1
|
Simoes-Barbosa A, Pinheiro J. Unconventional features in the transcription and processing of spliceosomal small nuclear RNAs in the protozoan parasite Trichomonas vaginalis. Int J Parasitol 2024; 54:257-266. [PMID: 38452964 DOI: 10.1016/j.ijpara.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/07/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Trichomonas vaginalis is a medically important protozoan parasite, and a deep-branching, evolutionarily divergent unicellular eukaryote that has conserved several key features of eukaryotic gene expression. Trichomonas vaginalis possesses a metazoan/plant-like capping apparatus, mRNAs with a cap 1 structure and spliceosomes containing the five small nuclear RNAs (snRNAs). However, in contrast to metazoan and plant snRNAs, the structurally conserved T. vaginalis snRNAs were initially identified as lacking the canonical guanosine cap nucleotide. To explain this unusual condition, we sought to investigate transcriptional and processing features of the spliceosomal snRNAs in this protist. Here, we show that T. vaginalis spliceosomal snRNA genes mostly lack typical eukaryotic promoters. In contrast to other eukaryotes, the putative TATA box in the T. vaginalis U6 snRNA gene was found to be dispensable for transcription or RNA polymerase selectivity. Moreover, U6 transcription in T. vaginalis was virtually insensitive to tagetitoxin compared with other cellular transcripts produced by the same RNA polymerase III. Most important and unexpected, snRNA transcription in T. vaginalis appears to bypass capping as we show that these transcripts retain their original 5'-triphosphate groups. In conclusion, transcription and processing of spliceosomal snRNAs in T. vaginalis deviate considerably from the conventional rules of other eukaryotes.
Collapse
Affiliation(s)
- Augusto Simoes-Barbosa
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand.
| | - Jully Pinheiro
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
2
|
Minor Intron Splicing from Basic Science to Disease. Int J Mol Sci 2021; 22:ijms22116062. [PMID: 34199764 PMCID: PMC8199999 DOI: 10.3390/ijms22116062] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Pre-mRNA splicing is an essential step in gene expression and is catalyzed by two machineries in eukaryotes: the major (U2 type) and minor (U12 type) spliceosomes. While the majority of introns in humans are U2 type, less than 0.4% are U12 type, also known as minor introns (mi-INTs), and require a specialized spliceosome composed of U11, U12, U4atac, U5, and U6atac snRNPs. The high evolutionary conservation and apparent splicing inefficiency of U12 introns have set them apart from their major counterparts and led to speculations on the purpose for their existence. However, recent studies challenged the simple concept of mi-INTs splicing inefficiency due to low abundance of their spliceosome and confirmed their regulatory role in alternative splicing, significantly impacting the expression of their host genes. Additionally, a growing list of minor spliceosome-associated diseases with tissue-specific pathologies affirmed the importance of minor splicing as a key regulatory pathway, which when deregulated could lead to tissue-specific pathologies due to specific alterations in the expression of some minor-intron-containing genes. Consequently, uncovering how mi-INTs splicing is regulated in a tissue-specific manner would allow for better understanding of disease pathogenesis and pave the way for novel therapies, which we highlight in this review.
Collapse
|
3
|
Sawyer IA, Hager GL, Dundr M. Specific genomic cues regulate Cajal body assembly. RNA Biol 2017; 14:791-803. [PMID: 27715441 PMCID: PMC5519236 DOI: 10.1080/15476286.2016.1243648] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
The assembly of specialized sub-nuclear microenvironments known as nuclear bodies (NBs) is important for promoting efficient nuclear function. In particular, the Cajal body (CB), a prominent NB that facilitates spliceosomal snRNP biogenesis, assembles in response to genomic cues. Here, we detail the factors that regulate CB assembly and structural maintenance. These include the importance of transcription at nucleating gene loci, the grouping of these genes on human chromosomes 1, 6 and 17, as well as cell cycle and biochemical regulation of CB protein function. We also speculate on the correlation between CB formation and RNA splicing levels in neurons and cancer. The timing and location of these specific molecular events is critical to CB assembly and its contribution to genome function. However, further work is required to explore the emerging biophysical characteristics of CB assembly and the impact upon subsequent genome reorganization.
Collapse
Affiliation(s)
- Iain A. Sawyer
- Department of Cell Biology, Rosalind Franklin University of Medicine & Science, Chicago Medical School, North Chicago, IL, USA
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine & Science, Chicago Medical School, North Chicago, IL, USA
| |
Collapse
|
4
|
Sawyer IA, Dundr M. Nuclear bodies: Built to boost. J Cell Biol 2016; 213:509-11. [PMID: 27241912 PMCID: PMC4896059 DOI: 10.1083/jcb.201605049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
The classic archetypal function of nuclear bodies is to accelerate specific reactions within their crowded space. In this issue, Tatomer et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201504043) provide the first direct evidence that the histone locus body acts to concentrate key factors required for the proper processing of histone pre-mRNAs.
Collapse
Affiliation(s)
- Iain A Sawyer
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064 Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064
| |
Collapse
|
5
|
Chen N, Garner AL, Chen G, Jing Y, Deng Y, Swanson RJ, Kolb JF, Beebe SJ, Joshi RP, Schoenbach KH. Nanosecond electric pulses penetrate the nucleus and enhance speckle formation. Biochem Biophys Res Commun 2007; 364:220-5. [PMID: 17950251 DOI: 10.1016/j.bbrc.2007.09.125] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 09/25/2007] [Indexed: 01/21/2023]
Abstract
Nanosecond electric pulses generate nanopores in the interior membranes of cells and modulate cellular functions. Here, we used confocal microscopy and flow cytometry to observe Smith antigen antibody (Y12) binding to nuclear speckles, known as small nuclear ribonucleoprotein particles (snRNPs) or intrachromatin granule clusters (IGCs), in Jurkat cells following one or five 10ns, 150kV/cm pulses. Using confocal microscopy and flow cytometry, we observed changes in nuclear speckle labeling that suggested a disruption of pre-messenger RNA splicing mechanisms. Pulse exposure increased the nuclear speckled substructures by approximately 2.5-fold above basal levels while the propidium iodide (PI) uptake in pulsed cells was unchanged. The resulting nuclear speckle changes were also cell cycle dependent. These findings suggest that 10ns pulses directly influenced nuclear processes, such as the changes in the nuclear RNA-protein complexes.
Collapse
Affiliation(s)
- Nianyong Chen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23510, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Khusial PR, Vaidya K, Zieve GW. The symmetrical dimethylarginine post-translational modification of the SmD3 protein is not required for snRNP assembly and nuclear transport. Biochem Biophys Res Commun 2005; 337:1119-24. [PMID: 16236255 DOI: 10.1016/j.bbrc.2005.09.161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 09/26/2005] [Indexed: 11/22/2022]
Abstract
The SmB, SmD1, and SmD3 proteins have the rare symmetrical dimethylarginine post-translational modification in their C-termini. In this report, we investigate the function of this modification in the assembly and intracellular transport of the SmD3 protein. We show that the elimination of this methylation in the SmD3 protein, by mutating the modified arginines to leucines, does not interfere with the assembly and the nuclear transport of the transiently expressed SmD3 variant. This suggests this modification is not essential for maturation of the SmD3 protein.
Collapse
Affiliation(s)
- Permanan R Khusial
- Department of Pathology, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | | | | |
Collapse
|
7
|
Khusial P, Plaag R, Zieve GW. LSm proteins form heptameric rings that bind to RNA via repeating motifs. Trends Biochem Sci 2005; 30:522-8. [PMID: 16051491 DOI: 10.1016/j.tibs.2005.07.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 06/22/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
Members of the LSm family of proteins share the Sm fold--a closed barrel comprising five anti-parallel beta strands with an alpha helix stacked on the top. The fold forms a subunit of hexameric or heptameric rings of approximately 7nm in diameter. Interactions between neighboring subunits center on an anti-parallel interaction of the fourth and fifth beta strands. In the lumen of the ring, the subunits have the same spacing as nucleotides in RNA, enabling the rings to bind to single-stranded RNA via a repeating motif. Eubacteria and archaea build homohexamers and homoheptamers, respectively, whereas eukaryotes use >18 LSm paralogs to build at least six different heteroheptameric rings. The four different rings in the nucleus that permanently bind small nuclear RNAs and function in pre-mRNA maturation are called Sm rings. The two different rings that transiently bind to RNAs and, thereby, assist in the degradation of mRNA in the cytoplasm and the maturation of a wide spectrum of RNAs in the nucleus are called LSm rings.
Collapse
Affiliation(s)
- Permanan Khusial
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | | | | |
Collapse
|
8
|
Sutherland LC, Rintala-Maki ND, White RD, Morin CD. RNA binding motif (RBM) proteins: a novel family of apoptosis modulators? J Cell Biochem 2005; 94:5-24. [PMID: 15514923 DOI: 10.1002/jcb.20204] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RBM5 is a known modulator of apoptosis, an RNA binding protein, and a putative tumor suppressor. Originally identified as LUCA-15, and subsequently as H37, it was designated "RBM" (for RNA Binding Motif) due to the presence of two RRM (RNA Recognition Motif) domains within the protein coding sequence. Recently, a number of proteins have been attributed with this same RBM designation, based on the presence of one or more RRM consensus sequences. One such protein, RBM3, was also recently found to have apoptotic modulatory capabilities. The high sequence homology at the amino acid level between RBM5, RBM6, and particularly, RBM10 suggests that they, too, may play an important role in regulating apoptosis. It is the intent of this article to ammalgamate the data on the ten originally identified RBM proteins in order to question the existence of a novel family of RNA binding apoptosis regulators.
Collapse
Affiliation(s)
- Leslie C Sutherland
- Tumour Biology Group, Northeastern Ontario Regional Cancer Centre, 41 Ramsey Lake Road, Sudbury, Ontario P3E 5J1, Canada.
| | | | | | | |
Collapse
|
9
|
Affiliation(s)
- S Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
10
|
Yong J, Wan L, Dreyfuss G. Why do cells need an assembly machine for RNA-protein complexes? Trends Cell Biol 2004; 14:226-32. [PMID: 15130578 DOI: 10.1016/j.tcb.2004.03.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Small nuclear ribonucleoproteins (snRNPs) are crucial for pre-mRNA processing to mRNAs. Each snRNP contains a small nuclear RNA (snRNA) and an extremely stable core of seven Sm proteins. The snRNP biogenesis pathway is complex, involving nuclear export of snRNA, Sm-core assembly in the cytoplasm and re-import of the mature snRNP. Although in vitro Sm cores assemble readily on uridine-rich RNAs, the assembly in cells is carried out by the survival of motor neurons (SMN) complex. The SMN complex stringently scrutinizes RNAs for specific features that define them as snRNAs and identifies the RNA-binding Sm proteins. We discuss how this surveillance capacity of the SMN complex might ensure assembly of Sm cores only on the correct RNAs and prevent illicit, potentially deleterious assembly of Sm cores on random RNAs.
Collapse
Affiliation(s)
- Jeongsik Yong
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
| | | | | |
Collapse
|
11
|
Murphy MW, Olson BL, Siliciano PG. The yeast splicing factor Prp40p contains functional leucine-rich nuclear export signals that are essential for splicing. Genetics 2004; 166:53-65. [PMID: 15020406 PMCID: PMC1470677 DOI: 10.1534/genetics.166.1.53] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the function of the essential U1 snRNP protein Prp40p, we performed a synthetic lethal screen in Saccharomyces cerevisiae. Using an allele of PRP40 that deletes 47 internal residues and causes only a slight growth defect, we identified aphenotypic mutations in three distinct complementation groups that conferred synthetic lethality. The synthetic phenotypes caused by these mutations were suppressed by wild-type copies of CRM1 (XPO1), YNL187w, and SME1, respectively. The strains whose synthetic phenotypes were suppressed by CRM1 contained no mutations in the CRM1 coding sequence or promoter. This indicates that overexpression of CRM1 confers dosage suppression of the synthetic lethality. Interestingly, PRP40 and YNL187w encode proteins with putative leucine-rich nuclear export signal (NES) sequences that fit the consensus sequence recognized by Crm1p. One of Prp40p's two NESs lies within the internal deletion. We demonstrate here that the NES sequences of Prp40p are functional for nuclear export in a leptomycin B-sensitive manner. Furthermore, mutation of these NES sequences confers temperature-sensitive growth and a pre-mRNA splicing defect. Although we do not expect that yeast snRNPs undergo compartmentalized biogenesis like their metazoan counterparts, our results suggest that Prp40p and Ynl187wp contain redundant NESs that aid in an important, Crm1p-mediated nuclear export event.
Collapse
Affiliation(s)
- Mark W Murphy
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
12
|
Miranda TB, Khusial P, Cook JR, Lee JH, Gunderson SI, Pestka S, Zieve GW, Clarke S. Spliceosome Sm proteins D1, D3, and B/B′ are asymmetrically dimethylated at arginine residues in the nucleus. Biochem Biophys Res Commun 2004; 323:382-7. [PMID: 15369763 DOI: 10.1016/j.bbrc.2004.08.107] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Indexed: 10/26/2022]
Abstract
We report a novel modification of spliceosome proteins Sm D1, Sm D3, and Sm B/B'. L292 mouse fibroblasts were labeled in vivo with [3H]methionine. Sm D1, Sm D3, and Sm B/B' were purified from either nuclear extracts, cytosolic extracts or a cytosolic 6S complex by immunoprecipitation of the Sm protein-containing complexes and then separation by electrophoresis on a polyacrylamide gel containing urea. The isolated Sm D1, Sm D3 or Sm B/B' proteins were hydrolyzed to amino acids and the products were analyzed by high-resolution cation exchange chromatography. Sm D1, Sm D3, and Sm B/B' isolated from nuclear fractions were all found to contain omega-NG-monomethylarginine and symmetric omega-NG,NG'-dimethylarginine, modifications that have been previously described. In addition, Sm D1, Sm D3, and Sm B/B' were also found to contain asymmetric omega-NG,NG-dimethylarginine in these nuclear fractions. Analysis of Sm B/B' from cytosolic fractions and Sm B/B' and Sm D1 from cytosolic 6S complexes showed only the presence of omega-NG-monomethylarginine and symmetric omega-NG,NG'-dimethylarginine. These results indicate that Sm D1, Sm D3, and Sm B/B' are asymmetrically dimethylated and that these modified proteins are located in the nucleus. In reactions in which Sm D1 or Sm D3 was methylated in vitro with a hemagglutinin-tagged PRMT5 purified from HeLa cells, we detected both symmetric omega-NG,NG'-dimethylarginine and asymmetric omega-NG,NG-dimethylarginine when reactions were done in a Tris/HCl buffer, but only detected symmetric omega-NG,NG'-dimethylarginine when a sodium phosphate buffer was used. These results suggest that the activity responsible for the formation of asymmetric dimethylated arginine residues in Sm proteins is either PRMT5 or a protein associated with it in the immunoprecipitated complex.
Collapse
Affiliation(s)
- Tina Branscombe Miranda
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Meywald T, Scherthan H, Nagl W. Increased specificity of colloidal silver staining by means of chemical attenuation. Hereditas 2004; 124:63-70. [PMID: 8690615 DOI: 10.1111/j.1601-5223.1996.00063.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A modification of the silver staining procedure of Howell and Black (1980) is reported which makes use of teleostean gelatin as protective colloid and renders a high signal-to-noise ratio. We demonstrate that this ratio can be further increased by subsequent attenuation with a chemical reducer consisting of a mixture of potassium ferricyanide (III) and sodium thiosulphate. It is shown that slight changes of the concentration of the reactive compounds of the chemical reducer make the protocol applicable to human, plant (Aliium cepa, Rhinanthus minor) as well as meiotic insect (Acheta domesticus) chromosome preparations. Due to its broad applicability, the method could find utilization in studies on chromatin and chromosome functions in many species.
Collapse
Affiliation(s)
- T Meywald
- Dept. of Cell Biology, The University, Kaiserslautern, Germany
| | | | | |
Collapse
|
14
|
Goldfarb D, Michaud N. Pathways for the nuclear transport of proteins and RNAs. Trends Cell Biol 2004; 1:20-4. [PMID: 14731805 DOI: 10.1016/0962-8924(91)90065-h] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nuclear pore complex catalyses the import and export of both proteins and RNAs. The molecular mechanisms of RNA and protein translocation through the nuclear pore are likely to be similar; however, their signals and targeting apparatus may differ. Recent insights into RNA transport have come from studies of kinetic control mechanisms and the preconditions for translocation that include processing, RNP assembly, and a targeting function for 5' caps.
Collapse
Affiliation(s)
- D Goldfarb
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
15
|
Abstract
Anti-Sm antibodies are found in greater than 30% of the patients with systemic lupus erythematosus (SLE) and are diagnostic of SLE. The Sm autoantigens are the small nuclear ribonucleoprotein (snRNP) common core proteins. The seven core proteins, B, D1, D2, D3, E, F and G, shared by a majority of the snRNP particles, form a heptamer ring approximately 20 nm in diameter, with the snRNA passing through the center. The Sm epitopes are distributed on the outside surface of the ring. A repeated proline rich motif with homology to an Epstein bar nuclear antigen in the B protein and a gly-arg-gly motif including a symmetrical dimethylarginine post translational modification in the B, D1 and D3 proteins are major Sm epitopes. The anti-Sm response has features typical of an antigen driven immune response. SnRNP proteins share several characteristics with other autoantigens including their assembly into ribonucleoprotein particles, homologies to known viral proteins, presence of post translational modifications, a high abundance and great stability and the presence of repeated motifs. Current work on the snRNP particles is attempting to identify the features that predispose the common core proteins to become autoantigens in vulnerable individuals.
Collapse
Affiliation(s)
- Gary W Zieve
- Department of Pathology, SUNY Stony Brook, Stony Brook, NY 11794-8691, USA.
| | | |
Collapse
|
16
|
Mougin A, Torterotot F, Branlant C, Jacobson MR, Huang Q, Pederson T. A 3'-terminal minihelix in the precursor of human spliceosomal U2 small nuclear RNA. J Biol Chem 2002; 277:23137-42. [PMID: 11956214 DOI: 10.1074/jbc.m202258200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
U2 RNA is one of five small nuclear RNAs that participate in the majority of mRNA splicing. In addition to its role in mRNA splicing, the biosynthesis of U2 RNA and three of the other spliceosomal RNAs is itself an intriguing process involving nuclear export followed by 5'-cap hypermethylation, assembly with specific proteins, 3' end processing, and then nuclear import. Previous work has identified sequences near the 3' end of pre-U2 RNA that are required for accurate and efficient processing. In this study, we have investigated the structural basis of U2 RNA 3' end processing by chemical and enzymatic probing methods. Our results demonstrate that the 3' end of pre-U2 RNA is a minihelix with an estimated stabilization free energy of -6.9 kcal/mol. Parallel RNA structure mapping experiments with mutant pre-U2 RNAs revealed that the presence of this 3' minihelix is itself not required for in vitro 3'-processing of pre-U2 RNA, in support of earlier studies implicating internal regions of pre-U2 RNA. Other considerations raise the possibility that this distinctive structural motif at the 3' end of pre-U2 RNA plays a role in the cleavage of the precursor from its longer primary transcript or in its nucleocytoplasmic traffic.
Collapse
Affiliation(s)
- Annie Mougin
- Unité Mixte Recherche 7567 CNRS-Université Henri Poincaré Nancy I, Maturation des ARN et Enzymologie Moléculaire, Université H. Poincaré, 54506 Vandoeuvre-les Nancy, France
| | | | | | | | | | | |
Collapse
|
17
|
Friesen WJ, Paushkin S, Wyce A, Massenet S, Pesiridis GS, Van Duyne G, Rappsilber J, Mann M, Dreyfuss G. The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 2001; 21:8289-300. [PMID: 11713266 PMCID: PMC99994 DOI: 10.1128/mcb.21.24.8289-8300.2001] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
snRNPs, integral components of the pre-mRNA splicing machinery, consist of seven Sm proteins which assemble in the cytoplasm as a ring structure on the snRNAs U1, U2, U4, and U5. The survival motor neuron (SMN) protein, the spinal muscular atrophy disease gene product, is crucial for snRNP core particle assembly in vivo. SMN binds preferentially and directly to the symmetrical dimethylarginine (sDMA)-modified arginine- and glycine-rich (RG-rich) domains of SmD1 and SmD3. We found that the unmodified, but not the sDMA-modified, RG domains of SmD1 and SmD3 associate with a 20S methyltransferase complex, termed the methylosome, that contains the methyltransferase JBP1 and a JBP1-interacting protein, pICln. JBP1 binds SmD1 and SmD3 via their RG domains, while pICln binds the Sm domains. JBP1 produces sDMAs in the RG domain-containing Sm proteins. We further demonstrate the existence of a 6S complex that contains pICln, SmD1, and SmD3 but not JBP1. SmD3 from the methylosome, but not that from the 6S complex, can be transferred to the SMN complex in vitro. Together with previous results, these data indicate that methylation of Sm proteins by the methylosome directs Sm proteins to the SMN complex for assembly into snRNP core particles and suggest that the methylosome can regulate snRNP assembly.
Collapse
Affiliation(s)
- W J Friesen
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Collins BM, Harrop SJ, Kornfeld GD, Dawes IW, Curmi PM, Mabbutt BC. Crystal structure of a heptameric Sm-like protein complex from archaea: implications for the structure and evolution of snRNPs. J Mol Biol 2001; 309:915-23. [PMID: 11399068 DOI: 10.1006/jmbi.2001.4693] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Sm/Lsm proteins associate with small nuclear RNA to form the core of small nuclear ribonucleoproteins, required for processes as diverse as pre-mRNA splicing, mRNA degradation and telomere formation. The Lsm proteins from archaea are likely to represent the ancestral Sm/Lsm domain. Here, we present the crystal structure of the Lsm alpha protein from the thermophilic archaeon Methanobacterium thermoautotrophicum at 2.0 A resolution. The Lsm alpha protein crystallizes as a heptameric ring comprised of seven identical subunits interacting via beta-strand pairing and hydrophobic interactions. The heptamer can be viewed as a propeller-like structure in which each blade consists of a seven-stranded antiparallel beta-sheet formed from neighbouring subunits. There are seven slots on the inner surface of the heptamer ring, each of which is lined by Asp, Asn and Arg residues that are highly conserved in the Sm/Lsm sequences. These conserved slots are likely to form the RNA-binding site. In archaea, the gene encoding Lsm alpha is located next to the L37e ribosomal protein gene in a putative operon, suggesting a role for the Lsm alpha complex in ribosome function or biogenesis.
Collapse
Affiliation(s)
- B M Collins
- Department of Chemistry, Macquarie University, NSW 2109, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Li Q, Hansen D, Killilea A, Joshi HC, Palazzo RE, Balczon R. Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1. J Cell Sci 2001; 114:797-809. [PMID: 11171385 DOI: 10.1242/jcs.114.4.797] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The centrosome is responsible for nucleating microtubules and performing other cellular roles. To define the organization of the centrosome more completely, a human anti-centrosome serum was used to screen a human cDNA library, and a cDNA encoding a >350 kDa centrosome protein was identified. Sequence analyses revealed that this novel centrosome protein contains two coiled-coil domains bounded by non-coiled regions. The N-terminal region of the protein, named pericentrin-B, shares 61% identity (75% similarity) with pericentrin, suggesting an evolutionary relationship between these proteins. Antibodies against pericentrin-B stain centrosomes at all stages of the cell cycle, and pericentrin-B remains associated with centrosomes following microtubule depolymerization. Immunodepletion of neither pericentrin-B nor PCM-1 from cellular extracts inhibited the ability of salt-stripped centrosomes to recover microtubule nucleation potential, demonstrating that neither protein plays a key role in microtubule nucleation processes. Moreover, the binding of both PCM-1 and pericentrin-B with salt-stripped centrosomes required intact microtubules, demonstrating that the association of PCM-1 and pericentrin-B with centrosomes is a late event in the centrosome maturation process. Finally, pericentrin-B and PCM-1 coimmunoprecipitate, suggesting that PCM-1 and pericentrin-B form a functional complex in cells. This observation may help to explain the generation of anti-centrosome autoantibodies in certain autoimmune patients and may be important for centrosome function.
Collapse
Affiliation(s)
- Q Li
- Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
20
|
Günzl A, Bindereif A, Ullu E, Tschudi C. Determinants for cap trimethylation of the U2 small nuclear RNA are not conserved between Trypanosoma brucei and higher eukaryotic organisms. Nucleic Acids Res 2000; 28:3702-9. [PMID: 11000261 PMCID: PMC110770 DOI: 10.1093/nar/28.19.3702] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In most eukaryotic organisms the U2 small nuclear RNA (snRNA) gene is transcribed by RNA polymerase II to generate a primary transcript with a 5' terminal 7-methylguanosine cap structure. Following nuclear export, the U2 snRNA is assembled into a core ribonucleoprotein particle (RNP). This involves binding a set of proteins that are shared by spliceosomal snRNPs to the highly conserved Sm site. Prior to nuclear import, the snRNA-(guanosine-N:2)-methyltransferase appears to interact with the core RNP and hypermethylates the cap structure to 2,2, 7-trimethylguanosine (m(3)G). In the protist parasite Trypanosoma brucei, U-snRNAs are complexed with a set of common proteins that are analogous to eukaryotic Sm antigens but do not have a highly conserved Sm sequence motif, and most U-snRNAs are synthesised by RNA polymerase III. Here, we examined the determinants for m(3)G cap formation in T.brucei by expressing mutant U2 snRNAs in vivo and assaying trimethylation and RNP assembly by immunoprecipitation. Surprisingly, these studies revealed that the Sm-analogous region is not required either for binding of the common proteins or for cap trimethylation. Furthermore, except for the first 24 nt which are part of the U2 promoter, the U2 coding region could be substituted or deleted without affecting cap trimethylation.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Cell Line
- Conserved Sequence/genetics
- Guanosine/analogs & derivatives
- Guanosine/genetics
- Guanosine/metabolism
- Methylation
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- Precipitin Tests
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA Caps/chemistry
- RNA Caps/genetics
- RNA Caps/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Transfection
- Trypanosoma brucei brucei/genetics
Collapse
Affiliation(s)
- A Günzl
- Zoologisches Institut der Universität Tübingen, Abteilung Zellbiologie, Auf der Morgenstelle 28, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
21
|
Charroux B, Pellizzoni L, Perkinson RA, Yong J, Shevchenko A, Mann M, Dreyfuss G. Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli. J Cell Biol 2000; 148:1177-86. [PMID: 10725331 PMCID: PMC2174312 DOI: 10.1083/jcb.148.6.1177] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The survival of motor neurons (SMN) protein, the product of the neurodegenerative disease spinal muscular atrophy (SMA) gene, is localized both in the cytoplasm and in discrete nuclear bodies called gems. In both compartments SMN is part of a large complex that contains several proteins including Gemin2 (formerly SIP1) and the DEAD box protein Gemin3. In the cytoplasm, the SMN complex is associated with snRNP Sm core proteins and plays a critical role in spliceosomal snRNP assembly. In the nucleus, SMN is required for pre-mRNA splicing by serving in the regeneration of spliceosomes. These functions are likely impaired in cells of SMA patients because they have reduced levels of functional SMN. Here, we report the identification by nanoelectrospray mass spectrometry of a novel component of the SMN complex that we name Gemin4. Gemin4 is associated in vivo with the SMN complex through a direct interaction with Gemin3. The tight interaction of Gemin4 with Gemin3 suggests that it could serve as a cofactor of this DEAD box protein. Gemin4 also interacts directly with several of the Sm core proteins. Monoclonal antibodies against Gemin4 efficiently immunoprecipitate the spliceosomal U snRNAs U1 and U5 from Xenopus oocytes cytoplasm. Immunolocalization experiments show that Gemin4 is colocalized with SMN in the cytoplasm and in gems. Interestingly, Gemin4 is also detected in the nucleoli, suggesting that the SMN complex may also function in preribosomal RNA processing or ribosome assembly.
Collapse
Affiliation(s)
- Bernard Charroux
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Livio Pellizzoni
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Robert A. Perkinson
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Jeongsik Yong
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | | | - Matthias Mann
- Protein Interaction Laboratory University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| |
Collapse
|
22
|
Charroux B, Pellizzoni L, Perkinson RA, Shevchenko A, Mann M, Dreyfuss G. Gemin3: A novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J Cell Biol 1999; 147:1181-94. [PMID: 10601333 PMCID: PMC2168095 DOI: 10.1083/jcb.147.6.1181] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The survival of motor neurons (SMN) gene is the disease gene of spinal muscular atrophy (SMA), a common motor neuron degenerative disease. The SMN protein is part of a complex containing several proteins, of which one, SIP1 (SMN interacting protein 1), has been characterized so far. The SMN complex is found in both the cytoplasm and in the nucleus, where it is concentrated in bodies called gems. In the cytoplasm, SMN and SIP1 interact with the Sm core proteins of spliceosomal small nuclear ribonucleoproteins (snRNPs), and they play a critical role in snRNP assembly. In the nucleus, SMN is required for pre-mRNA splicing, likely by serving in the regeneration of snRNPs. Here, we report the identification of another component of the SMN complex, a novel DEAD box putative RNA helicase, named Gemin3. Gemin3 interacts directly with SMN, as well as with SmB, SmD2, and SmD3. Immunolocalization studies using mAbs to Gemin3 show that it colocalizes with SMN in gems. Gemin3 binds SMN via its unique COOH-terminal domain, and SMN mutations found in some SMA patients strongly reduce this interaction. The presence of a DEAD box motif in Gemin3 suggests that it may provide the catalytic activity that plays a critical role in the function of the SMN complex on RNPs.
Collapse
Affiliation(s)
- Bernard Charroux
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Livio Pellizzoni
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Robert A. Perkinson
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Andrej Shevchenko
- Peptide and Protein Group, European Molecular Biology Laboratory (EMBL), 69012 Heidelberg, Germany
| | - Matthias Mann
- Protein Interaction Laboratory, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| |
Collapse
|
23
|
Sinha K, Perumal K, Chen Y, Reddy R. Post-transcriptional adenylation of signal recognition particle RNA is carried out by an enzyme different from mRNA Poly(A) polymerase. J Biol Chem 1999; 274:30826-31. [PMID: 10521474 DOI: 10.1074/jbc.274.43.30826] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A fraction of the signal recognition particle (SRP) RNA from human, rat, Xenopus, and Saccharomyces cerevisiae cells contains a single post-transcriptionally added adenylic acid residue on its 3'-end; in the case of human SRP RNA, over 60% of the SRP RNA molecules contain a nontemplated adenylic acid residue on their 3'-ends (Sinha, K. M., Gu, J., Chen, Y., and Reddy, R. (1998) J. Biol. Chem. 273, 6853-6859). In this study, we investigated the enzyme that is involved in this 3'-end adenylation of SRP RNA. A U1A protein peptide conjugated to albumin completely inhibited the polyadenylation of a SV40 mRNA by HeLa cell nuclear extract in vitro; however, the 3'-end adenylation of human SRP RNA or Alu RNA, which corresponds to 5' and 3'-ends of SRP RNA, was not affected by this U1A peptide conjugate. SRP RNA from mutant strains of S. cerevisiae with a temperature-sensitive mRNA poly(A) polymerase grown at a restrictive temperature of 37 degrees C also contained a post-transcriptionally added adenylic acid residue just like SRP RNA from wild-type cells and mutant cells grown at permissive temperature of 23 degrees C. In addition, binding of SRP 9/14-kDa protein heterodimer was required for adenylation of Alu RNA in vitro. These lines of evidence, along with other data, show that post-transcriptional adenylation of SRP and Alu RNAs is carried out by a novel enzyme that is distinct from the mRNA poly(A) polymerase, CCA-adding enzyme, and nonspecific terminal transferase.
Collapse
Affiliation(s)
- K Sinha
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
24
|
Wei X, Somanathan S, Samarabandu J, Berezney R. Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol 1999; 146:543-58. [PMID: 10444064 PMCID: PMC2150559 DOI: 10.1083/jcb.146.3.543] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1998] [Accepted: 06/25/1999] [Indexed: 11/22/2022] Open
Abstract
Transcription sites are detected by labeling nascent transcripts with BrUTP in permeabilized 3T3 mouse fibroblasts followed by laser scanning confocal microscopy. Inhibition and enzyme digestion studies confirm that the labeled sites are from RNA transcripts and that RNA polymerase I (RP I) and II (RP II) are responsible for nucleolar and extranucleolar transcription, respectively. An average of 2,000 sites are detected per nucleus with over 90% in the extranucleolar compartment where they are arranged in clusters and three-dimensional networklike arrays. The number of transcription sites, their three-dimensional organization and arrangement into functional zones (Wei et al. 1998) is strikingly maintained after extraction for nuclear matrix. Significant levels of total RP II mediated transcription sites (45%) were associated with splicing factor-rich nuclear speckles even though the speckles occupied <10% of the total extranucleolar space. Moreover, the vast majority of nuclear speckles (>90%) had moderate to high levels of associated transcription activity. Transcription sites were found along the periphery as well as inside the speckles themselves. These spatial relations were confirmed in optical sections through individual speckles and after in vivo labeling of nascent transcripts. Our results demonstrate that nuclear speckles and their surrounding regions are major sites of RP II-mediated transcription in the cell nucleus, and support the view that both speckle- and nonspeckle-associated regions of the nucleus contain sites for the coordination of transcription and splicing processes.
Collapse
Affiliation(s)
- Xiangyun Wei
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Suryanarayan Somanathan
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Jagath Samarabandu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| | - Ronald Berezney
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260
| |
Collapse
|
25
|
Filali M, Qiu J, Awasthi S, Fischer U, Monos D, Kamoun M. Monoclonal antibody specific to a subclass of polyproline-arg motif provides evidence for the presence of an snRNA-free spliceosomal Sm protein complex in vivo: Implications for molecular interactions involving proline-rich sequences of Sm B/B? proteins. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990801)74:2<168::aid-jcb3>3.0.co;2-j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Zieve GW. The cytoplasmic sites of the snRNP protein complexes are punctate structures that are responsive to changes in metabolism and intracellular architecture. Exp Cell Res 1999; 247:249-56. [PMID: 10047467 DOI: 10.1006/excr.1998.4354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Five anti-Sm monoclonal antibodies, Y12, 7.13, KSm4, KSm6, and 128, stain similar discrete punctate structures distributed throughout the cytoplasm of hamster fibroblasts in addition to the expected intense nuclear staining. Several criteria suggest the cytoplasmic staining reflects the cytoplasmic pools of snRNP core proteins. The relative intensity of the cytoplasmic staining is similar to the 30% relative abundance of the cytoplasmic snRNP core proteins compared to the nuclear snRNP core proteins based on cell-fractionation studies. Moreover, the cytoplasmic staining is removed by the same extraction conditions that solubilize the pools of cytoplasmic snRNP core proteins. The cytoplasmic sites of staining are typically spherical but heterogeneous in diameter (0.2-0.5 microm). The larger particles greatly exceed the diameter of individual snRNP core particles and are likely to represent centers of many snRNP proteins or snRNP protein complexes. The staining, though punctate, is evenly dispersed throughout the cytoplasm with no evidence of major compartmentalization. The cytoplasmic staining pattern collapses into larger foci of intensely staining structures when cellular energy levels are depleted or when cells are exposed to hypertonic medium. Unlike the normal sites of snRNP protein cytoplasmic staining, these larger collapsed foci resist detergent extraction. These results suggest that the cytoplasmic staining identified with the anti-Sm monoclonal antibodies represents the large pools of snRNP core proteins in the cytoplasm.
Collapse
Affiliation(s)
- G W Zieve
- Department of Pathology, SUNY Stony Brook, Stony Brook, New York, 11794-8691, USA.
| |
Collapse
|
27
|
Seipelt RL, Zheng B, Asuru A, Rymond BC. U1 snRNA is cleaved by RNase III and processed through an Sm site-dependent pathway. Nucleic Acids Res 1999; 27:587-95. [PMID: 9862984 PMCID: PMC148219 DOI: 10.1093/nar/27.2.587] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Core snRNP proteins bind snRNA through the conserved Sm site, PuA(U)n>/=3GPu. While yeast U1 snRNA has three matches to the Sm consensus, the U1 3'-terminal Sm site was found to be both necessary and sufficient for U1 function. Mutation of this site inhibited pre-mRNA splicing, blocked cell division and resulted in the accumulation of two 3'-extended forms of the U1 snRNA. Cells which harbor the Sm site mutation lack mature U1 RNA (U1alpha) but have a minor polyadenylated species, U1gamma, and a prominent, non-polyadenylated species, U1beta. Metabolic depletion of the essential Sm core protein, Smd1p, also resulted in the increased accumulation of U1beta and U1gamma. In vitro, synthetic U1 precursors were cleaved by Rnt1p (RNase III) very near the U1beta 3'-end observed in vivo. We propose that U1beta is an Rnt1p-cleaved intermediate and that U1 maturation to the U1alpha form occurs through an Sm-sensitive step. Interestingly, both U1alpha and a second, much longer RNA, U1straightepsilon, were produced in an rnt1 mutant strain. These results suggest that yeast U1 snRNA processing may progress through Rnt1p-dependent and Rnt1p-independent pathways, both of which require a fun-ctional Sm site for final snRNA maturation.
Collapse
Affiliation(s)
- R L Seipelt
- T. H. Morgan School of Biological Sciences and the Markey Cancer Center, University of Kentucky, Lexington,KY 40506-0225, USA
| | | | | | | |
Collapse
|
28
|
Espuny R, Bahia D, Barretto Cicarelli RM, Codony C, Khaouja A, Aviñó AM, Eritja R, Bach-Elias M. Preparation of N2, N2,7-trimethylguanosine affinity columns. NUCLEOSIDES & NUCLEOTIDES 1999; 18:125-36. [PMID: 10048228 DOI: 10.1080/07328319908045599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
2,2,7-trimethylguanosine (TMG) binding proteins from human cells were purified through TMG-affinity columns. TMG synthesis was improved and the TMG obtained was shown to be similar to the TMG in the 5' cap of the UsnRNAs. The eluates obtained with TMG-affinity chromatographies were very different from those isolated with m7G-affinity columns, thus suggesting that specific TMG-binding proteins were obtained. The fraction may be enriched with factors associated with import and/or hypermethylation of UsnRNPs.
Collapse
Affiliation(s)
- R Espuny
- Centro de Investigación y Desarrollo, CSIC, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G. A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 1998; 95:615-24. [PMID: 9845364 DOI: 10.1016/s0092-8674(00)81632-3] [Citation(s) in RCA: 413] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spinal muscular atrophy (SMA) is a common motor neuron degenerative disease that results from reduced levels of, or mutations in, the Survival of Motor Neurons (SMN) protein. SMN is found in the cytoplasm and the nucleus where it is concentrated in gems. SMN interacts with spliceosomal snRNP proteins and is critical for snRNP assembly in the cytoplasm. We show that a dominant-negative mutant SMN (SMNdeltaN27) causes a dramatic reorganization of snRNPs in the nucleus. Furthermore, SMNdeltaN27 inhibits pre-mRNA splicing in vitro, while wild-type SMN stimulates splicing. SMN mutants found in SMA patients cannot stimulate splicing. These findings demonstrate that SMN plays a crucial role in the generation of the pre-mRNA splicing machinery and thus in mRNA biogenesis, and they link the function of SMN in this pathway to SMA.
Collapse
Affiliation(s)
- L Pellizzoni
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | | | | | |
Collapse
|
30
|
Abstract
The vertebrate spliceosomal snRNAs are highly modified by pseudouridylation and 2'-O-methylation. We have identified novel conserved small RNAs that can direct addition of two methyl groups in U6 snRNA, at A47 and C77. These guide RNAs, mgU6-47 (methylation guide for U6 snRNA residue 47) and mgU6-77 contain boxes C, C', D, and D' and associate with fibrillarin. Each RNA can form a duplex with U6 snRNA positioning A47 and C77 for 2'-O-methylation. The antisense element of mgU6-77 can also position C2970 of 28S rRNA for 2'-O-methylation. Depletion of mgU6-77 from Xenopus oocytes prevents 2'-O-methylation of both C77 in U6 and C2970 in 28S; methylation can be restored by injecting in vitro transcribed mgU6-77. Thus, mgU6-77 appears to function in the 2'-O-methylation of two distinct classes of cellular RNA, snRNA, and rRNA.
Collapse
Affiliation(s)
- K T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | |
Collapse
|
31
|
Gross SD, Anderson RA. Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell Signal 1998; 10:699-711. [PMID: 9884021 DOI: 10.1016/s0898-6568(98)00042-4] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The casein kinase I family of serine/threonine protein kinases is highly conserved from yeast to humans. Until only recently, both the function and regulation of these enzymes remained poorly uncharacterised in that they appeared to be constitutively active and were capable of phosphorylating an untold number of other proteins. While relatively little was known regarding the exact function of the higher eukaryotic isoforms, the casein kinase I (CKI) isoforms from yeast have been genetically linked to vesicular trafficking, DNA repair, cell cycle progression and cytokinesis. All five S. cerevisiae isoforms are known to be associated with discrete cellular compartments and this localization has been shown to be absolutely essential for their respective functions. New evidence now suggests that the CKI isoforms in more complex systems also exhibit non-homogeneous subcellular distributions that may prove vital to defining the function and regulation of these enzymes. In particular, CKIalpha, the most-characterized vertebrate isoform, is associated with cytosolic vesicles, the mitotic spindle and structures within the nucleus. Functions associated with these localizations coincide with those previously reported in yeast, suggesting a conservation of function. Other reports have indicated that each of the remaining CKI isoforms have the capacity to make associations with components of several signal transduction pathways, thereby channeling CKI function toward specific regulatory events. This review will examine what is now known about the higher eukaryotic CKI family members from the perspective localization as a means of gaining a better understanding of the function and regulation of these kinases.
Collapse
Affiliation(s)
- S D Gross
- Department of Pharmacology, Howard Hughes Medical Institute, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
32
|
Abou Elela S, Ares M. Depletion of yeast RNase III blocks correct U2 3' end formation and results in polyadenylated but functional U2 snRNA. EMBO J 1998; 17:3738-46. [PMID: 9649443 PMCID: PMC1170709 DOI: 10.1093/emboj/17.13.3738] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Yeast U2 snRNA is transcribed by RNA polymerase II to generate a single non-polyadenylated transcript. A temperature-sensitive yeast strain carrying a disruption in RNT1, the gene encoding a homolog of RNase III, produces 3'-extended U2 that is polyadenylated. The U2 3'-flanking region contains a putative stem-loop that is recognized and cleaved at two sites by recombinant GST-Rnt1 protein in vitro. Removal of sequences comprising the stem-loop structure blocks cleavage in vitro and mimics the effects of Rnt1 depletion in vivo. Strains carrying a U2 gene lacking the Rnt1 cleavage site produce only polyadenylated U2 snRNA, and yet are not impaired in growth or splicing. The results suggest that eukaryotic RNase III may be a general factor in snRNA processing, and demonstrate that polyadenylation is not incompatible with snRNA function in yeast.
Collapse
Affiliation(s)
- S Abou Elela
- Center for the Molecular Biology of RNA, Biology Department, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
33
|
Fatenejad S, Bennett M, Moslehi J, Craft J. Influence of antigen organization on the development of lupus autoantibodies. ARTHRITIS AND RHEUMATISM 1998; 41:603-12. [PMID: 9550469 DOI: 10.1002/1529-0131(199804)41:4<603::aid-art7>3.0.co;2-e] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To investigate the reason for grouping of antibodies against small nuclear RNP (snRNP) particles, which are major autoantigens in systemic lupus erythematosus (SLE). METHODS Mice were immunized with biochemically purified native snRNP particles or recombinant proteins, followed by assessment of antibody and T cell responses. Since mouse (self) snRNPs are not immunogenic in mice, a eukaryotic expression vector was constructed to induce high-level expression of the human U1 snRNP-associated A protein in murine cells. Native chimeric (mouse/human) snRNP particles were used to immunize normal mice of both H-2k and H-2b backgrounds. We also disrupted the native snRNPs by digestion with ribonuclease and used this mixture of proteins to immunize mice. RESULTS Immunization with native chimeric snRNPs resulted in the development of antibodies against a set of snRNP-associated proteins, a response which was accompanied by breakdown in T cell tolerance to mouse snRNPs in mice immunized with chimeric snRNPs. We also demonstrated that the ordered production of these antibodies was due to the fact that snRNP-associated proteins are grouped together in snRNP particles, since disruption of the particles resulted in development of antibodies in a random order, distinct from antibodies seen with intact particles. CONCLUSION Our findings directly demonstrate that the pattern of development of antibodies to native snRNPs is similar to that which is commonly observed in SLE, and that disruption of the particles results in disappearance of this ordered pattern. These results suggest that the autoimmune response to snRNPs, and possibly to other autoantigens, in lupus is a specific reaction similar to that seen in a typical immune response to foreign immunogens.
Collapse
Affiliation(s)
- S Fatenejad
- Yale University School of Medicine, New Haven, Connecticut 06520-8031, USA
| | | | | | | |
Collapse
|
34
|
Jacobson MR, Pederson T. A 7-methylguanosine cap commits U3 and U8 small nuclear RNAs to the nucleolar localization pathway. Nucleic Acids Res 1998; 26:756-60. [PMID: 9443967 PMCID: PMC147312 DOI: 10.1093/nar/26.3.756] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
U3 and U8 small nucleolar RNAs (snRNAs) participate in pre-rRNA processing. Like the U1, U2, U4 and U5 major spliceosomal snRNAs, U3 and U8 RNAs are transcribed by RNA polymerase II and their initial 7-methylguanosine (m7G) 5' cap structures subsequently become converted to 2,2,7-trimethylguanosine. However, unlike the polymerase II transcribed spliceosomal snRNAs, which are exported to the cytoplasm for cap hypermethylation, U3 and U8 RNAs undergo cap hypermethylation within the nucleus. Human U3 and U8 RNAs with various cap structures were generated by in vitro transcription, fluorescently labeled and microinjected into nuclei of normal rat kidney (NRK) epithelial cells. When U3 and U8 RNAs containing a m7G cap were microinjected they became extensively localized in nucleoli. U3 and U8 RNAs containing alternative cap structures did not localize in nucleoli nor did U3 or U8 RNAs containing triphosphate 5'-termini. The nucleolar localization of m7G-capped U3 RNA was competed by co-microinjection into the nucleus of a 100-fold molar excess of dinucleotide m7GpppG but not by a 100-fold excess of ApppG dinucleotide. Although it was obviously not possible to assess formation of di- and trimethylguanosine caps on the microinjected U3 and U8 RNAs in these single cell experiments, these results indicate that the initial presence of a m7G cap on U3 and U8 RNAs, most likely together with internal sequence elements, commits these transcripts to the nucleolar localization pathway and point to diverse roles of the m7G cap in the intracellular traffic of various RNAs transcribed by RNA polymerase II.
Collapse
Affiliation(s)
- M R Jacobson
- Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA
| | | |
Collapse
|
35
|
Zerby DB, Patton JR. Modification of human U4 RNA requires U6 RNA and multiple pseudouridine synthases. Nucleic Acids Res 1997; 25:4808-15. [PMID: 9365261 PMCID: PMC147118 DOI: 10.1093/nar/25.23.4808] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Small nuclear RNAs (snRNA), cofactors in the splicing of pre-mRNA, are highly modified. In this report the modification of human U4 RNA was studied using cell extracts and in vitro synthesized, and therefore unmodified, U4 RNA. The formation of pseudouridine (Psi) at positions 4, 72 and 79 in U4 RNA was dependent on an RNA-containing cofactor, since the activities in the extracts were micrococcal nuclease (MN) sensitive. Extracts were fractionated on glycerol gradients and there was a broad peak of reconstitution activity centered at 14 S. Reconstitution was not due to additional enzymatic activity, since the peak fraction was MN sensitive. Oligodeoxynucleotide-mediated RNase H digestion of U6 RNA in the extracts inhibited formation of Psi in U4 RNA. From glycerol gradient analysis we determined that exogenously added U4 RNA that is associated with U6 RNA (sedimentation velocity 16 S) was significantly higher in Psi content than U4 RNA not associated with U6 RNA (8 S). Competitive inhibitors of Psi synthases, 5-fluorouridine-containing (5-FU) wild-type and mutant U4 RNAs, were used to investigate formation of Psi in U4 RNA. Deletions and point mutations in these 5-FU-containing U4 RNAs affected their ability to inhibit Psi synthase in vitro. With the aid of these potent inhibitors it was determined that at least two separate activities modify the uridines at these positions.
Collapse
Affiliation(s)
- D B Zerby
- Department of Pathology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | |
Collapse
|
36
|
Huang Q, Jacobson MR, Pederson T. 3' processing of human pre-U2 small nuclear RNA: a base-pairing interaction between the 3' extension of the precursor and an internal region. Mol Cell Biol 1997; 17:7178-85. [PMID: 9372950 PMCID: PMC232575 DOI: 10.1128/mcb.17.12.7178] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The spliceosomal small nuclear RNAs U1, U2, U4, and U5 are transcribed by RNA polymerase II as precursors with extensions at their 3' ends. The 3' processing of these pre-snRNAs is not understood in detail. Two pathways of pre-U2 RNA 3' processing in vitro were revealed in the present investigation by using a series of human wild-type and mutant pre-U2 RNAs. Substrates with wild-type 3' ends were initially shortened by three or four nucleotides (which is the first step in vivo), and the correct mature 3' end was then rapidly generated. In contrast, certain mutant pre-U2 RNAs displayed an aberrant 3' processing pathway typified by the persistence of intermediates representing cleavage at each internucleoside bond in the precursor 3' extension. Comparison of the wild-type and mutant pre-U2 RNAs revealed a potential base-pairing interaction between nucleotides in the precursor 3' extension and a sequence located between the Sm domain and stem-loop III of U2 RNA. Substrate processing competition experiments using a highly purified pre-U2 RNA 3' processing activity suggested that only RNAs capable of this base-pairing interaction had high affinity for the pre-U2 RNA 3' processing enzyme. The importance of this postulated base-pairing interaction between the precursor 3' extension and the internal region between the Sm domain and stem-loop III was confirmed by the results obtained with a compensatory substitution that restores the base pairing, which displayed the normal 3' processing reaction. These results implicate a precursor-specific base-paired structure involving sequences on both sides of the mature cleavage site in the 3' processing of human U2 RNA.
Collapse
Affiliation(s)
- Q Huang
- Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA
| | | | | |
Collapse
|
37
|
Liu Q, Fischer U, Wang F, Dreyfuss G. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 1997; 90:1013-21. [PMID: 9323129 DOI: 10.1016/s0092-8674(00)80367-0] [Citation(s) in RCA: 473] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spinal muscular atrophy (SMA), one of the most common fatal autosomal recessive diseases, is characterized by degeneration of motor neurons and muscular atrophy. The SMA disease gene, termed Survival of Motor Neurons (SMN), is deleted or mutated in over 98% of SMA patients. The function of the SMN protein is unknown. We found that SMN is tightly associated with a novel protein, SIP1, and together they form a specific complex with several spliceosomal snRNP proteins. SMN interacts directly with several of the snRNP Sm core proteins, including B, D1-3, and E. Interestingly, SIP1 has significant sequence similarity with Brr1, a yeast protein critical for snRNP biogenesis. These findings suggest a role for SMN and SIP1 in spliceosomal snRNP biogenesis and function and provide a likely molecular mechanism for the cause of SMA.
Collapse
Affiliation(s)
- Q Liu
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | | | | | |
Collapse
|
38
|
Holyst MM, Hill DL, Hoch SO, Hoffman RW. Analysis of human T cell and B cell responses against U small nuclear ribonucleoprotein 70-kd, B, and D polypeptides among patients with systemic lupus erythematosus and mixed connective tissue disease. ARTHRITIS AND RHEUMATISM 1997; 40:1493-503. [PMID: 9259431 DOI: 10.1002/art.1780400818] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To analyze T and B cell reactivity with U small nuclear RNP (snRNP) 70-kd, B, and D polypeptides among patients with connective tissue disease (CTD) and to examine the functional characteristics of snRNP-reactive T cell clones. METHODS We used an snRNP enzyme-linked immunosorbent assay and immunoblotting to characterize antibodies in patients' sera. We used human recombinant fusion proteins 70 kd, B, and D to stimulate and clone snRNP-reactive T cells from CTD patients. We analyzed the cell surface phenotype, antigenic specificity, and cytokine profiles of T cell clones. RESULTS Patients showed T cell responsiveness to snRNP polypeptides that paralleled their autoantibody reactivities. A total of 256 clones were generated, and clones were identified which were specific for the 70-kd, B, or D polypeptides. Clones expressed a T helper cell phenotype, and were found to produce substantial quantities of both interleukin-4 (IL-4) and interferon-gamma, and lesser quantities of IL-2 and IL-6. CONCLUSION These results show that CTD patients have clonable circulating snRNP-reactive T cells that parallel the specificity of snRNP-reactive antibodies in their sera. The snRNP-reactive T cells exhibit a helper cell phenotype and produce cytokines which are important in B cell help and differentiation.
Collapse
Affiliation(s)
- M M Holyst
- University of Missouri-Columbia and Harry S Truman Memorial Veterans Hospital, USA
| | | | | | | |
Collapse
|
39
|
Hashimoto K, Azuma C, Tokugawa Y, Nobunaga T, Aki TA, Matsui Y, Yanagida T, Izumi H, Saji F, Murata Y. Loss of H19 imprinting and up-regulation of H19 and SNRPN in a case with malignant mixed Müllerian tumor of the uterus. Hum Pathol 1997; 28:862-5. [PMID: 9224757 DOI: 10.1016/s0046-8177(97)90162-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In several human cancers, it has been recently reported that abnormally altered status of genomic imprinting is related to oncogenesis. In this study, we investigated the expression of three imprinted genes in a case with malignant mixed Müllerian tumor of the uterus (MMMT). In the tumor, expression of H19 showed marked upregulation (6.3-fold) with biallelic expression compared with that in the corresponding normal myometrium. The 5'-promoter region of H19 was hypomethylated in the tumor, whereas it was hemimethylated in the myometrium. Expression of the small nuclear ribonucleoprotein polypeptide N gene (SNRPN) was also upregulated by 1.9-fold. However, the insulin-like growth factor II gene (IGF2) was expressed at low levels in both myometrium and MMMT. The overexpression of H19 is caused by reactivation of the repressed allele of H19 due to demethylation of CpG islands within its 5'-promoter region. Whether upregulation of SNRPN is caused by its biallelic expression remains undetermined because restriction fragment length polymorphisms (RFLP) sites were not informative in SNRPN and IGF2. In conclusion, H19 and SNRPN may play significant roles in the tumorigenesis of MMMT and H19 may have tumor-promoting activity in addition to its known tumor-suppressing activity, probably depending on the tissue and the local milieu.
Collapse
Affiliation(s)
- K Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Medical School, Osaka Saiseikai Nakatsu Hospital, Kita-ku, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sun D, Ou YC, Hoch SO. Analysis of genes for human snRNP Sm-D1 protein and identification of the promoter sequence which shows segmental homology to the promoters of Sm-E and U1 snRNA genes. Gene 1997; 189:245-54. [PMID: 9168134 DOI: 10.1016/s0378-1119(96)00858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Sm core proteins of U1, U2, U4/U6 and U5 snRNPs include B(B1), B'(B2), N(B3), D1, D2, D3, E, F and G polypeptides. We have isolated genomic clones encoding the Sm-D1 protein using the Sm-D1 cDNA as probe. Southern blotting and DNA sequencing analysis of these clones revealed the presence of an Sm-D1 multigene family in the human genome. Three gene members have been identified. Two of the genes are without introns and contain mutations compared to the cDNA sequence. They appear to be processed pseudogenes. The third gene, termed SNRPD1, shares 100% identity to the cDNA sequence including both 5'- and 3'-untranslated regions (UTR); it contains three introns. Analysis of the 5'-flanking region of the SNRPD1 gene revealed promoter activity, suggesting this is the functional gene that encodes the Sm-D1 protein. The promoter activity was localized in a 0.38 kb PstI fragment using CAT reporter gene fusion assays. Addition of an SV40 enhancer element did not enhance the transcription directed by that fragment. Sequence comparison of the 0.38 kb promoter sequence with the promoters of the Sm-E gene and U1 snRNA genes revealed several homologous motifs, suggesting that genes encoding the snRNP components may be coordinately regulated.
Collapse
Affiliation(s)
- D Sun
- The Agouron Institute, La Jolla, CA 92037-4696, USA
| | | | | |
Collapse
|
41
|
Morales CR, Leyne M, el-Alfy M, Oko R. Molecular cloning and developmental expression of a small ribonuclear protein in the mouse testis. Mol Reprod Dev 1997; 46:459-70. [PMID: 9094092 DOI: 10.1002/(sici)1098-2795(199704)46:4<459::aid-mrd3>3.0.co;2-n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
U1 RNP C polypeptide is a ubiquitous and highly conserved protein that is found associated to the U1 small nuclear ribonuclear particle (U1 snRNP). The U1 snRNP is involved in pre-mRNA splicing by defining introns and exons and by binding to consensus sequences within the pre-mRNA. In the present study we immunoscreened a mouse testicular phagemid cDNA library with an anti-Sm serum from patients with systemic lupus erythematosus. Sequence analysis of a positive clone containing a 0.75 kb cDNA insert revealed that it encodes the entire amino acid sequence of the U1 RNP C polypeptide. Northern blots of total RNA isolated from testes and various adult mouse tissues demonstrated that the 0.75 kb transcript is highly expressed in the testes and that it begins developmentally at day 18 postpartum, corresponding to the appearance of preleptotene spermatocytes. In situ hybridization confirmed the meiotic and post-meiotic expression of this transcript. LM immunoperoxidase staining with the anti-Sm serum localized spliceosome snRNPs predominantly in the nuclei of somatic and germinal testicular cells but not in elongated spermatids. EM immunogold labeling confirmed the LM observations but additionally showed that snRNP content peaked in the nuclei of pachytene spermatocytes and that 2 cytoplasmic components found exclusively in meiotic and post-meiotic germ cells were intensively reactive. Immunoblots of testicular homogenates probed with the anti-Sm serum revealed several reactive proteins, of which one, a 21 kDa polypeptide, could be the U1 RNP C based on its predicted molecular weight. In summary we report an isoform of U1 RNP C which is testis specific and which may play a role in mRNA splicing exclusively in meiotic and post-meiotic germ cells during spermatogenesis.
Collapse
Affiliation(s)
- C R Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
42
|
Zeschnigk M, Schmitz B, Dittrich B, Buiting K, Horsthemke B, Doerfler W. Imprinted segments in the human genome: different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing method. Hum Mol Genet 1997; 6:387-95. [PMID: 9147641 DOI: 10.1093/hmg/6.3.387] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A deletion of 15q11-q13 and uniparental disomy 15 lead to Prader-Labhart-Willi syndrome (PWS) or Angelman syndrome (AS) because this region contains genes expressed exclusively from the paternal (PWS) or maternal (AS) chromosome, respectively. DNA methylation plays a role in the control of imprinted gene expression, but so far only a few 5'-CG-3' dinucleotides within the recognition sites of the methylation sensitive enzymes have been studied. As part of a study on DNA methylation patterns in the human genome, we have applied the bisulfite protocol of genomic sequencing to study all 5'-CG-3' dinucleotides around exon 1 of SNRPN and at the D15S63 locus, which contains a start site for alternative SNRPN transcripts possibly involved in imprint switching during gametogenesis. At least 17 PCR products derived from single chromosomes of normal individuals as well as PWS and AS patients have been sequenced. We have found that cytosine residues outside 5'-CG-3' dinucleotides are always unmethylated. However, > 96% of all of the 23 5'-CG-3' dinucleotides around SNRPN exon 1 are methylated on the maternal chromosome and completely devoid of methylation on the paternal chromosome. This finding is in contrast to the D15S63 locus, where only the two Cfol/Hhal sites are methylated on the maternal chromosome at the same frequency as seen for the SNRPN segment. At the other five 5'-CG-3' dinucleotides, differential methylation is less pronounced, i.e. 45-70% on the maternal chromosome and 5-14% on the paternal chromosome. The differences between SNRPN and D15S63 methylation may reflect different biological functions of the alternative SNRPN transcripts. The systematic investigation of 5'-CG-3' methylation patterns as reported here will provide the basis for a PCR-based methylation test to diagnose PWS and AS.
Collapse
Affiliation(s)
- M Zeschnigk
- Institute for Genetics, University of Cologne, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Morales J, Borrero M, Sumerel J, Santiago C. Identification of developmentally regulated sea urchin U5 snRNA genes. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1997; 7:243-59. [PMID: 9255516 DOI: 10.3109/10425179709034044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A PCR approach was used to isolate repeated U5 small nuclear RNA (snRNA) genes from the sea urchin Lytechinus variegatus. A 1.3 kb repeat, LvU5.0, and three other variants, LvU5.1-U5.3, that differ in the coding region and in the proximal sequence element (PSE) region were isolated. Southern Blot analysis indicate that the U5 snRNA genes, unlike other embryonically expressed snRNA genes (U1, U2 and U6), are not found in a simple tandem repeat, but instead, exist in several heterogeneous clusters each with a small number of genes. The U5 PSE has limited sequence similarity with the other sea urchin PSEs. However, when used in a mobility shift assay the U5 PSE forms a protein/DNA complex that is very similar to the complex formed with the U6 PSE. An RNase protection assay used to monitor the accumulation of U5 snRNA during development shows that at least two U5 variants are coordinately expressed during embryogenesis.
Collapse
Affiliation(s)
- J Morales
- University of Puerto Rico, Department of Biology, San Juan 00931-3360
| | | | | | | |
Collapse
|
44
|
Zerby DB, Patton JR. Metabolism of pre-messenger RNA splicing cofactors: modification of U6 RNA is dependent on its interaction with U4 RNA. Nucleic Acids Res 1996; 24:3583-9. [PMID: 8836186 PMCID: PMC146130 DOI: 10.1093/nar/24.18.3583] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The requirements for the formation of pseudouridine (psi) in U4 and U6 RNAs, cofactors in the splicing of pre-messenger RNA, were investigated in vitro using HeLa nuclear (NE) and cytoplasmic (S100) extracts. Maximal psi formation for both RNAs was extract order-dependent. Maximal psi formation in U4 RNA required incubation in S100 followed by the addition of NE, paralleling the in vivo maturation pathway of U4 RNA. In contrast, maximal formation of psi in U6 RNA required incubation in NE followed by the addition of S100 extract. Since U6 RNA does not exit the nucleus in vivo the contribution of S100 was investigated. In experiments where the extracts were treated with micrococcal nuclease to digest endogenous snRNAs, the efficient formation of psi in U6 RNA was dependent on the presence of U4 RNA, but not in U5 RNA or tRNA. When mutant U4 RNAs that inhibit or strengthen the interaction between U4 RNA, and U6 RNA were substituted for wild-type U4 RNA, the results confirmed the need for the interaction between these two RNAs for psi formation in U6 RNA. U6 RNA isolated from glycerol gradients after incubation in extracts had four times as much psi when associated with U4 RNA.
Collapse
Affiliation(s)
- D B Zerby
- Department of Pathology, School of Medicine, University of South Carolina, Columbia 29208, USA
| | | |
Collapse
|
45
|
Bisotto S, Lauriault P, Duval M, Vincent M. Colocalization of a high molecular mass phosphoprotein of the nuclear matrix (p255) with spliceosomes. J Cell Sci 1995; 108 ( Pt 5):1873-82. [PMID: 7657711 DOI: 10.1242/jcs.108.5.1873] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was previously demonstrated that monoclonal antibody CC-3 binds to a phosphorylation dependent epitope present on a 255 kDa nuclear protein (p255). We show here that in interphase cells, p255 distributes to typical nuclear speckles that correspond to the localization of spliceosome components as revealed by antibodies to the m3G cap of snRNAs or to the non-snRNP splicing factor SC-35. Immunofluorescence and immunoblot studies indicated that p255 is resistant to extraction with non-ionic detergents, nucleases and high ionic strength buffers and may thus be defined biochemically as a nuclear matrix phosphoprotein. To determine the nature of the association of p255 with the nuclear structure, its distribution was studied at different stages of the cell cycle and after the cells were treated with nucleases or heat shocked. We found that the antigen diffused into the cytoplasm during metaphase but was reorganized into cytoplasmic speckles during anaphase-telophase transition, where it colocalized with SC-35. Nuclear matrix preparations that were digested with DNases and RNases showed that interphasic p255 still localized to nuclear speckles even though snRNA and snRNP antigens were removed. Heat-shocked cells labelled with monoclonal antibody CC-3 exhibited more rounded and less interconnected speckles, identical to those decorated by anti-SC-35 antibody under such conditions. These results indicate that p255 and SC-35 are present in the same nuclear structures, to which they are more tightly bound than the snRNP antigens. They further suggest that both proteins are implicated in spliceosome assembly or attachment.
Collapse
Affiliation(s)
- S Bisotto
- CHUL Research Center, Laval University, Ste-Foy, Québec, Canada
| | | | | | | |
Collapse
|
46
|
Abstract
Distinct profiles of autoantibodies directed to intracellular antigens can be detected in the systemic connective tissue diseases. They aid in establishing the correct diagnosis and are included in many sets of diagnostic criteria, such as the ones developed for systemic lupus erythematosus (anti-Smith antigen and anti-double-strand DNA antibodies), mixed connective tissue disease (anti-U1-nuclear ribonucleoprotein antibodies), and Sjögren's syndrome (SS) (anti-SS-A/Ro and anti-SS-B/La antibodies). They are useful prognostic markers in some situations and facilitate clinical and treatment follow-up. Autoantibodies have also been used as probes to gain insights into cell biology, helping to isolate and purify intracellular proteins involved in key cellular functions. We give detailed information on two of the most useful techniques for the detection of autoantibodies in the clinical and research laboratory settings, indirect immunofluorescence and immunoblotting. We also discuss several of the antigen-autoantibody systems found in systemic lupus erythematosus (Smith antigen, U1-nuclear ribonucleoprotein, SS-A/Ro, SS-B/La, proliferating cell nuclear antigen ribosomal ribonucleoprotein, double-strand DNA, histones, antiphospholipids, Ku, Ki/SL), systemic sclerosis (centromere, topo I, RNA polymerases, fibrillarin, polymyositis-Scl, Th/To), polymyositis/dermatomyositis (transferRNA synthetases, signal recognition particle, and others), and SS (SS-A/Ro, SS-B/La, nucleolar organizing region-90, p80-coilin), addressing their clinical significance, common detection methods, immunogenetic associations, and the molecular and cellular biology of the cognate antigens.
Collapse
|
47
|
Cheng Y, Dahlberg JE, Lund E. Diverse effects of the guanine nucleotide exchange factor RCC1 on RNA transport. Science 1995; 267:1807-10. [PMID: 7534442 DOI: 10.1126/science.7534442] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transport of RNAs within nuclei and through nuclear pore complexes (NPCs) are essential, but poorly understood, steps in gene expression. In experiments with mammalian cells, RCC1, the abundant nuclear guanine nucleotide exchange factor for the guanosine triphosphatase Ran/TC4, was shown to be required for nucleocytoplasmic transport of precursors of spliceosomal small nuclear RNAs (snRNAs), intranuclear transport of U3 snRNA, and processing of ribosomal RNAs, but not for export of transfer RNAs. It is proposed that guanosine triphosphate (GTP)-bound Ran/TC4 associates with ribonucleoprotein particles (RNPs) during intranuclear movement, and that GTP hydrolysis promotes deposition of RNPs at targeted sites such as NPCs or nucleoli.
Collapse
Affiliation(s)
- Y Cheng
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison 53706
| | | | | |
Collapse
|
48
|
Chou CS, Geck P, Medveczky MM, Hernandez OM, Medveczky PG. Induction of a herpesvirus saimiri small RNA AU binding factor (AUBF70) activity and lymphokine mRNAs by T cell mitogens. Arch Virol 1995; 140:415-35. [PMID: 7733817 DOI: 10.1007/bf01718421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Herpesvirus saimiri (H. saimiri) can transform T lymphocytes and cause lymphoid tumors in rabbits and New World monkeys. H. saimiri-immortalized T cells express IL-2 and IL-4. The putative oncogenes of a group C strain of H. saimiri have been mapped to a region of the unique L-DNA which includes genes encoding four U-like small nuclear RNAs (HSUR1-HSUR4). Jurkat T cells express a 70 kD RNA binding factor (AUBF70) which binds HSUR2. Here we examined AUBF70 expression in resting and mitogen-stimulated human peripheral blood T cells and its sequence specificity and subcellular distribution. Band-shift assays demonstrated that resting human T cells express low amounts of AUBF70 which is induced by mitogen treatment. IL-2 and IL-4 mRNAs were co-induced with AUBF70 suggesting that AUBF70 is a positive regulator of lymphokine gene expression. Normal resting, mitogen-stimulated, and leukemic Jurkat T cells all express AUBF70 with virtually identical V8 proteolytic enzyme digestion patterns. Northern blots demonstrated that HSUR1 and HSUR2 are localized both in the nucleus and cytoplasm. HSUR2 accumulate in the cytoplasm in the presence of actinomycin D, which is consistent with re-transport of HSURs to the nucleus by (an) unstable factor(s). We hypothesize that HSUR1 and 2 transport AUBF70 from the cytoplasm to the nucleus; in the nucleus, AUBF70 binds and stabilizes lymphokine transcripts. Increased stability of lymphokine mRNAs could contribute to oncogenic transformation induced by H. saimiri.
Collapse
Affiliation(s)
- C S Chou
- Department of Medical Microbiology and Immunology, College of Medicine, University of South Florida, Tampa, USA
| | | | | | | | | |
Collapse
|
49
|
Smiley JK, Young MA, Bansbach CC, Flint SJ. The metabolism of small cellular RNA species during productive subgroup C adenovirus infection. Virology 1995; 206:100-7. [PMID: 7831765 DOI: 10.1016/s0042-6822(95)80024-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During the late phase of subgroup C adenovirus infection, export of cellular mRNA from the nucleus to the cytoplasm is inhibited. In one approach to investigate the mechanism whereby viral late mRNAs are selected for export, we have examined the metabolism of small cellular RNA species transcribed by all three RNA polymerases during the late phase of Ad5 infection. No changes in the quantities of [3H]uridine-labeled 5S rRNA or tRNAs entering the cytoplasm were observed in infected cells. Adenovirus type 5 infection reduced the nuclear and cytoplasmic populations of the newly synthesized, snRNP-associated snRNAs U1, U2, U4, U5, and U6. Transcription of a representative snRNA, U1 RNA, was not inhibited, indicating that the post-transcriptional metabolism of snRNAs was perturbed during the late phase of infection. The increased cytoplasmic concentration of newly synthesized U1 RNA in Ad5- compared to mock-infected cells, and the greater reduction of the snRNP-associated compared to the total U1 RNA population, indicated that snRNP assembly in the cytoplasm was impaired. As adenovirus infection does not perturb export from the nucleus of small cellular mRNAs transcribed by RNA polymerases II and III, viral mRNA must be distinguished for selective export at a nuclear step upstream of translocation to the cytoplasm via nuclear pore complexes.
Collapse
Affiliation(s)
- J K Smiley
- Department of Molecular Biology, Princeton University, New Jersey 08544-1014
| | | | | | | |
Collapse
|
50
|
Pruzan R, Flint SJ. Transcription of adenovirus RNA polymerase III genes. Curr Top Microbiol Immunol 1995; 199 ( Pt 1):201-26. [PMID: 7555055 DOI: 10.1007/978-3-642-79496-4_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- R Pruzan
- Department of Molecular Biology, Princeton University, NJ 08544, USA
| | | |
Collapse
|