1
|
Kapor S, Radojković M, Santibanez JF. Myeloid-derived suppressor cells: Implication in myeloid malignancies and immunotherapy. Acta Histochem 2024; 126:152183. [PMID: 39029317 DOI: 10.1016/j.acthis.2024.152183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024]
Abstract
Myeloid malignancies stem from a modified hematopoietic stem cell and predominantly include acute myeloid leukemia, myelodysplastic neoplasms, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory properties by governing the innate and adaptive immune systems, creating a permissive and supportive environment for neoplasm growth. This review examines the key characteristics of MDSCs in myeloid malignancies, highlighting that an increased MDSC count corresponds to heightened immunosuppressive capabilities, fostering an immune-tolerant neoplasm microenvironment. Also, this review analyzes and describes the potential of combined cancer therapies, focusing on targeting MDSC generation, expansion, and their inherent immunosuppressive activities to enhance the efficacy of current cancer immunotherapies. A comprehensive understanding of the implications of myeloid malignancies may enhance the exploration of immunotherapeutic strategies for their potential application.
Collapse
Affiliation(s)
- Suncica Kapor
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia
| | - Milica Radojković
- Department of Hematology, Clinical, and Hospital Center "Dr. Dragiša Mišović-Dedinje,", Heroja Milana Tepića 1, Belgrade 11020, Serbia; Faculty of Medicine, University of Belgrade, Dr. Subotića Starijeg 8, Belgrade 11000, Serbia
| | - Juan F Santibanez
- Molecular Oncology group, Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Dr. Subotica 4, POB 102, Belgrade 11129, Serbia; Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O Higgins, General Gana 1780, Santiago 8370854, Chile.
| |
Collapse
|
2
|
Zahran AM, El-Badawy O, Badawy ER, Elsayh KI, Gad EF, Saad K, Mahmoud KH, Elhoufey A, Dailah HG, Ghazaly M. Could the Crosstalk Between Myeloid-Derived-Suppressor Cells and Regulatory T Cells Have a Role in Beta-Thalassemia? J Hematol 2023; 12:161-169. [PMID: 37692868 PMCID: PMC10482610 DOI: 10.14740/jh1149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/14/2023] [Indexed: 09/12/2023] Open
Abstract
Background Secondary iron overload, alloimmunization, and increased risk of infection are common complications in patients with transfusion-dependent thalassemia (TDT). Regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) play an essential role in preventing excessive immune response. This research aimed to study the interaction between Tregs and MDSCs in TDT patients and to evaluate the association of these cell types with disease severity. Methods This case-control study included 26 patients with TDT and 23 healthy, age- and sex-matched controls. All patients were investigated for complete blood count (CBC), serum ferritin, and flow cytometric analysis of peripheral blood to detect Tregs, MDSCs, and MDSC subsets. Results A significant increase was observed in the frequencies of Tregs and MDSCs, particularly monocytic MDSCs (MO-MDSCs), in TDT patients compared with controls. The frequencies of these cells showed a direct association with ferritin level and total leukocyte count and an inverse association with hemoglobin level. Furthermore, a positive correlation was observed between Tregs and each of the total MDSCs and MO-MDSCs. Conclusions Levels of Tregs and MDSCs increased in TDT and may probably have a role in suppressing the active immune systems of TDT patients.
Collapse
Affiliation(s)
- Asmaa M. Zahran
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Omnia El-Badawy
- Medical Microbiology & Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman R. Badawy
- Clinical Pathology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khalid I. Elsayh
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman F. Gad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khaled Saad
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
- Pediatrics Department, Assiut University Children’s Hospital, Assiut, Egypt
| | - Khalid Hashim Mahmoud
- Department of Pediatrics, Faculty of Medicine, Shaqra University, Dawadmi, Saudi Arabia
| | - Amira Elhoufey
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Alddrab University College, Jazan University, Jazan, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Marwa Ghazaly
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Bizymi N, Matthaiou AM, Matheakakis A, Voulgari I, Aresti N, Zavitsanou K, Karasachinidis A, Mavroudi I, Pontikoglou C, Papadaki HA. New Perspectives on Myeloid-Derived Suppressor Cells and Their Emerging Role in Haematology. J Clin Med 2022; 11:jcm11185326. [PMID: 36142973 PMCID: PMC9504532 DOI: 10.3390/jcm11185326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature cells of myeloid origin that have gained researchers’ attention, as they constitute promising biomarkers and targets for novel therapeutic strategies (i.e., blockage of development, differentiation, depletion, and deactivation) in several conditions, including neoplastic, autoimmune, infective, and inflammatory diseases, as well as pregnancy, obesity, and graft rejection. They are characterised in humans by the typical immunophenotype of CD11b+CD33+HLA-DR–/low and immune-modulating properties leading to decreased T-cell proliferation, induction of T-regulatory cells (T-regs), hindering of natural killer (NK) cell functionality, and macrophage M2-polarisation. The research in the field is challenging, as there are still difficulties in defining cell-surface markers and gating strategies that uniquely identify the different populations of MDSCs, and the currently available functional assays are highly demanding. There is evidence that MDSCs display altered frequency and/or functionality and could be targeted in immune-mediated and malignant haematologic diseases, although there is a large variability of techniques and results between different laboratories. This review presents the current literature concerning MDSCs in a clinical point of view in an attempt to trigger future investigation by serving as a guide to the clinical haematologist in order to apply them in the context of precision medicine as well as the researcher in the field of experimental haematology.
Collapse
Affiliation(s)
- Nikoleta Bizymi
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Andreas M. Matthaiou
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Angelos Matheakakis
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Ioanna Voulgari
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Nikoletta Aresti
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Konstantina Zavitsanou
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Anastasios Karasachinidis
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Irene Mavroudi
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Charalampos Pontikoglou
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Helen A. Papadaki
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810394637
| |
Collapse
|
4
|
Wan M, Ding Y, Li Z, Wang X, Xu M. Metabolic manipulation of the tumour immune microenvironment. Immunology 2021; 165:290-300. [PMID: 34962655 DOI: 10.1111/imm.13444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022] Open
Abstract
In the past few years, the evolution of immunotherapy has resulted in a shift in cancer treatment models. However, with immunosuppressive effects of the tumour microenvironment continue to limit advances in tumour immunotherapy. The tumour microenvironment induces metabolic reprogramming in cancer cells, which results in competition for nutrients between tumour cells and host immunocytes. Metabolic and waste products originating in tumour cells can influence the activation and effector properties of immunocytes in numerous ways and ultimately promote the survival and propagation of tumour cells. In this paper, we discuss metabolic reprogramming in tumour cells and the influence of metabolite byproducts on the immune microenvironment, providing novel insights into tumour immunotherapy.
Collapse
Affiliation(s)
- Mengtian Wan
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Yuzhu Ding
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Zheng Li
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Xu Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| |
Collapse
|
5
|
Uckun FM. Dual Targeting of Multiple Myeloma Stem Cells and Myeloid-Derived Suppressor Cells for Treatment of Chemotherapy-Resistant Multiple Myeloma. Front Oncol 2021; 11:760382. [PMID: 34858838 PMCID: PMC8631522 DOI: 10.3389/fonc.2021.760382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Here we review the insights and lessons learned from early clinical trials of T-cell engaging bispecific antibodies (BsABs) as a new class of biotherapeutic drug candidates with clinical impact potential for the treatment of multiple myeloma (MM). BsABs are capable of redirecting host T-cell cytotoxicity in an MHC-independent manner to malignant MM clones as well as immunosuppressive myeloid-derived suppressor cells (MDSC). T-cell engaging BsAB targeting the BCMA antigen may help delay disease progression in MM by destroying the MM cells. T-cell engaging BsAB targeting the CD38 antigen may help delay disease progression in MM by depleting both the malignant MM clones and the MDSC in the bone marrow microenvironment (BMME). BsABs may facilitate the development of a new therapeutic paradigm for achieving improved survival in MM by altering the immunosuppressive BMME. T-cell engaging BsiABs targeting the CD123 antigen may help delay disease progression in MM by depleting the MDSC in the BMME and destroying the MM stem cells that also carry the CD123 antigen on their surface.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Department of Developmental Therapeutics, Immunology, and Integrative Medicine, Drug Discovery Institute, Ares Pharmaceuticals, St. Paul, MN, United States
- Clinical Research Program, Aptevo Therapeutics, Seattle, WA, United States
- Translational Oncology Program, Reven Pharmaceuticals, Westminster, CO, United States
| |
Collapse
|
6
|
Uckun FM, Watts J. CD123-Directed Bispecific Antibodies for Targeting MDS Clones and Immunosuppressive Myeloid-Derived Suppressor Cells (MDSC) in High-Risk Adult MDS Patients. FRONTIERS IN AGING 2021; 2:757276. [PMID: 35822053 PMCID: PMC9261311 DOI: 10.3389/fragi.2021.757276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022]
Abstract
There is an urgent need to identify effective strategies to prevent leukemic transformation and induce sustained deep remissions in adult high-risk myelodysplastic syndrome (MDS) patients. This article discusses the clinical impact potential of bispecific antibodies (BiAB) capable of redirecting host T-cell cytotoxicity in an MHC-independent manner to malignant clones as well as immunosuppressive myeloid-derived suppressor cells (MDSC) as a new class of anti-MDS drug candidates. T-cell engaging BiAB targeting the CD123 antigen may help delay disease progression in high-risk adult MDS and potentially reduce the risk of transformation to secondary AML.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Aptevo Therapeutics, Seattle, WA, United States
- Immuno-Oncology Program, Ares Pharmaceuticals, St. Paul, MN, United States
| | - Justin Watts
- University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, United States
| |
Collapse
|
7
|
Mian SA, Bonnet D. Nature or Nurture? Role of the Bone Marrow Microenvironment in the Genesis and Maintenance of Myelodysplastic Syndromes. Cancers (Basel) 2021; 13:4116. [PMID: 34439269 PMCID: PMC8394536 DOI: 10.3390/cancers13164116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Myelodysplastic syndrome (MDS) are clonal haematopoietic stem cell (HSC) disorders driven by a complex combination(s) of changes within the genome that result in heterogeneity in both clinical phenotype and disease outcomes. MDS is among the most common of the haematological cancers and its incidence markedly increases with age. Currently available treatments have limited success, with <5% of patients undergoing allogeneic HSC transplantation, a procedure that offers the only possible cure. Critical contributions of the bone marrow microenvironment to the MDS have recently been investigated. Although the better understanding of the underlying biology, particularly genetics of haematopoietic stem cells, has led to better disease and risk classification; however, the role that the bone marrow microenvironment plays in the development of MDS remains largely unclear. This review provides a comprehensive overview of the latest developments in understanding the aetiology of MDS, particularly focussing on understanding how HSCs and the surrounding immune/non-immune bone marrow niche interacts together.
Collapse
Affiliation(s)
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK;
| |
Collapse
|
8
|
Kapor S, Santibanez JF. Myeloid-Derived Suppressor Cells and Mesenchymal Stem/Stromal Cells in Myeloid Malignancies. J Clin Med 2021; 10:2788. [PMID: 34202907 PMCID: PMC8268878 DOI: 10.3390/jcm10132788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Myeloid malignancies arise from an altered hematopoietic stem cell and mainly comprise acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic leukemic cells may influence the growth and differentiation of other hematopoietic cell lineages in peripheral blood and bone marrow. Myeloid-derived suppressor cells (MDSCs) and mesenchymal stromal cells (MSCs) display immunoregulatory properties by controlling the innate and adaptive immune systems that may induce a tolerant and supportive microenvironment for neoplasm development. This review analyzes the main features of MDSCs and MSCs in myeloid malignancies. The number of MDSCs is elevated in myeloid malignancies exhibiting high immunosuppressive capacities, whereas MSCs, in addition to their immunosuppression contribution, regulate myeloid leukemia cell proliferation, apoptosis, and chemotherapy resistance. Moreover, MSCs may promote MDSC expansion, which may mutually contribute to the creation of an immuno-tolerant neoplasm microenvironment. Understanding the implication of MDSCs and MSCs in myeloid malignancies may favor their potential use in immunotherapeutic strategies.
Collapse
Affiliation(s)
- Suncica Kapor
- Clinical Hospital Center “Dr Dragisa Misovic-Dedinje”, Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan F. Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia;
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, 8370993 Santiago, Chile
| |
Collapse
|
9
|
Kapor S, Santibanez JF. Myeloid-Derived Suppressor Cells and Mesenchymal Stem/Stromal Cells in Myeloid Malignancies. J Clin Med 2021. [PMID: 34202907 DOI: 10.3390/jcm10132788.pmid:34202907;pmcid:pmc8268878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Myeloid malignancies arise from an altered hematopoietic stem cell and mainly comprise acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic leukemic cells may influence the growth and differentiation of other hematopoietic cell lineages in peripheral blood and bone marrow. Myeloid-derived suppressor cells (MDSCs) and mesenchymal stromal cells (MSCs) display immunoregulatory properties by controlling the innate and adaptive immune systems that may induce a tolerant and supportive microenvironment for neoplasm development. This review analyzes the main features of MDSCs and MSCs in myeloid malignancies. The number of MDSCs is elevated in myeloid malignancies exhibiting high immunosuppressive capacities, whereas MSCs, in addition to their immunosuppression contribution, regulate myeloid leukemia cell proliferation, apoptosis, and chemotherapy resistance. Moreover, MSCs may promote MDSC expansion, which may mutually contribute to the creation of an immuno-tolerant neoplasm microenvironment. Understanding the implication of MDSCs and MSCs in myeloid malignancies may favor their potential use in immunotherapeutic strategies.
Collapse
Affiliation(s)
- Suncica Kapor
- Clinical Hospital Center "Dr Dragisa Misovic-Dedinje", Department of Hematology, University of Belgrade, 11000 Belgrade, Serbia
| | - Juan F Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, 8370993 Santiago, Chile
| |
Collapse
|
10
|
Wang J, Hao JP, Uddin MN, Wu Y, Chen R, Li DF, Xiong DQ, Ding N, Yang JH, Ding XS. Identification and validation of inferior prognostic genes associated with immune signatures and chemotherapy outcome in acute myeloid leukemia. Aging (Albany NY) 2021; 13:16445-16470. [PMID: 34148032 PMCID: PMC8266366 DOI: 10.18632/aging.203166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML) is a group of heterogeneous hematological malignancies. We identified key genes as ITGAM and lncRNA ITGB2-AS1 through different bioinformatics tools. Furthermore, qPCR was performed to verify the expression level of essential genes in clinical samples. Retrospective research on 179 AML cases was used to investigate the relationship between the expression of ITGAM and the characteristics of AML. The critical gene relationship with immune infiltration in AML was estimated. The clinical validation and prognostic investigation showed that ITGAM, PPBP, and ITGB2-AS1 are highly expressed in AML (P < 0.001) and significantly associated with the overall survival in AML. Moreover, the retrospective research on 179 clinical cases showed that positive expression of ITGAM is substantially related to AML classification (P < 0.001), higher count of white blood cells (P < 0.01), and poor chemotherapy outcome (P < 0.05). Furthermore, based on grouping ITGAM as the high and low expression in TCGA-LAML profile, we found that genes in the highly expressed ITGAM group are mainly involved in immune infiltration and inflammation-related signaling pathways. Finally, we discovered that the expression level of ITGAM and lncRNA ITGB2-AS1 are not just closely related to the immune score and stromal score (P < 0.001) but also significantly positively correlated with various Immune signatures in AML (P < 0.001), indicating the association of these genes with immunosuppression in AML. The prediction of candidate drugs indicated that certain immunosuppressive drugs have potential therapeutic effects for AML. The critical genes could be used as potential biomarkers to evaluate the survival and prognosis of AML.
Collapse
Affiliation(s)
- Jie Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Jian-Ping Hao
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Md Nazim Uddin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Rong Chen
- Department of Hematology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Dong-Feng Li
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Dai-Qin Xiong
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Nan Ding
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Jian-Hua Yang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
| | - Xuan-Sheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
11
|
Mojsilovic S, Mojsilovic SS, Bjelica S, Santibanez JF. Transforming growth factor-beta1 and myeloid-derived suppressor cells: A cancerous partnership. Dev Dyn 2021; 251:105-124. [PMID: 33797140 DOI: 10.1002/dvdy.339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-β1) plays a crucial role in tumor progression. It can inhibit early cancer stages but promotes tumor growth and development at the late stages of tumorigenesis. TGF-β1 has a potent immunosuppressive function within the tumor microenvironment that largely contributes to tumor cells' immune escape and reduction in cancer immunotherapy responses. Likewise, myeloid-derived suppressor cells (MDSCs) have been postulated as leading tumor promoters and a hallmark of cancer immune evasion mechanisms. This review attempts to analyze the prominent roles of both TGF-β1 and MDSCs and their interplay in cancer immunity. Furthermore, therapies against either TGF-β1 or MDSCs, and their potential synergistic combination with immunotherapies are discussed. Simultaneous TGF-β1 and MDSCs inhibition suggest a potential improvement in immunotherapy or subverted tumor immune resistance.
Collapse
Affiliation(s)
- Slavko Mojsilovic
- Laboratory of Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Sonja S Mojsilovic
- Laboratory for Immunochemistry, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Suncica Bjelica
- Department of Hematology, Clinical Hospital Centre Dragisa Misovic, Belgrade, Serbia
| | - Juan F Santibanez
- Molecular oncology group, Institute for Medical Research, University of Belgrade, Republic of Serbia.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
12
|
Schulte-Schrepping J, Reusch N, Paclik D, Baßler K, Schlickeiser S, Zhang B, Krämer B, Krammer T, Brumhard S, Bonaguro L, De Domenico E, Wendisch D, Grasshoff M, Kapellos TS, Beckstette M, Pecht T, Saglam A, Dietrich O, Mei HE, Schulz AR, Conrad C, Kunkel D, Vafadarnejad E, Xu CJ, Horne A, Herbert M, Drews A, Thibeault C, Pfeiffer M, Hippenstiel S, Hocke A, Müller-Redetzky H, Heim KM, Machleidt F, Uhrig A, Bosquillon de Jarcy L, Jürgens L, Stegemann M, Glösenkamp CR, Volk HD, Goffinet C, Landthaler M, Wyler E, Georg P, Schneider M, Dang-Heine C, Neuwinger N, Kappert K, Tauber R, Corman V, Raabe J, Kaiser KM, Vinh MT, Rieke G, Meisel C, Ulas T, Becker M, Geffers R, Witzenrath M, Drosten C, Suttorp N, von Kalle C, Kurth F, Händler K, Schultze JL, Aschenbrenner AC, Li Y, Nattermann J, Sawitzki B, Saliba AE, Sander LE. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell 2020; 182:1419-1440.e23. [PMID: 32810438 PMCID: PMC7405822 DOI: 10.1016/j.cell.2020.08.001] [Citation(s) in RCA: 988] [Impact Index Per Article: 197.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/13/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DRhiCD11chi inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DRlo monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.
Collapse
Affiliation(s)
| | - Nico Reusch
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Daniela Paclik
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Kevin Baßler
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Stephan Schlickeiser
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany; BIH Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, and Berlin Institute of Health (BIH) Berlin, Germany
| | - Bowen Zhang
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Benjamin Krämer
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Tobias Krammer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Sophia Brumhard
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenzo Bonaguro
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Elena De Domenico
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Daniel Wendisch
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Grasshoff
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | | | - Michael Beckstette
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Tal Pecht
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Adem Saglam
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Oliver Dietrich
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Henrik E Mei
- Mass Cytometry Lab, DRFZ Berlin, a Leibniz Institute, Berlin, Germany
| | - Axel R Schulz
- Mass Cytometry Lab, DRFZ Berlin, a Leibniz Institute, Berlin, Germany
| | - Claudia Conrad
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Désirée Kunkel
- Flow and Mass Cytometry Core Facility, Charité, Universitätsmedizin Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Ehsan Vafadarnejad
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arik Horne
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Miriam Herbert
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany
| | - Anna Drews
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Charlotte Thibeault
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Pfeiffer
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL)
| | - Andreas Hocke
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL)
| | - Holger Müller-Redetzky
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin-Moira Heim
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Machleidt
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Uhrig
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Laure Bosquillon de Jarcy
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Linda Jürgens
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph R Glösenkamp
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany; BIH Center for Regenerative Therapies, Charité, Universitätsmedizin Berlin, and Berlin Institute of Health (BIH) Berlin, Germany; Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Philipp Georg
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Schneider
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Chantip Dang-Heine
- Clinical Study Center (CSC), Charité, Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nick Neuwinger
- Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany; Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Kai Kappert
- Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany; Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Rudolf Tauber
- Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany; Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Victor Corman
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Raabe
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Kim Melanie Kaiser
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Michael To Vinh
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Gereon Rieke
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Christian Meisel
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Immunology, Labor Berlin-Charité Vivantes, Berlin, Germany
| | - Thomas Ulas
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Matthias Becker
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz-Center for Infection Research (HZI), Braunschweig, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL)
| | - Christian Drosten
- Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany; German Center for Infection Research (DZIF)
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL)
| | - Christof von Kalle
- Clinical Study Center (CSC), Charité, Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; I. Department of Medicine, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Kristian Händler
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, Bonn, Germany.
| | - Anna C Aschenbrenner
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM) and TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany; German Center for Infection Research (DZIF)
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), Würzburg, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL)
| |
Collapse
|
13
|
Ni J, Wu Y, Qi F, Li X, Yu S, Liu S, Feng J, Zheng Y. Screening the Cancer Genome Atlas Database for Genes of Prognostic Value in Acute Myeloid Leukemia. Front Oncol 2020; 9:1509. [PMID: 32039005 PMCID: PMC6990132 DOI: 10.3389/fonc.2019.01509] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Object: To identify genes of prognostic value which associated with tumor microenvironment (TME) in acute myeloid leukemia (AML). Methods and Materials: Level 3 AML patients gene transcriptome profiles were downloaded from The Cancer Genome Atlas (TCGA) database. Clinical characteristics and survival data were extracted from the Genomic Data Commons (GDC) tool. Then, limma package was utilized for normalization processing. ESTIMATE algorithm was used for calculating immune, stromal and ESTIMATE scores. We examined the distribution of these scores in Cancer and Acute Leukemia Group B (CALGB) cytogenetics risk category. Kaplan-Meier (K-M) curves were used to evaluate the relationship between immune scores, stromal scores, ESTIMATE scores and overall survival. We performed clustering analysis and screened differential expressed genes (DEGs) by using heatmaps, volcano plots and Venn plots. After pathway enrichment analysis and gene set enrichment analysis (GESA), protein-protein interaction (PPI) network was constructed and hub genes were screened. We explore the prognostic value of hub genes by calculating risk scores (RS) and processing survival analysis. Finally, we verified the expression level, association of overall survival and gene interactions of hub genes in the Vizome database. Results: We enrolled 173 AML samples from TCGA database in our study. Higher immune score was associated with higher risk rating in CALGB cytogenetics risk category (P = 0.0396) and worse overall survival outcomes (P = 0.0224). In Venn plots, 827 intersect genes were screened with differential analysis. Functional enrichment clustering analysis revealed a significant association between intersect genes and the immune response. After PPI network, 18 TME-related hub genes were identified. RS was calculated and the survival analysis results revealed that high RS was related with poor overall survival (P < 0.0001). Besides, the survival receiver operating characteristic curve (ROC) showed superior predictive accuracy (area under the curve = 0.725). Finally, the heatmap from Vizome database demonstrated that 18 hub genes showed high expression in patient samples. Conclusion: We identified 18 TME-related genes which significantly associated with overall survival in AML patients from TCGA database.
Collapse
Affiliation(s)
- Jie Ni
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Qi
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Li
- Department of Urology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Shaorong Yu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Siwen Liu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxiao Zheng
- Department of Urology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Yang Q, Li K, Li X, Liu J. Identification of Key Genes and Pathways in Myeloma side population cells by Bioinformatics Analysis. Int J Med Sci 2020; 17:2063-2076. [PMID: 32922167 PMCID: PMC7484674 DOI: 10.7150/ijms.48244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Multiple myeloma (MM) is the second most common hematological malignancy, which is still incurable and relapses inevitably, highlighting further understanding of the possible mechanisms. Side population (SP) cells are a group of enriched progenitor cells showing stem-like phenotypes with a distinct low-staining pattern with Hoechst 33342. Compared to main population (MP) cells, the underlying molecular characteristics of SP cells remain largely unclear. This bioinformatics analysis aimed to identify key genes and pathways in myeloma SP cells to provide novel biomarkers, predict MM prognosis and advance potential therapeutic targets. Methods: The gene expression profile GSE109651 was obtained from Gene Expression Omnibus database, and then differentially expressed genes (DEGs) with P-value <0.05 and |log2 fold-change (FC)| > 2 were selected by the comparison of myeloma light-chain (LC) restricted SP (LC/SP) cells and MP CD138+ cells. Subsequently, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis, protein-protein interaction (PPI) network analysis were performed to identify the functional enrichment analysis of the DEGs and screen hub genes. Cox proportional hazards regression was used to select the potential prognostic DEGs in training dataset (GSE2658). The prognostic value of the potential prognostic genes was evaluated by Kaplan-Meier curve and validated in another external dataset (MMRF-CoMMpass cohort from TCGA). Results: Altogether, 403 up-regulated and 393 down-regulated DEGs were identified. GO analysis showed that the up-regulated DEGs were significantly enriched in innate immune response, inflammatory response, plasma membrane and integral component of membrane, while the down-regulated DEGs were mainly involved in protoporphyrinogen IX and heme biosynthetic process, hemoglobin complex and erythrocyte differentiation. KEGG pathway analysis suggested that the DEGs were significantly enriched in osteoclast differentiation, porphyrin and chlorophyll metabolism and cytokine-cytokine receptor interaction. The top 10 hub genes, identified by the plug-in cytoHubba of the Cytoscape software using maximal clique centrality (MCC) algorithm, were ITGAM, MMP9, ITGB2, FPR2, C3AR1, CXCL1, CYBB, LILRB2, HP and FCER1G. Modules and corresponding GO enrichment analysis indicated that myeloma LC/SP cells were significantly associated with immune system, immune response and cell cycle. The predictive value of the prognostic model including TFF3, EPDR1, MACROD1, ARHGEF12, AMMECR1, NFATC2, HES6, PLEK2 and SNCA was identified, and validated in another external dataset (MMRF-CoMMpass cohort from TCGA). Conclusions: In conclusion, this study provides reliable molecular biomarkers for screening, prognosis, as well as novel therapeutic targets for myeloma LC/SP cells.
Collapse
Affiliation(s)
- Qin Yang
- Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Kaihu Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xin Li
- Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jing Liu
- Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
15
|
Huang S, Zhang B, Fan W, Zhao Q, Yang L, Xin W, Fu D. Identification of prognostic genes in the acute myeloid leukemia microenvironment. Aging (Albany NY) 2019; 11:10557-10580. [PMID: 31740623 PMCID: PMC6914404 DOI: 10.18632/aging.102477] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 12/27/2022]
Abstract
The tumor microenvironment (TME) has a strong influence on the progression, therapeutic response, and clinical outcome of acute myeloid leukemia (AML), one of the most common hematopoietic malignancies in adults. In this study, we identified TME-related genes associated with AML prognosis. Gene expression profiles from AML patients were downloaded from TCGA database, and immune and stromal scores were calculated using the ESTIMATE algorithm. Immune scores were correlated with clinical features such as FAB subtypes and patient's age. After categorizing AML cases into high and low score groups, an association between several differentially expressed genes (DEGs) and overall survival was identified. Functional enrichment analysis of the DEGs showed that they were primarily enriched in the immune response, inflammatory response, and cytokine activity, and were involved in signaling processes related to hematopoietic cell lineage, B cell receptor, and chemokine pathways. Two significant modules, dominated respectively by CCR5 and ITGAM nodes, were identified from the PPI network, and 20 hub genes were extracted. A total of 112 DEGs correlated with poor overall survival of AML patients, and 11 of those genes were validated in a separate TARGET-AML cohort. By identifying TME-associated genes, our findings may lead to improved prognoses and therapies for AML.
Collapse
Affiliation(s)
- Shaoxin Huang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Biyu Zhang
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Wenyan Fan
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Qihan Zhao
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Wang Xin
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
| | - Denggang Fu
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332005, China
- Institute of Genomic and Personalized Medicine, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
16
|
Bizymi N, Bjelica S, Kittang AO, Mojsilovic S, Velegraki M, Pontikoglou C, Roussel M, Ersvær E, Santibañez JF, Lipoldová M, Papadaki HA. Myeloid-Derived Suppressor Cells in Hematologic Diseases: Promising Biomarkers and Treatment Targets. Hemasphere 2019; 3:e168. [PMID: 31723807 PMCID: PMC6745940 DOI: 10.1097/hs9.0000000000000168] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immature myeloid cells that exist at very low numbers in healthy subjects but can expand significantly in malignant, infectious, and chronic inflammatory diseases. These cells are characterized as early-MDSCs, monocytic-MDSCs, and polymorphonuclear-MDSCs and can be studied on the basis of their immunophenotypic characteristics and their functional properties to suppress T-cell activation and proliferation. MDSCs have emerged as important contributors to tumor expansion and chronic inflammation progression by inducing immunosuppressive mechanisms, angiogenesis and drug resistance. Most experimental and clinical studies concerning MDSCs have been mainly focused on solid tumors. In recent years, however, the implication of MDSCs in the immune dysregulation associated with hematologic malignancies, immune-mediated cytopenias and allogeneic hemopoietic stem cell transplantation has been documented and the potential role of these cells as biomarkers and therapeutic targets has started to attract a particular interest in hematology. The elucidation of the molecular and signaling pathways associated with the generation, expansion and function of MDSCs in malignant and immune-mediated hematologic diseases and the clarification of mechanisms related to the circulation and the crosstalk of MDSCs with malignant cells and other components of the immune system are anticipated to lead to novel therapeutic strategies. This review summarizes all available evidence on the implication of MDSCs in hematologic diseases highlighting the challenges and perspectives arising from this novel field of research.
Collapse
Affiliation(s)
- Nikoleta Bizymi
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete and Department of Hematology, University Hospital of Heraklion, Heraklion, Greece
- Graduate Program Molecular Basis of Human Disease, School of Medicine, University of Crete, Heraklion, Greece
| | - Sunčica Bjelica
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Astrid Olsnes Kittang
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Division of Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Slavko Mojsilovic
- Laboratory of Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Maria Velegraki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete and Department of Hematology, University Hospital of Heraklion, Heraklion, Greece
- Department of Immunology and Microbiology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Charalampos Pontikoglou
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete and Department of Hematology, University Hospital of Heraklion, Heraklion, Greece
| | - Mikael Roussel
- CHU de Rennes, Pole de Biologie, Rennes, France
- INSERM, UMR U1236, Université Rennes 1, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Laboratoire d’Hématologie, CHU Pontchaillou, Rennes Cedex, France
| | - Elisabeth Ersvær
- Department of Biomedical Laboratory Scientist Education, Western Norway University of Applied Sciences, Bergen, Norway
| | - Juan Francisco Santibañez
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics AS CR, Prague, Czech Republic
| | - Helen A. Papadaki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete and Department of Hematology, University Hospital of Heraklion, Heraklion, Greece
| |
Collapse
|
17
|
Ibrahim A, Zahran AM, Aly SS, Refaat A, Hassan MH. CD56 and CD11b Positivity with Low Smac/DIABLO Expression as Predictors of Chemoresistance in Acute Myeloid Leukaemia: Flow Cytometric Analysis. Asian Pac J Cancer Prev 2018; 19:3187-3192. [PMID: 30486609 PMCID: PMC6318388 DOI: 10.31557/apjcp.2018.19.11.3187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/08/2018] [Indexed: 12/04/2022] Open
Abstract
Background: Resistance to chemotherapy is a major obstacle to curing acute myeloid leukaemia (AML), and several antigens are claimed to play primary roles in this resistance. Purpose: The aim of this study was to evaluate the roles of CD56, CD11b and Smac/DIABLO gene expression levels as prognostic markers of the clinical outcome, response to chemotherapy and survival of AML patients. Materials and Methods: A cross-sectional observational study was conducted on 60 naïve-AML patients who received induction therapy with mitoxantrone and cytarabine combined with a high dose of cytarabine. The CD56,CD11b and Smac/DIABLO expression levels were assessed using flow cytometry at diagnosis and were analysed for correlation with the possible associated risk factors, response to chemotherapy, and median duration of disease-free survival (DFS) and overall survival (OS). Results: The overall results revealed that AML patients who exhibited positive expression for CD56 and CD11b had short median durations of DFS and OS.(P = 0.019, 0.006, 0.029 and 0.024, respectively). Additionally, low Smac/DIABLO expression had a negative impact on treatment outcome in terms of CR rate (p=0.012) and reduced DFS (p=0.000) and OS(p=0.000) values. Conclusions: CD56 and CD11b positivity and low Smac/DIABLO expression are important predictive factors for the occurrence of chemoresistance, in addition to other risk factors, among AML patients.
Collapse
Affiliation(s)
- Abeer Ibrahim
- Department of Medical Oncology and Haematological Malignancies, South Egypt Cancer Institute, Assiut University, Egypt.
| | | | | | | | | |
Collapse
|
18
|
Immune regulation and anti-cancer activity by lipid inflammatory mediators. Int Immunopharmacol 2018; 65:580-592. [PMID: 30447537 DOI: 10.1016/j.intimp.2018.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/02/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022]
Abstract
Rodent and clinical studies have documented that myeloid cell infiltration of tumors is associated with poor outcomes, neutrophilia and lymphocytopenia. This contrasts with increased lymphocyte infiltration of tumors, which is correlated with improved outcomes. Lifestyle parameters, such as obesity and diets with high levels of saturated fat and/or omega (ω)-6 polyunsaturated fatty acids (PUFAs), can influence these inflammatory parameters, including an increase in extramedullary myelopoiesis (EMM). While tumor secretion of growth factors (GFs) and chemokines regulate tumor-immune-cell crosstalk, lifestyle choices also contribute to inflammation, abnormal pathology and leukocyte infiltration of tumors. A relationship between obesity and high-fat diets (notably saturated fats in Western diets) and inflammation, tumor incidence, metastasis and poor outcomes is generally accepted. However, the mechanisms of dietary promotion of an inflammatory microenvironment and targeted drugs to inhibit the clinical sequelae are poorly understood. Thus, modifications of obesity and dietary fat may provide preventative or therapeutic approaches to control tumor-associated inflammation and disease progression. Currently, the majority of basic and clinical research does not differentiate between obesity and fatty acid consumption as mediators of inflammatory and neoplastic processes. In this review, we discuss the relationships between dietary PUFAs, inflammation and neoplasia and experimental strategies to improve our understanding of these relationships. We conclude that dietary composition, notably the ratio of ω-3 vs ω-6 PUFA regulates tumor growth and the frequency and sites of metastasis that together, impact overall survival (OS) in mice.
Collapse
|
19
|
Salminen A, Kaarniranta K, Kauppinen A. Phytochemicals inhibit the immunosuppressive functions of myeloid-derived suppressor cells (MDSC): Impact on cancer and age-related chronic inflammatory disorders. Int Immunopharmacol 2018; 61:231-240. [DOI: 10.1016/j.intimp.2018.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
|
20
|
Santibanez JF, Bjelica S. Transforming Growth Factor-Beta1 and Myeloid-Derived Suppressor Cells Interplay in Cancer. ACTA ACUST UNITED AC 2017. [DOI: 10.2174/1876401001706010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
Transforming growth factor-beta1 (TGF-β1) is a pleiotropic cytokine with a double role in cancer through its capacity to inhibit early stages of tumors while enhancing tumor progression at late stages of tumor progression. Moreover, TGF-β1 is a potent immunosuppressive cytokine within the tumor microenvironment that allows cancer cells to escape from immune surveillance, which largely contributes to the tumor progression.
Method:
It has been established that the cancer progression is commonly associated with increased number of Myeloid-derived suppressor cells (MDSC) that are a hallmark of cancer and a key mechanism of immune evasion.
Result:
MDSC represent a population of heterogeneous myeloid cells comprised of macrophages, granulocytes and dendritic cells at immature stages of development. MDSC promote tumor progression by regulating immune responses as well as tumor angiogenesis and cancer metastasis.
Conclusion:
In this review, we present an overview of the main key functions of both TGF-β1 and MDSC in cancer and in the immune system. Furthermore, the mutual contribution between TGF-β1 and MDSC in the regulation of immune system and cancer development will be analyzed.
Collapse
|
21
|
van Solinge TS, Zeijlemaker W, Ossenkoppele GJ, Cloos J, Schuurhuis GJ. The interference of genetic associations in establishing the prognostic value of the immunophenotype in acute myeloid leukemia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2017. [DOI: 10.1002/cyto.b.21539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Thomas S. van Solinge
- Department of Hematology; VU University Medical Center, Cancer Center Amsterdam; Amsterdam The Netherlands
| | - Wendelien Zeijlemaker
- Department of Hematology; VU University Medical Center, Cancer Center Amsterdam; Amsterdam The Netherlands
| | - Gert J. Ossenkoppele
- Department of Hematology; VU University Medical Center, Cancer Center Amsterdam; Amsterdam The Netherlands
| | - Jacqueline Cloos
- Department of Hematology; VU University Medical Center, Cancer Center Amsterdam; Amsterdam The Netherlands
- Department of Pediatric Oncology/Hematology; VU University Medical Center; Amsterdam The Netherlands
| | - Gerrit J. Schuurhuis
- Department of Hematology; VU University Medical Center, Cancer Center Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
22
|
Xu S, Li X, Zhang J, Chen J. Prognostic Value of CD11b Expression Level for Acute Myeloid Leukemia Patients: A Meta-Analysis. PLoS One 2015; 10:e0135981. [PMID: 26309131 PMCID: PMC4550244 DOI: 10.1371/journal.pone.0135981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Study results on the prognostic value of CD11b for acute myeloid leukemia (AML) patients are inconsistent. An up-to-date meta-analysis was conducted to assess the prognostic value of CD11b expression level for AML patients. METHODS Electronic databases including PubMed, Embase, Cochrane Library, Web of Science and Chinese BioMedical Literature Database (CBM) were searched to identify studies that investigated the association between CD11b expression level and prognosis of AML patients. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) for overall survival (OS) and disease-free survival (DFS) and pooled odds ratio (OR) with 95% CI for complete remission rate (CRR) were calculated using Revman 5.3 and Stata 11.0. RESULTS 13 total studies with 2619 patients were included in this meta-analysis. Results of the meta-analysis showed that CD11b positivity was associated with lower CRR (OR = 0.44; 95% CI, 0.25-0.79; p = 0.006) and shorter OS (HR = 0.66; 95% CI, 0.55-0.80; p < 0.0001), but did not affect DFS (HR = 0.67; 95% CI, 0.31-1.48; p = 0.32). Subgroup analysis by ethnicity, cut-off value for CD11b positivity, treatment, subtype and sample preparation method showed no significant interaction between these factors with the prognostic value of CD11b expression level for AML patients. Sensitivity analysis yielded consistent results with the main meta-analysis. CONCLUSION CD11b positivity could predict a poor prognosis for AML patients. Thus, CD11b expression level might be considered a prognostic biomarker for AML patients.
Collapse
Affiliation(s)
- Shuangnian Xu
- Department of Hematology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, People’s Republic of China
| | - Xi Li
- Department of Hematology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, People’s Republic of China
| | - Jianmin Zhang
- Department of Hematology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, People’s Republic of China
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, People’s Republic of China
- * E-mail:
| |
Collapse
|
23
|
Fang LL, Yu HQ, Wu RJ, He C, Li M, Yan H, Li JJ, Wang S, Liu ZG, Liu ZJ, Yang PC. Thrombospondin 1 Modulates Monocyte Properties to Suppress Intestinal Mucosal Inflammation. J Innate Immun 2015; 7:601-11. [PMID: 25998580 DOI: 10.1159/000398799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/09/2015] [Indexed: 12/12/2022] Open
Abstract
Monocytes (Mos) play an important role in the pathogenesis of intestinal mucosal inflammation. This study aims to investigate the mechanism by which the intestinal epithelial cell-derived thrombospondin 1 (TSP1) modulates Mo properties and regulates intestinal inflammatory responses. In this study, the production of TSP1 by intestinal epithelial cells was evaluated by quantitative real-time PCR and Western blotting. The properties of Mos were analyzed by flow cytometry. A mouse model of colitis was created to assess the role of epithelium-derived TSP1 in the suppression of intestinal inflammation. The results demonstrated that mouse intestinal epithelial cells (IECs) expressed TSP1, which was markedly upregulated by butyrate or feeding with Clostridium butyricum. Coculture of the butyrate-primed IECs and Mos or exposure of Mos to TSP1 in the culture induced the expression of transforming growth factor (TGF)-β in Mos. These TGF-β+ Mos had tolerogenic properties that could promote generation of inducible regulatory T cells. Adoptive transfer with TSP1-primed Mos, or feeding C. butyricum could prevent experimental colitis in mice. In summary, C. butyricum induces intestinal epithelial cells to produce TSP1 and induces TGF-β+ Mos, which further suppress experimental colitis in mice. The results implicate that the administration of C. butyricum or butyrate may have the potential to ameliorate chronic intestinal inflammation through inducing immunosuppressive Mos.
Collapse
Affiliation(s)
- Lei-Lei Fang
- Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|