1
|
Xue K, Hu G, Wu L, Han H, Sun Y, Gan K, Zhu J, Du T. The bioceramic sealer iRoot SP promotes osteogenic differentiation of human stem cells from apical papilla via miR-141-3p/SPAG9/MAPK signalling pathway. Int Endod J 2023; 56:1241-1253. [PMID: 37357722 DOI: 10.1111/iej.13948] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
AIM The premixed bioceramic sealer iRoot SP that is widely used clinically has been reported to kill bacterial biofilms and promote osteogenic differentiation of human stem cells from the apical papilla (hSCAPs). Although miR-141-3p has been substantiated to be involved in the osteogenic process, the underlying mechanisms remain unclear. The aim of this study was to investigate the role of miR-141-3p in osteogenic differentiation and underlying mechanisms of iRoot SP-treated hSCAPs. METHODOLOGY hSCAPs were extracted from tissue blocks with enzyme digestion and identified by using immunofluorescence, flow cytometry and alizarin red staining. The mRNA expression level of miR-141-3p in hSCPAs after culture with iRoot SP was examined by quantitative real-time PCR (qRT-PCR) assay. SPAG9 was identified as a downstream target gene of miR-141-3p by dual-luciferase report assay. Alkaline phosphatase (ALP) staining and activity detection, alizarin red staining, calcium concentration assay, qRT-PCR and western blot were used to estimate osteogenic differentiation ability and involved protein expression levels of the osteogenic makers and signalling pathway-related factors in iRoot SP-treated hSCAPs. Data were analysed by one-way anova and post hoc Tukey's test to determine any statistical differences between the experimental groups and the control group. p < .05 was considered statistically significant. RESULTS Expression of miR-141-3p was reduced in iRoot SP-treated hSCAPs with the increased exposure time up to 7 days, and the western blot and qRT-PCR results revealed that the osteogenic markers osteocalcin (OCN), osterix (OSX), runt-related transcription factor 2 (RUNX2) and dentin sialophosphoprotein (DSPP) were inversely correlated with miR-141-3p. The negative regulatory relationship between miR-141-3p and SPAG9/ mitogen-activated protein kinases (MAPK) signalling axis was validated in this in vitro experiments. CONCLUSIONS The bioceramic sealer iRoot SP promoted osteogenic differentiation of hSCAPs by inhibiting miR-141-3p following down-regulated SPAG9 expression, and activated MAPK pathway. These findings proposed a novel therapeutic impact of bioceramic sealer iRoot SP inducing bone regeneration in refractory periapical periodontitis.
Collapse
Affiliation(s)
- Kaiyang Xue
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang Hu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Laidi Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Han
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuhui Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kang Gan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juanfang Zhu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianfeng Du
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Chen W, Yang W, Zhang C, Liu T, Zhu J, Wang H, Li T, Jin A, Ding L, Xian J, Tian T, Pan B, Guo W, Wang B. Modulation of the p38 MAPK Pathway by Anisomycin Promotes Ferroptosis of Hepatocellular Carcinoma through Phosphorylation of H3S10. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6986445. [PMID: 36466092 PMCID: PMC9715334 DOI: 10.1155/2022/6986445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 07/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignant tumor worldwide. Ferroptosis is emerging as an effective target for tumor treatment as it has been shown to potentiate cell death in some malignancies. However, it remains unclear whether histone phosphorylation events, an epigenetic mechanism that regulates transcriptional expression, are involved in ferroptosis. Our study found that supplementation with anisomycin, an agonist of p38 mitogen-activated protein kinase (MAPK), induced ferroptosis in HCC cells, and the phosphorylation of histone H3 on serine 10 (p-H3S10) was participated in anisomycin-induced ferroptosis. To investigate the anticancer effects of anisomycin-activated p38 MAPK in HCC, we analyzed cell viability, colony formation, cell death, and cell migration in Hep3B and HCCLM3 cells. The results showed that anisomycin could significantly suppress HCC cell colony formation and migration and induce HCC cell death. The hallmarks of ferroptosis, such as abnormal accumulation of iron and elevated levels of lipid peroxidation and malondialdehyde, were detected to confirm the ability of anisomycin to promote ferroptosis. Furthermore, coincubation with SB203580, an inhibitor of activated p38 MAPK, partially rescued anisomycin-induced ferroptosis. And the levels of p-p38 MAPK and p-H3S10 were successively increased by anisomycin treatment. The relationship between p-H3S10 and ferroptosis was revealed by ChIP sequencing. The reverse transcription PCR and immunofluorescence results showed that NCOA4 was upregulated both in mRNA and protein levels after anisomycin treatment. And by C11-BODIPY staining, we found that anisomycin-induced lipid reactive oxygen species was reduced after NCOA4 knockdown. In conclusion, the anisomycin-activated p38 MAPK promoted ferroptosis of HCC cells through H3S10 phosphorylation.
Collapse
Affiliation(s)
- Wei Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Te Liu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tong Li
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Anli Jin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lin Ding
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingrong Xian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tongtong Tian
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Michalek S, Goj T, Plazzo AP, Marovca B, Bornhauser B, Brunner T. LRH
‐1/
NR5A2
interacts with the glucocorticoid receptor to regulate glucocorticoid resistance. EMBO Rep 2022; 23:e54195. [PMID: 35801407 PMCID: PMC9442305 DOI: 10.15252/embr.202154195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Svenja Michalek
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| | - Thomas Goj
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Anna Pia Plazzo
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Blerim Marovca
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Beat Bornhauser
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Thomas Brunner
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| |
Collapse
|
4
|
Yang W, Zhou C, Sun Q, Guan G. Anisomycin inhibits angiogenesis, growth, and survival of triple-negative breast cancer through mitochondrial dysfunction, AMPK activation, and mTOR inhibition. Can J Physiol Pharmacol 2022; 100:612-620. [PMID: 35852219 DOI: 10.1139/cjpp-2021-0577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aberrant upregulation of mitochondrial biogenesis is observed in breast cancer and holds potential therapeutic option. In our work, we showed that inhibition of mitochondrial function by anisomycin is effective against triple-negative breast cancer (TNBC). Anisomycin inhibits growth and induces caspase-dependent apoptosis in a panel of TNBC cell lines. Of note, anisomycin at a tolerable dose remarkably suppresses growth of TNBC in mice. In addition, anisomycin effectively targets breast cancer angiogenesis through inhibiting capillary network formation, migration, proliferation, and survival. Mechanistic studies show that although anisomycin activates p38 and JNK, their activations are not required for anisomycin's action. In contrast, anisomycin inhibits mitochondrial respiration, and decreases mitochondrial membrane potential and adenosine triphosphate (ATP) level. The inhibitory effect of anisomycin is significantly reversed in mitochondria respiration-deficient ρ0 cells. As a consequence, anisomycin activates AMPK and inhibits mammalian target-of-rapamycin signaling pathways. Our work demonstrated that anisomycin is a useful addition to the treatment armamentarium for TNBC.
Collapse
Affiliation(s)
- Wenjuan Yang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| | - Cuiling Zhou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| | - Qiushi Sun
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| | - Gege Guan
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, People's Republic of China
| |
Collapse
|
5
|
Crosstalk between p38 MAPK and GR Signaling. Int J Mol Sci 2022; 23:ijms23063322. [PMID: 35328742 PMCID: PMC8953609 DOI: 10.3390/ijms23063322] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
The p38 MAPK is a signaling pathway important for cells to respond to environmental and intracellular stress. Upon activation, the p38 kinase phosphorylates downstream effectors, which control the inflammatory response and coordinate fundamental cellular processes such as proliferation, apoptosis, and differentiation. Dysregulation of this signaling pathway has been linked to inflammatory diseases and cancer. Secretion of glucocorticoids (GCs) is a classical endocrine response to stress. The glucocorticoid receptor (GR) is the primary effector of GCs and plays an important role in the regulation of cell metabolism and immune response by influencing gene expression in response to hormone-dependent activation. Its ligands, the GCs or steroids, in natural or synthetic variation, are used as standard therapy for anti-inflammatory treatment, severe asthma, autoimmune diseases, and several types of cancer. Several years ago, the GR was identified as one of the downstream targets of p38, and, at the same time, it was shown that glucocorticoids could influence p38 signaling. In this review, we discuss the role of the crosstalk between the p38 and GR in the regulation of gene expression in response to steroids and comprehend the importance and potential of this interplay in future clinical applications.
Collapse
|
6
|
Sevilla LM, Jiménez-Panizo A, Alegre-Martí A, Estébanez-Perpiñá E, Caelles C, Pérez P. Glucocorticoid Resistance: Interference between the Glucocorticoid Receptor and the MAPK Signalling Pathways. Int J Mol Sci 2021; 22:10049. [PMID: 34576214 PMCID: PMC8465023 DOI: 10.3390/ijms221810049] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
Endogenous glucocorticoids (GCs) are steroid hormones that signal in virtually all cell types to modulate tissue homeostasis throughout life. Also, synthetic GC derivatives (pharmacological GCs) constitute the first-line treatment in many chronic inflammatory conditions with unquestionable therapeutic benefits despite the associated adverse effects. GC actions are principally mediated through the GC receptor (GR), a ligand-dependent transcription factor. Despite the ubiquitous expression of GR, imbalances in GC signalling affect tissues differently, and with variable degrees of severity through mechanisms that are not completely deciphered. Congenital or acquired GC hypersensitivity or resistance syndromes can impact responsiveness to endogenous or pharmacological GCs, causing disease or inadequate therapeutic outcomes, respectively. Acquired GC resistance is defined as loss of efficacy or desensitization over time, and arises as a consequence of chronic inflammation, affecting around 30% of GC-treated patients. It represents an important limitation in the management of chronic inflammatory diseases and cancer, and can be due to impairment of multiple mechanisms along the GC signalling pathway. Among them, activation of the mitogen-activated protein kinases (MAPKs) and/or alterations in expression of their regulators, the dual-specific phosphatases (DUSPs), have been identified as common mechanisms of GC resistance. While many of the anti-inflammatory actions of GCs rely on GR-mediated inhibition of MAPKs and/or induction of DUSPs, the GC anti-inflammatory capacity is decreased or lost in conditions of excessive MAPK activation, contributing to disease susceptibility in tissue- and disease- specific manners. Here, we discuss potential strategies to modulate GC responsiveness, with the dual goal of overcoming GC resistance and minimizing the onset and severity of unwanted adverse effects while maintaining therapeutic potential.
Collapse
Affiliation(s)
- Lisa M. Sevilla
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| | - Alba Jiménez-Panizo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Andrea Alegre-Martí
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Eva Estébanez-Perpiñá
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain; (A.J.-P.); (A.A.-M.); (E.E.-P.)
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
| | - Carme Caelles
- Institute of Biomedicine, University of Barcelona (IBUB), 08028 Barcelona, Spain;
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010 Valencia, Spain;
| |
Collapse
|
7
|
Zhang C, Deng Q, Bao S, Zhu J. Anisomycin is active in preclinical models of pediatric acute myeloid leukemia via specifically inhibiting mitochondrial respiration. J Bioenerg Biomembr 2021; 53:693-701. [PMID: 34468904 DOI: 10.1007/s10863-021-09918-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/17/2021] [Indexed: 01/07/2023]
Abstract
The poor outcomes in acute myeloid leukemia (AML) necessitate new treatments. In this work, we identified that anisomycin is a potential selective anti-AML candidate, particularly for those with FLT3-ITD mutation. We found that anisomycin potently inhibited proliferation and induced apoptosis in multiple AML cell lines. Anisomycin was effective in targeting progenitor cells isolated from all tested pediatric AML patients, while sparing normal counterparts. Using AML xenograft mouse models, anisomycin exhibited inhibitory effect on tumor growth throughout the whole duration without causing toxicity in mice. The combination of anisomycin with standard of care drugs is synergistic and selective in AML cell culture system and mouse model. In addition, FLT3-ITD cells were more sensitive to anisomycin than FLT3 WT cells. Mechanistic studies revealed that anisomycin acted on AML in a p38-independent manner. We found that anisomycin decreased mitochondrial respiration by disrupting complex I activity, leading to intracellular oxidative stress. AML ρ0 cells that lack of mitochondrial respiration exhibited resistance to anisomycin. Finally, we showed that mitochondrial biogenesis contributes to differential sensitivity of FLT3-ITD and FLT3 WT cells to anisomycin. Our work is the first to systematically demonstrate that anisomycin is a useful addition to the treatment armamentarium for AML. Our findings highlight the therapeutic value of mitochondrial respiration inhibition in AML patients harboring FLT3-ITD mutation.
Collapse
Affiliation(s)
- Chuang Zhang
- Department of Pediatrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No.15 Jiefang Road, Fancheng District, Xiangyang, 441000, Hubei, China
| | - Qian Deng
- Department of Pediatrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No.15 Jiefang Road, Fancheng District, Xiangyang, 441000, Hubei, China
| | - Shiwei Bao
- Department of Pediatrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No.15 Jiefang Road, Fancheng District, Xiangyang, 441000, Hubei, China.
| | - Juanjuan Zhu
- Department of Pediatrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, No.15 Jiefang Road, Fancheng District, Xiangyang, 441000, Hubei, China.
| |
Collapse
|
8
|
Xu J, Xue Y, Zhou R, Shi PY, Li H, Zhou J. Drug repurposing approach to combating coronavirus: Potential drugs and drug targets. Med Res Rev 2021; 41:1375-1426. [PMID: 33277927 PMCID: PMC8044022 DOI: 10.1002/med.21763] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 01/18/2023]
Abstract
In the past two decades, three highly pathogenic human coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus, and, recently, SARS-CoV-2, have caused pandemics of severe acute respiratory diseases with alarming morbidity and mortality. Due to the lack of specific anti-CoV therapies, the ongoing pandemic of coronavirus disease 2019 (COVID-19) poses a great challenge to clinical management and highlights an urgent need for effective interventions. Drug repurposing is a rapid and feasible strategy to identify effective drugs for combating this deadly infection. In this review, we summarize the therapeutic CoV targets, focus on the existing small molecule drugs that have the potential to be repurposed for existing and emerging CoV infections of the future, and discuss the clinical progress of developing small molecule drugs for COVID-19.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Richard Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
9
|
Huang G, Su J, Zhao W, Deng Z, Wang P, Dong H, Zhao H, Cai S. JNK modulates RAGE/β-catenin signaling and is essential for allergic airway inflammation in asthma. Toxicol Lett 2021; 336:57-67. [PMID: 33075463 DOI: 10.1016/j.toxlet.2020.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 11/23/2022]
Abstract
As a leading cause of occupational asthma, toluene diisocyanate (TDI)-induced asthma is an inflammatory disease of the airways with one of the most significant characteristics involving inflammation, in which the receptor of advanced glycation end products (RAGE) plays an extremely important role. However, the mechanism underlying the upregulation of RAGE is still unknown. The aim of the present study was to examine whether JNK mediates β-catenin stabilization via activation of RAGE in asthma. Herein from the results by analyzing the blood from healthy donors and patients with asthma, it was found that the expression of RAGE and p-JNK is highly correlated and elevated concomitantly with the severity of bronchial asthma. Additionally, upon sensitizing and challenging the mice with TDI, we found that RAGE inhibitor (FPS-ZM1) and JNK inhibitor (SP600125) significantly reduced the TDI-induced asthma inflammation in vivo. Furthermore, SP600125 also considerably restored RAGE and p-JNK expression. Besides, the in vitro results from TDI-HSA treatment of 16HBE cells reveal that therapeutic inhibition of JNK reduced TDI driving RAGE expression and β-catenin translocation, while treatment with Anisomycin, a JNK agonist, showed the opposite effect. Moreover, genetic knockdown of RAGE does not contribute to JNK phosphorylation, indicating that JNK functions upstream of RAGE. Collectively, these findings highlight a role for JNK signaling in RAGE/β-catenin regulation and have important therapeutic implications for the treatment of TDI induced asthma.
Collapse
Affiliation(s)
- Guohua Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinwei Su
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenqu Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhixuan Deng
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ping Wang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Tan H, Hu B, Xie F, Zhu C, Cheng Z. Anisomycin sensitizes non-small-cell lung cancer cells to chemotherapeutic agents and epidermal growth factor receptor inhibitor via suppressing PI3K/Akt/mTOR. Fundam Clin Pharmacol 2020; 35:822-831. [PMID: 33336420 DOI: 10.1111/fcp.12641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023]
Abstract
The poor outcomes in advanced non-small-cell lung cancer (NSCLC) necessitate new treatments. Recent studies emphasize anisomycin as a promising anti-cancer drug candidate. In this work, we systematically investigated the efficacy of anisomycin alone and its combination with the standard-of-care drugs in NSCLC. We showed that anisomycin inhibited growth, migration, and survival in NSCLC cells regardless of genetic mutation status, and to a greater extent than in normal lung epithelial cells. Isobologram analysis showed that the combination of anisomycin with cisplatin, paclitaxel, or gefitinib was synergistic in NSCLC but not normal lung cells. We further demonstrated that anisomycin inhibited NSCLC growth in mice. The combination of anisomycin with cisplatin was more effective than cisplatin alone and completely arrested NSCLC growth throughout the whole duration of treatment. JNK and p38 MAPK were not required for anisomycin's action. In contrast, anisomycin inhibits PI3K/Akt/mTOR pathway. Overexpression of constitutively active Akt reversed the pro-apoptotic effect of anisomycin. Our work demonstrates the selective anti-NSCLC activity of anisomycin via suppressing PI3K/Akt/mTOR. Our findings provide preclinical evidence to initialize the clinical trial of using anisomycin to sensitize NSCLC to current therapy.
Collapse
Affiliation(s)
- Hongxia Tan
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Rd, Wuchang District, Wuhan, Hubei, 430071, China.,Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434000, China
| | - Biao Hu
- Department of Orthopaedics, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434000, China
| | - Fan Xie
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434000, China
| | - Chuanbing Zhu
- Department of Respiratory and Critical Care Medicine, The Second Clinical Medical College, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434000, China
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, 169 Donghu Rd, Wuchang District, Wuhan, Hubei, 430071, China
| |
Collapse
|
11
|
Clarisse D, Offner F, De Bosscher K. Latest perspectives on glucocorticoid-induced apoptosis and resistance in lymphoid malignancies. Biochim Biophys Acta Rev Cancer 2020; 1874:188430. [PMID: 32950642 DOI: 10.1016/j.bbcan.2020.188430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 09/14/2020] [Indexed: 02/09/2023]
Abstract
Glucocorticoids are essential drugs in the treatment protocols of lymphoid malignancies. These steroidal hormones trigger apoptosis of the malignant cells by binding to the glucocorticoid receptor (GR), which is a member of the nuclear receptor superfamily. Long term glucocorticoid treatment is limited by two major problems: the development of glucocorticoid-related side effects, which hampers patient quality of life, and the emergence of glucocorticoid resistance, which is a gradual process that is inevitable in many patients. This emphasizes the need to reevaluate and optimize the widespread use of glucocorticoids in lymphoid malignancies. To achieve this goal, a deep understanding of the mechanisms governing glucocorticoid responsiveness is required, yet, a recent comprehensive overview is currently lacking. In this review, we examine how glucocorticoids mediate apoptosis by detailing GR's genomic and non-genomic action mechanisms in lymphoid malignancies. We continue with a discussion of the glucocorticoid-related problems and how these are intertwined with one another. We further zoom in on glucocorticoid resistance by critically analyzing the plethora of proposed mechanisms and highlighting therapeutic opportunities that emerge from these studies. In conclusion, early detection of glucocorticoid resistance in patients remains an important challenge as this would result in a timelier treatment reorientation and reduced glucocorticoid-instigated side effects.
Collapse
Affiliation(s)
- Dorien Clarisse
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Fritz Offner
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
12
|
Long S, Ren D, Zhong F, Niu Y, Qin X, Mu D, Liu W. Reversal of glucocorticoid resistance in Acute Lymphoblastic Leukemia cells by miR-145. PeerJ 2020; 8:e9337. [PMID: 32587801 PMCID: PMC7304417 DOI: 10.7717/peerj.9337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
Objective To analyze the expression levels of miR-145 in ALL children and their effects on the prognosis of ALL and to explore the mechanism of miR-145 in reversing the resistance of ALL cells to glucocorticoids. Methods A GEO database dataset was used to analyze the expression levels of miR-145 in ALL children. The association between miR-145 and childhood prognosis was analyzed by the TARGET database data. The expression levels of miR-145 in the glucocorticoid-resistant ALL cell line CEM-C1 were increased by lipofectamine 2000-mediated transfection. Cell proliferation inhibition experiments were performed to detect the effect of miR-145 on the response of CEM-C1 cell line to glucocorticoids. The expression levels of the apoptotic, autophagic and drug resistance-associated genes and proteins were detected by qPCR and western blot analysis. Results The expression levels of miR-145 were decreased in ALL patients (P < 0.001) and the prognosis of ALL in children with high miR-145 expression was significantly improved (P < 0.001). Increased miR-145 expression can improve the sensitivity of CEM-C1 cells to glucocorticoids. The expression levels of the proapoptotic and the anti-apoptotic genes Bax and Bcl-2 were increased and decreased, respectively, whereas the expression levels of the autophagicgenes Beclin 1 and LC were increased. In addition, the expression levels of the drug resistance gene MDR1 were decreased. Conclusion The expression levels of miR-145 in ALL children were decreased and they were associated with disease prognosis. The data indicated that miR-145 can reverse cell resistance by regulating apoptosis of CEM-C1 cells and autophagy.
Collapse
Affiliation(s)
- Sili Long
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Children's Blood and Tumor PI laboratory, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Danwei Ren
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Children's Blood and Tumor PI laboratory, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Fangfang Zhong
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Children's Blood and Tumor PI laboratory, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Yana Niu
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Children's Blood and Tumor PI laboratory, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Xiang Qin
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Children's Blood and Tumor PI laboratory, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Dan Mu
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Children's Blood and Tumor PI laboratory, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Wenjun Liu
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Children's Blood and Tumor PI laboratory, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| |
Collapse
|
13
|
Chen Y, Jiang P, Wen J, Wu Z, Li J, Chen Y, Wang L, Gan D, Chen Y, Yang T, Lin M, Hu J. Integrated bioinformatics analysis of the crucial candidate genes and pathways associated with glucocorticoid resistance in acute lymphoblastic leukemia. Cancer Med 2020; 9:2918-2929. [PMID: 32096603 PMCID: PMC7163086 DOI: 10.1002/cam4.2934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 12/26/2022] Open
Abstract
Glucocorticoids (GC) are the foundation of the chemotherapy regimen in acute lymphoblastic leukemia (ALL). However, resistance to GC is observed more frequently than resistance to other chemotherapy agents in patients with ALL relapse. Moreover, the mechanism underlying the development of GC resistance in ALL has not yet been fully uncovered. In this study, we used bioinformatic analysis methods to integrate the candidate genes and pathways participating in GC resistance in ALL and subsequently verified the bioinformatics findings with in vitro cell experiments. Ninety‐nine significant common differentially expressed genes (DEGs) associated with GC resistance were determined by integrating two gene profile datasets, including GC‐sensitive and ‐resistant samples. Using Kyoto Encyclopedia of Genes and Genomes (KEGG) and REACTOME pathways analysis, the signaling pathways in which DEGs were significantly enriched were clustered. The GC resistance‐related biologically functional interactions were visualized as DEG‐associated Protein–Protein Interaction (PPI) network complexes, with 98 nodes and 127 edges. MYC, a node which displayed the highest connectivity in all edges, was highlighted as the core gene in the PPI network. Increased C‐MYC expression was observed in adriamycin‐resistant BALL‐1/ADR cells, which we demonstrated was also resistant to dexamethasone. These results outlined a panorama in which the solitary and scattered experimental results were integrated and expanded. The potential promising target of the candidate pathways and genes involved in GC resistance of ALL was concomitantly revealed.
Collapse
Affiliation(s)
- Yanxin Chen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Peifang Jiang
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Jingjing Wen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Zhengjun Wu
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Jiazheng Li
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Yuwen Chen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Lingyan Wang
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Donghui Gan
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Yingyu Chen
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Ting Yang
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Minhui Lin
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| | - Jianda Hu
- Fujian Institute of HematologyFujian Provincial Key Laboratory of HematologyFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
14
|
Quintana VM, Selisko B, Brunetti JE, Eydoux C, Guillemot JC, Canard B, Damonte EB, Julander JG, Castilla V. Antiviral activity of the natural alkaloid anisomycin against dengue and Zika viruses. Antiviral Res 2020; 176:104749. [PMID: 32081740 DOI: 10.1016/j.antiviral.2020.104749] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/21/2020] [Accepted: 02/15/2020] [Indexed: 12/26/2022]
Abstract
Flaviviruses constitute a public health concern because of their global burden and the lack of specific antiviral treatment. Here we investigated the antiviral activity of the alkaloid anisomycin against dengue (DENV) and Zika (ZIKV) viruses. At non-cytotoxic concentrations, anisomycin strongly inhibited the replication of reference strains and clinical isolates of all DENV serotypes and Asian and African strains of ZIKV in Vero cells. Anisomycin also prevented DENV and ZIKV multiplication in human cell lines. While initial steps of DENV and ZIKV replicative cycle were unaffected, a high inhibition of viral protein expression was demonstrated after treatment with anisomycin. DENV RNA synthesis was strongly reduced in anisomycin treated cultures, but the compound did not exert a direct inhibitory effect on 2' O-methyltransferase or RNA polymerase activities of DENV NS5 protein. Furthermore, anisomycin-mediated activation of p38 signaling was not related to the antiviral action of the compound. The evaluation of anisomycin efficacy in a mouse model of ZIKV morbidity and mortality revealed that animals treated with a low dose of anisomycin exhibited a significant reduction in viremia levels and died significantly later than the control group. This protective effect was lost at higher doses, though. In conclusion, anisomycin is a potent and selective in vitro inhibitor of DENV and ZIKV that impairs a post-entry step of viral replication; and a low-dose anisomycin treatment may provide some minimal benefit in a mouse model.
Collapse
Affiliation(s)
- V M Quintana
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/ IQUIBICEN (CONICET), Ciudad Universitaria, Pabellón 2, Piso 4, Buenos Aires, 1428, Argentina.
| | - B Selisko
- Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), Laboratoire d'Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France.
| | - J E Brunetti
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/ IQUIBICEN (CONICET), Ciudad Universitaria, Pabellón 2, Piso 4, Buenos Aires, 1428, Argentina.
| | - C Eydoux
- Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), Laboratoire d'Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France.
| | - J C Guillemot
- Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), Laboratoire d'Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France.
| | - B Canard
- Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université (AMU), Laboratoire d'Architecture et Fonction des Macromolécules Biologiques (AFMB) UMR 7257, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France.
| | - E B Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/ IQUIBICEN (CONICET), Ciudad Universitaria, Pabellón 2, Piso 4, Buenos Aires, 1428, Argentina.
| | - J G Julander
- Institute for Antiviral Research, Utah State University, Logan, UT, USA.
| | - V Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/ IQUIBICEN (CONICET), Ciudad Universitaria, Pabellón 2, Piso 4, Buenos Aires, 1428, Argentina.
| |
Collapse
|
15
|
Ji B, Ma Y, Wang H, Fang X, Shi P. Activation of the P38/CREB/MMP13 axis is associated with osteoarthritis. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2195-2204. [PMID: 31308631 PMCID: PMC6613348 DOI: 10.2147/dddt.s209626] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/04/2019] [Indexed: 12/27/2022]
Abstract
Purposes Osteoarthritis (OA) is a common joint disease characterized by the degradation of articular cartilage and joint inflammation. Interleukin-1ß induces P38/cAMP response element binding protein (CREB) pathway activation, resulting in increased expression of matrix metallopeptidase-13 (MMP13) in chondrocytes. However, the role of the P38/CREB/MMP13 axis is unclear in the progression of OA. In this study, we aimed to answer the following questions: (1) how does the P38/CREB/MMP13 axis in cartilage from patients with OA compare with control specimens? (2) Can the P38 agonist anisomycin (ANS) induce mouse OA? Materials and methods Surgical specimens of human cartilage were divided into OA and control groups. Surgical specimens of mouse cartilage were divided into control and ANS-induced groups. Safranin O staining of the cartilage tissues was performed to evaluate the extracellular matrix. Reverse transcription-polymerase chain reaction was performed using these tissues to investigate messenger RNA expressions of type II collagen, aggrecan, MMP13, and ADAM metallopeptidase with thrombospondin type 1 motif 5. Phosphorylated (p)-P38, p-CREB, and MMP13 were evaluated by Western blot analysis. Anisomycin was used to activate P38, and p-P38, p-CREB, and MMP13 were evaluated by immunofluorescence and Western blot analysis. Results Safranin O staining showed that the extracellular matrix degraded in humans with OA and ANS-induced mouse cartilage samples. The expressions of p-P38, p-CREB, and MMP13 were all upregulated in osteoarthritic cartilage or anisomycin-induced chondrocytes, suggesting that the P38/CREB/MMP13 axis may play a role in the progression of OA. Conclusions The P38/CREB/MMP13 axis is active in osteoarthritic chondrocytes and may cause the degeneration of cartilage. Effective new therapy directed against this pathway could be developed.
Collapse
Affiliation(s)
- Bin Ji
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang Province 310016, People's Republic of China.,Department of Orthopaedic Surgery, First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang Province 314000, People's Republic of China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang Province 310016, People's Republic of China
| | - Haimin Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang Province 310016, People's Republic of China.,Orthopedics Department, Taizhou Bo Ai Hospital, Taizhou, Zhejiang Province 318050, People's Republic of China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang Province 310016, People's Republic of China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, Zhejiang Province 310016, People's Republic of China
| |
Collapse
|
16
|
Erdem Kuruca S, Çetin MB, Akgün Dar K, Özerkan D. Protective effects of cytokine combinations against the apoptotic activity of glucocorticoids on CD34 + hematopoietic stem/progenitor cells. Cytotechnology 2019; 71:67-77. [PMID: 30603917 DOI: 10.1007/s10616-018-0265-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 10/09/2018] [Indexed: 12/26/2022] Open
Abstract
Haematopoietic stem cells can self-renew and produce progenitor cells, which have a high proliferation capacity. Chemotherapeutic drugs are toxic to normal cells as well as cancer cells, and glucocorticoids (GCs), which are essential drugs for many chemotherapeutic protocols, efficiently induce apoptosis not only in malignant cells but also in normal haematopoietic cells. Studies have shown that haematopoietic cytokines can prevent the apoptosis induced by chemotherapy and decrease the toxic effects of these drugs. However, the apoptosis induction mechanism of GCs in CD34+ haematopoietic cells and the anti-apoptotic effects of cytokines have not been well elucidated. In this study, we investigated the apoptotic effects of GCs on CD34+, a haematopoietic stem/progenitor cell (HSPC) population, and demonstrated the protective effects of haematopoietic cytokines. We used a cytokine cocktail containing early-acting cytokines, namely, interleukin-3 (IL-3), thrombopoietin, stem cell factor and flt3/flk2 ligand, and dexamethasone and prednisolone were used as GCs. Apoptotic mechanisms were assessed by immunohistochemical staining and quantified using H-scoring. Dexamethasone and prednisolone induced apoptosis in CD34+ HSPCs. GC treatment caused a significant increase in apoptotic Fas, caspase-3, cytochrome c and Bax, but a significant decrease in anti-apoptotic Bcl-2. Furthermore, as expected, cytokines caused a significant decrease in all apoptotic markers and a significant increase in Bcl-2. Thus, our findings suggest that CD34+ HSPCs are an extremely sensitive target for GCs and that cytokines protect these cells from GC-induced apoptosis.
Collapse
Affiliation(s)
- Serap Erdem Kuruca
- Deparment of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Muzaffer Beyza Çetin
- Deparment of Physiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Kadriye Akgün Dar
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Dilşad Özerkan
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey.
| |
Collapse
|
17
|
Li Y, Hu J, Song H, Wu T. Antibiotic anisomycin selectively targets leukemia cell lines and patient samples through suppressing Wnt/β-catenin signaling. Biochem Biophys Res Commun 2018; 505:858-864. [DOI: 10.1016/j.bbrc.2018.09.183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/29/2018] [Indexed: 01/08/2023]
|
18
|
Li YQ, Chen JT, Yin SM, Nie DN, He ZY, Xie SF, Wang XJ, Wu YD, Xiao J, Liu HY, Wang JY, Yang WJ, Ma LP. Regulation of mPGES-1 composition and cell growth via the MAPK signaling pathway in jurkat cells. Exp Ther Med 2018; 16:3211-3219. [PMID: 30214544 DOI: 10.3892/etm.2018.6538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Previous studies have suggested that microsomal prostaglandin E synthase-1 (mPGES-1) is highly expressed and closely associated with mitogen-activated protein kinase (MAPK) signaling pathways in various types of malignant cells. However, their expression patterns and function with respect to T-cell acute lymphoblastic leukemia (T-ALL) remain largely unknown. The present study investigated whether mPGES-1 served a crucial role in T-ALL and aimed to identify interactions between mPGES-1 and the MAPK signaling pathway in T-ALL. The results indicated that mPGES-1 overexpression in T-ALL jurkat cells was significantly decreased by RNA silencing. Decreasing mPGES-1 on a consistent basis may inhibit cell proliferation, induce apoptosis and arrest the cell cycle in T-ALL jurkat cells. Microarray and western blot analyses revealed that c-Jun N-terminal kinase served a role in the mPGES-1/prostaglandin E2/EP4/MAPK positive feedback loops. In addition, P38 and extracellular signal-regulated kinase 1/2 exhibited negative feedback effects on mPGES-1. In conclusion, the results suggested that cross-talk between mPGES-1 and the MAPK signaling pathway was very complex. Therefore, the combined regulation of mPGES-1 and the MAPK signaling pathway may be developed into a new candidate therapy for T-ALL in the future.
Collapse
Affiliation(s)
- Yi-Qing Li
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jiao-Ting Chen
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Hematology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Song-Mei Yin
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Da-Nian Nie
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Zhi-Yuan He
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Shuang-Feng Xie
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiu-Ju Wang
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yu-Dan Wu
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jie Xiao
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Hong-Yun Liu
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jie-Yu Wang
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wen-Juan Yang
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Li-Ping Ma
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
19
|
Novel natural killer cell-mediated cancer immunotherapeutic activity of anisomycin against hepatocellular carcinoma cells. Sci Rep 2018; 8:10668. [PMID: 30006566 PMCID: PMC6045618 DOI: 10.1038/s41598-018-29048-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/29/2018] [Indexed: 12/27/2022] Open
Abstract
Despite advances in the clinical management of hepatocellular carcinoma (HCC), this form of cancer remains the second leading cause of cancer-related death worldwide. Currently, there are few treatment options for advanced HCC. Therefore, novel treatment strategies for HCC are required. Here, we described the promising antitumour effects of anisomycin, which exerts both direct killing effects and natural killer cell (NK)-mediated immunotherapeutic effects in HCC. To better elucidate the mechanisms through which anisomycin mediates its antitumour effects, we performed a genome-scale transcriptional analysis. We found that anisomycin treatment of HCC differentially modulated a broad range of immune regulation-associated genes. Among these immune regulation-associated genes, we found that lymphocyte function-associated antigen-3 (LFA-3, also called CD58), whose expression was significantly increased in anisomycin-treated HCC cells, was a critical player in NK-mediated immunotherapeutic effects. Furthermore major histocompatibility complex molecules class I (MHC-I) on HCC cells were also significantly regulated by treatment of anisomycin. Those adhesion molecules like CD58, MHC-I, and ICAM4 should be important for immune synapse formation between NK cells and HCC cells to boost NK-mediated immunotherapeutic effects. Notably, this is the first report of NK-dependent immunomodulatory effects of anisomycin suggesting anisomycin as a novel therapeutic drug for treatment of HCC.
Collapse
|
20
|
Hadwen J, Farooq F, Witherspoon L, Schock S, Mongeon K, MacKenzie A. Anisomycin Activates Utrophin Upregulation Through a p38 Signaling Pathway. Clin Transl Sci 2018; 11:506-512. [PMID: 29877606 PMCID: PMC6132359 DOI: 10.1111/cts.12562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/19/2018] [Indexed: 02/02/2023] Open
Abstract
Duchenne muscular dystrophy is a recessive X‐linked disease characterized by progressive muscle wasting; cardiac or respiratory failure causes death in most patients by the third decade. The disease is caused by mutations in the dystrophin gene that lead to a loss of functional dystrophin protein. Although there are currently few treatments for Duchenne muscular dystrophy, previous reports have shown that upregulating the dystrophin paralog utrophin in Duchenne muscular dystrophy mouse models is a promising therapeutic strategy. We conducted in silico mining of the Connectivity Map database for utrophin‐inducing agents, identifying the p38‐activating antibiotic anisomycin. Treatments of C2C12, undifferentiated murine myoblasts, and mdx primary myoblasts with anisomycin conferred increases in utrophin protein levels through p38 pathway activation. Anisomycin also induced utrophin protein levels in the diaphragm of mdx mice. Our study shows that repositioning small molecules such as anisomycin may prove to have Duchenne muscular dystrophy clinical utility.
Collapse
Affiliation(s)
- Jeremiah Hadwen
- University of Ottawa, Ottawa, Canada.,Apoptosis Research Center, CHEO Research Institute, CHEO, Ottawa, Canada
| | - Faraz Farooq
- Apoptosis Research Center, CHEO Research Institute, CHEO, Ottawa, Canada
| | - Luke Witherspoon
- University of Ottawa, Ottawa, Canada.,Apoptosis Research Center, CHEO Research Institute, CHEO, Ottawa, Canada
| | - Sarah Schock
- University of Ottawa, Ottawa, Canada.,Apoptosis Research Center, CHEO Research Institute, CHEO, Ottawa, Canada
| | - Kevin Mongeon
- University of Ottawa, Ottawa, Canada.,Apoptosis Research Center, CHEO Research Institute, CHEO, Ottawa, Canada
| | - Alex MacKenzie
- University of Ottawa, Ottawa, Canada.,Apoptosis Research Center, CHEO Research Institute, CHEO, Ottawa, Canada
| |
Collapse
|
21
|
Lv M, Wang Y, Wu W, Yang S, Zhu H, Hu B, Chen Y, Shi C, Zhang Y, Mu Q, Ouyang G. C‑Myc inhibitor 10058‑F4 increases the efficacy of dexamethasone on acute lymphoblastic leukaemia cells. Mol Med Rep 2018; 18:421-428. [PMID: 29749488 DOI: 10.3892/mmr.2018.8935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/28/2018] [Indexed: 11/06/2022] Open
Abstract
The long‑term survival rate in paediatric acute lymphoblastic leukaemia (ALL) exceeds 80%; however, the outcome of adult ALL remains to be poor. Glucocorticoids (GCs) are the preferred drugs in the traditional treatment of ALL patients. In the anti‑leukaemia molecular mechanisms of GCs, c‑Myc inhibition serves a critical role. In the present study, a c‑Myc inhibitor that increased the sensitivity to GCs in NALM6 cells of the B‑cell‑ALL cell line and CEM cells of the T‑cell‑ALL cell line was investigated. The data demonstrated that 10058‑F4, a c‑Myc inhibitor, increased the growth inhibition, G0/G1 phase arrest and apoptosis of the NALM6 and CEM cells as induced by dexamethasone (DXM), a type of GC. Additionally, 10058‑F4 reinforced the decreased expressions of c‑Myc, cyclin‑dependent kinase (CDK)‑4 and CDK6 in the NALM6 and CEM cells treated with DXM. These findings indicated that DXM in combination with the c‑Myc inhibitor 10058‑F4 may be a novel, potent therapeutic strategy for the treatment of ALL.
Collapse
Affiliation(s)
- Mei Lv
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yi Wang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Wenmiao Wu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Shujun Yang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Huiling Zhu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Bei Hu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Ying Chen
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Cong Shi
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yi Zhang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Qitian Mu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
22
|
Tang XF, Li XX, Chen YH, Gao YY, Yu P, Xu LP, Liu RH. Combination of icariin and oleanolic acid attenuates in vivo and in vitro glucocorticoid resistance through protecting dexamethasone-induced glucocorticoid receptor impairment. RSC Adv 2018. [DOI: 10.1039/c7ra12092c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoid resistance (GCR) remains a significant problem and is the most important reason for treatment failure of glucocorticoids (GCs).
Collapse
Affiliation(s)
- Xiu-Feng Tang
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Xiao-Xi Li
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Yu-Heng Chen
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Ying-Ying Gao
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Ping Yu
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Li-Ping Xu
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
| | - Ren-Hui Liu
- School of Traditional Chinese Medicine
- Capital Medical University
- Beijing 100069
- China
- Beijing Key Lab of TCM Collateral Disease Theory Research
| |
Collapse
|
23
|
Cao C, Yu H, Wu F, Qi H, He J. Antibiotic anisomycin induces cell cycle arrest and apoptosis through inhibiting mitochondrial biogenesis in osteosarcoma. J Bioenerg Biomembr 2017; 49:437-443. [PMID: 29164469 DOI: 10.1007/s10863-017-9734-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022]
Abstract
The anti-cancer activities of antibiotic anisomycin have been demonstrated in kidney, colon and ovarian cancers whereas its underlying mechanisms are not well elucidated. In this work, we investigated whether anisomycin is effective in sensitizes osteosarcoma cell response to chemotherapy. We show that anisomycin inhibits proliferation via inducing osteosarcoma cell arrest at G2/M phase, accompanied by the increased levels of mitotic marker cyclin B and the decreased levels of Rb and E2F-1. Anisomycin also induces apoptosis in a caspase-dependent manner in osteosarcoma cells. Importantly, anisomycin is less effective in normal control NIH3T3 cells compared to osteosarcoma cells. In addition, anisomycin inhibits osteosarcoma growth in xenograft mouse model and enhances the inhibitory effects of doxorubicin in osteosarcoma in vitro and in vivo. Mechanistically, anisomycin targets mitochondrial biogenesis in osteosarcoma as shown by the decreased mitochondrial membrane potential, suppressed mitochondrial respiration via decreasing complex I activity, reduced ATP production. Furthermore, mitochondrial biogenesis stimulator acetyl-L-Carnitine (ALCAR) significantly rescues the inhibitory effects of anisomycin in osteosarcoma cells. Our work demonstrates that anisomycin is active against osteosarcoma cells and the molecular mechanism of its action is the inhibition of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Chuanhua Cao
- Department of Oncology, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang Central Hospital, 136 Jingzhou Road, Xiangyang, Hubei, 441021, People's Republic of China
| | - Haiying Yu
- Department of Oncology, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang Central Hospital, 136 Jingzhou Road, Xiangyang, Hubei, 441021, People's Republic of China
| | - Feng Wu
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Huixiong Qi
- Department of Oncology, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang Central Hospital, 136 Jingzhou Road, Xiangyang, Hubei, 441021, People's Republic of China.
| | - Jingbo He
- Department of Oncology, The Affiliated Hospital of Hubei University of Arts and Science, Xiangyang Central Hospital, 136 Jingzhou Road, Xiangyang, Hubei, 441021, People's Republic of China.
| |
Collapse
|
24
|
Liang YN, Tang YL, Ke ZY, Chen YQ, Luo XQ, Zhang H, Huang LB. MiR-124 contributes to glucocorticoid resistance in acute lymphoblastic leukemia by promoting proliferation, inhibiting apoptosis and targeting the glucocorticoid receptor. J Steroid Biochem Mol Biol 2017; 172:62-68. [PMID: 28578002 DOI: 10.1016/j.jsbmb.2017.05.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/10/2017] [Accepted: 05/28/2017] [Indexed: 12/16/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is characterized by the accumulation of abnormal lymphoblasts in the bone marrow and blood. Though great progress has been made for improvement in clinical treatment during the past decades, some children with ALL still relapsed. Glucocorticoid (GC) resistance is an important clinical problem for ALL treatment failure. Therefore, further understanding of the mechanism of GC resistance and exploring novel therapeutic strategies are crucial for improving treatment outcome. The reported involvement of microRNAs (miRNAs) in drug resistance implied that deregulated miRNA expression might contribute to GC treatment response of ALL. However, individual miRNAs and their functional mechanisms potentially involved in the GC response are still largely unknown. In the present study, we found that miR-124 was up-regulated in prednisone insensitive human ALL cell line and prednisone-poor response ALL patients. Furthermore, it was found that miR-124 might contribute to GC resistance by promoting proliferation and inhibiting apoptosis of ALL cells. Importantly, we validated that miR-124, targeted and decreased the expression of glucocorticoid receptor (NR3C1), prevented the inhibitory effect of GC in ALL. These findings strongly suggest that miR-124 is critical in poor GC response and may serve as a potential therapeutic target in ALL with poor GC resistance.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/genetics
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Child
- Child, Preschool
- Dexamethasone/pharmacology
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Leukemic
- Glucocorticoids/pharmacology
- Humans
- Male
- Metabolism, Inborn Errors/genetics
- Metabolism, Inborn Errors/metabolism
- Metabolism, Inborn Errors/pathology
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Protein Binding
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- Receptors, Glucocorticoid/deficiency
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Yan-Ni Liang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhong shan Er Lu, Guangzhou 510080, China
| | - Yan-Lai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhong shan Er Lu, Guangzhou 510080, China
| | - Zhi-Yong Ke
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhong shan Er Lu, Guangzhou 510080, China
| | - Yue-Qin Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue-Qun Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhong shan Er Lu, Guangzhou 510080, China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China.
| | - Li-Bin Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhong shan Er Lu, Guangzhou 510080, China.
| |
Collapse
|
25
|
Xu JY, Luo JM. [Association between BIM gene and glucocorticoid resistance in children with acute lymphoblastic leukemia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:945-949. [PMID: 28774373 PMCID: PMC7390050 DOI: 10.7499/j.issn.1008-8830.2017.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignant hematological disease in childhood. Glucocorticoids are frequently used in the chemoradiotherapy regimen for ALL and can induce the apoptosis of ALL cells through several signaling pathways, but about 10% of ALL children have poor response to glucocorticoids. Studies have revealed that glucocorticoids induce the apoptosis of ALL cells by upregulating the expression of BIM gene, and BIM gene is associated with glucocorticoid resistance in childhood ALL. This article reviews the recent studies on glucocorticoid resistance in childhood ALL, especially the role of BIM and its expression products in this process.
Collapse
Affiliation(s)
- Jin-Yun Xu
- Department of Pediatrics, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | | |
Collapse
|
26
|
Liang KL, O'Connor C, Veiga JP, McCarthy TV, Keeshan K. TRIB2 regulates normal and stress-induced thymocyte proliferation. Cell Discov 2016; 2:15050. [PMID: 27462446 PMCID: PMC4860960 DOI: 10.1038/celldisc.2015.50] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022] Open
Abstract
TRIB2, a serine/threonine pseudokinase identified as an oncogene, is expressed at high levels in the T-cell compartment of hematopoiesis. The proliferation of developing thymocytes is tightly controlled to prevent leukemic transformation of T cells. Here we examine Trib2 loss in murine hematopoiesis under steady state and proliferative stress conditions, including genotoxic and oncogenic stress. Trib2−/− developing thymocytes show increased proliferation, and Trib2−/− mice have significantly higher thymic cellularity at steady state. During stress hematopoiesis, Trib2−/− developing thymocytes undergo accelerated proliferation and demonstrate hypersensitivity to 5-fluorouracil (5-FU)-induced cell death. Despite the increased cell death post 5-FU-induced proliferative stress, Trib2−/− mice exhibit accelerated thymopoietic recovery post treatment due to increased cell division kinetics of developing thymocytes. The increased proliferation in Trib2−/− thymocytes was exacerbated under oncogenic stress. In an experimental murine T-cell acute lymphoblastic leukemia (T-ALL) model, Trib2−/− mice had reduced latency in vivo, which associated with impaired MAP kinase (MAPK) activation. High and low expression levels of Trib2 correlate with immature and mature subtypes of human T-ALL, respectively, and associate with MAPK. Thus, TRIB2 emerges as a novel regulator of thymocyte cellular proliferation, important for the thymopoietic response to genotoxic and oncogenic stress, and possessing tumor suppressor function.
Collapse
Affiliation(s)
- Kai Ling Liang
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Caitriona O'Connor
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow, UK
| | - J Pedro Veiga
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow, UK
| | - Tommie V McCarthy
- School of Biochemistry and Cell Biology, University College Cork , Cork, Ireland
| | - Karen Keeshan
- Paul O'Gorman Leukemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow , Glasgow, UK
| |
Collapse
|