1
|
Immunopathogenesis of HBV Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:71-107. [DOI: 10.1007/978-981-13-9151-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
2
|
Association of the VDAC3 gene polymorphism with sperm count in Han-Chinese population with idiopathic male infertility. Oncotarget 2018; 8:45242-45248. [PMID: 28431403 PMCID: PMC5542182 DOI: 10.18632/oncotarget.16891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/27/2017] [Indexed: 11/25/2022] Open
Abstract
Voltage-dependent anion channel (VDAC) is a multifunctional channel protein across the outer mitochondrial membrane of somatic cells and participates in many physiological and pathophysiological processes. Up to now, only a few studies, including our previous studies, showed that VDAC exists in mammalian spermatozoa and is involved in spermatogenesis and sperm functions. There is no report about VDAC genetic variants in germinal tissues or cells. To investigate the possible association between VDAC genetic variants and human sperm quality, we performed semen analysis and variant Genotyping of VDAC3 subtype (rs7004637, rs16891278 and rs6773) of 523 Han-Chinese males with idiopathic infertility respectively by computer assisted semen analysis (CASA) and single nucleotide polymorphism (SNP) Genotyping assay. No significant association was found between rs7004637 and rs6773 genotypes and semen quality. However, the AG genotype of rs16891278 showed a significantly lower sperm concentration compared with the AA genotype (P = 0.044). Our findings suggest that VDAC3 genetic variants may be associated with human sperm count.
Collapse
|
3
|
Kim SY, Kyaw YY, Cheong J. Functional interaction of endoplasmic reticulum stress and hepatitis B virus in the pathogenesis of liver diseases. World J Gastroenterol 2017; 23:7657-7665. [PMID: 29209107 PMCID: PMC5703926 DOI: 10.3748/wjg.v23.i43.7657] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/01/2017] [Accepted: 11/01/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is a non-cytopathic virus that causes acute and chronic inflammatory liver diseases, often leading to the pathogenesis of hepatocellular carcinoma (HCC). Although many studies for the roles of HBV on pathogenesis of the liver diseases, such as non-alcoholic fatty liver disease (NAFLD), hepatic inflammation, cirrhosis, and HCC, have been reported, the mechanisms are not fully understood. Endoplasmic reticulum (ER) and mitochondria have the protective mechanisms to restore their damaged function by intrinsic or extrinsic stresses, but their chronic dysfunctions are associated with the pathogenesis of the various diseases. Furthermore, HBV can affect intra- or extracellular homeostasis through induction of ER and mitochondrial dysfunctions, leading to liver injury. Therefore, the mechanism by which HBV induces ER or mitochondrial stresses may be a therapeutic target for treatment of liver diseases.
Collapse
Affiliation(s)
- So Young Kim
- Department of Molecular Biology, Pusan National University, Busan 609-735, South Korea
| | - Yi Yi Kyaw
- Department of Molecular Biology, Pusan National University, Busan 609-735, South Korea
| | - Jaehun Cheong
- Department of Molecular Biology, Pusan National University, Busan 609-735, South Korea
| |
Collapse
|
4
|
Shoshan-Barmatz V, Krelin Y, Shteinfer-Kuzmine A. VDAC1 functions in Ca 2+ homeostasis and cell life and death in health and disease. Cell Calcium 2017; 69:81-100. [PMID: 28712506 DOI: 10.1016/j.ceca.2017.06.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/15/2023]
Abstract
In the outer mitochondrial membrane (OMM), the voltage-dependent anion channel 1 (VDAC1) serves as a mitochondrial gatekeeper, controlling the metabolic and energy cross-talk between mitochondria and the rest of the cell. VDAC1 also functions in cellular Ca2+ homeostasis by transporting Ca2+ in and out of mitochondria. VDAC1 has also been recognized as a key protein in mitochondria-mediated apoptosis, contributing to the release of apoptotic proteins located in the inter-membranal space (IMS) and regulating apoptosis via association with pro- and anti-apoptotic members of the Bcl-2 family of proteins and hexokinase. VDAC1 is highly Ca2+-permeable, transporting Ca2+ to the IMS and thus modulating Ca2+ access to Ca2+ transporters in the inner mitochondrial membrane. Intra-mitochondrial Ca2+ controls energy metabolism via modulating critical enzymes in the tricarboxylic acid cycle and in fatty acid oxidation. Ca2+ also determines cell sensitivity to apoptotic stimuli and promotes the release of pro-apoptotic proteins. However, the precise mechanism by which intracellular Ca2+ mediates apoptosis is not known. Here, the roles of VDAC1 in mitochondrial Ca2+ homeostasis are presented while emphasizing a new proposed mechanism for the mode of action of pro-apoptotic drugs. This view, proposing that Ca2+-dependent enhancement of VDAC1 expression levels is a major mechanism by which apoptotic stimuli induce apoptosis, position VDAC1 oligomerization at a molecular focal point in apoptosis regulation. The interactions of VDAC1 with many proteins involved in Ca2+ homeostasis or regulated by Ca2+, as well as VDAC-mediated control of cell life and death and the association of VDAC with disease, are also presented.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
5
|
Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J Bioenerg Biomembr 2016; 49:75-99. [DOI: 10.1007/s10863-016-9662-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
|
6
|
Rodríguez-Hernández E, Mosqueda J, León-Ávila G, Castañeda-Ortiz EJ, Álvarez-Sánchez ME, Camacho AD, Ramos A, Camacho-Nuez M. BmVDAC upregulation in the midgut of Rhipicephalus microplus, during infection with Babesia bigemina. Vet Parasitol 2015; 212:368-74. [PMID: 26141408 DOI: 10.1016/j.vetpar.2015.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 01/24/2023]
Abstract
The molecular mechanisms involved during the infection of Rhipicephalus microplus midgut cells by Babesia bigemina are of great relevance and currently unknown. In a previous study, we found a voltage-dependent anion channel (VDAC)-like protein (BmVDAC) that may participate during parasite invasion of midgut cells. In this work, we investigated BmVDAC expression at both mRNA and protein levels and examined BmVDAC localization in midgut cells of ticks infected with B. bigemina at different times post-repletion. Based on the RT-PCR results, Bmvdac expression levels were significantly higher in infected ticks compared to uninfected ones, reaching their highest values at 24h post-repletion (p<0.0001). Similar results were obtained at the protein level (p<0.0001). Interestingly, BmVDAC immunolocalization showed that there was an important differential expression and redistribution of BmVDAC protein between the midgut cells of infected and uninfected ticks, which was more evident 24h post-repletion of infected ticks. This is the first report of BmVDAC upregulation and immunolocalization in R. microplus midgut cells during B. bigemina infection. Further studies regarding the function of BmVDAC during the infection may provide new insights into the molecular mechanisms between B. bigemina and its tick vector and could result in its use as an anti-tick and transmission-blocking vaccine candidate.
Collapse
Affiliation(s)
- Elba Rodríguez-Hernández
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo Núm. 290, esquina Roberto Gayol, colonia del Valle Sur, delegación Benito Juárez, México D.F. C.P. 03100, Mexico
| | - Juan Mosqueda
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av de las Ciencias s/n, Juriquilla Querétaro, C.P. 76230, Mexico
| | - Gloria León-Ávila
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, Delegación Miguel Hidalgo, México D.F. C.P. 11340, Mexico
| | - Elizabeth J Castañeda-Ortiz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo Núm. 290, esquina Roberto Gayol, colonia del Valle Sur, delegación Benito Juárez, México D.F. C.P. 03100, Mexico
| | - María Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo Núm. 290, esquina Roberto Gayol, colonia del Valle Sur, delegación Benito Juárez, México D.F. C.P. 03100, Mexico
| | - Alejandro D Camacho
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, Delegación Miguel Hidalgo, México D.F. C.P. 11340, Mexico
| | - Alberto Ramos
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, Carretera Federal Cuernavaca-Cuautla Núm. 8534, Colonia Progreso, Jiutepec, Morelos C.P. 62550, Mexico
| | - Minerva Camacho-Nuez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo Núm. 290, esquina Roberto Gayol, colonia del Valle Sur, delegación Benito Juárez, México D.F. C.P. 03100, Mexico.
| |
Collapse
|
7
|
Gattin Z, Schneider R, Laukat Y, Giller K, Maier E, Zweckstetter M, Griesinger C, Benz R, Becker S, Lange A. Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2. JOURNAL OF BIOMOLECULAR NMR 2015; 61:311-20. [PMID: 25399320 PMCID: PMC5653203 DOI: 10.1007/s10858-014-9876-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/11/2014] [Indexed: 05/22/2023]
Abstract
The voltage-dependent anion channel (VDAC) is the most abundant protein of the outer mitochondrial membrane and constitutes the major pathway for the transport of ADP, ATP, and other metabolites. In this multidisciplinary study we combined solid-state NMR, electrophysiology, and molecular dynamics simulations, to study the structure of the human VDAC isoform 2 in a lipid bilayer environment. We find that the structure of hVDAC2 is similar to the structure of hVDAC1, in line with recent investigations on zfVDAC2. However, hVDAC2 appears to exhibit an increased conformational heterogeneity compared to hVDAC1 which is reflected in broader solid-state NMR spectra and less defined electrophysiological profiles.
Collapse
Affiliation(s)
- Zrinka Gattin
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Max Planck Institute for Dynamics and Selforganisation, Am Fassberg 17, 37077 Göttingen, Germany
| | - Robert Schneider
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, Bât. C9, 59655 Villeneuve d'Ascq, France
| | - Yvonne Laukat
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Karin Giller
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Elke Maier
- Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Zweckstetter
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Deutsches Zentrum für neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
- Center for the Molecular Physiology of the Brain, University Medical Center, 37073 Göttingen, Germany
| | - Christian Griesinger
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Roland Benz
- Lehrstuhl für Biotechnologie, Theodor-Boveri-Institut (Biozentrum) der Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Stefan Becker
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Adam Lange
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstr. 110, 10115 Berlin, Germany
| |
Collapse
|
8
|
Aghazadeh Y, Zirkin BR, Papadopoulos V. Pharmacological regulation of the cholesterol transport machinery in steroidogenic cells of the testis. VITAMINS AND HORMONES 2015; 98:189-227. [PMID: 25817870 DOI: 10.1016/bs.vh.2014.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reduced serum testosterone (T), or hypogonadism, is estimated to affect about 5 million American men, including both aging and young men. Low serum T has been linked to mood changes, worsening cognition, fatigue, depression, decreased lean body mass and bone mineral density, increased visceral fat, metabolic syndrome, decreased libido, and sexual dysfunction. Administering exogenous T, known as T-replacement therapy (TRT), reverses many of the symptoms of low T levels. However, this treatment can result in luteinizing hormone suppression which, in turn, can lead to reduced sperm numbers and infertility, making TRT inappropriate for men who wish to father children. Additionally, TRT may result in supraphysiologic T levels, skin irritation, and T transfer to others upon contact; and there may be increased risk of prostate cancer and cardiovascular disease, particularly in aging men. Therefore, the development of alternate therapies for treating hypogonadism would be highly desirable. To do so requires greater understanding of the series of steps leading to T formation and how they are regulated, and the identification of key steps that are amenable to pharmacological modulation so as to induce T production. We review herein our current understanding of mechanisms underlying the pharmacological induction of T formation in hypogonadal testis.
Collapse
Affiliation(s)
- Yasaman Aghazadeh
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
9
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
10
|
Chen WT, Wu YL, Chen T, Cheng CS, Chan HL, Chou HC, Chen YW, Yin HS. Proteomics analysis of the DF-1 chicken fibroblasts infected with avian reovirus strain S1133. PLoS One 2014; 9:e92154. [PMID: 24667214 PMCID: PMC3965424 DOI: 10.1371/journal.pone.0092154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Avian reovirus (ARV) is a member of the Orthoreovirus genus in the Reoviridae family. It is the etiological agent of several diseases, among which viral arthritis and malabsorption syndrome are the most commercially important, causing considerable economic losses in the poultry industry. Although a small but increasing number of reports have characterized some aspects of ARV infection, global changes in protein expression in ARV-infected host cells have not been examined. The current study used a proteomics approach to obtain a comprehensive view of changes in protein levels in host cells upon infection by ARV. METHODOLOGY AND PRINCIPAL FINDINGS The proteomics profiles of DF-1 chicken fibroblast cells infected with ARV strain S1133 were analyzed by two-dimensional differential-image gel electrophoresis. The majority of protein expression changes (≥ 1.5 fold, p<0.05) occurred at 72 h post-infection. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identified 51 proteins with differential expression levels, including 25 that were upregulated during ARV infection and 26 that were downregulated. These proteins were divided into eight groups according to biological function: signal transduction, stress response, RNA processing, the ubiquitin-proteasome pathway, lipid metabolism, carbohydrate metabolism, energy metabolism, and cytoskeleton organization. They were further examined by immunoblotting to validate the observed alterations in protein expression. CONCLUSION/SIGNIFICANCE This is the first report of a time-course proteomic analysis of ARV-infected host cells. Notably, all identified proteins involved in signal transduction, RNA processing, and the ubiquitin-proteasome pathway were downregulated in infected cells, whereas proteins involved in DNA synthesis, apoptosis, and energy production pathways were upregulated. In addition, other differentially expressed proteins were linked with the cytoskeleton, metabolism, redox regulation, and stress response. These proteomics data provide valuable information about host cell responses to ARV infection and will facilitate further studies of the molecular mechanisms underlying ARV pathogenesis.
Collapse
Affiliation(s)
- Wen-Ting Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Le Wu
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chao-Sheng Cheng
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiu-Chuan Chou
- Department of Applied Science, National Hsinchu University of Education, Hsinchu, Taiwan
| | - Yi-Wen Chen
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsien-Sheng Yin
- Institute of Bioinformatics and Structural Biology and College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
11
|
Xie N, Chen X, Zhang T, Liu B, Huang C. Using proteomics to identify the HBx interactome in hepatitis B virus: how can this inform the clinic? Expert Rev Proteomics 2013; 11:59-74. [PMID: 24308553 DOI: 10.1586/14789450.2014.861745] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus (HBV) is a small and enveloped DNA virus, of which chronic infection is the main risk factor of liver cirrhosis and hepatocellular carcinoma. Hepatitis B virus X protein (HBx) is a multifunctional protein encoded by HBV genome, which have significant effects on HBV replication and pathogenesis. Through directly interacting with cellular proteins, HBx is capable to promote HBV replication, regulate transcription of host genes, disrupt protein degradation, modulate signaling pathway, manipulate cell death and deregulate cell cycle. In this review, we briefly discuss the diversified effects of HBx-interactome and their potential clinical significances.
Collapse
Affiliation(s)
- Na Xie
- The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, P.R. China
| | | | | | | | | |
Collapse
|
12
|
Lee CP, Wirtz M, Hell R. Evidence for Several Cysteine Transport Mechanisms in the Mitochondrial Membranes of Arabidopsis thaliana. ACTA ACUST UNITED AC 2013; 55:64-73. [DOI: 10.1093/pcp/pct155] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Kwon WS, Park YJ, Mohamed ESA, Pang MG. Voltage-dependent anion channels are a key factor of male fertility. Fertil Steril 2013; 99:354-61. [DOI: 10.1016/j.fertnstert.2012.09.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
|
14
|
Vitale PAM, Crepaldi CR, Tesch AC, Albuquerque RD, César MDC. Purificação e caracterização da VDAC de mitocôndrias corticais aviares: identificação de modificações pós-traducionais nas porinas neuronais murinas e aviares. PESQUISA VETERINÁRIA BRASILEIRA 2012. [DOI: 10.1590/s0100-736x2012001200024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A VDAC é uma porina presente na MME cuja função é crucial no metabolismo energético, sobrevivência e morte celular. A caracterização da VDAC torna-se importante para a compreensão das inter-relações da mitocôndria com os diferentes componentes citosólicos, tais como a HK. A ligação HK-VDAC favorece a utilização do ATP intramitocondrial em células neuronais, a HK cerebral pode interagir de formas diferentes com a VDAC, o que resulta em diferentes sítios de ligação (sítios A e B). Os variados papéis metabólicos das isoformas da VDAC podem ser explicados pela presença de alterações pós-traducionais. No presente trabalho purificamos a VDAC1 mitocondrial neuronal proveniente de cérebro aviar. Paralelamente, comprovamos que a presença de múltiplas formas das VDACs 1 e 2 em cérebros murino e aviar, seja devida à presença de modificações pós-traducionais, nomeadamente a fosforilação. A proteína isolada apresentou peso molecular de 30KDa. Quando submetida à eletroforese e posteriormente à coloração para a identificação de fosfoproteínas, a mesma mostrou-se desfosforilada. O conhecimento da presença, ou ausência de fosforilação das VDACs, reside na importância de estabelecer-se as bases moleculares ligadas à existência de sítios A e B nas mitocôndrias neuronais.
Collapse
|
15
|
Lustgarten MS, Bhattacharya A, Muller FL, Jang YC, Shimizu T, Shirasawa T, Richardson A, Van Remmen H. Complex I generated, mitochondrial matrix-directed superoxide is released from the mitochondria through voltage dependent anion channels. Biochem Biophys Res Commun 2012; 422:515-21. [PMID: 22613204 DOI: 10.1016/j.bbrc.2012.05.055] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/11/2012] [Indexed: 02/07/2023]
Abstract
Mitochondrial complex I has previously been shown to release superoxide exclusively towards the mitochondrial matrix, whereas complex III releases superoxide to both the matrix and the cytosol. Superoxide produced at complex III has been shown to exit the mitochondria through voltage dependent anion channels (VDAC). To test whether complex I-derived, mitochondrial matrix-directed superoxide can be released to the cytosol, we measured superoxide generation in mitochondria isolated from wild type and from mice genetically altered to be deficient in MnSOD activity (TnIFastCreSod2(fl/fl)). Under experimental conditions that produce superoxide primarily by complex I (glutamate/malate plus rotenone, GM+R), MnSOD-deficient mitochondria release ∼4-fold more superoxide than mitochondria isolated from wild type mice. Exogenous CuZnSOD completely abolished the EPR-derived GM+R signal in mitochondria isolated from both genotypes, evidence that confirms mitochondrial superoxide release. Addition of the VDAC inhibitor DIDS significantly reduced mitochondrial superoxide release (∼75%) in mitochondria from either genotype respiring on GM+R. Conversely, inhibition of potential inner membrane sites of superoxide exit, including the matrix face of the mitochondrial permeability transition pore and the inner membrane anion channel did not reduce mitochondrial superoxide release in the presence of GM+R in mitochondria isolated from either genotype. These data support the concept that complex I-derived mitochondrial superoxide release does indeed occur and that the majority of this release occurs through VDACs.
Collapse
Affiliation(s)
- Michael S Lustgarten
- The Sam and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu B, Wang P, Wang Z, Zhang W. The use of anti-VDAC2 antibody for the combined assessment of human sperm acrosome integrity and ionophore A23187-induced acrosome reaction. PLoS One 2011; 6:e16985. [PMID: 21347391 PMCID: PMC3036732 DOI: 10.1371/journal.pone.0016985] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/18/2011] [Indexed: 11/18/2022] Open
Abstract
Voltage-dependent anion channel (VDAC) is mainly located in the mitochondrial outer membrane and participates in many biological processes. In mammals, three VDAC subtypes (VDAC1, 2 and 3) have been identified. Although VDAC has been extensively studied in various tissues and cells, there is little knowledge about the distribution and function of VDAC in male mammalian reproductive system. Several studies have demonstrated that VDAC exists in mammalian spermatozoa and is implicated in spermatogenesis, sperm maturation, motility and fertilization. However, there is no knowledge about the respective localization and function of three VDAC subtypes in human spermatozoa. In this study, we focused on the presence of VDAC2 in human spermatozoa and its possible role in the acrosomal integrity and acrosome reaction using specific anti-VDAC2 monoclonal antibody for the first time. The results exhibited that native VDAC2 existed in the membrane components of human spermatozoa. The co-incubation of spermatozoa with anti-VDAC2 antibody did not affect the acrosomal integrity and acrosome reaction, but inhibited ionophore A23187-induced intracellular Ca2+ increase. Our study suggested that VDAC2 was located in the acrosomal membrane or plasma membrane of human spermatozoa, and played putative roles in sperm functions through mediating Ca2+ transmembrane transport.
Collapse
Affiliation(s)
- Bianjiang Liu
- Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Wang
- Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (WZ); (ZW)
| | - Wei Zhang
- Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail: (WZ); (ZW)
| |
Collapse
|
17
|
Subedi KP, Kim JC, Kang M, Son MJ, Kim YS, Woo SH. Voltage-dependent anion channel 2 modulates resting Ca²+ sparks, but not action potential-induced Ca²+ signaling in cardiac myocytes. Cell Calcium 2011; 49:136-43. [PMID: 21241999 DOI: 10.1016/j.ceca.2010.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/12/2010] [Accepted: 12/20/2010] [Indexed: 11/24/2022]
Abstract
Voltage-dependent anion channels (VDACs) are pore forming proteins predominantly found in the outer mitochondrial membrane and are thought to transport Ca(2+). In this study, we have investigated the possible role of type 2 VDAC (VDAC2) in cardiac Ca(2+) signaling and Ca(2+) sparks using a lentiviral knock-down (KD) technique and two-dimensional confocal Ca(2+) imaging in immortalized autorhythmic adult atrial cells, HL-1. We confirmed high expression of VDAC2 protein in ventricular, atrial, and HL-1 cells using Western blot analysis. Infection of HL-1 cells with VDAC2-targeting lentivirus reduced the level of VDAC2 protein to ∼10%. Comparisons of autorhythmic Ca(2+) transients between wild-type (WT) and VDAC2 KD cells showed no significant change in the magnitude, decay, and beating rate of the Ca(2+) transients. Caffeine (10mM)-induced Ca(2+) release, which indicates sarcoplasmic reticulum (SR) Ca(2+) content, was not altered by VDAC2 KD. Interestingly, however, the intensity, width, and duration of the individual Ca(2+) sparks were significantly increased by VDAC2 KD in resting conditions, with no change in the frequency of sparks. VDAC2 KD significantly delayed mitochondrial Ca(2+) uptake during artificial Ca(2+) pulses in permeabilized HL-1 cells. These results suggest that VDAC2 may facilitate mitochondrial Ca(2+) uptake and restrict Ca(2+) spark expansion without regulating activations of sparks under resting conditions, thereby providing evidence on the functional role of VDAC2 in cardiac local Ca(2+) signaling.
Collapse
Affiliation(s)
- Krishna Prasad Subedi
- College of Pharmacy, IDRD, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, South Korea
| | | | | | | | | | | |
Collapse
|
18
|
Chorna SV, Dosenko VI, Strutyns'ka NA, Vavilova HL, Sahach VF. Increased expression of voltage-dependent anion channel and adenine nucleotide translocase and the sensitivity of calcium-induced mitochondrial permeability transition opening pore in the old rat. ACTA ACUST UNITED AC 2010. [DOI: 10.15407/fz56.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Liu B, Zhang W, Wang Z. Voltage-dependent anion channel in mammalian spermatozoa. Biochem Biophys Res Commun 2010; 397:633-6. [DOI: 10.1016/j.bbrc.2010.06.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Accepted: 06/05/2010] [Indexed: 10/19/2022]
|
20
|
Fieni F, Parkar A, Misgeld T, Kerschensteiner M, Lichtman JW, Pasinelli P, Trotti D. Voltage-dependent inwardly rectifying potassium conductance in the outer membrane of neuronal mitochondria. J Biol Chem 2010; 285:27411-27417. [PMID: 20551319 DOI: 10.1074/jbc.m110.131243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potassium fluxes integrate mitochondria into cellular activities, controlling their volume homeostasis and structural integrity in many pathophysiological mechanisms. The outer mitochondrial membrane (OMM) is thought to play a passive role in this process because K(+) is believed to equilibrate freely between the cytosol and mitochondrial intermembrane space. By patch clamping mitochondria isolated from the central nervous systems of adult mitoCFP transgenic mice, we discovered the existence of I(OMMKi), a novel voltage-dependent inwardly rectifying K(+) conductance located in the OMM. I(OMMKi) is regulated by osmolarity, potentiated by cAMP, and activated at physiological negative potentials, allowing K(+) to enter the mitochondrial intermembrane space in a controlled regulated fashion. The identification of I(OMMKi) in the OMM supports the notion that a membrane potential could exist across this membrane in vivo and suggests that the OMM possesses regulated pathways for K(+) uptake.
Collapse
Affiliation(s)
- Francesca Fieni
- Department of Neuroscience, Weinberg Unit for ALS Research, and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Anjum Parkar
- Department of Neuroscience, Weinberg Unit for ALS Research, and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Thomas Misgeld
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Martin Kerschensteiner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Jeff W Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Piera Pasinelli
- Department of Neuroscience, Weinberg Unit for ALS Research, and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Davide Trotti
- Department of Neuroscience, Weinberg Unit for ALS Research, and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
21
|
Graham BH, Li Z, Alesii EP, Versteken P, Lee C, Wang J, Craigen WJ. Neurologic dysfunction and male infertility in Drosophila porin mutants: a new model for mitochondrial dysfunction and disease. J Biol Chem 2010; 285:11143-53. [PMID: 20110367 DOI: 10.1074/jbc.m109.080317] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Voltage-dependent anion channels (VDACs) are a family of small pore-forming proteins of the mitochondrial outer membrane found in all eukaryotes. VDACs play an important role in the regulated flux of metabolites between the cytosolic and mitochondrial compartments, and three distinct mammalian isoforms have been identified. Animal and cell culture experiments suggest that the various isoforms act in disparate roles such as apoptosis, synaptic plasticity, learning, muscle bioenergetics, and reproduction. In Drosophila melanogaster, porin is the ubiquitously expressed VDAC isoform. Through imprecise excision of a P element insertion in the porin locus, a series of hypomorphic alleles have been isolated, and analyses of flies homozygous for these mutant alleles reveal phenotypes remarkably reminiscent of mouse VDAC mutants. These include partial lethality, defects of mitochondrial respiration, abnormal muscle mitochondrial morphology, synaptic dysfunction, and male infertility, which are features often observed in human mitochondrial disorders. Furthermore, the observed synaptic dysfunction at the neuromuscular junction in porin mutants is associated with a paucity of mitochondria in presynaptic termini. The similarity of VDAC mutant phenotypes in the fly and mouse clearly indicate a fundamental conservation of VDAC function. The establishment and validation of a new in vivo model for VDAC function in Drosophila should provide a valuable tool for further genetic dissection of VDAC role(s) in mitochondrial biology and disease, and as a model of mitochondrial disorders potentially amenable to the development of treatment strategies.
Collapse
Affiliation(s)
- Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Mannella CA, Kinnally KW. Reflections on VDAC as a voltage-gated channel and a mitochondrial regulator. J Bioenerg Biomembr 2009; 40:149-55. [PMID: 18648913 DOI: 10.1007/s10863-008-9143-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There is excellent agreement between the electrophysiological properties and the structure of the mitochondrial outer membrane protein, VDAC, ex vivo. However, the inference that the well-defined canonical "open" state of the VDAC pore is the normal physiological state of the channel in vivo is being challenged by several lines of evidence. Knowing the atomic structure of the detergent solubilized protein, a long sought after goal, will not be sufficient to understand the functioning of this channel protein. In addition, detailed information about VDAC's topology in the outer membrane of intact mitochondria, and the structural changes that it undergoes in response to different stimuli in the cell will be needed to define its physiological functions and regulation.
Collapse
Affiliation(s)
- Carmen A Mannella
- Resource for Visualization of Biological Complexity, Wadsworth Center, Albany, NY 12201-0509, USA
| | | |
Collapse
|
23
|
Yan W. Male infertility caused by spermiogenic defects: lessons from gene knockouts. Mol Cell Endocrinol 2009; 306:24-32. [PMID: 19481682 PMCID: PMC5438260 DOI: 10.1016/j.mce.2009.03.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/05/2009] [Accepted: 03/06/2009] [Indexed: 02/06/2023]
Abstract
Spermiogenesis refers to the process by which postmeiotic spermatids differentiate into elongated spermatids and eventually spermatozoa. During spermiogenesis, round spermatids undergo dynamic morphologic changes, which include nuclear condensation and elongation, formation of flagella and acrosome, reorganization of organelles and elimination of cytoplasm upon spermiation. This cellular differentiation process is unique to male haploid germ cells, which may explain why approximately half of the testis-specific genes are exclusively expressed in spermiogenesis. The spermiogenesis-specific expression implies that these genes contribute to either structural or functional aspects of future sperm. Many such genes have been inactivated in mice and some of these gene knockout mice display male infertility due to nonfunctional sperm which display no or various degrees of structural abnormalities. Since the majority of these spermiogenesis-specific genes are highly conserved between mice and humans, findings from knockout mouse studies may be applicable to human infertility. Here, I briefly review some of these spermatid-specific gene knockouts. The mouse studies strongly suggest that sperm quality rather than quantity is a better indicator of male fertility and novel assays should be developed to determine sperm functionality.
Collapse
Affiliation(s)
- Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
24
|
Proceedings of the 1st Congress of the DFG Graduate Seminar ‘Cell-Cell Interaction in Reproduction’ and 5th Dies Andrologicus Marburg, Germany: 25 November 2000. Andrologia 2009. [DOI: 10.1111/j.1439-0272.2001.tb01491.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Liu B, Wang Z, Zhang W, Wang X. Expression and localization of voltage-dependent anion channels (VDAC) in human spermatozoa. Biochem Biophys Res Commun 2008; 378:366-70. [PMID: 19013129 DOI: 10.1016/j.bbrc.2008.10.177] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 10/30/2008] [Indexed: 11/24/2022]
Abstract
Voltage-dependent anion channels (VDAC), also known as mitochondrial porins, are a group of proteins first identified in the mitochondrial outer membrane that are able to form hydrophilic pore structures. VDAC allow the passage of the metabolites across the mitochondrial outer membrane, and are involved in metabolite transport and signal transduction. Several recent studies have indicated the important roles of VDAC in maintaining normal structure and motility of mammalian spermatozoa. To study the expression and localization of VDAC in human spermatozoa, different experimental approaches were applied: (1) specific primers were designed and VDAC gene sequences were cloned by PCR amplification from human testis cDNA library; (2) recombinant VDAC proteins were produced in the expression vector Escherichia coli BL21 (DE3); (3) human sperm VDAC proteins were extracted, separated and analyzed by Western blotting; (4) the localization of VDAC in human spermatozoa were detected using immunofluorescence. The three gene sequences and recombinant VDAC proteins were obtained, respectively. VDAC proteins were detected to be located in human spermatozoa, especially in sperm flagella. Our study elucidated for the first time that VDAC were synthesized and secreted at the testis level and eventually became an integral part of sperm proteins.
Collapse
Affiliation(s)
- Bianjiang Liu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | |
Collapse
|
26
|
Chang LY, Ali ARM, Hassan SS, AbuBakar S. Human neuronal cell protein responses to Nipah virus infection. Virol J 2007; 4:54. [PMID: 17553172 PMCID: PMC1896155 DOI: 10.1186/1743-422x-4-54] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 06/07/2007] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Nipah virus (NiV), a recently discovered zoonotic virus infects and replicates in several human cell types. Its replication in human neuronal cells, however, is less efficient in comparison to other fully susceptible cells. In the present study, the SK-N-MC human neuronal cell protein response to NiV infection is examined using proteomic approaches. RESULTS Method for separation of the NiV-infected human neuronal cell proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) was established. At least 800 protein spots were resolved of which seven were unique, six were significantly up-regulated and eight were significantly down-regulated. Six of these altered proteins were identified using mass spectrometry (MS) and confirmed using MS/MS. The heterogenous nuclear ribonucleoprotein (hnRNP) F, guanine nucleotide binding protein (G protein), voltage-dependent anion channel 2 (VDAC2) and cytochrome bc1 were present in abundance in the NiV-infected SK-N-MC cells in contrast to hnRNPs H and H2 that were significantly down-regulated. CONCLUSION Several human neuronal cell proteins that are differentially expressed following NiV infection are identified. The proteins are associated with various cellular functions and their abundance reflects their significance in the cytopathologic responses to the infection and the regulation of NiV replication. The potential importance of the ratio of hnRNP F, and hnRNPs H and H2 in regulation of NiV replication, the association of the mitochondrial protein with the cytopathologic responses to the infection and induction of apoptosis are highlighted.
Collapse
Affiliation(s)
- Li-Yen Chang
- Center for Proteomics Research, Department of Forest Biotechnology, Forest Research Institute Malaysia, 52109, Selangor, Malaysia
| | - AR Mohd Ali
- Veterinary Research Institute, Jalan Sultan Azlan Shah, 13800 Ipoh, Perak, Malaysia
| | - Sharifah Syed Hassan
- Veterinary Research Institute, Jalan Sultan Azlan Shah, 13800 Ipoh, Perak, Malaysia
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Guarino F, Specchia V, Zapparoli G, Messina A, Aiello R, Bozzetti MP, De Pinto V. Expression and localization in spermatozoa of the mitochondrial porin isoform 2 in Drosophila melanogaster. Biochem Biophys Res Commun 2006; 346:665-70. [PMID: 16774740 DOI: 10.1016/j.bbrc.2006.05.172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 05/19/2006] [Indexed: 11/26/2022]
Abstract
Mitochondrial porins or VDACs (voltage-dependent anion-selective channels) are transmembrane pore-forming proteins. In eukaryotic genomes multiple genes coding for VDAC homologues have been discovered, but their function remains unknown. In Drosophila melanogaster three additional genes homologous to the gene porin have been found. In a previous report we have expressed in vitro Porin 2 (gene GC17137) and we have found that the reconstituted protein shows pore-forming activity but it is cation-selective and poorly dependent from voltage. In this work we have characterized the expression pattern of Porin 2. Amplification upon germinal and somatic or stage specific mRNA showed that the highest transcription level of Porin 2 is in testis. Western blot analysis performed with antibodies raised against the recombinant Porin 2 confirmed a high level of expression in the fly spermatozoa. Immuno-histochemical studies indicate that Porin 2 is selectively present in spermatozoa tail, where the mitochondria are located, but not in spermatocytes. A lethal mutant of D. melanogaster carrying a P-element in the first intron of the porin (Porin 1) gene hinders the expression of both Porin 1 and 2. Our results suggest that Porin 2 is truly expressed and that it is required for functional germinal tissues.
Collapse
Affiliation(s)
- Francesca Guarino
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
28
|
Ongwijitwat S, Liang HL, Graboyes EM, Wong-Riley MTT. Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs. Gene 2006; 374:39-49. [PMID: 16516409 DOI: 10.1016/j.gene.2006.01.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 01/09/2006] [Indexed: 10/25/2022]
Abstract
Cytochrome c oxidase (COX), the terminal enzyme of the electron transport chain, is a bigenomic enzyme with 13 subunits. The mechanism coordinating the transcription of these subunits is poorly understood. We investigated the role of nuclear respiratory factor-2 (NRF-2) in intragenomic regulation of nuclear COX genes. Vector-mediated short-hairpin RNA interference against NRF-2alpha reduced all 10 COX nuclear subunit mRNAs and mRNAs of other genes involved in mitochondrial function/biogenesis. NRF-2 binding site was necessary for the rat COX 4i1 promoter to down-regulate in response to decreased energy demands in primary neurons. Over-expression of NRF-2 protein prevented the down-regulation of transcriptional activity by TTX. Finally, NRF-2 binding sites in isolation were sufficient for modulating COX subunit 4i1 and 6A1 promoters' activity in response to decreased energy demand. These results indicate that NRF-2 is a vital part of a molecular mechanism that senses upstream energy signals and modulates COX transcriptional levels in mammalian cells.
Collapse
Affiliation(s)
- Sakkapol Ongwijitwat
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | | | | | | |
Collapse
|
29
|
Gómez Ramírez LA, Lemeshko VV. A possible restriction of ferro- and ferricyanide oxidoreductase activities of rat liver mitochondria by the outer membrane. Arch Biochem Biophys 2005; 443:11-20. [PMID: 16226709 DOI: 10.1016/j.abb.2005.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 08/28/2005] [Accepted: 08/30/2005] [Indexed: 11/25/2022]
Abstract
In this work, various ferro-ferricyanide oxidoreductase activities of rat liver mitochondria were studied to find conditions under which the outer membrane might restrict the flux of these highly charged non-biological anions. When the isotonic low ionic strength medium was supplemented with 25mM KCl, a several-fold increase in the succinate-ferricyanide reductase activity of mitochondria and in the rate of external NADH oxidation in the presence of ferrocyanide was observed. Mitochondrial respiration with 5mM ferrocyanide was almost completely inhibited after consumption of 3.8-18.5% of the dissolved oxygen, depending on the medium and the presence of 2,4-dinitrophenol. These and other experimental data together with mathematical modeling of the redox-state equilibrium suggest that the measured activities might be restricted by two factors: first, the permeability of the outer mitochondrial membrane and second, a strong influence of the ionic strength of incubation media on the intermembrane space redox reactions.
Collapse
Affiliation(s)
- Luis A Gómez Ramírez
- Departamento de Ciencias Básicas, Facultad de Ciencias y Humanidades, Universidad EAFIT, Medellín, Colombia
| | | |
Collapse
|
30
|
Graham BH, Craigen WJ. Mitochondrial voltage-dependent anion channel gene family in Drosophila melanogaster: complex patterns of evolution, genomic organization, and developmental expression. Mol Genet Metab 2005; 85:308-17. [PMID: 15886041 DOI: 10.1016/j.ymgme.2005.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 03/12/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
Voltage-dependent anion channels (VDACs), also known as mitochondrial porins, are a family of small pore-forming proteins of the mitochondrial outer membrane found in all eukaryotes. VDACs play important roles in the regulated flux of metabolites between the cytosolic and mitochondrial compartments, energy metabolism, and apoptosis. Annotation of the genome sequence of Drosophila melanogaster revealed three genes (CG17137, CG31722-A, and CG31722-B) with homology to porin, the previously described Drosophila VDAC. Molecular analysis reveals a complex pattern of organization and expression. The genomic organization of these four genes and sequence comparisons with other insect VDAC homologs indicate that this gene family evolved through a mechanism of duplication and divergence from an ancestral VDAC gene during the radiation of the genus Drosophila. CG17137, CG31722-A, and CG31722-B are expressed in a male-specific pattern on both transcriptional and translational levels, while porin is equally expressed in both male and female flies. Additionally, CG31722-A and CG31722-B are expressed as a dicistronic transcript. Western blot analysis and immunofluorescence microscopy confirm that these proteins localize to the mitochondrion. Further expression analysis showed that CG17137 and CG31722-B are abundant in testes, while porin is ubiquitously expressed. While porin, CG17137, and CG31722-B are expressed to different degrees during embryogenesis, all of these proteins are dramatically reduced relative to cytochrome c content during larvogenesis. These studies illustrate a complex genomic organization and spatiotemporal pattern of expression for Drosophila VDACs as well as an evolutionary history consistent with either a partitioning of VDAC functions or an acquisition of novel functions among isoforms.
Collapse
Affiliation(s)
- Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
31
|
Moslavac S, Mirus O, Bredemeier R, Soll J, von Haeseler A, Schleiff E. Conserved pore-forming regions in polypeptide-transporting proteins. FEBS J 2005; 272:1367-78. [PMID: 15752354 DOI: 10.1111/j.1742-4658.2005.04569.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transport of solutes and polypeptides across membranes is an essential process for every cell. In the past, much focus has been placed on helical transporters. Recently, the beta-barrel-shaped transporters have also attracted some attention. The members of this family are found in the outer bacterial membrane and the outer membrane of endosymbiotically derived organelles. Here we analyze the features and the evolutionary development of a specified translocator family, namely the beta-barrel-shaped polypeptide-transporters. We identified sequence motifs, which characterize all transporters of this family, as well as motifs specific for a certain subgroup of proteins of this class. The general motifs are related to the structural composition of the pores. Further analysis revealed a defined distance of two motifs to the C-terminal portion of the proteins. Furthermore, the evolutionary relationship of the proteins and the motifs are discussed.
Collapse
|
32
|
Grigoriev SM, Muro C, Dejean LM, Campo ML, Martinez-Caballero S, Kinnally KW. Electrophysiological approaches to the study of protein translocation in mitochondria. ACTA ACUST UNITED AC 2004; 238:227-74. [PMID: 15364200 DOI: 10.1016/s0074-7696(04)38005-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Electrophysiological techniques have been integral to our understanding of protein translocation across various membranes, and, in particular, the mitochondrial inner and outer membranes. Descriptions of various methodologies (for example, patch clamp, planar bilayers, and tip dip, and their past and potential contributions) are detailed within. The activity of protein import channels of native mitochondrial inner and outer membranes can be studied by directly patch clamping mitochondria and mitoplasts (mitochondria stripped of their outer membrane by French pressing) from various genetically manipulated strains of yeast and mammalian tissue cultured cells. The channel activities of TOM, TIM23, and TIM22 complexes are compared with those reconstituted in proteoliposomes and with those of the recombinant proteins Tom40p, Tim23p, and Tim22p, which play major roles in protein translocation. Studies of the mechanism(s) and the role of channels in protein translocation in mitochondria are prototypes, as the same principles are likely followed in all biological membranes including the endoplasmic reticulum and chloroplasts. The ability to apply electrophysiological techniques to these channels is now allowing investigations into the role of mitochondria in diverse fields such as neurotransmitter release, long-term potentiation, and apoptosis.
Collapse
Affiliation(s)
- Sergey M Grigoriev
- College of Dentistry, Department of Basic Sciences, New York University, 345 East 24th Street, New York, New York 10010, USA
| | | | | | | | | | | |
Collapse
|
33
|
Aiello R, Messina A, Schiffler B, Benz R, Tasco G, Casadio R, De Pinto V. Functional Characterization of a Second Porin Isoform in Drosophila melanogaster. J Biol Chem 2004; 279:25364-73. [PMID: 15054101 DOI: 10.1074/jbc.m310572200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial porins or voltage-dependent anion-selective channels are channel-forming proteins mainly found in the mitochondrial outer membrane. Genome sequencing of the fruit fly Drosophila melanogaster revealed the presence of three additional porin-like genes. No functional information was available for the different gene products. In this work we have studied the function of the gene product closest to the known Porin gene (CG17137 coding for DmPorin2). Its coding sequence was expressed in Escherichia coli. The recombinant DmPorin2 protein is able to form channels similar to those formed by DmPorin1 reconstituted in artificial membranes. Furthermore, DmPorin2 is clearly voltage-independent and cation-selective, whereas its counterpart isoform 1 is voltage-dependent and anion-selective. Sequence comparison of the two porin isoforms indicates the exchange of four lysines in DmPorin1 for four glutamic acids in DmPorin2. We have mutated two of them (Glu-66 and Glu-163) to lysines to investigate their role in the functional features of the pore. The mutants E163K and E66K/E163K are endowed with an almost full inversion of the ion selectivity. Both single mutations partially restore the voltage dependence of the pore. We found that an additional effect with the double mutant E66K/E163K was the restoration of voltage dependence. Protein structure predictions highlight a 16 beta-strand pattern, typical for porins. In a three-dimensional model of DmPorin2, Glu-66 and Glu-163 are close to the rim of the channel, on two opposite sides. DmPorin2 is expressed in all the fly tissues and in all the developmental stages tested. Our main conclusions are as follows. 1) The CG17137 gene may express a porin with a functional role in D. melanogaster. 2) We have identified two amino acids of major relevance for the voltage dependence of the porin pore.
Collapse
Affiliation(s)
- Rita Aiello
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Graham BH, Craigen WJ. Genetic approaches to analyzing mitochondrial outer membrane permeability. Curr Top Dev Biol 2004; 59:87-118. [PMID: 14975248 DOI: 10.1016/s0070-2153(04)59004-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
35
|
Baker MA, Lane DJR, Ly JD, De Pinto V, Lawen A. VDAC1 Is a Transplasma Membrane NADH-Ferricyanide Reductase. J Biol Chem 2004; 279:4811-9. [PMID: 14573604 DOI: 10.1074/jbc.m311020200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Porin isoform 1 or VDAC (voltage-dependent anion-selective channel) 1 is the predominant protein in the outer mitochondrial membrane. We demonstrated previously that a plasma membrane NADH-ferricyanide reductase activity becomes up-regulated upon mitochondrial perturbation, and therefore suggested that it functions as a cellular redox sensor. VDAC1 is known to be expressed in the plasma membrane; however, its function there remained a mystery. Here we show that VDAC1, when expressed in the plasma membrane, functions as a NADH-ferricyanide reductase. VDAC1 preparations purified from both plasma membrane and mitochondria fractions exhibit NADH-ferricyanide reductase activity, which can be immunoprecipitated with poly- and monoclonal antibodies directed against VDAC(1). Transfecting cells with pl-VDAC1-GFP, which carries an N-terminal signal peptide, directs VDAC1 to the plasma membrane, as shown by confocal microscopy and FACS analysis, and significantly increases the plasma membrane NADH-ferricyanide reductase activity of the transfected cells. This novel enzymatic activity of the well known VDAC1 molecule may provide an explanation for its role in the plasma membrane. Our data suggest that a major function of VDAC1 in the plasma membrane is that of a NADH(-ferricyanide) reductase that may be involved in the maintenance of cellular redox homeostasis.
Collapse
Affiliation(s)
- Mark A Baker
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Building 13D, 100 Wellington Road, Melbourne, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
36
|
Abstract
We have recently demonstrated that voltage dependent anion selective channel~1 (porin, isoform 1) can function as a transplasma membrane NADH:ferricyanide-reductase. However, both the specific redox characteristics and the mechanism of electron transport in this enzyme presently remain unclear. Here we demonstrate that the redox capability of porin 1 is specific for ferricyanide as this same enzyme cannot reduce DCIP or cytochrome c in vitro. Furthermore, NADH-dependent ferricyanide reduction associated with VDAC1 is not sensitive to the anion channel inhibitors DIDS and dextran sulfate. However, this activity can be inhibited by thiol chelators, suggesting that at least one of the two cysteine groups present in VDAC1 are critical for electron transfer. We propose a model on how electron transport may occur in VDAC1.
Collapse
Affiliation(s)
- Mark A Baker
- ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Science, University of Newcastle, NSW, Australia
| | | | | |
Collapse
|
37
|
Han D, Antunes F, Canali R, Rettori D, Cadenas E. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 2003; 278:5557-63. [PMID: 12482755 DOI: 10.1074/jbc.m210269200] [Citation(s) in RCA: 511] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Several reactions in biological systems contribute to maintain the steady-state concentrations of superoxide anion (O(2)*-) and hydrogen peroxide (H(2)O(2)). The electron transfer chain of mitochondria is a well documented source of H(2)O(2); however, the release of O(2)*- from mitochondria into cytosol has not been unequivocally established. This study was aimed at validating mitochondria as sources of cytosolic O(2)*-, elucidating the mechanisms underlying the release of O(2)*- from mitochondria into cytosol, and assessing the role of outer membrane voltage-dependent anion channels (VDACs) in this process. Isolated rat heart mitochondria supplemented with complex I or II substrates generate an EPR signal ascribed to O(2)*-. Inhibition of the signal in a concentration-dependent manner by both manganese-superoxide dismutase and cytochrome c proteins that cannot cross the mitochondrial membrane supports the extramitochondrial location of the spin adduct. Basal rates of O(2)*- release from mitochondria were estimated at approximately 0.04 nmol/min/mg protein, a value increased approximately 8-fold by the complex III inhibitor, antimycin A. These estimates, obtained by quantitative spin-trapping EPR, were confirmed by fluorescence techniques, mainly hydroethidine oxidation and horseradish peroxidase-based p-hydroxyphylacetate dimerization. Inhibitors of VDAC, 4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS), and dextran sulfate (in a voltage-dependent manner) inhibited O(2)*- production from mitochondria by approximately 55%, thus suggesting that a large portion of O(2)*- exited mitochondria via these channels. These findings are discussed in terms of competitive decay pathways for O(2)*- in the intermembrane space and cytosol as well as the implications of these processes for modulating cell signaling pathways in these compartments.
Collapse
Affiliation(s)
- Derick Han
- University of Southern California Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-9121, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
Eukaryotic porins are a group of membrane proteins whose best known role is to form an aqueous pore channel in the mitochondrial outer membrane. As opposed to the bacterial porins (a large family of protein whose 3D structure has been determined by X-ray diffraction), the structure of eukaryotic porins (also termed VDACs, voltage-dependent anion-selective channels) is still a matter of debate. We analysed the secondary structure of VDAC from the yeast Saccharomyces cerevisiae, the fungus Neurospora crassa and the mouse with different types of neural network-based predictors. The predictors were able to discriminate membrane beta-strands, globular alpha-helices and membrane alpha-helices and localised, in all three VDAC sequences, 16 beta-strands along the chain. For all three sequences the N-terminal region showed a high propensity to form a globular alpha-helix. The 16 beta-strand VDAC motif was thus aligned to a bacterial porin-derived template containing a similar 16 beta-strand motif. The alignment of the VDAC sequence with the bacterial porin sequence was used to compute a set of 3D coordinates, which constitutes the first 3D prediction of a eukaryotic porin. All the predicted structures assume a beta-barrel structure composed of 16 beta-strands with the N-terminus outside the membrane. Loops are shorter in this side of the membrane than in the other, where two long loops are protruding. The shape of the pore varies between almost circular for Neurospora and mouse and slightly oval for yeast. Average values between 3 and 2.5 nm at the C-carbon backbone are found for the diameter of the channels. In this model VDAC shows large portions of the structure exposed on both sides of the membrane. The architecture we determine allows speculation about the mechanism of possible interactions between VDAC and other proteins on both sides of the mitochondrial outer membrane. The computed 3D model is consistent with most of the experimental results so far reported.
Collapse
Affiliation(s)
- Rita Casadio
- Laboratory of Biocomputing, Centro Interdipartimentale per le Ricerche Biotecnologiche, Bologna, Italy
| | | | | | | |
Collapse
|
39
|
Abstract
Voltage-dependent anion channels in the outer mitochondrial membrane are strongly regulated by electrical potential. In this work, one of the possible mechanisms of the outer membrane potential generation is proposed. We suggest that the inner membrane potential may be divided on two resistances in series, the resistance of the contact sites between the inner and outer membranes and the resistance of the voltage-dependent anion channels localized beyond the contacts in the outer membrane. The main principle of the proposed mechanism is illustrated by simplified electric and kinetic models. Computational behavior of the kinetic model shows a restriction of the steady-state metabolite flux through the mitochondrial membranes at relatively high concentration of the external ADP. The flux restriction was caused by a decrease of the voltage across the contact sites and by an increase in the outer membrane potential (up to +60 mV) leading to the closure of the voltage-dependent anion channels localized beyond the contact sites. This mechanism suggests that the outer membrane potential may arrest ATP release through the outer membrane beyond the contact sites, thus tightly coordinating mitochondrial metabolism and aerobic glycolysis in tumor and normal proliferating cells.
Collapse
Affiliation(s)
- Victor V Lemeshko
- Department of Physics, National University of Colombia, Medellin Branch, AA3840 Medellin, Colombia.
| |
Collapse
|
40
|
Wang E, Erdahl WL, Hamidinia SA, Chapman CJ, Taylor RW, Pfeiffer DR. Transport properties of the calcium ionophore ETH-129. Biophys J 2001; 81:3275-84. [PMID: 11720991 PMCID: PMC1301785 DOI: 10.1016/s0006-3495(01)75961-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The transport mechanism and specificities of ionophore ETH-29 have been investigated in a highly defined phospholipid vesicle system, with the goal of facilitating the application of this compound to biological problems. ETH-129 transports Ca(2+) via an electrogenic mechanism, in contrast to A23187 and ionomycin, which function in a charge neutral manner. The rate of transport is a function of membrane potential, increasing by 3.9-fold per 59 mV over a broad range of that parameter. Rate is independent of the transmembrane pH gradient and strongly stimulated by the uncoupler carbonyl cyanide m-chlorophenylhydrazone when no external potential has been applied. The effect of uncoupler reflects the collapse of an opposing potential arising during Ca(2+) transport, but also reflects the formation of a mixed complex between the uncoupler, ETH-129, and Ca(2+) that readily permeates the vesicle membrane. Oleate does not substitute for the uncoupler in either regard. ETH-129 transports polyvalent cations according to the selectivity sequence La(3+) > Ca(2+) > Zn(2+) approximately equal to Sr(2+) > Co(2+) approximately equal to Ni(2+) approximately equal to Mn(2+), with the magnitude of the selectivity coefficients reflecting the cation concentration range considered. There is little or no activity for the transport of Na(+), K(+), and Mg(2+). These properties suggest that ETH-129 will be useful for investigating the consequences of a mitochondrial Ca(2+) overload in mammalian cells, which is difficult to pursue through the application of electroneutral ionophores.
Collapse
Affiliation(s)
- E Wang
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
41
|
Sampson MJ, Decker WK, Beaudet AL, Ruitenbeek W, Armstrong D, Hicks MJ, Craigen WJ. Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J Biol Chem 2001; 276:39206-12. [PMID: 11507092 DOI: 10.1074/jbc.m104724200] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-dependent anion channels (VDACs), also known as mitochondrial porins, are small channel proteins involved in the translocation of metabolites across the mitochondrial outer membrane. A single channel-forming protein is found in yeast, whereas higher eukaryotes express multiple VDACs, with humans and mice each harboring three distinct channels (VDAC1-3) encoded by separate genes. To begin to assess the functions of each of the three isoforms, the VDAC3 gene was inactivated by targeted disruption in embryonic stem cells. Here we show that mice lacking VDAC3 are healthy, but males are infertile. Although there are normal sperm numbers, the sperm exhibit markedly reduced motility. Structural defects were found in two-thirds of epididymal axonemes, with the most common abnormality being loss of a single microtubule doublet at a conserved position within the axoneme. In testicular sperm, the defect was only rarely observed, suggesting that instability of a normally formed axoneme occurs with sperm maturation. In contrast, tracheal epithelial cilia showed no structural abnormalities. In addition, skeletal muscle mitochondria were abnormally shaped, and activities of the respiratory chain complexes were reduced. These results demonstrate that axonemal defects may be caused by associated nonaxonemal components such as mitochondrial channels and illustrate that normal mitochondrial function is required for stability of the axoneme.
Collapse
Affiliation(s)
- M J Sampson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Lemeshko SV, Lemeshko VV. Metabolically derived potential on the outer membrane of mitochondria: a computational model. Biophys J 2000; 79:2785-800. [PMID: 11106589 PMCID: PMC1301160 DOI: 10.1016/s0006-3495(00)76518-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The outer mitochondrial membrane (OMM) is permeable to various small substances because of the presence of a voltage-dependent anion channel (VDAC). The voltage dependence of VDAC's permeability is puzzling, because the existence of membrane potential on the OMM has never been shown. We propose that steady-state metabolically derived potential (MDP) may be generated on the OMM as the result of the difference in its permeability restriction for various charged metabolites. To demonstrate the possibility of MDP generation, two models were considered: a liposomal model and a simplified cell model with a creatine kinase energy channeling system. Quantitative computational analysis of the simplified cell model shows that a MDP of up to -5 mV, in addition to the Donnan potential, may be generated at high workloads, even if the OMM is highly permeable to small inorganic ions, including potassium. Calculations show that MDP and DeltapH, generated on the OMM, depend on the cytoplasmic pH and energy demand rate. Computational modeling suggests that MDP may be important for cell energy metabolism regulation in multiple ways, including VDAC's permeability modulation and the effect of electrodynamic compartmentation. The osmotic pressure difference between the mitochondrial intermembrane space and the cytoplasm, as related to the electrodynamic compartmentation effects, might explain the morphological changes in mitochondria under intense workloads.
Collapse
Affiliation(s)
- S V Lemeshko
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030 USA.
| | | |
Collapse
|
43
|
Abstract
Mitochondria possess a highly permeable outer membrane and an inner membrane that was originally thought to be relatively impermeable to ions to prevent dissipation of the electrochemical gradient for protons. Although recent evidence has revealed a rich diversity of ion channels in both membranes, the purpose of these channels remains incompletely determined. Pores in the outer membrane are fundamental participants in apoptotic cell death, and this process may also involve permeability transition pores on the inner membrane. Novel functions are now being assigned to other ion channels of the inner membrane. Examples include protection against ischaemic injury by mitochondrial KATP channels and the contribution of inner membrane anion channels to spontaneous mitochondrial oscillations in cardiac myocytes. The central role of mitochondria in both the normal function of the cell and in its demise makes these channels prime targets for future research and drug development.
Collapse
Affiliation(s)
- B O'Rourke
- Institute of Molecular Cardiobiology, Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
44
|
Abrecht H, Wattiez R, Ruysschaert JM, Homblé F. Purification and characterization of two voltage-dependent anion channel isoforms from plant seeds. PLANT PHYSIOLOGY 2000; 124:1181-1190. [PMID: 11080295 PMCID: PMC59217 DOI: 10.1104/pp.124.3.1181] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2000] [Accepted: 07/12/2000] [Indexed: 05/23/2023]
Abstract
Mitochondria were isolated from imbibed seeds of lentil (Lens culinaris) and Phaseolus vulgaris. We copurified two voltage-dependent anion channel from detergent solubilized mitochondria in a single purification step using hydroxyapatite. The two isoforms from P. vulgaris were separated by chromatofocusing chromatography in 4 M urea without any loss of channel activity. Channel activity of each isoform was characterized upon reconstitution into diphytanoyl phosphatidylcholine planar lipid bilayers. Both isoforms form large conductance channels that are slightly anion selective and display cation selective substates.
Collapse
Affiliation(s)
- H Abrecht
- Laboratoire de Physiologie Végétale, Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | | | | | | |
Collapse
|
45
|
Decker WK, Craigen WJ. The tissue-specific, alternatively spliced single ATG exon of the type 3 voltage-dependent anion channel gene does not create a truncated protein isoform in vivo. Mol Genet Metab 2000; 70:69-74. [PMID: 10833333 DOI: 10.1006/mgme.2000.2987] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Voltage-dependent anion channels (VDACs) are small, integral membrane proteins that traverse the outer mitochondrial membrane and conduct ATP and other small metabolites. They are known to bind several kinases of intermediary metabolism in a tissue-specific fashion, have been found in close association with the adenine nucleotide translocator of the inner mitochondrial membrane, and are hypothesized to form part of the mitochondrial permeability transition pore, which results in the release of cytochrome c at the onset of apoptotic cell death. VDACs are found throughout all strata of eukaryotic evolution and exhibit biophysical characteristics that are well conserved from yeast to mammals. The mammalian VDAC gene family consists of three isoforms, each of which shares approximately 70% sequence identity with the other two family members. Recently, we reported that a single codon (ATG) exon is alternatively spliced into the transcript of the type 3 voltage-dependent anion channel (VDAC3) in a tissue-specific fashion. This unusual splicing event was shown to be conserved between mouse and human, and we theorized that the spliced exon could lead to the creation of an alternative translational initiation site. Here we report that a highly specific polyclonal VDAC3 antibody was unable to detect the truncated protein isoform indicative of this putative downstream start site. From these in vivo studies, we conclude that the alternatively spliced exon results in the insertion of a single methionine residue at amino acid position 39 of the mature VDAC3 protein. Additionally, we have used a cross-species genomic sequence comparison to identify conserved regions that may be involved in the regulation of small exon splicing.
Collapse
Affiliation(s)
- W K Decker
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
46
|
Barbier-Brygoo H, Vinauger M, Colcombet J, Ephritikhine G, Frachisse J, Maurel C. Anion channels in higher plants: functional characterization, molecular structure and physiological role. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:199-218. [PMID: 10748255 DOI: 10.1016/s0005-2736(00)00139-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Anion channels are well documented in various tissues, cell types and membranes of algae and higher plants, and current evidence supports their central role in cell signaling, osmoregulation, plant nutrition and metabolism. It is the aim of this review to illustrate through a few selected examples the variety of anion channels operating in plant cells and some of their regulation properties and unique physiological functions. In contrast, information on the molecular structure of plant anion channels has only recently started to emerge. Only a few genes coding for putative plant anion channels from the large chloride channel (CLC) family have been isolated, and current molecular data on these plant CLCs are presented and discussed. A major challenge remains to identify the genes encoding the various anion channels described so far in plant cells. Future prospects along this line are briefly outlined, as well as recent advances based on the use of knockout mutants in the model plant Arabidopsis thaliana to explore the physiological functions of anion channels in planta.
Collapse
Affiliation(s)
- H Barbier-Brygoo
- Institut des Sciences Végétales, Unité Propre de Recherche 40, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
47
|
Messina A, Guarino F, Oliva M, van den Heuvel LP, Smeitink J, De Pinto V. Characterization of the human porin isoform 1 (HVDAC1) gene by amplification on the whole human genome: A tool for porin deficiency analysis. Biochem Biophys Res Commun 2000; 270:787-92. [PMID: 10772903 DOI: 10.1006/bbrc.2000.2487] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The deficiency of porin isoform 1 (HVDAC1) in human skeletal muscle has been associated with a pathological phenotype related to defects in the bioenergetic metabolism. In the best studied case, porin deficiency was not apparent in cultured fibroblasts: this observation raised the conclusion that no molecular defect was in the cDNA sequence coding for the protein. To get more insight in the pathogenetic mechanism that is involved in porin isoform 1 deficiency, we have determined the whole structure of the corresponding human gene. On the basis of the corresponding mouse gene structure and the human cDNA sequence, we designed long extension PCR amplifications using the whole genomic DNA as a template. Exonic/intronic regions were isolated and the exons and surrounding introns sequenced. The 5' and 3' extremities of the gene were determined by genome walking. The porin isoform 1 human gene is made up of 9 exons and spans about 33 kbp. A whole panel of PCR parameters was set and is now ready to be used for specific amplification upon patients' genomic DNA. The analysis of the putative promoter sequence was performed. It revealed the presence of a sterol Repressor element (SRE), an SRY, the testis-determining factor, and a nuclear respiratory factor 2 (NRF-2) binding site. These sites, according to results from literature, could be involved in the functional modulation of the gene expression.
Collapse
Affiliation(s)
- A Messina
- Department of Chemical Sciences, Laboratory of Biochemistry and Molecular Biology, Università di Catania, viale A. Doria 6, Catania, I-95125, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
Kaczmarek LK. Mitochondrial memory banks. Calcium stores keep a record of neuronal stimulation. J Gen Physiol 2000; 115:347-50. [PMID: 10694262 PMCID: PMC2217212 DOI: 10.1085/jgp.115.3.347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- L K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA
| |
Collapse
|
49
|
Rahmani Z, Huh KW, Lasher R, Siddiqui A. Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential. J Virol 2000; 74:2840-6. [PMID: 10684300 PMCID: PMC111774 DOI: 10.1128/jvi.74.6.2840-2846.2000] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding the mechanism(s) of action of the hepatitis B virus (HBV)-encoded protein HBx is fundamental to elucidating the underlying mechanisms of chronic liver disease and hepatocellular carcinoma caused by HBV infection. In our continued attempts to identify cellular targets of HBx, we have previously reported the identification of a novel cellular protein with the aid of a yeast two-hybrid assay. This cellular gene was identified as a third member of the family of human genes that encode the voltage-dependent anion channel (HVDAC3). In the present study, physical interaction between HBx and HVDAC3 was established by standard in vitro and in vivo methods. Confocal laser microscopy of transfected cells with respective expression vectors colocalized HVDAC3 and HBx to mitochondria. This novel, heretofore unreported subcellular distribution of HBx in mitochondria implies a functional role of HBx in functions associated with mitochondria. Using a stable cationic fluorophore dye, CMXRos, we show that HBx expression in cultured human hepatoma cells leads to alteration of mitochondrial transmembrane potential. Such functional roles of HBx in affecting mitochondrial physiology have implications for HBV-induced liver injury and the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Z Rahmani
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
50
|
Báthori G, Parolini I, Szabó I, Tombola F, Messina A, Oliva M, Sargiacomo M, De Pinto V, Zoratti M. Extramitochondrial porin: facts and hypotheses. J Bioenerg Biomembr 2000; 32:79-89. [PMID: 11768765 DOI: 10.1023/a:1005516513313] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondrial porin, or VDAC, is a pore-forming protein abundant in the outer mitochondrial membrane. Several publications have reported extramitochondrial localizations as well, but the evidence was considered insufficient by many, and the presence of porin in nonmitochondrial cellular compartments has remained in doubt for a long time. We have now obtained new data indicating that the plasma membrane of hematopoietic cells contains porin, probably located mostly in caveolae or caveolae-like domains. Porin was purified from the plasma membrane of intact cells by a procedure utilizing the membrane-impermeable labeling reagent NH-SS-biotin and streptavidin affinity chromatography, and shown to have the same properties as mitochondrial porin. A channel with properties similar to that of isolated VDAC was observed by patch-clamping intact cells. This review discusses the evidence supporting extramitochondrial localization, the putative identification of the plasma membrane porin with the "maxi" chloride channel, the hypothetical mechanisms of sorting porin to various cellular membrane structures, and its possible functions.
Collapse
Affiliation(s)
- G Báthori
- Department of Physiology, Semmelweis Medical University, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|