Medicine; Canal Road Jammu Tawi 180001 India
| | - Rajkishor Rai
- Medicinal Chemistry Division; Indian Institute of Integrative Medicine; Canal Road Jammu Tawi 180001 India
- Academy of Scientific and Innovative Research; New Delhi India
| |
Collapse
|
44
|
Perlikowska R, Piekielna J, Gentilucci L, De Marco R, Cerlesi MC, Calo G, Artali R, Tömböly C, Kluczyk A, Janecka A. Synthesis of mixed MOR/KOR efficacy cyclic opioid peptide analogs with antinociceptive activity after systemic administration. Eur J Med Chem 2016; 109:276-86. [DOI: 10.1016/j.ejmech.2015.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022]
|
45
|
Milov AD, Tsvetkov YD, Raap J, De Zotti M, Formaggio F, Toniolo C. Review conformation, self-aggregation, and membrane interaction of peptaibols as studied by pulsed electron double resonance spectroscopy. Biopolymers 2016; 106:6-24. [DOI: 10.1002/bip.22713] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/29/2015] [Accepted: 08/09/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Alexander D. Milov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion; Novosibirsk 630090 Russian Federation
| | - Yuri D. Tsvetkov
- V.V. Voevodsky Institute of Chemical Kinetics and Combustion; Novosibirsk 630090 Russian Federation
| | - Jan Raap
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University; 2300 RA Leiden The Netherlands
| | - Marta De Zotti
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | | | - Claudio Toniolo
- Department of Chemistry; University of Padova; Padova 35131 Italy
| |
Collapse
|
46
|
Longo E, Wright K, Caruso M, Gatto E, Palleschi A, Scarselli M, De Crescenzi M, Crisma M, Formaggio F, Toniolo C, Venanzi M. Peptide flatlandia: a new-concept peptide for positioning of electroactive probes in proximity to a metal surface. NANOSCALE 2015; 7:15495-15506. [PMID: 26274368 DOI: 10.1039/c5nr03549j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A helical hexapeptide was designed to link in a rigid parallel orientation to a gold surface. The peptide sequence of the newly synthesized compound is characterized by the presence of two 4-amino-1,2-dithiolane-4-carboxylic acid (Adt) residues (positions 1 and 4) to promote a bidentate interaction with the gold surface, two L-Ala residues (positions 2 and 5) and two-aminoisobutyric acid (Aib) residues (positions 3 and 6) to favor a high population of the 310-helix conformation. Furthermore, a ferrocenoyl (Fc) probe was inserted at the N-terminus to investigate the electronic conduction properties of the peptide. X-Ray photoelectron spectroscopy and scanning tunneling microscopy techniques were used to characterize the binding of the peptide to the gold surface and the morphology of the peptide layer, respectively. Several electrochemical (cyclic voltammetry, chronoamperometry, square wave voltammetry) techniques were applied to analyze the electrochemical activity of the Fc probe, along with the influence of the peptide 3D-structure and the peptide layer morphology on electron transfer processes.
Collapse
Affiliation(s)
- Edoardo Longo
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fanelli R, Milli L, Cornia A, Moretto A, Castellucci N, Zanna N, Malachin G, Tavano R, Tomasini C. Chiral Gold Nanoparticles Decorated with Pseudopeptides. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Toniolo C, Crisma M, Moretto A, Peggion C, Formaggio F, Alemán C, Cativiela C, Ramakrishnan C, Balaram P. Peptide δ-Turn: Literature Survey and Recent Progress. Chemistry 2015; 21:13866-77. [PMID: 26243713 DOI: 10.1002/chem.201501467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Among the various types of α-peptide folding motifs, δ-turn, which requires a central cis-amide disposition, has been one of the least extensively investigated. In particular, this main-chain reversal topology has been studied in-depth neither in linear/cyclic peptides nor in proteins. This Minireview article assembles and critically analyzes relevant data from a literature survey on the δ-turn conformation in those compounds. Unpublished results from recent conformational energy calculations and a preliminary solution-state analysis on a small model peptide, currently ongoing in our laboratories, are also briefly outlined.
Collapse
Affiliation(s)
- Claudio Toniolo
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova (Italy).
| | - Marco Crisma
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova (Italy)
| | - Alessandro Moretto
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova (Italy)
| | - Cristina Peggion
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova (Italy)
| | - Fernando Formaggio
- ICB, Padova Unit, CNR, Department of Chemistry, University of Padova, 35131 Padova (Italy)
| | - Carlos Alemán
- Departament d'Enginyeria Quimica, ETSEIB, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain)
| | - Carlos Cativiela
- Department of Organic Chemistry, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC - Universidad de Zaragoza, 50009 Zaragoza (Spain)
| | | | - Padmanabhan Balaram
- Molecular Biophysics Unit, Indian Institute of Science, 0091 Bangalore (India)
| |
Collapse
|
49
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Structure-Based Design of Inhibitors of Protein-Protein Interactions: Mimicking Peptide Binding Epitopes. Angew Chem Int Ed Engl 2015; 54:8896-927. [PMID: 26119925 PMCID: PMC4557054 DOI: 10.1002/anie.201412070] [Citation(s) in RCA: 526] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) are involved at all levels of cellular organization, thus making the development of PPI inhibitors extremely valuable. The identification of selective inhibitors is challenging because of the shallow and extended nature of PPI interfaces. Inhibitors can be obtained by mimicking peptide binding epitopes in their bioactive conformation. For this purpose, several strategies have been evolved to enable a projection of side chain functionalities in analogy to peptide secondary structures, thereby yielding molecules that are generally referred to as peptidomimetics. Herein, we introduce a new classification of peptidomimetics (classes A-D) that enables a clear assignment of available approaches. Based on this classification, the Review summarizes strategies that have been applied for the structure-based design of PPI inhibitors through stabilizing or mimicking turns, β-sheets, and helices.
Collapse
Affiliation(s)
- Marta Pelay-Gimeno
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Adrian Glas
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
| | - Oliver Koch
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck SocietyOtto-Hahn-Strasse 15, 44227 Dortmund (Germany) E-mail:
- TU Dortmund University, Department of Chemistry and Chemical BiologyOtto-Hahn-Strasse 6, 44227 Dortmund (Germany)
| |
Collapse
|
50
|
Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Strukturbasierte Entwicklung von Protein-Protein-Interaktionsinhibitoren: Stabilisierung und Nachahmung von Peptidliganden. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201412070] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|