1
|
Ali II, D'Souza C, Tariq S, Adeghate EA. Adropin Is Expressed in Pancreatic Islet Cells and Reduces Glucagon Release in Diabetes Mellitus. Int J Mol Sci 2024; 25:9824. [PMID: 39337311 PMCID: PMC11432804 DOI: 10.3390/ijms25189824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetes mellitus affects 537 million adults around the world. Adropin is expressed in different cell types. Our aim was to investigate the cellular localization in the endocrine pancreas and its effect on modulating pancreatic endocrine hormone release in streptozotocin (STZ)-induced diabetic rats. Adropin expression in the pancreas was investigated in normal and diabetic rats using immunohistochemistry and immunoelectron microscopy. Serum levels of insulin, glucagon pancreatic polypeptide (PP), and somatostatin were measured using a Luminex® χMAP (Magpix®) analyzer. Pancreatic endocrine hormone levels in INS-1 832/3 rat insulinoma cells, as well as pancreatic tissue fragments of normal and diabetic rats treated with different concentrations of adropin (10-6, 10-9, and 10-12 M), were measured using ELISA. Adropin was colocalized with cells producing either insulin, glucagon, or PP. Adropin treatment reduced the number of glucagon-secreting alpha cells and suppressed glucagon release from the pancreas. The serum levels of GLP-1 and amylin were significantly increased after treatment with adropin. Our study indicates a potential role of adropin in modulating glucagon secretion in animal models of diabetes mellitus.
Collapse
Affiliation(s)
- Ifrah I Ali
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Crystal D'Souza
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ernest A Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Foundation, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
2
|
Ragab A, Fattah AMA, Sayed AR, GamalEl Din SF, Mahmoud Hassan SM, Mohamed AYM, Hamed MA. Correlation between Serum Levels of Nitric Oxide and Adropin and Erectile Dysfunction in Males with Nonalcoholic Fatty Liver Disease: An Observational Study. Reprod Sci 2024; 31:2676-2684. [PMID: 38691315 PMCID: PMC11393249 DOI: 10.1007/s43032-024-01537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
The current study aimed to evaluate the serum levels of nitric oxide (NO) and adropin in males with non-alcoholic fatty liver disease (NAFLD) induced erectile dysfunction (ED) and NAFLD patients without ED and controls. The current study selected 165 participants from the hepatology department from November 2021 to November 2022. The patients were either suffering from NAFLD with normal liver functions or non-alcoholic steatohepatitis with abnormal liver functions. They were diagnosed by abdominal ultrasonography. Participants were evaluated using the validated Arabic version of the International Index of Erectile Function (ArIIEF-5), the Arabic form of the Generalized Anxiety Disorder-7 (GAD-7) questionnaire and the Patient Health Questionnaire-9 (PHQ-9). Noteworthy, there were significant positive correlations between ArIIEF-5 score, NO, adropin and total testosterone (r = 0.380, p = 0.001; r = 0.507, p = < 0.001; r = 0.246, p = 0.038, respectively). Meanwhile, there were significant negative correlations between ArIIEF-5 score, creatinine, duration of the disease and scores of GAD-7 and PHQ-9 (r = -0.656, p = < 0.001; r = -0.368, p = 0.002; r = -0.663, p = < 0.001; r = -0.248, p = 0.037, respectively). Finally, a linear regression analysis revealed that GAD-7, creatinine, and adropin were the only strong independent predictors of ArIIEF-5, as the 95% confidence interval in the form of upper and lower bounds was -0.349, -0.843, p < 0.001, -6.507, -18.402, p < 0.001, 0.476, 0.117, and p 0.002, respectively. Impaired NO and adropin levels play a potential role in the development of ED in patients with NAFLD.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Andrology, Sexology and STDs, Faculty of Medicine, Beni-Suef University, BeniSuef, Egypt
| | - Ali M Abdel Fattah
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Beni-Suef University, BeniSuef, Egypt
| | - Ahmed Reda Sayed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Beni-Suef University, BeniSuef, Egypt
| | - Sameh Fayek GamalEl Din
- Department of Andrology, Sexology and STDs, KasrAlainy Faculty of Medicine, Cairo University, Al-Saray Street, El Manial, Cairo, 11956, Egypt.
| | | | | | - Mostafa Ahmed Hamed
- Department of Andrology, Sexology and STDs, Faculty of Medicine, Beni-Suef University, BeniSuef, Egypt
| |
Collapse
|
3
|
Rooban S, Arul Senghor K, Vinodhini V, Kumar J. Adropin: A crucial regulator of cardiovascular health and metabolic balance. Metabol Open 2024; 23:100299. [PMID: 39045137 PMCID: PMC11263719 DOI: 10.1016/j.metop.2024.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Adropin, a peptide discovered in 2008, has gained recognition as a key regulator of cardiovascular health and metabolic balance. Initially identified for its roles in energy balance, lipid metabolism, and glucose regulation, adropin has also been found to improve cardiovascular health by enhancing endothelial function, modulating lipid profiles, and reducing oxidative stress. These protective mechanisms suggest that adropin may be able to help prevent conditions such as atherosclerosis, hypertension, and other cardiovascular diseases. Research has established connections between adropin and cardiovascular risk factors, such as obesity, insulin resistance, and dyslipidemia, positioning it as a valuable biomarker for evaluating cardiovascular disease risk. New studies highlight adropin's diagnostic and prognostic significance, showing that higher levels are linked to better cardiovascular outcomes, while lower levels are associated with a higher risk of cardiovascular diseases. This review aims to summarize current knowledge on adropin, emphasizing its significance as a promising focus in the intersection of cardiovascular health and metabolic health. By summarizing the latest research findings, this review aims to offer insights into the potential applications of adropin in both clinical practice and research, leading to a deeper understanding of its role in maintaining cardiovascular and metabolic health.
Collapse
Affiliation(s)
- S. Rooban
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - K.A. Arul Senghor
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - V.M. Vinodhini
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - J.S. Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Kaplan S, Aydın Türk B, Elibol E, Özbey G, Ekinci T. Histopathologic effects of obstetric gel on the vaginal tissue: in vaginal trauma formed rat model. Biotech Histochem 2024:1-8. [PMID: 39177035 DOI: 10.1080/10520295.2024.2389517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
The present study aimed to investigate the histopathological effects of obstetric gel (OG) on vaginal tissue. In this study, 21 female Wistar albino rats were divided into three groups, comprising seven animals in each group. The first group (group 1) was the control group, the second group (group 2) was the physiological saline (PS) group, and the third group (group 3) was the OG group. In group 1, dilatation was performed using Hegar dilators from Hegar 5 to Hegar 10 without any vaginal application. In group 2, the vagina was washed with a PS-filled applicator. In group 3, the vagina was washed with an OG-filled applicator and Hegar dilators were used to achieve vaginal dilatation. In the group of OG-applied rats, there was an increase in mast cell infiltration, tissue epithelial thickness, and fibrillin-1 levels of the mucosa in the vaginal tissue. The present study is the first to investigate the histopathological effects of OG used for vaginal tissue dilatation in rats. OGs have no early effectiveness in preventing the damage caused by compression of the vaginal wall; however, OGs may have a protective effect against pelvic floor pathologies.
Collapse
Affiliation(s)
- Selçuk Kaplan
- Department of Gynecology and Obstetrics, School of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Bilge Aydın Türk
- Department of Pathology, School of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Ebru Elibol
- Department of Histology and Embryology, School of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Gürkan Özbey
- Department of Gynecology and Obstetrics, Elazig Dogu Anadolu Hospital, Elazig, Turkey
| | - Tekin Ekinci
- Department of Obstetrics and Gynecolog, Training and Research Hospital, Turgut Ozal University, Malatya, Turkey
| |
Collapse
|
5
|
Tabansi D, Dahiru D, Patrick AT, Jahng WJ. Anti-Atherosclerosis and Anti-Hyperlipidemia Functions of Terminalia catappa Fruit. ACS OMEGA 2023; 8:35571-35579. [PMID: 37810701 PMCID: PMC10552119 DOI: 10.1021/acsomega.3c00685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
Background: Atherosclerosis is a chronic pathological condition that has remained clinically silent for decades, and the epidemic has continued to be on the rise due to risk factors, including diet, lifestyle, hyperlipidemia, pathogenic microorganisms, and aging. Using various synthetic drugs in treating atherosclerosis is associated with a high risk of myositis, angioedema, myoglobinuria, and acute renal failure. Various side effects of the available drugs have been reported; attempts are underway to explore natural sources with antiatherosclerotic activity. Aim and objective: Using a diet-induced atherosclerosis rat model, the current study tested the hypothesis of antiatherosclerotic and antihyperlipidemic roles of Terminalia catappa fruit extracts. Materials and Methods: Atherosclerosis in Wistar rats was induced using an atherogenic diet. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (AP), creatine kinase (CK), and lactate dehydrogenase (LDH) were determined using analytical kits. Results: Quantitative phytochemical analysis of the extracts demonstrated that the plant had flavonoids, saponins, tannins, terpenoids, alkaloids, cardiac glycosides, sterols, phenols, and anthraquinones. Diet-induced atherogenic Wistar rats showed a significant (p < 0.05) increase in total cholesterol, triglyceride, low-density lipoprotein cholesterol, and very low-density lipoprotein cholesterol compared to the healthy control group; however, the atherogenic lipid profile was reversed by the treatment of T. catappa fruit extracts. The biochemical experiments demonstrate that T. catappa fruit extracts have an antihyperlipidaemic effect, shown by a decreased coronary risk index and the atherogenic index, and an increased cardioprotective index, compared to disease control. Conclusion: The current study indicates that T. catappa fruit extracts may contain bioactive molecules to treat atherosclerosis.
Collapse
Affiliation(s)
- Doris Tabansi
- Department
of Biochemistry, Faculty of Life Sciences, Modibbo Adama University of Technology, Yola 640101, Nigeria
| | - Daniel Dahiru
- Department
of Biochemistry, Faculty of Life Sciences, Modibbo Adama University of Technology, Yola 640101, Nigeria
| | - Ambrose Teru Patrick
- Department
of Cellular and Molecular Medicine, Chosun
University, Gwangju 61452, Korea
- Department
of Ophthalmology, Julia Laboratory, Suwon 16232, Korea
| | - Wan Jin Jahng
- Department
of Ophthalmology, Julia Laboratory, Suwon 16232, Korea
- Department
of Drug Discoveries, Julia Eye Institute, Suwon 16243, Korea
| |
Collapse
|
6
|
La Russa D, Barberio L, Marrone A, Perri A, Pellegrino D. Caloric Restriction Mitigates Kidney Fibrosis in an Aged and Obese Rat Model. Antioxidants (Basel) 2023; 12:1778. [PMID: 37760081 PMCID: PMC10525959 DOI: 10.3390/antiox12091778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Caloric restriction is an effective intervention to protract healthspan and lifespan in several animal models from yeast to primates, including humans. Caloric restriction has been found to induce cardiometabolic adaptations associated with improved health and to delay the onset and progression of kidney disease in different species, particularly in rodent models. In both aging and obesity, fibrosis is a hallmark of kidney disease, and epithelial-mesenchymal transition is a key process that leads to fibrosis and renal dysfunction during aging. In this study, we used an aged and obese rat model to evaluate the effect of long-term (6 months) caloric restriction (-40%) on renal damage both from a structural and functional point of view. Renal interstitial fibrosis was analyzed by histological techniques, whereas effects on mesenchymal (N-cadherin, Vimentin, Desmin and α-SMA), antioxidant (SOD1, SOD2, Catalase and GSTP1) inflammatory (YM1 and iNOS) markers and apoptotic/cell cycle (BAX, BCL2, pJNK, Caspase 3 and p27) pathways were investigated using Western blot analysis. Our results clearly showed that caloric restriction promotes cell cycle division and reduces apoptotic injury and fibrosis phenotype through inflammation attenuation and leukocyte infiltration. In conclusion, we highlight the beneficial effects of caloric restriction to preserve elderly kidney function.
Collapse
Affiliation(s)
- Daniele La Russa
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (L.B.); (A.M.); (D.P.)
- LARSO (Analysis and Research on Oxidative Stress Laboratory), University of Calabria, 87036 Rende, Italy
| | - Laura Barberio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (L.B.); (A.M.); (D.P.)
- LARSO (Analysis and Research on Oxidative Stress Laboratory), University of Calabria, 87036 Rende, Italy
| | - Alessandro Marrone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (L.B.); (A.M.); (D.P.)
| | - Anna Perri
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Daniela Pellegrino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (L.B.); (A.M.); (D.P.)
- LARSO (Analysis and Research on Oxidative Stress Laboratory), University of Calabria, 87036 Rende, Italy
| |
Collapse
|
7
|
Soltani S, Beigrezaei S, Malekahmadi M, Clark CCT, Abdollahi S. Circulating levels of adropin and diabetes: a systematic review and meta-analysis of observational studies. BMC Endocr Disord 2023; 23:73. [PMID: 37029398 PMCID: PMC10080945 DOI: 10.1186/s12902-023-01327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
OBJECTIVE Adropin, a newly identified regulatory protein has garnered attention given its potential role in metabolism regulation, especially glucose metabolism and insulin resistance. However, studies on the association between adropin and type 2 diabetes mellitus (T2DM) are equivocal. The aim of this study is to assess the association between serum adropin levels and T2DM using a systematic review and meta-analysis of observational studies. METHODS PubMed, Scopus, ISI Web of science, and Google Scholar were searched, up to August 2022, for studies that reported the association between serum levels of adropin in adults with T2DM compared to a control group without diabetes. A random-effect model was used to compute the pooled weighted mean difference (WMD) with 95% confidence intervals (CI). RESULTS Meta-analysis of 15 studies (n = 2813 participants) revealed that the serum adropin concentrations were significantly lower in patients with T2DM compared with the control group (WMD= -0.60 ng/mL, 95% CI: -0.70 to -0.49; I2 = 99.5%). Subgroup analysis also found lower concentration of adropin in patients with T2DM who were otherwise healthy compared to a control group (n = 9; WMD=-0.04 ng/ml, 95% CI= -0.06 to -0.01, p = 0.002; I2 = 96.4). CONCLUSIONS Our study showed adropin levels are lower in patients with diabetes compared to a control group without diabetes. However, the limitations of observational studies challenge the validity of the results, and further investigations are needed to confirm the veracity of these findings and additionally explore possible mechanisms.
Collapse
Affiliation(s)
- Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Beigrezaei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahsa Malekahmadi
- Research Center for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
8
|
Kandeel S, Salib Y, El-Mehey K, Zamzam AE. Protective Effect of Carob Pods Extract on Esomeprazole-Induced Changes on the Renal Cortex of Rats: Histological, Immunohistochemical and Statistical Study. JOURNAL OF PHARMACOLOGY AND TOXICOLOGY 2023; 18:53-62. [DOI: 10.3923/jpt.2023.53.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Vural A, Kurt D, Karagöz A, Emecen Ö, Aydin E. The Relationship Between Coronary Collateral Circulation and Serum Adropin Levels. Cureus 2023; 15:e35166. [PMID: 36949994 PMCID: PMC10028480 DOI: 10.7759/cureus.35166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2023] [Indexed: 02/21/2023] Open
Abstract
Objective Coronary collateral circulation (CCC) are vascular structures that limit the infarct area, protect left ventricular function, and reduce the frequency of arrhythmia and mortality during myocardial ischemia and infarction. In this study, we examined the relationship between the development of CCC and serum adropin levels, which has been shown in previous studies to regulate endothelial functions and increase endothelial nitric oxide synthesis, in patients with acute myocardial infarction. Methods This study included 41 patients with insufficient CCC and 43 patients with well-developed CCC who were hospitalized for acute myocardial infarction and underwent coronary angiography. The Cohen-Rentrop classification was used to grade the CCC. The patients were divided into two groups according to Rentrop grades: those with a 0-1 stage were considered as insufficient and those with grades of 2-3 were considered as well-developed CCC. We took blood samples to measure the adropin levels within the first 24 hours of hospitalization. Results The mean age was 59.1±11.9 years and 62 (73.8%) were male. The right coronary artery was the most frequently target vessel (n: 51, 60.7%), and the majority of the patients presented with ST-segment elevation myocardial infarction (STEMI) (n:58, 69%). The median interval between the severe chest pain and the intervention was significantly higher in patients with well-developed CCC (p=0.042). The serum adropin levels in patients with insufficient CCC were significantly lower than in those with well-developed CCC (196.3 [131.5 - 837.0] pg/mL vs. 235.5 [171.9 - 1124.2] pg/mL, p<0.001). Logistic regression analysis revealed that the circumflex artery as the target vessel, NSTEMI (non-STEMI) as the type of myocardial infarction, and serum adropin level were the independent risk factors for the prediction of poor coronary collateral vessel formation (p<0.05). Conclusions In this study, we found that in patients with acute myocardial infarction, those with well-developed CCC had higher adropin levels.
Collapse
Affiliation(s)
- Asli Vural
- Department of Cardiology, Giresun University Faculty of Medicine, Giresun, TUR
| | - Devrim Kurt
- Department of Cardiology, Giresun University Faculty of Medicine, Giresun, TUR
| | - Ahmet Karagöz
- Department of Cardiology, Samsun University Faculty of Medicine, Samsun, TUR
| | - Ömer Emecen
- Department of Biochemistry, Giresun University Faculty of Medicine, Giresun, TUR
| | - Ertan Aydin
- Department of Cardiology, Giresun University, Faculty of Medicine, Giresun, TUR
| |
Collapse
|
10
|
Effect of Adropin on Pancreas Exocrine Function in a Rat Model: A Preliminary Study. Animals (Basel) 2022; 12:ani12192547. [PMID: 36230288 PMCID: PMC9558541 DOI: 10.3390/ani12192547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
The aim was to investigate the potential effect of adropin (ADR) on pancreatic−biliary juice (PBJ) secretion (volume, protein content, trypsin activity) in a rat model. The animals were divided into control and five experimental groups: adropin, CCK-8 (CCK-8 stimulation), capsaicin (capsaicin deactivation of afferents), vagotomy (vagotomy procedure), and vagal stimulation (vagal nerve stimulation). The experiment consisted of four phases, during which vehicle (0.9% NaCl) and three ADR boluses (5, 10, and 20 µg/kg BW) were administered i.v. every 30 min. PBJ samples were collected from each rat at 15 min intervals after boluses. Exogenous ADR failed to affect the pancreatic responses after vagotomy and the capsaicin pretreatment and reduced the PBJ volume, protein outputs, and trypsin activity in the adropin, CCK-8, and vagal stimulation groups in a dose-dependent manner. In all these groups, volume of PBJ was reduced only by the highest dose of ADR (p < 0.001 for adropin group and p < 0.01 for CCK-8 and vagal stimulation groups), and the protein outputs were reduced by the administration of ADR 10 µg/kg BW (adropin and CCK-8 groups, p < 0.01 in both cases) and 20 µg/kg BW (p < 0.001 for adropin and CCK-8 groups, p < 0.01 for vagal stimulation group). The 10 µg/kg BW dose of ADR reduced the trypsin output in the CCK-8 group (p < 0.01), and the highest ADR dose reduced the trypsin output in the CCK-8 (p < 0.001) and vagal stimulation (p < 0.01) groups. In conclusion, adropin in the analyzed doses exhibits the negative feedback pathway. This mechanism seems to participate in the regulation of pancreatic juice secretion via an indirect vagal mechanism.
Collapse
|
11
|
Yu M, Wang D, Zhong D, Xie W, Luo J. Adropin Carried by Reactive Oxygen Species-Responsive Nanocapsules Ameliorates Renal Lipid Toxicity in Diabetic Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37330-37344. [PMID: 35951354 DOI: 10.1021/acsami.2c06957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic kidney disease (DKD) is a common diabetes complication mainly caused by lipid toxicity characterized by oxidative stress. Studies have shown that adropin (Ad) regulates energy metabolism and may be an effective target to improve DKD. This study investigated the effect of exogenous Ad encapsulated in reactive oxygen species (ROS)-responsive nanocapsules (Ad@Gel) on DKD. HK2 cells were induced with high glucose (HG) and intervened with Ad@Gel. A diabetes mouse model was established using HG and high-fat diet combined with streptozotocin and treated with Ad@Gel to observe its effects on renal function, pathological damage, lipid metabolism, and oxidative stress. Results showed that Ad@Gel could protect HK2 from HG stimulation in vitro. It also effectively controls blood glucose and lipid levels, improves renal function, inhibits excessive production of ROS, protects mitochondria from damage, improves lipid deposition in renal tissues, and downregulates the expression of lipogenic proteins SEBP-1 and ADRP in DKD mice. In HG-induced HK2 cells or the kidney of DKD patients, the low expression of neuronatin (Nnat) and high expression of translocator protein (TSPO) were observed. Knockdown Nnat or overexpression of TSPO significantly reversed the effect of Ad@Gel on improving mitochondrial damage. In addition, knockdown Nnat also significantly reversed the effect of Ad@Gel on lipid metabolism. The results suggest that the effect of Ad on DKD may be achieved by activating Nnat to improve lipid metabolism and inhibit TSPO activity, thereby enhancing mitochondrial function.
Collapse
Affiliation(s)
- Mingchuan Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| | - Di Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| | - Da Zhong
- Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Weichang Xie
- Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| |
Collapse
|
12
|
Adropin’s Role in Energy Homeostasis and Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23158318. [PMID: 35955453 PMCID: PMC9369016 DOI: 10.3390/ijms23158318] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
Adropin is a novel 76-amino acid-peptide that is expressed in different tissues and cells including the liver, pancreas, heart and vascular tissues, kidney, milk, serum, plasma and many parts of the brain. Adropin, encoded by the Enho gene, plays a crucial role in energy homeostasis. The literature review indicates that adropin alleviates the degree of insulin resistance by reducing endogenous hepatic glucose production. Adropin improves glucose metabolism by enhancing glucose utilization in mice, including the sensitization of insulin signaling pathways such as Akt phosphorylation and the activation of the glucose transporter 4 receptor. Several studies have also demonstrated that adropin improves cardiac function, cardiac efficiency and coronary blood flow in mice. Adropin can also reduce the levels of serum triglycerides, total cholesterol and low-density lipoprotein cholesterol. In contrast, it increases the level of high-density lipoprotein cholesterol, often referred to as the beneficial cholesterol. Adropin inhibits inflammation by reducing the tissue level of pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-6. The protective effect of adropin on the vascular endothelium is through an increase in the expression of endothelial nitric oxide synthase. This article provides an overview of the existing literature about the role of adropin in different pathological conditions.
Collapse
|
13
|
Soltani S, Kolahdouz-Mohammadi R, Aydin S, Yosaee S, Clark CCT, Abdollahi S. Circulating levels of adropin and overweight/obesity: a systematic review and meta-analysis of observational studies. Hormones (Athens) 2022; 21:15-22. [PMID: 34897581 DOI: 10.1007/s42000-021-00331-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
The association between circulating adropin levels and overweight/obesity is currently unclear. The aim of this study was thus to investigate and seek to determine the association between circulating adropin levels and overweight/obesity using the meta-analysis approach of observational studies. A comprehensive literature search was carried out through the PubMed, Web of Science, and SCOPUS databases to identify relevant observational studies that assessed the relationship between circulating adropin levels and overweight/obesity up to September 2020. A random-effects model was used to compute the pooled weighted mean difference (WMD) with 95% confidence intervals (CI). The meta-analysis of five studies (n = 643 participants) showed that circulating adropin levels were significantly lower in the overweight/obese vs. the normal-weight participants (WMD = - 0.96 ng/ml, 95% CI = - 1.72 to - 0.19, P = 0.01; I2 = 88.4%). In subgroup analyses, lower circulating adropin levels in obese participants compared with normal-weight were observed in Asians (WMD = - 1.58 ng/ml, 95% CI = - 1.96 to - 1.21, P < 0.001; I2 = 0.00%), and in patients with metabolic disorders (WMD = - 1.26 ng/ml, 95% CI = - 1.76 to - 0.77, P < 0.001; I2 = 44.6%), respectively. Circulating adropin levels were significantly lower in overweight/obese vs. normal-weight participants, suggesting a possible role of this hormone in the development of obesity. However, the present research indicates that further studies are needed to conclusively confirm whether adropin is a viable marker of obesity.
Collapse
Affiliation(s)
- Sepideh Soltani
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Suleyman Aydin
- Department of Medical Biochemistry, Firat Hormone Research Group), School of Medicine, Firat University, Elazig, Turkey
| | - Somaye Yosaee
- Department of Nutrition Sciences, School of Health, Larestan University of Medical Sciences, Larestan, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Shima Abdollahi
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, 74877-94149, Bojnurd, Iran.
| |
Collapse
|
14
|
El-Beltagy AEFBM, Saleh AMB, Attaallah A, Gahnem RA. Therapeutic role of Azadirachta indica leaves ethanolic extract against diabetic nephropathy in rats neonatally induced by streptozotocin. Ultrastruct Pathol 2021; 45:391-406. [PMID: 34720017 DOI: 10.1080/01913123.2021.1988015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Diabetic nephropathy (DN) is manifested by chronic loss of renal function due to damage of glomeruli and renal tubules. Therefore, this study is mainly designed to evaluate the therapeutic role of Azadiracta indica (neem) leaves extract as a novel approach for treatment of DN in rats neonatally induced by streptozotocin (STZ). For this study, 40 offspring were selected after parturition and categorized into four groups (n = 10). Group1: control group, group 2: neem leaves extract supplemented group, group 3: diabetic group that injected with a single dose of STZ and group 4: diabetic group treated with neem extract. The results revealed deleterious histological and ultrstructural changes in the renal tissues of diabetic rats. Such changes included atrophied glomeruli, dilated renal cortical tubules and scattered hemorrhage spots, thickening of glomerular basement membrane, expansion of mesangial matrix and pyknotic podocyte. Additionally, the proximal convoluted tubule and distal tubule showed cytoplasmic vacuolation, vacuolated mitochondria, scattered lipid droplets, lost microvilli and disrupted basal lamina and basal infoldings. Moreover, significant decreased levels of serum antioxidants (SOD&CAT) and significant increased levels of serum MDA, urea and creatinine were noticed in diabetic rats. Neem leaves extract successfully alleviated the histological and ultrastructural as well as biochemical changes induced by diabetes.
Collapse
Affiliation(s)
| | - Amira M B Saleh
- Zoology Department, Faculty of Science, Damanhur University, Damanhur, Egypt
| | - Amany Attaallah
- Zoology Department, Faculty of Science, Damanhur University, Damanhur, Egypt
| | - Reham A Gahnem
- Oral Biology Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
15
|
Kırıcı P, Kaplan S, Aydin Turk B, Annac E. Histopathological Examination of the Mucosal Effects of Obstetric Gel on Vaginal Wound Healing in an Incision-Inflicted Rat Model. Cureus 2021; 13:e18254. [PMID: 34712531 PMCID: PMC8542395 DOI: 10.7759/cureus.18254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/05/2022] Open
Abstract
Background and objective The present study intended to investigate the histopathological efficacy of obstetric gels on the healing of vaginal lacerations in rats. To the best of our knowledge, this is the first such study. Materials and methods Twenty-one female Wistar albino rats were divided into three groups, comprising seven animals per group. The first group (group 1) was the control group, the second (group 2) was the polyvinyl iodine (PI) group, and the third group (group 3) was the obstetric gel (OG) group. In all three groups, a vaginal incision was made with a No. 10 scalpel, and the incision site was sutured with a 3-0 Vicryl suture. In the control group, the incision site was left for routine healing. The incision site was washed with PI in the PI group and with OG in the OG group. After 15 days, vaginal tissues were obtained from all three groups for histopathological examination. In addition, immunohistochemistry staining was performed using caspase 3 and fibrillin 1 antibodies. Results There was no significant difference between the groups in terms of congestion, vascular proliferation, and inflammation stages in the examinations performed on the vaginal wall. However, the amount of collagen and elastic fibers increased during the remodeling and fibrosis phase, and the fibrillin 1 score increased in immunohistochemistry staining (p < 0.001). Conclusion It has been shown in rat vaginal tissue that obstetric gels do not have negative effects on wound healing; however, they contribute to wound healing by positively affecting the fibrosis stage.
Collapse
Affiliation(s)
- Pınar Kırıcı
- Obstetrics and Gynaecology, Adiyaman University, Adıyaman, TUR
| | - Selçuk Kaplan
- Obstetrics and Gynaecology, Adiyaman University Faculty of Medicine, Adıyaman, TUR
| | - Bilge Aydin Turk
- Pathology, Adiyaman University Faculty of Medicine, Adıyaman, TUR
| | - Ebru Annac
- Histology and Embryology, Adiyaman University Faculty of Medicine, Adıyaman, TUR
| |
Collapse
|
16
|
Ziarniak K, Dudek M, Matuszewska J, Bijoch Ł, Skrzypski M, Celichowski J, Sliwowska JH. Two weeks of moderate intensity locomotor training increased corticosterone concentrations but did not alter the number of adropin-immunoreactive cells in the hippocampus of diabetic type 2 and control rats. Acta Histochem 2021; 123:151751. [PMID: 34229193 DOI: 10.1016/j.acthis.2021.151751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Adropin (ADR) plays a role in metabolism regulation and its alterations in obesity and diabetes have been found. Treatment with ADR was beneficial in metabolic diseases, and physical exercise increased ADR concentrations in obese patients. However, data on the distribution of ADR in the brain are sparse. The role of metabolic status and physical exercise on its expression in the brain is undiscovered. We hypothesized that diabetes type 2 (DM2) and/or exercise will alter number of ADR-immunoractive (-ir) cells in the rat brain. Animals were divided into groups: diabetes type 2 (receiving high-fat diet and injections of streptozotocin) and control (fed laboratory chow diet; C). Rats were further divided into: running group (2 weeks of forced exercise on a treadmill) and non-running group. Body mass, metabolic and hormonal profiles were assessed. Immunohistochemistry was run to study ADR-ir cells in the brain. We found that: 1) in DM2 animals, running decreased insulin and increased glucose concentrations; 2) in C rats, running decreased insulin concentrations and had no effect on glucose concentration in blood; 3) running increased corticosterone (CORT) concentrations in DM2 and C rats; 4) ADR-ir cells were detected in the hippocampus and ADR-ir fibers in the arcuate nucleus of the hypothalamus, which is a novel location; 5) metabolic status and running, however, did not change number of these cells. We concluded that 2 weeks of forced moderate intensity locomotor training induced stress response present as increased concentration of CORT and did not influence number of ADR-ir cells in the brain.
Collapse
|
17
|
ESER N, TÜRK A, KARADAĞ A, YOLDAŞ A. Effect of Ferula elaeochytris on irisin levels in rat heart. CUKUROVA MEDICAL JOURNAL 2021. [DOI: 10.17826/cumj.840681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
18
|
Boric-Skaro D, Mizdrak M, Luketin M, Martinovic D, Tokic D, Vilovic M, Supe-Domic D, Kurir TT, Bozic J. Serum Adropin Levels in Patients on Hemodialysis. Life (Basel) 2021; 11:life11040337. [PMID: 33920330 PMCID: PMC8070137 DOI: 10.3390/life11040337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022] Open
Abstract
Adropin is a novel pleotropic peptide involved in energy homeostasis, with possible contribution to cardiovascular protection through production of nitric oxide and subsequent blood pressure regulation. Given that patients undergoing hemodialysis (HD) are related with high cardiovascular risk, hyperlipidemia, chronic low-grade inflammation, and malnutrition the aim of our study was to investigate serum adropin levels in HD patients to evaluate possible associations with nutritional status and other relevant clinical and laboratory parameters. The study included 70 patients on HD and 60 healthy controls. Serum adropin levels were determined by an enzyme-linked immunosorbent assay in a commercially available diagnostic kit. Serum adropin levels were significantly lower in the HD group compared to the control group (2.20 ± 0.72 vs. 4.05 ± 0.93 ng/mL, p < 0.001). Moreover, there was a significant negative correlation with malnutrition-inflammation score (r = −0.476, p < 0.001), dialysis malnutrition score (r = −0.350, p = 0.003), HD duration (r = −0.305, p = 0.010), and high sensitivity C-reactive protein (hsCRP) (r = −0.646, p < 0.001). Additionally, there was a significant negative correlation between adropin levels and pre-dialysis systolic (r = −0.301, p = 0.011) and diastolic blood pressure (r = −0.299, p = 0.011). These results are implying that adropin is potentially involved in the pathophysiological mechanisms of chronic kidney disease (CKD)/HD and its complications. However, future larger scale longitudinal studies need to further address it.
Collapse
Affiliation(s)
- Dijana Boric-Skaro
- Department of Nephrology and Dialysis, University Hospital of Split, 21000 Split, Croatia; (D.B.-S.); (M.M.); (M.L.)
| | - Maja Mizdrak
- Department of Nephrology and Dialysis, University Hospital of Split, 21000 Split, Croatia; (D.B.-S.); (M.M.); (M.L.)
| | - Mirko Luketin
- Department of Nephrology and Dialysis, University Hospital of Split, 21000 Split, Croatia; (D.B.-S.); (M.M.); (M.L.)
| | - Dinko Martinovic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (D.M.); (M.V.); (T.T.K.)
| | - Daria Tokic
- Department of Anesthesiology and Intensive Care, University Hospital of Split, 21000 Split, Croatia;
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (D.M.); (M.V.); (T.T.K.)
| | - Daniela Supe-Domic
- Department of Health Studies, University of Split, 21000 Split, Croatia;
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (D.M.); (M.V.); (T.T.K.)
- Department of Endocrinology, University Hospital of Split, 21000 Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia; (D.M.); (M.V.); (T.T.K.)
- Correspondence: ; Tel.: +385-21-557-871; Fax: +385-21-557-905
| |
Collapse
|
19
|
|
20
|
Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Mol Cell Endocrinol 2020; 518:111029. [PMID: 32941926 DOI: 10.1016/j.mce.2020.111029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/03/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
This review covers the current knowledge on the regulation of the somatic growth axis and its interaction with metabolism and feeding regulation. The main endocrine and neuroendocrine factors regulating both the growth axis and feeding behavior will be briefly summarized. Recently discovered neuropeptides and peptide hormones will be mentioned in relation to feeding control as well as growth hormone regulation. In addition, the influence of nutrient and nutrient sensing mechanisms on growth axis will be highlighted. We expect that in this process gaps of knowledge will be exposed, stimulating future research in those areas.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina.
| | | |
Collapse
|
21
|
A Review of Adropin as the Medium of Dialogue between Energy Regulation and Immune Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3947806. [PMID: 32190172 PMCID: PMC7073478 DOI: 10.1155/2020/3947806] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/26/2020] [Accepted: 02/10/2020] [Indexed: 11/18/2022]
Abstract
Adropin is a secretory protein encoded by the energy balance gene and is closely associated with regulation of energy metabolism and insulin resistance. The clinical findings demonstrated its decreased expression in various inflammatory diseases, its negative correlation with the expression levels of inflammatory cytokines, and its potential anti-inflammatory effects. We speculate that adropin plays a pivotal regulatory role in immune cells and inflammatory factors. In this study, we reviewed the advances in researches concentrated on immunological effects of adropin.
Collapse
|
22
|
Jasaszwili M, Billert M, Strowski MZ, Nowak KW, Skrzypski M. Adropin as A Fat-Burning Hormone with Multiple Functions-Review of a Decade of Research. Molecules 2020; 25:molecules25030549. [PMID: 32012786 PMCID: PMC7036858 DOI: 10.3390/molecules25030549] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 01/12/2023] Open
Abstract
Adropin is a unique hormone encoded by the energy homeostasis-associated (Enho) gene. Adropin is produced in the liver and brain, and also in peripheral tissues such as in the heart and gastrointestinal tract. Furthermore, adropin is present in the circulatory system. A decade after its discovery, there is evidence that adropin may contribute to body weight regulation, glucose and lipid homeostasis, and cardiovascular system functions. In this review, we summarize and discuss the physiological, metabolic, and pathophysiological factors regulating Enho as well as adropin. Furthermore, we review the literature addressing the role of adropin in adiposity and type 2 diabetes. Finally, we elaborate on the role of adropin in the context of the cardiovascular system, liver diseases, and cancer.
Collapse
Affiliation(s)
- Mariami Jasaszwili
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.J.); (M.B.); (K.W.N.)
| | - Maria Billert
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.J.); (M.B.); (K.W.N.)
| | - Mathias Z. Strowski
- Department of Hepatology and Gastroenterology, Charité-University Medicine Berlin, D-13353 Berlin, Germany;
- Department of Internal Medicine-Gastroenterology, Park-Klinik Weissensee, D-13086 Berlin, Germany
| | - Krzysztof W. Nowak
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.J.); (M.B.); (K.W.N.)
| | - Marek Skrzypski
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, 60-637 Poznań, Poland; (M.J.); (M.B.); (K.W.N.)
- Correspondence: ; Tel.: +48-618-486-137; Fax: +48-618-487-197
| |
Collapse
|
23
|
Celik HT, Bilen M, Kazancı F, Yildirim ME, İncebay İB, Erdamar H. Serum adropin as a predictive biomarker of erectile dysfunction in coronary artery disease patients. Cent European J Urol 2019; 72:302-306. [PMID: 31720034 PMCID: PMC6830486 DOI: 10.5173/ceju.2019.1666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/20/2018] [Accepted: 07/07/2019] [Indexed: 11/22/2022] Open
Abstract
Introduction Erectile dysfunction (ED) is associated with various comorbidities and an early diagnosis and treatment is necessary to avoid the development of these comorbidities. Unfortunately, there is no biochemical marker that can be used for early diagnosis of ED. Nitric oxide (NO) is released by nerve and endothelial cells in the corpora cavernosa of the penis and is believed to be the main vasoactive chemical mediator of penile erection. Adropin is a regulatory peptide which has effects on NO bioavailability and energy homeostasis. We hypothesized that adropin may contribute to the pathogenesis of ED because of the presence of both metabolic effects and the influence on NO bioavailability. To confirm this hypothesis, we investigated the relationship between ED and serum adropin and NO levels. Material and methods Seventy-five ED patients were enrolled for this study and the patients were divided into two groups according to angiographic scoring. Serum NO and adropin levels were measured by the Griess reaction and ELISA method, respectively. Results Serum adropin and NO levels were found to be lower in the group which has higher angiographic score and the difference in NO was statistically significant. Also, adropin has a significant correlation between IIEF scores in ED patients. Conclusions This is the first study in the literature investigating the levels of adropin in ED patients having coronary artery disease. The adropin molecule shows a promising future in clarifying the etiopathogenesis of ED. More comprehensive and multicenter studies are needed to reveal the role of adropin in ED and the effects of treatment on this molecule.
Collapse
Affiliation(s)
- Hüsetin Tugrul Celik
- Turgut Özal University, Medical Faculty, Department of Biochemistry, Ankara, Turkey
| | - Mehmet Bilen
- Turgut Özal University, Medical Faculty, Department of Biochemistry, Ankara, Turkey
| | - Fatmanur Kazancı
- Turgut Özal University, Medical Faculty, Department of Biochemistry, Ankara, Turkey
| | - Mehmet Erol Yildirim
- Turgut Özal University School of Medicine, Department of Urology, Ankara, Turkey
| | - İlkay Bekir İncebay
- Turgut Özal University School of Medicine, Department of Urology, Ankara, Turkey
| | - Hüsamettin Erdamar
- Turgut Özal University, Medical Faculty, Department of Biochemistry, Ankara, Turkey
| |
Collapse
|
24
|
Timurkaan S, Gür FM, Gençer Tarakçı B, Yalçın MH, Girgin M. Identification of irisin immunoreactivity in porcupine (Hystrix cristata) adrenal glands and kidneys. Anat Histol Embryol 2018; 47:405-409. [PMID: 29862553 DOI: 10.1111/ahe.12371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/13/2018] [Indexed: 11/30/2022]
Abstract
Irisin, a novel peptide, was initially been shown to be expressed explicitly in the muscle tissues. We studied the presence of irisin immunoreactivity in porcupine adrenal glands and kidneys. Immunocytochemistry showed that irisin was localised both in the adrenal cortex and adrenal medulla. In organs, irisin immunoreactivity was found in the tubular and collecting system of the nephron. The functional role of irisin in the adrenal gland and kidney has not been precisely yet. However, irisin might have a paracrine and autocrine function as do other locally produced peptides.
Collapse
Affiliation(s)
- Sema Timurkaan
- Department of Histology and Embriyology, Faculty of Veterinary Medicine, Firat University, Elazıg, Turkey
| | - Fatih M Gür
- Department of Histology and Embryology, School of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Berrin Gençer Tarakçı
- Department of Histology and Embriyology, Faculty of Veterinary Medicine, Firat University, Elazıg, Turkey
| | - Mehmet H Yalçın
- Department of Histology and Embriyology, Faculty of Veterinary Medicine, Firat University, Elazıg, Turkey
| | - Mustafa Girgin
- Department of Surgery, School of Medicine, Fırat University, Elazıg, Turkey
| |
Collapse
|
25
|
Martin B, Caron N, Jadot I, Colombaro V, Federici G, Depommier C, Declèves AÉ. Evaluation of inducible nitric oxide synthase inhibition on kidney function and structure in high-fat diet-induced kidney disease. Exp Physiol 2017; 103:125-140. [PMID: 28944982 DOI: 10.1113/ep086594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/25/2017] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? The metabolic pathways regulating the effects of obesity on the kidney remain unknown. We sought to determine whether inducible nitric oxide synthase (iNOS) is involved in the underlying mechanisms of high-fat diet-induced kidney disease using a specific iNOS inhibitor, N6-(1-iminoethyl)-l-lysine hydrochloride (L-NIL). What is the main finding and its importance? We did not demonstrate an upregulation of iNOS renal expression after high caloric intake, suggesting that iNOS might not be a crucial player in the development of obesity-induced kidney disease. Although L-NIL treatment clearly ameliorated systemic metabolic parameters, the effect on loss of renal function, impairment of tubular integrity, oxidative stress and inflammation appeared to be more moderate. Central obesity is related to caloric excess, promoting deleterious cellular responses in targeted organs. Nitric oxide (NO) has been determined as a key player in the pathogenesis of metabolic diseases. Here, we investigated the implication of inducible NO synthase (iNOS) in the development of obesity-induced kidney disease. C57Bl/6 male mice were randomized to a low-fat diet (LFD) or a high-fat diet (HFD) and treated with N6-(1-iminoethyl)-l-lysine hydrochloride (L-NIL), a specific iNOS inhibitor, for 16 weeks. Mice fed an HFD exhibited a significant increase in body weight, fasting blood glucose and plasma concentrations of non-esterified fatty acids, triglyceride and insulin. Inhibition of iNOS prevented these changes in mice fed an HFD. Interestingly, the significant increase in albuminuria and mesangial matrix expansion were not ameliorated with L-NIL, whereas a significant decrease in proteinuria, N-acetyl-β-d-glucosaminidase excretion and renal triglyceride content were found, suggesting that iNOS inhibition is more suitable for tubular function than glomerular function. The urinary concentration of hydrogen peroxide, a stable product of reactive oxygen species production, that was found to be increased in mice fed an HFD, was significantly reduced with L-NIL. Finally, despite a moderate effect of L-NIL on inflammatory processes in the kidney, we demonstrated a positive impact of this treatment on adipocyte hypertrophy and on adipose tissue inflammation. These results suggest that inhibition of iNOS leads to a moderate beneficial effect on kidney function in mice fed an HFD. Further studies are needed for better understanding of the role of iNOS in obesity-induced kidney disease.
Collapse
Affiliation(s)
- Blanche Martin
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), Namur, Belgium
| | - Nathalie Caron
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), Namur, Belgium
| | - Inès Jadot
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), Namur, Belgium
| | - Vanessa Colombaro
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), Namur, Belgium
| | - Gabrielle Federici
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), Namur, Belgium
| | - Clara Depommier
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), Namur, Belgium
| | - Anne-Émilie Declèves
- Molecular Physiology Research Unit-URPHYM, University of Namur (UNamur), Namur, Belgium.,Laboratory of Molecular Biology, University of Mons (UMONS), Mons, Belgium
| |
Collapse
|
26
|
Pala Ş, Atilgan R, Kuloğlu T, Kara M, Başpinar M, Can B, Artaş G. Protective effects of vitamin C and vitamin E against hysterosalpingography-induced epithelial degeneration and proliferation in rat endometrium. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:4079-4089. [PMID: 28008231 PMCID: PMC5170617 DOI: 10.2147/dddt.s117207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Aim The aim of this study was to examine the protective effects of vitamin C (VC) and vitamin E (VE) against hysterosalpingography (HSG)-induced epithelial degeneration and proliferation in rat endometrium. Materials and methods A total of 28 female Wistar albino rats were randomized into four groups: G1 (n=7; abdomen was opened and closed), G2 (n=7; 0.1 mL Lipiodol [ethiodized oil] was administered to each uterine horn in conjunction with X-ray irradiation), G3 (n=7; 50 mg/kg of intraperitoneal (ip) VC was administered, followed by the administration of 0.1 mL of ethiodized oil into the uterine horns after 15 minutes), and G4 (n=7; 50 mg/kg of ip VE was administered, followed by the administration of 0.1 mL of ethiodized oil into the uterine horns after 15 minutes). After abdominal closure, rats in G2, G3 and G4 groups were exposed to whole-body X-irradiation three times with 2-minute intervals at a total dose of 15–20 mrad. Three hours after exposure, abdominal cavities of all the rats were reopened and uterine horns were removed. The right uterine horns were embedded into paraffin blocks after fixing in 10% formaldehyde for histopathological and immunohistochemical examination. Uterine horns on the other side were rapidly excised and stored at −80°C for the examination of expression of microRNAs (miRNAs) and oxidant, antioxidant, apoptotic and antiapoptotic gene expression using real-time polymerase chain reaction (RT-PCR) method. Results No differences were observed in terms of expression of miRNAs and oxidant, antioxidant, apoptotic and anti-apoptotic gene expression between the study groups. Congestion, epithelial degeneration and malondialdehyde immunoreactivity were significantly lower in G3 and G4 groups than in G2 group; no differences were observed between G1, G3 and G4 groups. Ki-67 immunoreactivity score was significantly higher in G2 group when compared with G1, G3 and G4 groups. Caspase-3 immunoreactivity was not statistically different between the groups. Conclusion VC and VE may confer cellular protection against radiation injury induced by HSG in endometrial epithelium.
Collapse
Affiliation(s)
| | | | - Tuncay Kuloğlu
- Department of Histology and Embriology, Firat University School of Medicine, Elazig
| | - Murat Kara
- Department of Medical Biology and Genetics, Muğla Sıtkı Koçman University School of Medicine, Muğla
| | | | | | - Gökhan Artaş
- Department of Pathology, Firat University School of Medicine, Elazig, Turkey
| |
Collapse
|
27
|
Association of Serum Adropin Concentrations with Diabetic Nephropathy. Mediators Inflamm 2016; 2016:6038261. [PMID: 27546995 PMCID: PMC4980507 DOI: 10.1155/2016/6038261] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 11/17/2022] Open
Abstract
Objective. Adropin is a newly identified regulatory protein encoded by the Enho gene and is critically involved in energy homeostasis and insulin sensitivity. This study aims to determine the correlation of serum adropin concentrations with diabetic nephropathy (DN). Methods. This study consisted of 245 patients with type 2 diabetes mellitus (T2DM) and 81 healthy subjects. Then T2DM patients were divided into normoalbuminuria, microalbuminuria, and macroalbuminuria subgroups based on urine albumin to creatinine ratio (ACR). Results. T2DM patients showed significantly lower serum adropin concentrations than those in the controls. T2DM patients with macroalbuminuria had significantly decreased serum adropin concentrations compared with the other three groups. In addition, T2DM patients with microalbuminuria showed lower serum adropin concentrations than those in patients with normoalbuminuria. Logistic regression analysis showed that serum adropin was correlated with decreased risk of developing T2DM and DN. Pearson correlation analysis indicated that serum adropin was negatively correlated with body mass index (BMI), blood urea nitrogen, creatinine, and ACR and positively correlated with glomerular filtration rate. Furthermore, multiple linear regression analysis showed that BMI and ACR were negatively correlated with serum adropin levels. Conclusion. Serum adropin concentrations are negatively associated with renal function. Adropin may be implicated in the pathogenesis of DN development.
Collapse
|
28
|
Aydin S, Eren MN, Yilmaz M, Kalayci M, Yardim M, Alatas OD, Kuloglu T, Balaban H, Cakmak T, Kobalt MA, Çelik A, Aydin S. Adropin as a potential marker of enzyme-positive acute coronary syndrome. Cardiovasc J Afr 2016; 28:40-47. [PMID: 27196807 PMCID: PMC5423434 DOI: 10.5830/cvja-2016-055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 04/17/2016] [Indexed: 11/08/2022] Open
Abstract
Aim Enzyme-positive acute coronary syndrome (EPACS) can cause injury to or death of the heart muscle owing to prolonged ischaemia. Recent research has indicated that in addition to liver and brain cells, cardiomyocytes also produce adropin. We hypothesised that adropin is released into the bloodstream during myocardial injury caused by acute coronary syndrome (ACS), so serum and saliva levels rise as the myocytes die. Therefore, it could be useful to investigate how ACS affects the timing and significance of adropin release in human subjects Methods Samples were taken over three days after admission, from 22 EPACS patients and 24 age- and gendermatched controls. The three major salivary glands (submandibular, sublingual and parotid) were immunohistochemically screened for adropin production, and serum and saliva adropin levels were measured by an enzyme-linked immunosorbent assay (ELISA). Salivary gland cells produce and secrete adropin locally. Results Serum adropin, troponin I, CK and CK-MB concentrations in the EPACS group became gradually higher than those in the control group up to six hours (p < 0.05), and troponin I continued to rise up to 12 hours after EPACS. The same relative increase in adropin level was observed in the saliva. Troponin I, CK and CK-MB levels started to decrease after 12 hours, while saliva and serum adropin levels started to decrease at six hours after EPACS. In samples taken four hours after EPACS, when the serum adropin value averaged 4.43 ng/ml, the receiver operating characteristic curve showed that the serum adropin concentration indicated EPACS with 91.7% sensitivity and 50% specificity, while when the cut-off adropin value in saliva was 4.12 ng/ml, the saliva adropin concentration indicated EPACS with 91.7% sensitivity and 57% specificity. Conclusion In addition to cardiac troponin and CK-MB assays, measurement of adropin level in saliva and serum samples is a potential marker for diagnosing EPACS.
Collapse
Affiliation(s)
- Suna Aydin
- Department of Anatomy - Cardiovascular Surgery, Elazig Education and Research Hospital, Elazig, Turkey.
| | - Mehmet Nesimi Eren
- Department of Cardiovascular Surgery, School of Medicine, Dicle University, Diyarbakir, Turkey
| | - Musa Yilmaz
- Department of Medical Biochemistry (Firat Hormones Research Group), School of Medicine, Firat University, Elazig, Turkey
| | - Mehmet Kalayci
- Laboratory of Medical Biochemistry, Elazig Education and Research Hospital, Elazig, Turkey
| | - Meltem Yardim
- Department of Medical Biochemistry (Firat Hormones Research Group), School of Medicine, Firat University, Elazig, Turkey
| | - Omer Dogan Alatas
- Department of Emergency, Mugla Sitki Kocman University, Education and Research Hospital, Mugla 48000, Turkey
| | - Tuncay Kuloglu
- Department of Histology and Embryology, School of Medicine, Firat University, Elazig, Turkey
| | - Huseyin Balaban
- Department of Internal Medicine, 29 May State Hospital, Ankara, Turkey
| | - Tolga Cakmak
- Department of Cardiology, Ercis State Hospital, Van, Turkey
| | - Mehmet Ali Kobalt
- Department of Cardiology, School of Medicine, Firat University, Elazig, Turkey
| | - Ahmet Çelik
- Department of Cardiology, School of Medicine, Mersin University, Mersin, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry (Firat Hormones Research Group), School of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
29
|
Altintas O, Kumas M, Altintas MO. Neuroprotective effect of ischemic preconditioning via modulating the expression of adropin and oxidative markers against transient cerebral ischemia in diabetic rats. Peptides 2016; 79:31-8. [PMID: 27020247 DOI: 10.1016/j.peptides.2016.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Ischemic preconditioning (IPreC) can render the brain more tolerant to a subsequent potential lethal ischemic injury. Hyperglycemia has been shown to increase the size of ischemic stroke and worsen the clinical outcome following a stroke, thus exacerbating oxidative stress. Adropin has a significant association with cardiovascular disease, especially with diabetes. In this study, we aimed to evaluate the role of the IPreC due to modulating the expression of adropin and oxidative damage markers against stroke by induced transient middle cerebral artery occlusion (MCAo) in streptozotocin (STZ)-induced diabetic rats. MATERIAL-METHOD 72 male Spraque Dawley rats were allocated to 8 groups. In order to evaluate alterations of anti/oxidative status and adropin level, we induced transient MCAo seven days after STZ-induced diabetes. Also we performed IPreC 72h before transient MCAo to assess whether IPreC could have a neuroprotective effect against ischemia-reperfusion injury. RESULTS The general characteristics of STZ-treated rats (STZ) included reduced body weight and elevated blood glucose levels compared to non-diabetic ones. Ischemic preconditioning before cerebral ischemia significantly reduced infarction size compared with the other groups [IPreC+MCAo (27±11mm(3)) vs. MCAo (109±17mm(3)) p<0.001; STZ+IPreC+MCAo (38±10mm(3)) vs. STZ+MCAo (165±45mm(3)) p<0.001, respectively]. The mean total antioxidant status level in IPreC groups was higher than other groups (p≤0.05). Moreover, IPreC considerably decreased mean adropin levels compared with other groups (p≤0.05). CONCLUSION The study results supported the neuroprotective effects of ischemic preconditioning in MCA infarcts correlated with the level of oxidative damage markers and adropin.
Collapse
Affiliation(s)
- O Altintas
- Bor State Hospital, Neurology Clinic, Istasyon Street, 51700 Bor, Nigde, Turkey.
| | - M Kumas
- BezmiAlem Vakif University, Vocational School of Health Services, Medical Laboratory Techniques, Adnan Menderes Bulvarı, 34093 Fatih, Istanbul, Turkey
| | - M O Altintas
- Fatih University, Faculty of Engineering, Department of Genetics and Bioengineering, Buyukcekmece Campus, 34500 Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
30
|
Wang SP, Gao YL, Liu G, Deng D, Chen RJ, Zhang YZ, Li LL, Wen QQ, Hou YQ, Feng ZM, Guo ZH. Molecular cloning, characterization and expression of the energy homeostasis-associated gene in piglet. J Zhejiang Univ Sci B 2016; 16:524-32. [PMID: 26055914 DOI: 10.1631/jzus.b1400260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The energy homeostasis-associated (Enho) gene encodes a secreted protein, adropin, which regulates the expression of hepatic lipogenic genes and adipose tissue peroxisome proliferator-activated receptor γ, a major regulator of lipogenesis. In the present study, the porcine (Sus scrofa) homologue of the Enho gene, which was named pEnho, was amplified by reverse transcriptase polymerase chain reaction (RT-PCR) using oligonucleotide primers derived from in silico sequences. The gene sequence was submitted into the GenBank of NCBI, and the access number is GQ414763. The pEnho encodes a protein of 76 amino acids which shows 75% similarity to Homo sapiens adropin. The expression profile of pEnho in tissues (liver, muscle, anterior jejunum, posterior jejunum, and ileum) was determined by quantitative real-time RT-PCR. pEnho was localized on porcine chromosome 10 and no introns were found. In conclusion, pEnho was cloned and analysed with the aim of increasing knowledge about glucose and lipid metabolism in piglets and helping to promote the health and growth of piglets through adropin regulation.
Collapse
Affiliation(s)
- Sheng-ping Wang
- Research Center of Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center of Animal & Poultry Science, Key Lab Agro-ecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Hunan Institute of Microbiology, Changsha 410009, China; Rice Research Institute of Sichuan Agricultural University, Chengdu 625014, China; Fujian Aonong Biotechnology Corporation, Xiamen 361007, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan 430023, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Slyvka Y, Malgor R, Inman SR, Ding J, Heh V, Nowak FV. Antioxidant diet and sex interact to regulate NOS isoform expression and glomerular mesangium proliferation in Zucker diabetic rat kidney. Acta Histochem 2016; 118:183-93. [PMID: 26797190 DOI: 10.1016/j.acthis.2015.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 12/21/2022]
Abstract
Oxidative stress contributes substantially to the pathophysiology of diabetic nephropathy (DN). Consumption of an antioxidant-fortified (AO) diet from an early age prevents or delays later development of DN in the Zucker rat female with type 2 diabetes. We hypothesize this is due to effects on mesangial matrix and renal nitric oxide synthase (NOS) distribution and to sex-specific differences in NOS responses in the diabetic kidney. Total glomerular tuft area (GTA) and PAS-positive tuft area (PTA), endothelial (e), neuronal (n) and inducible (i) NOS were quantified in males and females on AO or regular (REG) diet at 6 and 20 weeks of age. eNOS was observed in glomeruli and tubules. nNOS predominantly localized to tubular epithelium in both cortex and medulla. iNOS was expressed in proximal and distal tubules and collecting ducts. Sex, diabetes duration and AO diet affected the distribution of the three isoforms. GTA and PTA increased with duration of hyperglycemia and showed a negative correlation with renal levels of all NOS isoforms. AO diet in both genders was associated with less PAS-positive staining and less mesangial expansion than the REG diet, an early increase in cortical iNOS in males, and sex-specific changes in cortical eNOS at 20 weeks. These effects of AO diet may contribute to sex-specific preservation of renal function in females.
Collapse
Affiliation(s)
- Yuriy Slyvka
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA; The Diabetes Institute at Ohio University, Ohio University, Athens, OH 45701, USA
| | - Ramiro Malgor
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA; Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA; The Diabetes Institute at Ohio University, Ohio University, Athens, OH 45701, USA
| | - Sharon R Inman
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA; Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA; The Diabetes Institute at Ohio University, Ohio University, Athens, OH 45701, USA
| | - Julia Ding
- College of Natural Sciences, School of Biological Sciences, University of Texas at Austin, TX 78713, USA
| | - Victor Heh
- OUHCOM Office of Research & Grants, Ohio University, Athens, OH 45701, USA
| | - Felicia V Nowak
- Department of Biomedical Sciences, Ohio University, Athens, OH 45701, USA; Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA; The Diabetes Institute at Ohio University, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
32
|
Li L, Xie W, Zheng XL, Yin WD, Tang CK. A novel peptide adropin in cardiovascular diseases. Clin Chim Acta 2016; 453:107-13. [DOI: 10.1016/j.cca.2015.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/05/2015] [Accepted: 12/08/2015] [Indexed: 12/16/2022]
|
33
|
Gu X, Li H, Zhu X, Gu H, Chen J, Wang L, Harding P, Xu W. Inverse Correlation Between Plasma Adropin and ET-1 Levels in Essential Hypertension: A Cross-Sectional Study. Medicine (Baltimore) 2015; 94:e1712. [PMID: 26448026 PMCID: PMC4616732 DOI: 10.1097/md.0000000000001712] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Adropin is a recently identified bioactive protein that promotes energy homeostasis by affecting glucose and lipid metabolism. Recently, adropin has also been reported to be associated with endothelial dysfunction. Also, ET-1, as a biomarker for endothelial dysfunction, is a key regulator in hypertension. Accordingly, the aim of the present study was to detect the relationship between plasma adropin and ET-1 levels in hypertension. A total of 123 participants, diagnosed with primary hypertension on the basis of World Health Organization criteria (systolic blood pressure [SBP] ≥ 140 mmHg and/or diastolic blood pressure (DBP) ≥ 90 mmHg), and 58 normotensive subjects were enrolled in the cross-sectional study from October 2011 to December 2013. All study participants were older than 18 years of age. Adropin and ET-1 levels were measured by enzyme-linked immunosorbent assay (ELISA). We found that plasma adropin levels were significantly lower in hypertensives compared with controls (3.18 ± 1.00 vs 4.21 ± 1.14 ng/mL, P < 0.001). Plasma ET-1 levels were higher in hypertensives than controls (2.60 ± 1.14 vs 1.54 ± 0.66 pg/mL, P < 0.001). Adropin had a negative correlation with DBP (r = -0.40, P < 0.001), SBP (r = -0.49, P < 0.001), and adjusted for age, body mass index, SBP, DBP, glucose, TC, TG, LDL, and Cr, there was a negative correlation between ET-1 and adropin (r = -0.20, P = 0.04). In multivariate logistic regression analysis of the variables, ET-1 (odds ratio [OR], 3.84; 95% CI, 2.16-6.81; P < 0.001) and adropin (OR, 0.99; 95% CI, 0.99 -1.0; P < .001) were found to be independent predictors for hypertension.In conclusion, decreased plasma adropin levels are associated with increased blood pressure in hypertension. Adropin is an independent predictor for hypertension, and may influence blood pressure by protecting endothelial function.
Collapse
Affiliation(s)
- Xiaosong Gu
- From the department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (XSG, HL, XYZ, HBG, JCC, WTX); School of Medicine, Wayne State University (LCW); and Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI (PH)
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Aydin S, Eren M, Kuloglu T, Aydin S, Yilmaz M, Gul E, Kalayci M, Yel Y, Cakmak T, Bico S. Alteration of serum and cardiac tissue adropin, copeptin, irisin and TRPM2 expressions in DOX treated male rats. Biotech Histochem 2014; 90:197-205. [DOI: 10.3109/10520295.2014.977949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
36
|
Aydin S. Three new players in energy regulation: preptin, adropin and irisin. Peptides 2014; 56:94-110. [PMID: 24721335 DOI: 10.1016/j.peptides.2014.03.021] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 12/17/2022]
Abstract
Homeostasis of energy is regulated by genetic factors, food intake, and energy expenditure. When energy input is greater than expenditure, the balance is positive, which can lead to weight gain and obesity. When the balance is negative, weight is lost. Regulation of this homeostasis is multi-factorial, involving many orexigenic (appetite-stimulating) and anorexigenic (appetite-suppressing) peptide hormones. Peripheral tissues are now known to be involved in weight regulation and research on its endocrine characteristics proceeds apace. Preptin with 34 amino acids (MW 3948 Da), adropin with 43 amino acids and a molecular weight of (4999 Da), and irisin with 112 amino acids (12587 Da), are three newly discovered peptides critical for regulating energy metabolism. Preptin is synthesized primarily in pancreatic beta cells, and adropin mainly in the liver and brain, and many peripheral tissues. Irisin, however, is synthesized principally in the heart muscle, along with peripheral tissues, including salivary glands, kidney and liver. The prime functions of preptin and adropin include regulating carbohydrate, lipid and protein metabolisms by moderating glucose-mediated insulin release. Irisin is an anti-obesitic and anti-diabetic hormone regulating adipose tissue metabolism and glucose homeostasis by converting white to brown adipose tissue. This review offers a historical account of these discovery and function of these peptides, including their structure, and physiological and biochemical properties. Their roles in energy regulation will be discussed. Their measurement in biological fluids will be considered, which will lead to further discussion of their possible clinical value.
Collapse
Affiliation(s)
- Suleyman Aydin
- Firat University, School of Medicine, Department of Medical Biochemistry (Firat Hormones Research Group), Elazig 23119, Turkey.
| |
Collapse
|
37
|
Catak Z, Aydin S, Sahin I, Kuloglu T, Aksoy A, Dagli AF. Regulatory neuropeptides (ghrelin, obestatin and nesfatin-1) levels in serum and reproductive tissues of female and male rats with fructose-induced metabolic syndrome. Neuropeptides 2014; 48:167-77. [PMID: 24786976 DOI: 10.1016/j.npep.2014.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 12/15/2022]
Abstract
Although, the exact mechanisms underlying the development of the metabolic syndrome (MetS) are not still completely understood, obesity, circulated peptide hormone levels and their interaction with genetic factors are considered largely responsible. The purpose of this study is to explore how the levels of ghrelin, obestatin (OBS) and NUCB2/nesfatin-1 (NES)/NUCB2 change in serum and the reproductive tissues of female and male rats with fructose-induced metabolic syndrome, and whether the levels of each hormone is correlated with the hormones involved with fertility. Experiments were conducted on 5-week-old Sprague-Dawley male and female rats assigned to either a control group or a MetS group. Controls were fed standard rat food and water ad libitum, while the MetS group was fed standard food with 10% (v/v) fructose solution added to their drinking water for 12 weeks with a 12/12h photoperiod circle. Then, all animals were sacrificed after a one night fast. Peptides levels in the serum and reproductive tissues of rats were studied using the ELISA method while the immunoreactivity of reproductive system peptide hormones were shown by immunohistochemical staining method. Furthermore, the other biochemical parameters were measured using Konelab-60 equipment and infertility hormones were measured with Immulite2000. Fasting serum insulin, glucose, triglyceride, alanine aminotransferase (ALT), gamma glutamyl transpeptidase (GGT), low-density lipoprotein cholesterol (LDL-C), and total cholesterol (TC) levels were statistically significantly higher, and the amount of high density lipoprotein cholesterol (HDL-C) was significantly lower, in the MetS groups. Serum and tissue supernatant NES levels were significantly higher in the rats with MetS than the control group. Ghrelin, OBS and NES were expressed in the cytoplasm, concentrated around the apical parts of the epithelial cells in the reproductive tissues of the rats. The amounts of ghrelin were lower in the reproductive tissues of the animals with MetS, while NES levels in the same tissues increased. Obestatin also decreased, though not in the seminal glands.
Collapse
Affiliation(s)
- Zekiye Catak
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research Group), Medical School, Firat University, 23119 Elazig, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research Group), Medical School, Firat University, 23119 Elazig, Turkey.
| | - Ibrahim Sahin
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research Group), Medical School, Firat University, 23119 Elazig, Turkey; Department of Histology and Embryology, Medical School, Erzincan University, 24030 Erzincan, Turkey
| | - Tuncay Kuloglu
- Department of Histology and Embryology, Medical School, Firat University, 23119 Elazig, Turkey
| | - Aziz Aksoy
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research Group), Medical School, Firat University, 23119 Elazig, Turkey; Department of Nutrition and Dietetics, Bitlis Eren University, 13000 Bitlis, Turkey
| | - Adile Ferda Dagli
- Department of Medical Pathology, Medical School, Inonu University, 44280 Malatya, Turkey
| |
Collapse
|
38
|
Kuloglu T, Aydin S, Eren MN, Yilmaz M, Sahin I, Kalayci M, Sarman E, Kaya N, Yilmaz OF, Turk A, Aydin Y, Yalcin MH, Uras N, Gurel A, Ilhan S, Gul E, Aydin S. Irisin: a potentially candidate marker for myocardial infarction. Peptides 2014; 55:85-91. [PMID: 24576483 DOI: 10.1016/j.peptides.2014.02.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 12/30/2022]
Abstract
Myocardial infarction (MI) causes energy depletion through imbalance between coronary blood supply and myocardial demand. Irisin produced by the heart reduces ATP production by increasing heat generation. Energy depletion affects irisin concentration in circulation and cardiac tissues, suggesting an association with MI. We examined: (1) irisin expression immunohistochemically in rat heart, skeletal muscle, kidney and liver in isoproterenol (ISO)-induced MI, and (2) serum irisin concentration by ELISA. Rats were randomly allocated into 6 groups (n=6), (i) control, (ii) ISO (1h), (iii) ISO (2h), (iv) ISO (4h), (v) ISO (6h), and (vi) ISO (24h), 200mg ISO in each case. Rats were decapitated and the blood and tissues collected for irisin analysis. Blood was centrifuged at 1792 g for 5 min. Tissues were washed with saline and fixed in 10% formalin for histology. Serum irisin levels gradually decreased from 1h to 24h in MI rats compared with controls, the minimum being at 2h, increasing again after 6h. Cardiac muscle cells, glomerular, peritubular renal cortical interstitial cells, hepatocytes and liver sinusoidal cells and perimysium, endomysium and nucleoi of skeletal muscle were irisin positive, but its synthesis decreased 1-4h after MI. At all time-points, irisin increased near myocardial connective tissue, with production in skeletal muscle, liver and kidney recovering after 6h, although slower than controls. Unique insight into the pathogenesis of MI is shown, and the gradually decrease of serum irisin might be a diagnostic marker for MI.
Collapse
Affiliation(s)
- Tuncay Kuloglu
- Firat University, School of Medicine, Department of Histology and Embryology, Elazig 23119, Turkey
| | - Suna Aydin
- Department of Cardiovascular Surgery, Elazig Research and Education Hospital, Elazig 23100, Turkey; Firat University, School of Medicine, Department of Anatomy, Elazig 23119, Turkey
| | - Mehmet Nesimi Eren
- Dicle University, School of Medicine, Department of Cardiovascular Surgery, Diyarbakir 21280, Turkey
| | - Musa Yilmaz
- Firat University, School of Medicine, Department of Medical Biochemistry (Firat Hormone Research Groups), Elazig 23119, Turkey
| | - Ibrahim Sahin
- Firat University, School of Medicine, Department of Medical Biochemistry (Firat Hormone Research Groups), Elazig 23119, Turkey; Erzincan University, School of Medicine, Department of Histology and Embryology, Erzincan 24030, Turkey
| | - Mehmet Kalayci
- Firat University, School of Medicine, Department of Medical Biochemistry (Firat Hormone Research Groups), Elazig 23119, Turkey
| | - Emine Sarman
- Firat University, School of Medicine, Department of Histology and Embryology, Elazig 23119, Turkey
| | - Nalan Kaya
- Firat University, School of Medicine, Department of Histology and Embryology, Elazig 23119, Turkey
| | - Osman Fatih Yilmaz
- Firat University, School of Medicine, Department of Histology and Embryology, Elazig 23119, Turkey
| | - Ahmet Turk
- Firat University, School of Medicine, Department of Histology and Embryology, Elazig 23119, Turkey
| | - Yalcin Aydin
- Ankara University, Faculty of Veterinary Medicine, Veterinary Medicine Student, Ankara 06110, Turkey
| | - Mehmet Hanifi Yalcin
- Firat University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Elazig 23119, Turkey
| | - Nimet Uras
- Firat University, School of Medicine, Medical School Student, Elazig 23119, Turkey
| | - Ali Gurel
- Firat University, School of Medicine, Department of Internal Medicine, Elazig 23119, Turkey
| | - Selcuk Ilhan
- Firat University, School of Medicine, Department of Medical Pharmacy, Elazig 23119, Turkey
| | - Evrim Gul
- Department of Emergency, Elazig education and Research Hospital, Elazig 23100, Turkey
| | - Suleyman Aydin
- Firat University, School of Medicine, Department of Medical Biochemistry (Firat Hormone Research Groups), Elazig 23119, Turkey.
| |
Collapse
|
39
|
Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes. Mol Cell Biochem 2013; 380:73-81. [PMID: 23620340 DOI: 10.1007/s11010-013-1660-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
Abstract
We have investigated how diabetes affects the expression of adropin (ADR) in rat brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The rats in the diabetic group were administered an intraperitoneal (i.p.) injection of a single dose of 60 mg/kg streptozotocin (STZ) dissolved in a 0.1 M phosphate-citrate buffer (pH 4.5). The rats were maintained in standard laboratory conditions in a temperature between 21 and 23 °C and a relative humidity of 70 %, under a 12-h light/dark cycle. The animals were fed a standard commercial pellet diet. After 10 weeks, the animals were sacrified. ADR concentrations in the serum and tissue supernatants were measured by ELISA, and immunohistochemical staining was used to follow the expression of the hormones in the brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The quantities were then compared. Increased ADR immunoreaction was seen in the brain, cerebellum, kidneys, heart, liver, and pancreas in the diabetes-induced rats compared to control subjects. ADR was detected in the brain (vascular area, pia mater, neuroglial cell, and neurons), cerebellum (neuroglial cells, Purkinje cells, vascular areas, and granular layer), kidneys (glomerulus, peritubular interstitial cells, and peritubular capillary endothelial cells), heart (endocardium, myocardium, and epicardium), liver (sinusoidal cells), and pancreas (serous acini). Its concentrations (based on mg/wet weight tissues) in these tissues were measured by using ELISA showed that the levels of ADR were higher in the diabetic rats compared to the control rats. Tissue ADR levels based on mg/wet weight tissues were as follows: Pancreas > liver > kidney > heart > brain > cerebellar tissues. Evidence is presented that shows ADR is expressed in various tissues in the rats and its levels increased in STZ-induced diabetes; however, this effect on the pathophysiology of the disorder remains to be understood.
Collapse
|