1
|
Rout AK, Dehury B, Parida SN, Rout SS, Jena R, Kaushik N, Kaushik NK, Pradhan SK, Sahoo CR, Singh AK, Arya M, Behera BK. A review on structure-function mechanism and signaling pathway of serine/threonine protein PIM kinases as a therapeutic target. Int J Biol Macromol 2024; 270:132030. [PMID: 38704069 DOI: 10.1016/j.ijbiomac.2024.132030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The proviral integration for the Moloney murine leukemia virus (PIM) kinases, belonging to serine/threonine kinase family, have been found to be overexpressed in various types of cancers, such as prostate, breast, colon, endometrial, gastric, and pancreatic cancer. The three isoforms PIM kinases i.e., PIM1, PIM2, and PIM3 share a high degree of sequence and structural similarity and phosphorylate substrates controlling tumorigenic phenotypes like proliferation and cell survival. Targeting short-lived PIM kinases presents an intriguing strategy as in vivo knock-down studies result in non-lethal phenotypes, indicating that clinical inhibition of PIM might have fewer adverse effects. The ATP binding site (hinge region) possesses distinctive attributes, which led to the development of novel small molecule scaffolds that target either one or all three PIM isoforms. Machine learning and structure-based approaches have been at the forefront of developing novel and effective chemical therapeutics against PIM in preclinical and clinical settings, and none have yet received approval for cancer treatment. The stability of PIM isoforms is maintained by PIM kinase activity, which leads to resistance against PIM inhibitors and chemotherapy; thus, to overcome such effects, PIM proteolysis targeting chimeras (PROTACs) are now being developed that specifically degrade PIM proteins. In this review, we recapitulate an overview of the oncogenic functions of PIM kinases, their structure, function, and crucial signaling network in different types of cancer, and the potential of pharmacological small-molecule inhibitors. Further, our comprehensive review also provides valuable insights for developing novel antitumor drugs that specifically target PIM kinases in the future. In conclusion, we provide insights into the benefits of degrading PIM kinases as opposed to blocking their catalytic activity to address the oncogenic potential of PIM kinases.
Collapse
Affiliation(s)
- Ajaya Kumar Rout
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal-576104, India
| | - Satya Narayan Parida
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Sushree Swati Rout
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Rajkumar Jena
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Neha Kaushik
- Department of Biotechnology, The University of Suwon, Hwaseong si, South Korea
| | | | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar-751003, Odisha, India
| | - Chita Ranjan Sahoo
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health and Family Welfare, Government of India, Bhubaneswar-751023, India
| | - Ashok Kumar Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Meenakshi Arya
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| | - Bijay Kumar Behera
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| |
Collapse
|
2
|
Targeting Pim kinases in hematological cancers: molecular and clinical review. Mol Cancer 2023; 22:18. [PMID: 36694243 PMCID: PMC9875428 DOI: 10.1186/s12943-023-01721-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Decades of research has recognized a solid role for Pim kinases in lymphoproliferative disorders. Often up-regulated following JAK/STAT and tyrosine kinase receptor signaling, Pim kinases regulate cell proliferation, survival, metabolism, cellular trafficking and signaling. Targeting Pim kinases represents an interesting approach since knock-down of Pim kinases leads to non-fatal phenotypes in vivo suggesting clinical inhibition of Pim may have less side effects. In addition, the ATP binding site offers unique characteristics that can be used for the development of small inhibitors targeting one or all Pim isoforms. This review takes a closer look at Pim kinase expression and involvement in hematopoietic cancers. Current and past clinical trials and in vitro characterization of Pim kinase inhibitors are examined and future directions are discussed. Current studies suggest that Pim kinase inhibition may be most valuable when accompanied by multi-drug targeting therapy.
Collapse
|
3
|
Katsuta E, Gil-Moore M, Moore J, Yousif M, Adjei AA, Ding Y, Caserta J, Baldino CM, Lee KP, Gelman IH, Takabe K, Opyrchal M. Targeting PIM2 by JP11646 results in significant antitumor effects in solid tumors. Int J Oncol 2022; 61:114. [PMID: 35920189 PMCID: PMC9387562 DOI: 10.3892/ijo.2022.5404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/12/2022] [Indexed: 11/06/2022] Open
Abstract
Proviral integration of Moloney virus 2 (PIM2) is a pro-survival factor of cancer cells and a possible therapeutic target in hematological malignancies. However, the attempts at inhibiting PIM2 have yielded underwhelming results in early clinical trials on hematological malignancies. Recently, a novel pan-PIM inhibitor, JP11646, was developed. The present study examined the utility of targeting PIM2 in multiple solid cancers and investigated the antitumor efficacy and the mechanisms of action of JP11646. When PIM2 expression was compared between normal and cancer tissues in publicly available datasets, PIM2 was found to be overexpressed in several types of solid cancers. PIM2 ectopic overexpression promoted tumor growth in in vivo xenograft breast cancer mouse models. The pan-PIM inhibitor, JP11646, suppressed in vitro cancer cell proliferation in a concentration-dependent manner in multiple types of cancers; a similar result was observed with siRNA-mediated PIM2 knockdown, as well as an increased in cell apoptosis. By contrast, another pan-PIM inhibitor, AZD1208, suppressed the expression of downstream PIM2 targets, but not PIM2 protein expression, corresponding to no apoptosis induction. As a mechanism of PIM2 protein degradation, it was found that the proteasome inhibitor, bortezomib, reversed the apoptosis induced by JP11646, suggesting that PIM2 degradation by JP11646 is proteasome-dependent. JP11646 exhibited significant anticancer efficacy with minimal toxicities at the examined doses and schedules in multiple in vivo mice xenograft solid cancer models. On the whole, the present study demonstrates that PIM2 promotes cancer progression in solid tumors. JP11646 induces apoptosis at least partly by PIM2 protein degradation and suppresses cancer cell proliferation in vitro and in vivo. JP11646 may thus be a possible treatment strategy for multiple types of solid cancers.
Collapse
Affiliation(s)
- Eriko Katsuta
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Malgorzata Gil-Moore
- Departments of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Justine Moore
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mohamed Yousif
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Alex A Adjei
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN 55902, USA
| | - Yi Ding
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Justin Caserta
- Sumitomo Dainippon Pharma Oncology, Inc., Cambridge, MA 02139, USA
| | | | - Kelvin P Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Irwin H Gelman
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mateusz Opyrchal
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Yan F, Ouyang Y, Meng T, Zhang H, Yue W, Zhang X, Xue Y, Wang Z, Sun Q. Toxic effects of AZD1208 on mouse oocytes and its possible mechanisms. J Cell Physiol 2022; 237:3661-3670. [DOI: 10.1002/jcp.30835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Feng‐Ze Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Science Beijing China
| | - Ying‐Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Tie‐Gang Meng
- Fertility Preservation Lab, Guangdong‐Hong Kong Metabolism & Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| | - Hong‐Yong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Science Beijing China
| | - Xin‐Ran Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- College of Life Science University of Chinese Academy of Science Beijing China
| | - Yue Xue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Zhen‐Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Qing‐Yuan Sun
- Fertility Preservation Lab, Guangdong‐Hong Kong Metabolism & Reproductive Medicine Center Guangdong Second Provincial General Hospital Guangzhou China
| |
Collapse
|
5
|
Hoff FW, Horton TM, Kornblau SM. Reverse phase protein arrays in acute leukemia: investigative and methodological challenges. Expert Rev Proteomics 2021; 18:1087-1097. [PMID: 34965151 PMCID: PMC9148717 DOI: 10.1080/14789450.2021.2020655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Acute leukemia results from a series of mutational events that alter cell growth and proliferation. Mutations result in protein changes that orchestrate growth alterations characteristic of leukemia. Proteomics is a methodology appropriate for study of protein changes found in leukemia. The high-throughput reverse phase protein array (RPPA) technology is particularly well-suited for the assessment of protein changes in samples derived from clinical trials. AREAS COVERED This review discusses the technical, methodological, and analytical issues related to the successful development of acute leukemia RPPAs. EXPERT COMMENTARY To obtain representative protein sample lysates, samples should be prepared from freshly collected blood or bone marrow material. Variables such as sample shipment, transit time, and holding temperature only have minimal effects on protein expression. CellSave preservation tubes are preferred for cells collected after exposure to chemotherapy, and incorporation of standardized guidelines for antibody validation is recommended. A more systematic biological approach to analyze protein expression is desired, searching for recurrent patterns of protein expression that allow classification of patients into risk groups, or groups of patients that may be treated similarly. Comparing RPPA protein analysis between cell lines and primary samples shows that cell lines are not representative of patient proteomic patterns.
Collapse
Affiliation(s)
- Fieke W. Hoff
- Department of Internal Medicine, UT Southwestern Medical Center, TX, USA
| | - Terzah M. Horton
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Steven M. Kornblau
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Rathi A, Kumar D, Hasan GM, Haque MM, Hassan MI. Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects. Biochim Biophys Acta Gen Subj 2021; 1865:129995. [PMID: 34455019 DOI: 10.1016/j.bbagen.2021.129995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND PIM kinases are well-studied drug targets for cancer, belonging to Serine/Threonine kinases family. They are the downstream target of various signaling pathways, and their up/down-regulation affects various physiological processes. PIM family comprises three isoforms, namely, PIM-1, PIM-2, and PIM-3, on alternative initiation of translation and they have different levels of expression in different types of cancers. Its structure shows a unique ATP-binding site in the hinge region which makes it unique among other kinases. SCOPE OF REVIEW PIM kinases are widely reported in hematological malignancies along with prostate and breast cancers. Currently, many drugs are used as inhibitors of PIM kinases. In this review, we highlighted the physiological significance of PIM kinases in the context of disease progression and therapeutic targeting. We comprehensively reviewed the PIM kinases in terms of their expression and regulation of different physiological roles. We further predicted functional partners of PIM kinases to elucidate their role in the cellular physiology of different cancer and mapped their interaction network. MAJOR CONCLUSIONS A deeper mechanistic insight into the PIM signaling involved in regulating different cellular processes, including transcription, apoptosis, cell cycle regulation, cell proliferation, cell migration and senescence, is provided. Furthermore, structural features of PIM have been dissected to understand the mechanism of inhibition and subsequent implication of designed inhibitors towards therapeutic management of prostate, breast and other cancers. GENERAL SIGNIFICANCE Being a potential drug target for cancer therapy, available drugs and PIM inhibitors at different stages of clinical trials are discussed in detail.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
7
|
Li L, Zhao L, Man J, Liu B. CXCL2 benefits acute myeloid leukemia cells in hypoxia. Int J Lab Hematol 2021; 43:1085-1092. [PMID: 33793061 DOI: 10.1111/ijlh.13512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Drug resistance and relapse of acute myeloid leukemia (AML) is still an important problem in the treatment of leukemia. Leukemia outbreak causes severe hypoxia in bone marrow (BM), remolding BM microenvironment (niche), and transforming hematopoietic stem cell (HSC) niche into leukemia stem cell (LSC) niche. AML cells and the microenvironment usually conduct "cross-talk" through cytokines to anchor resistant AML cells into LSC niche, thus supporting their survival. Therefore, this study was aimed to investigate the role of CXCL2 in the hypoxic AML niche. METHODS AML hypoxic niche was simulated by hypoxic culture of THP-1 and HL-60 cells in vitro, thus to study the effects of CXCL2 on the proliferation and migration of AML cells. The expression of hypoxia-inducible factor-1α (HIF-1α) and the activation of survival-related kinases such as PIM2 and mTOR under CoCl2 -simulated hypoxic conditions were detected. The correlation between CXCL2 and the prognosis of AML with big data was verified. RESULTS (a) CXCL2 promoted the proliferation and migration of AML cells. (b) CXCL2 up-regulated the expression of PIM2 by enhancing the transcriptional activity of HIF-1α. (c) CXCL2 activated mTOR in AML cells. (d) CXCL2 was associated with poor prognosis in AML. CONCLUSION CXCL2 promotes survival, migration, and drug resistance pathway of AML cells in hypoxia and is associated with poor prognosis in AML. Therefore, CXCL2 can be considered as an important factor in promoting the development of AML cells in hypoxia.
Collapse
Affiliation(s)
- Lijun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Li Zhao
- Central Laboratory, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| | - Jiancheng Man
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Cervantes-Gomez F, Stellrecht CM, Ayres ML, Keating MJ, Wierda WG, Gandhi V. PIM kinase inhibitor, AZD1208, inhibits protein translation and induces autophagy in primary chronic lymphocytic leukemia cells. Oncotarget 2019; 10:2793-2809. [PMID: 31073371 PMCID: PMC6497463 DOI: 10.18632/oncotarget.26876] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/23/2019] [Indexed: 11/25/2022] Open
Abstract
The PIM1, PIM2, and PIM3 serine/threonine kinases play a role in the proliferation and survival of cancer cells. Mice lacking these three kinases were viable. Further, in human hematological malignancies, these proteins are overexpressed making them suitable targets. Several small molecule inhibitors against this enzyme were synthesized and tested. AZD1208, an orally available small-molecule drug, inhibits all three PIM kinases at a low nanomolar range. AZD1208 has been tested in clinical trials for patients with solid tumors and hematological malignancies, especially acute myelogenous leukemia. The present study evaluated the efficacy and biological actions of AZD1208 in chronic lymphocytic leukemia (CLL) cells. CLL cells had higher levels of PIM2 protein and mRNAs than did normal lymphocytes from healthy donors. Treatment of CLL lymphocytes with AZD1208 resulted in modest cell death, whereas practically no cytotoxicity was observed in healthy lymphocytes. To determine the mechanism by which AZD1208 inhibits PIM kinase function, we evaluated PIM kinase pathway and downstream substrates. Because peripheral blood CLL cells are replicationally quiescent, we analyzed substrates involved in apoptosis, transcription, and translation but not cell cycle targets. AZD1208 inhibited protein translation by decreasing phosphorylation levels of 4E-binding protein 1 (4E-BP1). AZD1208 induced autophagy in replicationally-quiescent CLL cells, which is consistent with protein translation inhibition. These data suggest that AZD1208 may elicit cytotoxicity in CLL cells through inhibiting translation and autophagy induction.
Collapse
Affiliation(s)
- Fabiola Cervantes-Gomez
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine M Stellrecht
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| | - Mary L Ayres
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
9
|
Yadav AK, Kumar V, Bailey DB, Jang BC. AZD1208, a Pan-Pim Kinase Inhibitor, Has Anti-Growth Effect on 93T449 Human Liposarcoma Cells via Control of the Expression and Phosphorylation of Pim-3, mTOR, 4EBP-1, S6, STAT-3 and AMPK. Int J Mol Sci 2019; 20:ijms20020363. [PMID: 30654529 PMCID: PMC6359068 DOI: 10.3390/ijms20020363] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
Overexpression of Pim kinases has an oncogenic/pro-survival role in many hematological and solid cancers. AZD1208 is a pan-Pim kinase inhibitor that has anti-cancer and anti-adipogenic actions. Here, we investigated the effects of AZD1208 on the growth of 93T449 cells, a differentiated human liposarcoma cell line. At 20 µM, AZD1208 was cytotoxic (cytostatic) but not apoptotic, reducing cell survival without DNA fragmentation, caspase activation or increasing cells in the sub G1 phase; known apoptotic parameters. Notably, AZD1208 reduced phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in 93T449 cells. STAT-3 inhibition by AG490, a JAK2/STAT-3 inhibitor similarly reduced cell survival. AZD1208 down-regulated phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal S6 while up-regulated eukaryotic initiation factor-2α (eIF-2α). In addition, AZD1208 induced a LKB-1-independent AMPK activation, which was crucial for its cytostatic effect, as knock-down of AMPK greatly blocked AZD1208s ability to reduce cell survival. AZD1208 had no effect on expression of two members of Pim kinase family (Pim-1 and Pim-3) but inhibited phosphorylation of 4EBP-1, a downstream effector of Pim kinases. Importantly, a central role for Pim-3 in the actions of AZD1208 was confirmed by knock-down, which not only reduced 93T449 cell survival but also led to the inhibition of 4EBP-1, mTOR, eIF-2α and STAT-3, along with the activation of AMPK. In summary, this is the first report demonstrating that AZD1208 inhibits growth of liposarcoma cells and that this activity is mediated through Pim-3 kinase, STAT-3, mTOR, S6 and AMPK expression and phosphorylation pathways.
Collapse
Affiliation(s)
- Anil Kumar Yadav
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| | - Vinoth Kumar
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| | - David Bishop Bailey
- Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK.
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Korea.
| |
Collapse
|
10
|
Dawson JC, Warchal SJ, Carragher NO. Drug Screening Platforms and RPPA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1188:203-226. [PMID: 31820390 DOI: 10.1007/978-981-32-9755-5_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its inception as a scalable and cost-effective method for precise quantification of the abundance of multiple protein analytes and post-translational epitopes across large sample sets, reverse phase protein array (RPPA) has been utilized as a drug discovery tool. Key RPPA drug discovery applications include primary screening of abundance or activation state of nominated protein targets, secondary screening for toxicity and selectivity, mechanism-of-action profiling, biomarker discovery, and drug combination discovery. In recent decades, drug discovery strategies have evolved dramatically in response to continual advances in technology platforms supporting high-throughput screening, structure-based drug design, new therapeutic modalities, and increasingly more complex and disease-relevant cell-based and in vivo preclinical models of disease. Advances in biological laboratory capabilities in drug discovery are complemented by significant developments in bioinformatics and computational approaches for integrating large complex datasets. Bioinformatic and computational analysis of integrated molecular, pathway network and phenotypic datasets enhance multiple stages of the drug discovery process and support more informative drug target hypothesis generation and testing. In this chapter we discuss and present examples demonstrating how the latest advances in RPPA complement and integrate with other emerging drug screening platforms to support a new era of more informative and evidence-led drug discovery strategies.
Collapse
Affiliation(s)
- John C Dawson
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Scott J Warchal
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
11
|
Lawrence MG, Obinata D, Sandhu S, Selth LA, Wong SQ, Porter LH, Lister N, Pook D, Pezaro CJ, Goode DL, Rebello RJ, Clark AK, Papargiris M, Van Gramberg J, Hanson AR, Banks P, Wang H, Niranjan B, Keerthikumar S, Hedwards S, Huglo A, Yang R, Henzler C, Li Y, Lopez-Campos F, Castro E, Toivanen R, Azad A, Bolton D, Goad J, Grummet J, Harewood L, Kourambas J, Lawrentschuk N, Moon D, Murphy DG, Sengupta S, Snow R, Thorne H, Mitchell C, Pedersen J, Clouston D, Norden S, Ryan A, Dehm SM, Tilley WD, Pearson RB, Hannan RD, Frydenberg M, Furic L, Taylor RA, Risbridger GP. Patient-derived Models of Abiraterone- and Enzalutamide-resistant Prostate Cancer Reveal Sensitivity to Ribosome-directed Therapy. Eur Urol 2018; 74:562-572. [PMID: 30049486 DOI: 10.1016/j.eururo.2018.06.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/13/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND The intractability of castration-resistant prostate cancer (CRPC) is exacerbated by tumour heterogeneity, including diverse alterations to the androgen receptor (AR) axis and AR-independent phenotypes. The availability of additional models encompassing this heterogeneity would facilitate the identification of more effective therapies for CRPC. OBJECTIVE To discover therapeutic strategies by exploiting patient-derived models that exemplify the heterogeneity of CRPC. DESIGN, SETTING, AND PARTICIPANTS Four new patient-derived xenografts (PDXs) were established from independent metastases of two patients and characterised using integrative genomics. A panel of rationally selected drugs was tested using an innovative ex vivo PDX culture system. INTERVENTION The following drugs were evaluated: AR signalling inhibitors (enzalutamide and galeterone), a PARP inhibitor (talazoparib), a chemotherapeutic (cisplatin), a CDK4/6 inhibitor (ribociclib), bromodomain and extraterminal (BET) protein inhibitors (iBET151 and JQ1), and inhibitors of ribosome biogenesis/function (RNA polymerase I inhibitor CX-5461 and pan-PIM kinase inhibitor CX-6258). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Drug efficacy in ex vivo cultures of PDX tissues was evaluated using immunohistochemistry for Ki67 and cleaved caspase-3 levels. Candidate drugs were also tested for antitumour efficacy in vivo, with tumour volume being the primary endpoint. Two-tailed t tests were used to compare drug and control treatments. RESULTS AND LIMITATIONS Integrative genomics revealed that the new PDXs exhibited heterogeneous mechanisms of resistance, including known and novel AR mutations, genomic structural rearrangements of the AR gene, and a neuroendocrine-like AR-null phenotype. Despite their heterogeneity, all models were sensitive to the combination of ribosome-targeting agents CX-5461 and CX-6258. CONCLUSIONS This study demonstrates that ribosome-targeting drugs may be effective against diverse CRPC subtypes including AR-null disease, and highlights the potential of contemporary patient-derived models to prioritise treatment strategies for clinical translation. PATIENT SUMMARY Diverse types of therapy-resistant prostate cancers are sensitive to a new combination of drugs that inhibit protein synthesis pathways in cancer cells.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Melbourne Urological Research Alliance (MURAL), Melbourne, VIC, Australia
| | - Daisuke Obinata
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Shahneen Sandhu
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Division of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Cancer Tissue Collection After Death (CASCADE) Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Stephen Q Wong
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Molecular Biomarkers and Translational Genomics Lab, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Laura H Porter
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Natalie Lister
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - David Pook
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Medical Oncology, Monash Health, Clayton, VIC, Australia
| | - Carmel J Pezaro
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Eastern Health and Monash University Eastern Health Clinical School, Box Hill, VIC, Australia
| | - David L Goode
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Richard J Rebello
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ashlee K Clark
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Melissa Papargiris
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Melbourne Urological Research Alliance (MURAL), Melbourne, VIC, Australia; Australian Prostate Cancer Bioresource, VIC Node, Monash University, Clayton, VIC, Australia
| | - Jenna Van Gramberg
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Australian Prostate Cancer Bioresource, VIC Node, Monash University, Clayton, VIC, Australia
| | - Adrienne R Hanson
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Patricia Banks
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Hong Wang
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Birunthi Niranjan
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Shivakumar Keerthikumar
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Shelley Hedwards
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Alisee Huglo
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rendong Yang
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Christine Henzler
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Yingming Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Elena Castro
- Spanish National Cancer Research Centre, Madrid, Spain
| | - Roxanne Toivanen
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Arun Azad
- Medical Oncology, Monash Health, Clayton, VIC, Australia; Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Damien Bolton
- Department of Urology, Austin Hospital, The University of Melbourne, Melbourne Heidelberg, VIC, Australia; Department of Surgery, The University of Melbourne, Parkville, VIC, Australia
| | - Jeremy Goad
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia; Epworth Healthcare, Melbourne, VIC, Australia
| | - Jeremy Grummet
- Epworth Healthcare, Melbourne, VIC, Australia; Department of Surgery, Central Clinical School, Monash University, Clayton, VIC, Australia; Australian Urology Associates, Melbourne, VIC, Australia
| | - Laurence Harewood
- Department of Surgery, The University of Melbourne, Parkville, VIC, Australia; Epworth Healthcare, Melbourne, VIC, Australia
| | - John Kourambas
- Department of Medicine, Monash Health, Casey Hospital, Berwick, VIC, Australia
| | - Nathan Lawrentschuk
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia; Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Daniel Moon
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia; Epworth Healthcare, Melbourne, VIC, Australia; Australian Urology Associates, Melbourne, VIC, Australia; Central Clinical School, Monash University, Clayton, VIC, Australia; The Epworth Prostate Centre, Epworth Hospital, Richmond, VIC, Australia
| | - Declan G Murphy
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC, Australia; Epworth Healthcare, Melbourne, VIC, Australia
| | - Shomik Sengupta
- Eastern Health and Monash University Eastern Health Clinical School, Box Hill, VIC, Australia; Department of Urology, Austin Hospital, The University of Melbourne, Melbourne Heidelberg, VIC, Australia; Epworth Healthcare, Melbourne, VIC, Australia; Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia; Epworth Freemasons, Epworth Health, East Melbourne, VIC, Australia
| | - Ross Snow
- Australian Urology Associates, Melbourne, VIC, Australia
| | - Heather Thorne
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; kConFab, Research Department, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Catherine Mitchell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - John Pedersen
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; TissuPath, Mount Waverley, VIC, Australia
| | | | - Sam Norden
- TissuPath, Mount Waverley, VIC, Australia
| | | | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota, Minneapolis, MN, USA
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Richard B Pearson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia; Oncogenic Signaling and Growth Control Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
| | - Ross D Hannan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia; Oncogenic Signaling and Growth Control Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia; ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, ACT, Australia
| | - Mark Frydenberg
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Epworth Healthcare, Melbourne, VIC, Australia; Australian Urology Associates, Melbourne, VIC, Australia; Department of Surgery, Monash University, Clayton, VIC, Australia
| | - Luc Furic
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Melbourne Urological Research Alliance (MURAL), Melbourne, VIC, Australia; Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Gail P Risbridger
- Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia; Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Melbourne Urological Research Alliance (MURAL), Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
12
|
Koblish H, Li YL, Shin N, Hall L, Wang Q, Wang K, Covington M, Marando C, Bowman K, Boer J, Burke K, Wynn R, Margulis A, Reuther GW, Lambert QT, Dostalik Roman V, Zhang K, Feng H, Xue CB, Diamond S, Hollis G, Yeleswaram S, Yao W, Huber R, Vaddi K, Scherle P. Preclinical characterization of INCB053914, a novel pan-PIM kinase inhibitor, alone and in combination with anticancer agents, in models of hematologic malignancies. PLoS One 2018; 13:e0199108. [PMID: 29927999 PMCID: PMC6013247 DOI: 10.1371/journal.pone.0199108] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022] Open
Abstract
The Proviral Integration site of Moloney murine leukemia virus (PIM) serine/threonine protein kinases are overexpressed in many hematologic and solid tumor malignancies and play central roles in intracellular signaling networks important in tumorigenesis, including the Janus kinase-signal transducer and activator of transcription (JAK/STAT) and phosphatidylinositol 3-kinase (PI3K)/AKT pathways. The three PIM kinase isozymes (PIM1, PIM2, and PIM3) share similar downstream substrates with other key oncogenic kinases and have differing but mutually compensatory functions across tumors. This supports the therapeutic potential of pan-PIM kinase inhibitors, especially in combination with other anticancer agents chosen based on their role in overlapping signaling networks. Reported here is a preclinical characterization of INCB053914, a novel, potent, and selective adenosine triphosphate-competitive pan-PIM kinase inhibitor. In vitro, INCB053914 inhibited proliferation and the phosphorylation of downstream substrates in cell lines from multiple hematologic malignancies. Effects were confirmed in primary bone marrow blasts from patients with acute myeloid leukemia treated ex vivo and in blood samples from patients receiving INCB053914 in an ongoing phase 1 dose-escalation study. In vivo, single-agent INCB053914 inhibited Bcl-2-associated death promoter protein phosphorylation and dose-dependently inhibited tumor growth in acute myeloid leukemia and multiple myeloma xenografts. Additive or synergistic inhibition of tumor growth was observed when INCB053914 was combined with selective PI3Kδ inhibition, selective JAK1 or JAK1/2 inhibition, or cytarabine. Based on these data, pan-PIM kinase inhibitors, including INCB053914, may have therapeutic utility in hematologic malignancies when combined with other inhibitors of oncogenic kinases or standard chemotherapeutics.
Collapse
Affiliation(s)
- Holly Koblish
- Incyte Corporation, Wilmington, Delaware, United States of America
- * E-mail:
| | - Yun-long Li
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Niu Shin
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Leslie Hall
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Qian Wang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kathy Wang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | | | - Cindy Marando
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kevin Bowman
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Jason Boer
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Krista Burke
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Richard Wynn
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Alex Margulis
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Gary W. Reuther
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Que T. Lambert
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, United States of America
| | | | - Ke Zhang
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Hao Feng
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Chu-Biao Xue
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Sharon Diamond
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Greg Hollis
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Swamy Yeleswaram
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Wenqing Yao
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Reid Huber
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Kris Vaddi
- Incyte Corporation, Wilmington, Delaware, United States of America
| | - Peggy Scherle
- Incyte Corporation, Wilmington, Delaware, United States of America
| |
Collapse
|
13
|
Cortes J, Tamura K, DeAngelo DJ, de Bono J, Lorente D, Minden M, Uy GL, Kantarjian H, Chen LS, Gandhi V, Godin R, Keating K, McEachern K, Vishwanathan K, Pease JE, Dean E. Phase I studies of AZD1208, a proviral integration Moloney virus kinase inhibitor in solid and haematological cancers. Br J Cancer 2018; 118:1425-1433. [PMID: 29765150 PMCID: PMC5988656 DOI: 10.1038/s41416-018-0082-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Background Proviral integration Moloney virus (PIM) kinases (PIM1, 2 and 3) are overexpressed in several tumour types and contribute to oncogenesis. AZD1208 is a potent ATP-competitive PIM kinase inhibitor investigated in patients with recurrent or refractory acute myeloid leukaemia (AML) or advanced solid tumours. Methods Two dose-escalation studies were performed to evaluate the safety and tolerability, and to define the maximum tolerated dose (MTD), of AZD1208 in AML and solid tumours. Secondary objectives were to evaluate the pharmacokinetics, pharmacodynamics (PD) and preliminary efficacy of AZD1208. Results Sixty-seven patients received treatment: 32 in the AML study over a 120–900 mg dose range, and 25 in the solid tumour study over a 120–800 mg dose range. Nearly all patients (98.5%) in both studies experienced adverse events, mostly gastrointestinal (92.5%). Dose-limiting toxicities included rash, fatigue and vomiting. AZD1208 was not tolerated at 900 mg, and the protocol-defined MTD was not confirmed. AZD1208 increased CYP3A4 activity after multiple dosing, resulting in increased drug clearance. There were no clinical responses; PD analysis showed biological activity of AZD1208. Conclusions Despite the lack of single-agent clinical efficacy with AZD1208, PIM kinase inhibition may hold potential as an anticancer treatment, perhaps in combination with other agents.
Collapse
Affiliation(s)
- Jorge Cortes
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA
| | - Kenji Tamura
- Department of Breast Oncology and Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo, Tokyo, 104-0045, Japan
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Room D-2050, Boston, MA, 02215, USA
| | - Johann de Bono
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, Royal Marsden, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - David Lorente
- Prostate Cancer Targeted Therapy Group and Drug Development Unit, Royal Marsden, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Mark Minden
- Division of Stem Cell and Developmental Biology, Ontario Cancer Institute, Princess Margaret Hospital, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | - Geoffrey L Uy
- Department of Medicine, Oncology Division, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Hagop Kantarjian
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA
| | - Lisa S Chen
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX, 77054, USA
| | - Robert Godin
- AstraZeneca, 35 Gatehouse Dr, Waltham, MA, 02451, USA
| | - Karen Keating
- AstraZeneca, 35 Gatehouse Dr, Waltham, MA, 02451, USA
| | | | | | | | - Emma Dean
- Clinical Trials Unit, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK.
| |
Collapse
|
14
|
Stafman LL, Mruthyunjayappa S, Waters AM, Garner EF, Aye JM, Stewart JE, Yoon KJ, Whelan K, Mroczek-Musulman E, Beierle EA. Targeting PIM kinase as a therapeutic strategy in human hepatoblastoma. Oncotarget 2018; 9:22665-22679. [PMID: 29854306 PMCID: PMC5978256 DOI: 10.18632/oncotarget.25205] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing incidence coupled with poor prognosis and treatments that are virtually unchanged over the past 20 years have made the need for the development of novel therapeutics for hepatoblastoma imperative. PIM kinases have been implicated as drivers of tumorigenesis in multiple cancers, including hepatocellular carcinoma. We hypothesized that PIM kinases, specifically PIM3, would play a role in hepatoblastoma tumorigenesis and that PIM kinase inhibition would affect hepatoblastoma in vitro and in vivo. Parameters including cell survival, proliferation, motility, and apoptosis were assessed in human hepatoblastoma cells following PIM3 knockdown with siRNA or treatment with the PIM inhibitor AZD1208. An in vivo model of human hepatoblastoma was utilized to study the effects of PIM inhibition alone and in combination with cisplatin. PIM kinases were found to be present in the human hepatoblastoma cell line, HuH6, and in a human hepatoblastoma patient-derived xenograft, COA67. PIM3 knockdown or inhibition with AZD1208 decreased cell survival, attachment independent growth, and motility. Additionally, inhibition of tumor growth was observed in a hepatoblastoma xenograft model in mice treated with AZD1208. Combination therapy with AZD1208 and cisplatin resulted in a significant increase in animal survival when compared to either treatment alone. The current studies showed that PIM kinase inhibition decreased human hepatoblastoma tumorigenicity both in vitro and in vivo, implying that PIM inhibitors may be useful as a novel therapeutic for children with hepatoblastoma.
Collapse
Affiliation(s)
- Laura L Stafman
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Alicia M Waters
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Evan F Garner
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie M Aye
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jerry E Stewart
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kimberly Whelan
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Elizabeth A Beierle
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Aziz AUR, Farid S, Qin K, Wang H, Liu B. PIM Kinases and Their Relevance to the PI3K/AKT/mTOR Pathway in the Regulation of Ovarian Cancer. Biomolecules 2018; 8:biom8010007. [PMID: 29401696 PMCID: PMC5871976 DOI: 10.3390/biom8010007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is a medical term that includes a number of tumors with different molecular biology, phenotypes, tumor progression, etiology, and even different diagnosis. Some specific treatments are required to address this heterogeneity of ovarian cancer, thus molecular characterization may provide an important tool for this purpose. On a molecular level, proviral-integration site for Moloney-murine leukemia virus (PIM) kinases are over expressed in ovarian cancer and play a vital role in the regulation of different proteins responsible for this tumorigenesis. Likewise, the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is also a central regulator of the ovarian cancer. Interestingly, recent research has linked the PIM kinases to the PI3K/AKT/mTOR pathway in several types of cancers, but their connection in ovarian cancer has not been studied yet. Once the exact relationship of PIM kinases with the PI3K/AKT/mTOR pathway is acquired in ovarian cancer, it will hopefully provide effective treatments on a molecular level. This review mainly focuses on the role of PIM kinases in ovarian cancer and their interactions with proteins involved in its progression. In addition, this review suggests a connection between the PIM kinases and the PI3K/AKT/mTOR pathway and their parallel mechanism in the regulation of ovarian cancer.
Collapse
Affiliation(s)
- Aziz Ur Rehman Aziz
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Sumbal Farid
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Kairong Qin
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Hanqin Wang
- Center for Translational Medicine, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China.
| | - Bo Liu
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
16
|
Rebello RJ, Huglo AV, Furic L. PIM activity in tumours: A key node of therapy resistance. Adv Biol Regul 2017; 67:163-169. [PMID: 29111105 DOI: 10.1016/j.jbior.2017.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
The PIM kinases are proto-oncogenes which have been shown to facilitate cell survival and proliferation to drive malignancy and resistance post-therapy. They are able to suppress cell death signals, sustain PI3K/AKT/mTORC1 pathway activity and regulate the MYC oncogenic program. Recent work has revealed PIM kinase essentiality for advanced tumour maintenance and described tumour sensitivity to small molecule inhibitors targeting PIM kinase in multiple malignancies.
Collapse
Affiliation(s)
- Richard J Rebello
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia; Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, VIC, 3800, Australia
| | - Alisée V Huglo
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Luc Furic
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia; Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, VIC, 3800, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
17
|
Rebello RJ, Pearson RB, Hannan RD, Furic L. Therapeutic Approaches Targeting MYC-Driven Prostate Cancer. Genes (Basel) 2017; 8:genes8020071. [PMID: 28212321 PMCID: PMC5333060 DOI: 10.3390/genes8020071] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 02/02/2023] Open
Abstract
The transcript encoding the proto-oncogene MYC is commonly overexpressed in prostate cancer (PC). MYC protein abundance is also increased in the majority of cases of advanced and metastatic castrate-resistant PC (mCRPC). Accordingly, the MYC-directed transcriptional program directly contributes to PC by upregulating the expression of a number of pro-tumorigenic factors involved in cell growth and proliferation. A key cellular process downstream of MYC activity is the regulation of ribosome biogenesis which sustains tumor growth. MYC activity also cooperates with the dysregulation of the phosphoinositol-3-kinase (PI3K)/AKT/mTOR pathway to promote PC cell survival. Recent advances in the understanding of these interactions through the use of animal models have provided significant insight into the therapeutic efficacy of targeting MYC activity by interfering with its transcriptional program, and indirectly by targeting downstream cellular events linked to MYC transformation potential.
Collapse
Affiliation(s)
- Richard J Rebello
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800, Australia.
| | - Richard B Pearson
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
| | - Ross D Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
- The ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601, Australia.
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Luc Furic
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|