1
|
Sarnat HB, Yu W. Keratan sulfate proteoglycan: putative template for neuroblast migratory and axonal fascicular pathways and fetal expression in globus pallidus, thalamus, and olfactory bulb. J Neuropathol Exp Neurol 2025; 84:8-21. [PMID: 38950418 DOI: 10.1093/jnen/nlae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Abstract
Keratan sulfate (KS) is a proteoglycan secreted in the fetal brain astrocytes and radial glia into extracellular parenchyma as granulofilamentous deposits. KS surrounds neurons except dendritic spines, repelling glutamatergic and facilitating GABAergic axons. The same genes are expressed in both neuroblast migration and axonal growth. This study examines timing of KS during morphogenesis of some normally developing human fetal forebrain structures. Twenty normal human fetal brains from 9-41 weeks gestational age were studied at autopsy. KS was examined by immunoreactivity in formalin-fixed paraffin sections, plus other markers including synaptophysin, S-100β protein, vimentin and nestin. Radial and tangential neuroblast migratory pathways from subventricular zone to cortical plate were marked by KS deposits as early as 9wk GA, shortly after neuroblast migration initiated. During later gestation this reactivity gradually diminished and disappeared by term. Long axonal fascicles of the internal capsule and short fascicles of intrinsic bundles of globus pallidus and corpus striatum also appeared as early as 9-12wk, as fascicular sleeves before axons even entered. Intense KS occurs in astrocytic cytoplasm and extracellular parenchyma at 9wk in globus pallidus, 15wk thalamus, 18wk corpus striatum, 22wk cortical plate, and hippocampus postnatally. Corpus callosum and anterior commissure do not exhibit KS at any age. Optic chiasm shows reactivity at the periphery but not around intrinsic subfasciculi. We postulate that KS forms a chemical template for many long and short axonal fascicles before axons enter and neuroblast migratory pathways at initiation of migration. Cross-immunoreactivity with aggrecan may render difficult molecular distinction.
Collapse
Affiliation(s)
- Harvey B Sarnat
- Neuropathology, Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Paediatrics, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
- Departments of Paediatrics and Pathology (Neuropathology), Owerko Centre, Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
| | - Weiming Yu
- Anatomical Pathology, Department of Pathology and Laboratory Medicine, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Ishihara K, Papas E, Pruitt J, Kunnen C, Mack C, Bauman E, Hong Y. Material science: biomimetic surface enhancement. THE EYE GLAZ 2023; 25:235-243. [DOI: 10.33791/2222-4408-2023-3-235-243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Approximately 60% of individuals who use contact lenses prefer to use frequent replacement lenses. Despite various improvements in contact lens technology, there has been minimal progress in weekly/monthly lenses. Meeting the requirements of patients who prefer frequent replacement lenses demands new technological advancements. Experts analyse the concept of biomimicry and its role in enhancing the relationship between contact lenses and the ocular surface.
Collapse
|
3
|
Marques JC, Ladislau de Carvalho KI, Xavier R, Nosé W, Rizzo LV. Inflammatory profile of keratoconic corneal epithelium. BMC Ophthalmol 2023; 23:326. [PMID: 37460969 DOI: 10.1186/s12886-023-03013-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/02/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Recent studies have presented inflammatory features on keratoconus (KC) and many inflammatory markers are described in the tears of patients with this disease. The KC pathogenesis is still unknown just like the correlation with inflammatory patterns. However, environmental and genetic issues may be part of the progress of KC. In addition, some systemic features, such as allergy and obesity, seem to be related to the progression of KC. Our purpose was to evaluate the neuropeptides vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), chemokines ligand 2 (CCL-2) and 5 (CCL-5), and interleukins 6 (IL-6) and 8 (IL-8) on corneal epithelial cells and blood of patients with KC and in healthy controls. In addition, the neutrophil-to-lymphocyte ratio (NLR) was evaluated to predict inflammation. METHODS This including prospective observational study included 32 KC patients who underwent corneal crosslinking (CXL) and 32 control patients who underwent photorefractive keratectomy (PRK). Patients' corneal epithelial cells were removed surgically, and blood (buffy coat) was analyzed. Samples in triplicate were evaluated on rt-PCR for neuropeptides (VIP e NPY), interleukins (IL-6 e IL-8), and chemokines (CCL-2 and CCL-5). RESULTS Our study showed statistically higher CCL-5 and IL-8 on corneal epithelial cells in patients with KC. Blood cells were statistically higher in VIP and NPY in the KC group. Interleukin-8 on blood cells was statistically significant in KC'S group; for CCL-2 and CCL-5 they were statistically lower in patients with KC compared with controls. NLR showed no difference between the groups. CONCLUSIONS Our data support the findings of other studies that suggested altering KC status, such as inflammatory corneal disease. The presence of IL-8 in the cornea and blood samples of KC's group suggested systemic disease with a possible local or repercussion action. Further studies are warranted to elucidate KC pathogenesis and its correlation to systemic disease.
Collapse
Affiliation(s)
- Junia Cabral Marques
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, Brazil.
| | | | - Rafaela Xavier
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, Brazil
| | - Walton Nosé
- Federal University of São Paulo, São Paulo, Brazil
| | - Luiz Vicente Rizzo
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, Brazil
| |
Collapse
|
4
|
Amatu JB, Baudouin C, Trinh L, Labbé A, Buffault J. [Corneal epithelial biomechanics: Resistance to stress and role in healing and remodeling]. J Fr Ophtalmol 2023; 46:287-299. [PMID: 36759249 DOI: 10.1016/j.jfo.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 02/10/2023]
Abstract
The corneal epithelium is one of the first tissue barriers of the eye against the environment. In recent years, many studies provided better knowledge of its healing, its behavior and its essential role in the optical system of the eye. At the crossroads of basic science and clinical medicine, the study of the mechanical stresses applied to the cornea makes it possible to learn the behavior of epithelial cells and better understand ocular surface disease. We describe herein the current knowledge about the adhesion systems of the corneal epithelium and their resistance to mechanical stress. We will also describe the involvement of these mechanisms in corneal healing and their role in epithelial dynamics. Adhesion molecules of the epithelial cells, especially hemidesmosomes, allow the tissue cohesion required to maintain the integrity of the corneal epithelium against the shearing forces of the eyelids as well as external forces. Their regeneration after a corneal injury is mandatory for the restoration of a healthy epithelium. Mechanotransduction plays a significant role in regulating epithelial cell behavior, and the study of the epithelium's response to mechanical forces helps to better understand the evolution of epithelial profiles after refractive surgery. A better understanding of corneal epithelial biomechanics could also help improve future therapies, particularly in the field of tissue engineering.
Collapse
Affiliation(s)
- J-B Amatu
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France.
| | - C Baudouin
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France; Institut de La Vision, Sorbonne Université, Inserm, CNRS, IHU FOReSIGHT, 17, rue Moreau, 75012 Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | - L Trinh
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France
| | - A Labbé
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France; Institut de La Vision, Sorbonne Université, Inserm, CNRS, IHU FOReSIGHT, 17, rue Moreau, 75012 Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| | - J Buffault
- Department of Ophthalmology III, CHNO des Quinze-Vingts, IHU FOReSIGHT, 28, rue de Charenton, 75012 Paris, France; Institut de La Vision, Sorbonne Université, Inserm, CNRS, IHU FOReSIGHT, 17, rue Moreau, 75012 Paris, France; Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, University of Versailles Saint-Quentin-en-Yvelines, Boulogne-Billancourt, France
| |
Collapse
|
5
|
Features of morphological and ultrastructural organization of the cornea (literature review). ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.6.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The human cornea – the anterior fibrous membrane of the eye, is a unique ordered optical-biological system that is avascular, saturated with nerve endings, includes tissue-specific cells, consists mainly of various types of collagen. An exceptional feature of the collagen layers of the cornea, including the collagen plates of the stroma, is transparency, which provides physiological refraction and light transmission due to the stable supporting properties of the cornea. The data on the morphological structure of the cornea, which is an important element of the optical system of the eye, are of considerable interest not only from theoretical, but also from practical positions. This is due to the fact that the identification of the first signs of deviation from normal physiological morphological and ultrastructural criteria in the cornea allows us to establish the nature of its pathological changes, which can be caused by both hereditary predisposition and local and general disorders. It has been shown that the thinning of the layers of the cornea, a decrease in the density of endotheliocytes or keratocytes signal the development of dystrophic processes in it. In addition to evaluating quantitative morphometric data, changes in qualitative ultrastructural indicators play an important role. In particular it was found that a decrease in the density of endothelial cells is accompanied by an increase in their size and a decrease in the cell nucleus. In addition, a number of degenerative pathological conditions are characterized by a decrease in the diameter of collagen fibrils and a change in the density of fibrillary packaging.This literature review presents basic information, features of morphology, ultrastructural organization and functional purpose of layers and cells of the human cornea.
Collapse
|
6
|
Nulali J, Zhan M, Zhang K, Tu P, Liu Y, Song H. Osteoglycin: An ECM Factor Regulating Fibrosis and Tumorigenesis. Biomolecules 2022; 12:1674. [PMID: 36421687 PMCID: PMC9687868 DOI: 10.3390/biom12111674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 08/27/2023] Open
Abstract
The extracellular matrix (ECM) is made up of noncellular components that have special properties for influencing cell behavior and tissue structure. Small leucine-rich proteoglycans (SLRPs) are nonfibrillar ECM components that serve as structural scaffolds and signaling molecules. osteoglycin (OGN), a class III SLRP, is a ubiquitous ECM component that not only helps to organize the extracellular matrix but also regulates a number of important biological processes. As a glycosylated protein in the ECM, OGN was originally considered to be involved in fiber assembly and was reported to have a connection with fibrosis. In addition to these functions, OGN is found in a variety of cancer tissues and is implicated in cellular processes linked to tumorigenesis, including cell proliferation, invasion, metastasis, and epithelial-mesenchymal transition (EMT). In this review, we summarize the structure and functions of OGN as well as its biological and clinical importance in the context of fibrotic illness and tumorigenesis. This review aims to improve our understanding of OGN and provide some new strategies for the treatment of fibrosis and cancer.
Collapse
Affiliation(s)
- Jiayida Nulali
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Zhan
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kaiwen Zhang
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Pinghui Tu
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yu Liu
- Department of Respiration, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200070, China
| | - Huaidong Song
- The Core Laboratory in Medical Center of Clinical Research, Department of Molecular Diagnostics and Endocrinology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
7
|
Wesley G, Giedd B, Hines B, Bickle K, Pearson C, Lorentz H. Safety and Efficacy of a New Water Gradient Biomimetic Monthly Replacement Spherical Contact Lens Material (Lehfilcon A). Clin Ophthalmol 2022; 16:2873-2884. [PMID: 36065354 PMCID: PMC9440676 DOI: 10.2147/opth.s362926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose The objective of this study was to evaluate the safety and performance of the investigational lens, lehfilcon A, when worn in a daily wear modality and replaced monthly as compared to the commercially available comfilcon A contact lens. Methods This was a multicenter, prospective, controlled, double-masked, randomized, parallel-group clinical study with bilateral lens wear for 3 months. In all, 115 subjects completed the study (77 with test lehfilcon A and 38 with control comfilcon A contact lenses). Distance visual acuity (VA) was assessed using Snellen VA. Lens performance was assessed by examining lens fit/movement, centration, front surface wettability and front/back surface deposits using slit-lamp biomicroscopy. Results At the 3-month follow-up visit, all eyes had a distance VA of 20/20 or better. Further, lens fit/movement was assessed as optimal in 92.9% of the eyes with lehfilcon A and 89.2% with comfilcon A. There were no ratings of unacceptably tight or loose fits for either contact lens material. Lens centration was assessed as optimal in 98.7% of eyes with lehfilcon A and 94.6% with comfilcon A. For front and back surface deposits, both materials showed minimal lens surface deposits. Front surface wettability was assessed as grade 0 or 1 for most of the study lenses in both lens groups across all attended study visits. There were no ocular adverse events related to the study lenses. Conclusion Overall, lehfilcon A showed excellent VA, optimal lens fitting characteristics, a clean surface, high wettability, and low risk for adverse events after 3 months of lens wear.
Collapse
Affiliation(s)
| | - Brad Giedd
- Kindred Optics at Maitland Vision, Maitland, FL, USA
| | | | | | | | - Holly Lorentz
- Alcon Research, LLC, Johns Creek, GA, USA
- Correspondence: Holly Lorentz, Alcon Research, LLC, 11460 Johns Creek Pkwy, Johns Creek, GA, 30097, USA, Tel +1 678 415 5272, Email
| |
Collapse
|
8
|
Berdyński M, Krawczyk P, Safranow K, Borzemska B, Szaflik JP, Nowakowska-Żawrocka K, Żekanowski C, Giebułtowicz J. Common ALDH3A1 Gene Variant Associated with Keratoconus Risk in the Polish Population. J Clin Med 2021; 11:jcm11010008. [PMID: 35011749 PMCID: PMC8745142 DOI: 10.3390/jcm11010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Background: ALDH3A1 protein is important in maintaining corneal physiology and protecting the eye from UV damage. However, none of the genome-wide association studies has indicated that the ALDH3A1 locus is associated with keratoconus. In this study, we examined the potential role of ALDH3A1 variants as risk factors for keratoconus incidence and severity in a large group of Polish keratoconus patients. Methods: In the first stage we analyzed the coding region sequence of the ALDH3A1 in a subgroup of keratoconus. Then, we genotyped three selected ALDH3A1 variants in a larger KC group of patients (n = 261) and healthy controls (n = 317). Results: We found that the rs1042183 minor allele A is a risk factor for keratoconus in the dominant model (OR = 2.06, 95%CI = 1.42–2.98, p = 0.00013). The rs2228100 variant genotypes appear to be associated with an earlier age of KC diagnosis in the Polish population (p = 0.055 for comparison of three genotypes and p = 0.022 for the dominant inheritance model). Conclusions: The rs1042183 variant in ALDH3A1 is associated with keratoconus risk in the Polish population. The differences in the allele frequency between both populations could be partially responsible for the difference in the disease prevalence.
Collapse
Affiliation(s)
- Mariusz Berdyński
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland; (M.B.); (B.B.); (C.Ż.)
| | - Piotr Krawczyk
- Department of Ophthalmology, Medical University of Warsaw, 13 Sierakowskiego Str., 03-709 Warsaw, Poland; (P.K.); (J.P.S.)
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 72 Powstańców Wlkp. Str., 70-111 Szczecin, Poland;
| | - Beata Borzemska
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland; (M.B.); (B.B.); (C.Ż.)
| | - Jacek P. Szaflik
- Department of Ophthalmology, Medical University of Warsaw, 13 Sierakowskiego Str., 03-709 Warsaw, Poland; (P.K.); (J.P.S.)
| | - Karolina Nowakowska-Żawrocka
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
| | - Cezary Żekanowski
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland; (M.B.); (B.B.); (C.Ż.)
| | - Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-097 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
9
|
Yang X, Sun X, Liu J, Huang Y, Peng Y, Xu Y, Ren L. Photo-crosslinked GelMA/collagen membrane loaded with lysozyme as an antibacterial corneal implant. Int J Biol Macromol 2021; 191:1006-1016. [PMID: 34592226 DOI: 10.1016/j.ijbiomac.2021.09.144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/07/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
Corneal transplantation is an effective treatment for corneal blindness. However, it brings risk factors for the occurrence of bacterial keratitis, which can affect the repair effect and even lead to transplantation failure. The difficulty in re-epithelialization is also a main problem faced by corneal transplantation. Herein, a collagen-GelMA composite membrane containing lysozyme (CGL) was developed as an antibacterial corneal implant to fill stromal defect and support re-epithelialization. Characterizations of physicochemical properties and in vitro biocompatibility revealed that the composite membranes have proper water content, light transmittance and mechanical strength as well as good biocompatibility. Particularly, the cell adhesion force and adhesion-related genes expression were evaluated and exhibited an improvement after the addition of GelMA. Furthermore, the formed CGL membrane could continuously release lysozyme and exhibited a bactericidal rate of 96% and 64% after 2 h and 72 h, respectively. The results demonstrated that this CGL membrane has promising application in corneal repair.
Collapse
Affiliation(s)
- Xiangjing Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaomin Sun
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Jia Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Yongrui Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Yuehai Peng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Yingni Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, PR China.
| |
Collapse
|
10
|
Dosler S, Hacioglu M, Yilmaz FN, Oyardi O. Biofilm modelling on the contact lenses and comparison of the in vitro activities of multipurpose lens solutions and antibiotics. PeerJ 2020; 8:e9419. [PMID: 32612893 PMCID: PMC7320721 DOI: 10.7717/peerj.9419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/03/2020] [Indexed: 01/31/2023] Open
Abstract
During the contact lens (CL) usage, microbial adhesion and biofilm formation are crucial threats for eye health due to the development of mature biofilms on CL surfaces associated with serious eye infections such as keratitis. For CL related eye infections, multi drug resistant Pseudomonas aeruginosa or Staphylococcus aureus (especially MRSA) and Candida albicans are the most common infectious bacteria and yeast, respectively. In this study, CL biofilm models were created by comparing them to reveal the differences on specific conditions. Then the anti-biofilm activities of some commercially available multipurpose CL solutions (MPSs) and antibiotic eye drops against mature biofilms of S. aureus, P. aeruginosa, and C. albicans standard and clinical strains were determined by the time killing curve (TKC) method at 6, 24 and 48 h. According to the biofilm formation models, the optimal biofilms occurred in a mixture of bovine serum albumin (20% v/v) and lysozyme (2 g/L) diluted in PBS at 37 °C for 24 h, without shaking. When we compared the CL types under the same conditions, the strongest biofilms according to their cell density, were formed on Pure Vision ≥ Softens 38 > Acuve 2 ∼ Softens Toric CLs. When we compared the used CLs with the new ones, a significant increase at the density of biofilms on the used CLs was observed. The most active MPS against P. aeruginosa and S. aureus biofilms at 24 h was Opti-Free followed by Bio-True and Renu according to the TKC analyses. In addition, the most active MPS against C. albicans was Renu followed by Opti-Free and Bio-True at 48 h. None of the MPSs showed 3 Log bactericidal/fungicidal activity, except for Opti-Free against S. aureus and P. aeruginosa biofilms during 6 h contact time. Moreover, all studied antibiotic eye drops were active against S. aureus and P. aeruginosa biofilms on CLs at 6 h and 24 h either directly or as 1/10 concentration, respectively. According to the results of the study, anti-biofilm activities of MPSs have changed depending on the chemical ingredients and contact times of MPSs, the type of infectious agent, and especially the CL type and usage time.
Collapse
Affiliation(s)
- Sibel Dosler
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| | - Mayram Hacioglu
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| | - Fatima Nur Yilmaz
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| | - Ozlem Oyardi
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| |
Collapse
|
11
|
Ghasemi H, Yaraee R, Faghihzadeh S, Ghassemi-Broumand M, Mahmoudi M, Babaei M, Naderi M, Safavi M, Ghazanfari Z, Rastin M, Zamani S, Tabasi N, Faghihzadeh E, Gharebaghi R, Hassan ZM, Mirsharif ES, Ghazanfari T. Tear and serum MMP-9 and serum TIMPs levels in the severe sulfur mustard eye injured exposed patients. Int Immunopharmacol 2019; 77:105812. [DOI: 10.1016/j.intimp.2019.105812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 01/09/2023]
|
12
|
Klarlund JK, Callaghan JD, Stella NA, Kowalski RP, McNamara NA, Shanks RMQ. Use of Collagen Binding Domains to Deliver Molecules to the Cornea. J Ocul Pharmacol Ther 2019; 35:491-496. [PMID: 31593501 DOI: 10.1089/jop.2019.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose: The combined activity of the tear film and blinking is remarkably efficient at removal of foreign materials from the ocular surface. This has prevented the use of certain classes of drugs for the treatment of ocular surface problems. We propose that the use of peptide and protein domains that bind to moieties on the cornea could be used to deliver therapeutics by anchoring the drugs on the ocular surface long enough to provide therapeutic effects. Methods: In this study, we evaluated 4 different collagen binding domains fused to bacterial β-galactosidase for delivery of a reporter protein to collagen I and collagen IV-coated plates, rabbit corneas, and Herpes simplex virus (HSV-1) infected mouse corneas. Results: All 4 domains bound to collagen I and IV in vitro, whereas only a 10 amino acid (AA) sequence from bovine von Willebrand factor (vWF) and a 215 AA collagen binding domain from the bacterial protein ColH efficiently bound to abraded rabbit corneas. To test binding to corneas in a clinically relevant model, we assessed binding of the vWF collagen binding peptide fusions to HSV-1 infected mouse corneas. We observed that the vWF derived peptide mediated attachment to infected corneas, whereas the reporter protein without a collagen binding domain did not bind. Conclusions: Moving forward, the vWF collagen binding peptide could be used as an anchor to deliver therapeutics to prevent scarring and vision loss from damaged corneal surfaces due to disease and inflammation.
Collapse
Affiliation(s)
- Jes K Klarlund
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jake D Callaghan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicholas A Stella
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Regis P Kowalski
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nancy A McNamara
- School of Optometry, University of California, Berkeley, Berkeley, California.,Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Robert M Q Shanks
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Charles T. Campbell Laboratory of Ophthalmic Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Melrose J. Functional Consequences of Keratan Sulfate Sulfation in Electrosensory Tissues and in Neuronal Regulation. ACTA ACUST UNITED AC 2019; 3:e1800327. [PMID: 32627425 DOI: 10.1002/adbi.201800327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/16/2019] [Indexed: 12/20/2022]
Abstract
Keratan sulfate (KS) is a functional electrosensory and neuro-instructive molecule. Recent studies have identified novel low sulfation KS in auditory and sensory tissues such as the tectorial membrane of the organ of Corti and the Ampullae of Lorenzini in elasmobranch fish. These are extremely sensitive proton gradient detection systems that send signals to neural interfaces to facilitate audition and electrolocation. High and low sulfation KS have differential functional roles in song learning in the immature male zebra song-finch with high charge density KS in song nuclei promoting brain development and cognitive learning. The conductive properties of KS are relevant to the excitable neural phenotype. High sulfation KS interacts with a large number of guidance and neuroregulatory proteins. The KS proteoglycan microtubule associated protein-1B (MAP1B) stabilizes actin and tubulin cytoskeletal development during neuritogenesis. A second 12 span transmembrane synaptic vesicle associated KS proteoglycan (SV2) provides a smart gel storage matrix for the storage of neurotransmitters. MAP1B and SV2 have prominent roles to play in neuroregulation. Aggrecan and phosphacan have roles in perineuronal net formation and in neuroregulation. A greater understanding of the biology of KS may be insightful as to how neural repair might be improved.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, 2065, Australia.,Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia.,Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| |
Collapse
|
14
|
Melrose J. Mucin-like glycopolymer gels in electrosensory tissues generate cues which direct electrolocation in amphibians and neuronal activation in mammals. Neural Regen Res 2019; 14:1191-1195. [PMID: 30804244 PMCID: PMC6425839 DOI: 10.4103/1673-5374.251298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mucin-like glycoproteins have established roles in epithelial boundary protection and lubricative roles in some tissues. This mini-review illustrates alternative functional roles which rely on keratan sulphate and sialic acid modifications to mucin glycopolymers which convey charge properties suggestive of novel electroconductive properties not previously ascribed to these polymers. Many tumour cells express mucin-like glycopolymers modified with highly sulphated keratan sulphate and sialic which can be detected using diagnostic biosensors. The mucin-like keratan sulphate glycopolymer present in the ampullae of lorenzini is a remarkable sensory polymer which elasmobranch fish (sharks, rays, skate) use to detect weak electrical fields emitted through muscular activity of prey fish. Information on the proton gradients is conveyed to neuromast cells located at the base of the ampullae and mechanotransduced to neural networks. This ampullae keratan sulphate sensory gel is the most sensitive proton gradient detection polymer known in nature. This process is known as electrolocation, and allows the visualization of prey fish under conditions of low visibility. The bony fish have similar electroreceptors located along their lateral lines which consist of neuromast cells containing sensory hairs located within a cupula which contains a sensory gel polymer which detects distortions in fluid flow in channels within the lateral lines and signals are sent back to neural networks providing information on the environment around these fish. One species of dolphin, the Guiana dolphin, has electrosensory pits in its bill with similar roles to the ampullae but which have evolved from its vibrissal system. Only two terrestrial animals can undertake electrolocation, these are the Duck-billed platypus and long and short nosed Echidna. In this case the electrosensor is a highly evolved innervated mucous gland. The platypus has 40,000 electroreceptors around its bill through which it electrolocates food species. The platypus has poor eyesight, is a nocturnal feeder and closes its eyes, nostrils and ears when it hunts, so electrolocation is an essential sensory skill. Mammals also have sensory cells containing stereocilia which are important in audition in the organ of corti of the cochlea and in olfaction in the olfactory epithelium. The rods and cones of the retina also have an internal connecting cilium with roles in the transport of phototransduced chemical signals and activation of neurotransmitter release to the optic nerve. Mucin-like glycopolymer gels surround the stereocilia of these sensory hair cells but these are relatively poorly characterized however they deserve detailed characterization since they may have important functional attributes.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District; Graduate School of Biomedical Engineering, University of New South Wales; Sydney Medical School, Northern, The University of Sydney; Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, Sydney, Australia
| |
Collapse
|
15
|
Yuan C, Bothun ED, Hardten DR, Tolar J, McLoon LK. A novel explanation of corneal clouding in a bone marrow transplant-treated patient with Hurler syndrome. Exp Eye Res 2016; 148:83-89. [PMID: 27235795 DOI: 10.1016/j.exer.2016.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/24/2016] [Indexed: 11/28/2022]
Abstract
One common complication of mucopolysaccharidosis I-Hurler (MPS1-H) is corneal clouding, which occurs despite current treatments, including bone marrow transplantation. Human corneas were obtained from a 14 year old subject with MPS1-H and visual disability from progressive corneal clouding despite a prior bone marrow transplant at age 2. This was compared to a cornea from a 17 year old donated to our eye bank after his accidental death. The corneas were analyzed microscopically after staining with Alcian blue, antibodies to collagen I, IV, VI, and α-smooth muscle actin. Differences in levels of expression of the indicated molecules were assessed. Corneas from Hurler and control mice were examined similarly to determine potential mechanistic overlap. The MPS1-H subject cornea showed elevations in mucopolysaccharide deposition. The MPS1-H and Hurler mice corneas showed increased and disorganized expression of collagen I and IV relative to the control corneas. The MPS1-H corneas also showed increased and disordered expression of collagen VI. Positive expression of α-smooth muscle actin indicated myofibroblast conversion within the MPS1-H cornea in both the patient and mutant mouse material compared to normal human and control mouse cornea. Increased deposition of collagens and smooth muscle actin correlate with corneal clouding, providing a potential mechanism for corneal clouding despite bone marrow transplantation in MPS1-H patients. It might be possible to prevent or slow the onset of corneal clouding by treating the cornea with drugs known to prevent myofibroblast conversion.
Collapse
Affiliation(s)
- Ching Yuan
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Erick D Bothun
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA; Department of Pediatrics, University of Minnesota, USA
| | - David R Hardten
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA; Minnesota Eye Consultants, PA, Minnetonka, MN, USA
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota, USA; Department of Pediatrics, University of Minnesota, USA
| | - Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Deckx S, Heymans S, Papageorgiou AP. The diverse functions of osteoglycin: a deceitful dwarf, or a master regulator of disease? FASEB J 2016; 30:2651-61. [PMID: 27080639 DOI: 10.1096/fj.201500096r] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Small leucine-rich proteoglycans are emerging as important regulatory proteins within the extracellular matrix, where they exert both structural and nonstructural functions and hence are modulators of numerous biological processes, such as inflammation, fibrosis, and cell proliferation. One proteoglycan in particular, osteoglycin (OGN), also known as mimecan, shows great structural and functional diversity in normal physiology and in disease states, therefore making it a very interesting candidate for the development of novel therapeutic strategies. Unfortunately, the literature on OGN is confusing, as it has different names, and different transcript and protein variants have been identified. This review will give a clear overview of the different structures and functions of OGN that have been identified to date, portray its central role in pathophysiology, and highlight the importance of posttranslational processing, such as glycosylation, for the diversity of its functions.-Deckx, S., Heymans, S., Papageorgiou, A.-P. The diverse functions of osteoglycin: a deceitful dwarf, or a master regulator of disease?
Collapse
Affiliation(s)
- Sophie Deckx
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands; and Center for Molecular and Vascular Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands; and Center for Molecular and Vascular Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Anna-Pia Papageorgiou
- Department of Cardiology, Maastricht University, Maastricht, The Netherlands; and Center for Molecular and Vascular Biology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Gendron SP, Rochette PJ. Modifications in stromal extracellular matrix of aged corneas can be induced by ultraviolet A irradiation. Aging Cell 2015; 14:433-42. [PMID: 25728164 PMCID: PMC4406672 DOI: 10.1111/acel.12324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2015] [Indexed: 01/05/2023] Open
Abstract
With age, structural and functional changes can be observed in human cornea. Some studies have shown a loss of corneal transparency and an increase in turbidity associated with aging. These changes are caused by modifications in the composition and arrangement of extracellular matrix in the corneal stroma. In human skin, it is well documented that exposure to solar radiation, and mainly to the UVA wavelengths, leads to phenotypes of photoaging characterized by alteration in extracellular matrix of the dermis. Although the cornea is also exposed to solar radiation, the extracellular matrix modifications observed in aging corneas have been mainly attributed to chronological aging and not to solar exposure. To ascertain the real implication of UVA exposure in extracellular matrix changes observed with age in human cornea, we have developed a model of photoaging by chronically exposing corneal stroma keratocytes with a precise UVA irradiation protocol. Using this model, we have analyzed UVA-induced transcriptomic and proteomic changes in corneal stroma. Our results show that cumulative UVA exposure causes changes in extracellular matrix that are found in corneal stromas of aged individuals, suggesting that solar exposure catalyzes corneal aging. Indeed, we observe a downregulation of collagen and proteoglycan gene expression and a reduction in proteoglycan production and secretion in response to cumulative UVA exposure. This study provides the first evidence that chronic ocular exposure to sunlight affects extracellular matrix composition and thus plays a role in corneal changes observed with age.
Collapse
Affiliation(s)
- Sébastien P. Gendron
- Centre de Recherche du CHU de Québec Axe Médecine Régénératrice Hôpital du Saint‐Sacrement Québec QC Canada
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX Québec QC Canada
| | - Patrick J. Rochette
- Centre de Recherche du CHU de Québec Axe Médecine Régénératrice Hôpital du Saint‐Sacrement Québec QC Canada
- Centre de Recherche en Organogenèse Expérimentale de l'Université Laval/LOEX Québec QC Canada
- Département d'Ophtalmologie Faculté de Médecine Université Laval Québec QC Canada
| |
Collapse
|
18
|
Horwitz V, Dachir S, Cohen M, Gutman H, Cohen L, Fishbine E, Brandeis R, Turetz J, Amir A, Gore A, Kadar T. The beneficial effects of doxycycline, an inhibitor of matrix metalloproteinases, on sulfur mustard-induced ocular pathologies depend on the injury stage. Curr Eye Res 2014; 39:803-12. [PMID: 24502433 DOI: 10.3109/02713683.2013.874443] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Sulfur mustard (SM) induces acute ocular lesions, including erosions and inflammation that may be followed by delayed injuries expressed by epithelial defects and neovascularization (NV). Based on the matrix metalloproteinases (MMPs) activity, we evaluated the clinical and biochemical effects of topical treatment with doxycycline, an MMP inhibitor, targeted to the various injury stages. METHODS Rabbit eyes were exposed to SM vapor. A clinical follow-up was carried out up to 2 months. Tear fluid and cornea samples were collected at different time points for measurements of MMPs activity by zymography. Efficacy of a post-exposure topical doxycycline (2 mg/ml in phosphate buffer saline, ×4/d), targeted to the different phases of the clinical injury, was evaluated. RESULTS Elevated MMP-9 and MMP-2 activities were found in all corneas during the acute injury and in vascularized corneas during the delayed pathology. In the tear fluid, high MMP-9 activity and negligible MMP-2 activity were found in all the exposed eyes until after the appearance of the delayed pathology symptoms. Prolonged doxycycline treatment reduced MMP-9 activity in the tear fluid. During the acute phase, doxycycline treatment reduced corneal MMP-9 activity and the severity of the injury. Targeting the delayed pathology, doxycycline was clinically efficient only when treatment began before NV appearance. CONCLUSIONS This in vivo study showed the involvement of MMP-9 and MMP-2 during different phases of the SM-induced ocular injury, and the potential of doxycycline treatment as a post exposure measure for reducing the acute injury and as a preventive therapy for ameliorating the delayed pathology. The tear fluid provided a non-invasive method for continuous follow-up of MMPs activity and revealed additional beneficial aspects of injury and the treatment.
Collapse
Affiliation(s)
- Vered Horwitz
- Department of Pharmacology, Israel Institute for Biological Research , Ness Ziona , Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bouhenni R, Hart M, Al-Jastaneiah S, AlKatan H, Edward DP. Immunohistochemical expression and distribution of proteoglycans and collagens in sclerocornea. Int Ophthalmol 2013; 33:691-700. [PMID: 23325424 DOI: 10.1007/s10792-012-9710-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 12/23/2012] [Indexed: 11/26/2022]
Abstract
To immunolocalize corneal keratan sulfate (KS) and its core protein lumican, aggrecan, type I and type III collagens in sclerocornea specimens and compare their expression and distribution to age-matched healthy corneas and scleras. Sclerocornea specimens (n = 3) and age-matched normal corneoscleral rim specimens (n = 3) were studied by light microscopy and histochemically. KS, lumican, aggrecan, type I and type III collagens were immunolocalized in the specimens using indirect immunofluorescence. The fluorescence intensity in each specimen was scored from 0 to 4, with 0 representing no fluorescence and 4 representing intense fluorescence. The sclerocornea specimens showed histologic features typical of sclerocornea. KS and lumican immunolabeling in the corneal stroma in sclerocornea was decreased, whereas aggrecan immunolabeling was increased compared to that seen in normal cornea and normal sclera. KS and lumican staining was more intense in the posterior part of sclerocornea specimens, whereas aggrecan staining was distributed throughout the stroma. The staining intensity and distribution of type I collagen in sclerocornea was similar to that seen in normal cornea. Type III collagen was faint to absent in both normal cornea and sclerocornea but strong labeling was noted in normal sclera. The immunophenotype of sclerocornea is similar to that of normal cornea but with reduced labeling intensity of KS and lumican and increased labeling intensity of aggrecan. This change could potentially contribute to the abnormal fibril assembly in sclerocornea.
Collapse
Affiliation(s)
- Rachida Bouhenni
- Department of Ophthalmology, Summa Health System, Akron, OH, USA
| | | | | | | | | |
Collapse
|
20
|
du Toit LC, Pillay V, Choonara YE, Govender T, Carmichael T. Ocular drug delivery - a look towards nanobioadhesives. Expert Opin Drug Deliv 2011; 8:71-94. [PMID: 21174606 DOI: 10.1517/17425247.2011.542142] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD A major challenge emanating in the design of topical ophthalmic preparations is their short precorneal residence time. Retention of a drug delivery system in the front of the eye is thus desirable. One solution identified to address this concern is a retentive system that can preferably be delivered in a liquid drop form and ultimately remain attached to the corneal tissue owing to incorporation of a bioadhesive component. Forward-thinking approaches are required to achieve advancements in this approach for the attainment of an effective drug concentration at the site of action. Accordingly, several investigators have identified the benefits of nanotechnology-based drug delivery systems for ophthalmic drug delivery. AREAS COVERED IN THIS REVIEW A concerted effort was made to review critically all 'nanobioadhesives', that is, nanosystems designed for ocular drug delivery with the goal of attaining prolonged ocular retention, in a systematic, chronological manner, from their reported point of inception to the present. WHAT THE READER WILL GAIN A perspective on possible future trends in this growing field of ocular drug delivery is formulated. TAKE HOME MESSAGE The importance of and need for new developments in the field of ocular nanobioadhesives is emphasized.
Collapse
Affiliation(s)
- Lisa C du Toit
- University of the Witwatersrand, Department of Pharmacy and Pharmacology, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
21
|
|
22
|
|
23
|
Li Z, Rivera CA, Burns AR, Smith CW. Hindlimb unloading depresses corneal epithelial wound healing in mice. J Appl Physiol (1985) 2004; 97:641-7. [PMID: 15064298 DOI: 10.1152/japplphysiol.00200.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
C57BL/6 mice were subjected to hindlimb unloading (HU) for a period of 3 wk to determine the possible effects on epithelial wound healing. A standardized corneal epithelial wound was performed, and parameters of the inflammatory response and reepithelialization were analyzed over an observation period of 96 h. Wound closure was significantly retarded in mice during HU with reepithelialization being delayed by ∼12 h. Both epithelial migration and cell division were significantly depressed and delayed. The inflammatory response to epithelial wounding was also significantly altered during HU. Neutrophils, as detected by the Gr-1 marker, were initially elevated above normal levels before wounding and during the first few hours afterward, but there was a significant reduction in neutrophil response to wounding at times where neutrophil influx and migration in controls were vigorous. A similar pattern was seen with CD11b+CD11c+ cells (monocyte lineage). Langerhans cells are normally resident within the peripheral corneal epithelium. They respond to injury by initially leaving the epithelial site within 6 h and returning to normal levels by 96 h, 2 days after reepithelialization is complete. During HU, this pattern is distinctly different, with Langerhans cell numbers slowly diminishing, reaching a nadir at 96 h, which is significantly below normal. Evidence for systemic effects of HU is provided by findings that collagen deposition within subcutaneous sponges was significantly reduced during HU. In conclusion, HU, a ground-based model simulating some physiological aspects of spaceflight, impairs wound repair of corneas. Multiple factors, both local and systemic, likely contribute to this delayed wound healing.
Collapse
Affiliation(s)
- Zhijie Li
- Section of Leukocyte Biology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030-2600, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Corneal specimens form only a small part of the routine practice for most histopathologists but their assessment often requires considerable effort and specialized knowledge. The most common corneal specimens, full-thickness corneal discs and corneal biopsies, are discussed in this review. Corneal discs removed at keratoplasty are non-urgent specimens, as definitive treatment has already been undertaken, and while the pathologic diagnosis may change the prognosis for the graft, it rarely affects immediate treatment. Accurate diagnosis is still important, and will affect counseling of the patient, but referral to a colleague with a special interest is possible if necessary. Conversely, small partial-thickness corneal biopsies, which are mostly undertaken for culture negative keratitis with underlying suspected infection, are very urgent. Infectious keratitis can follow an extremely aggressive course, resulting in destruction of the cornea within hours. Accurate diagnosis is imperative. Due to the urgency of such specimens and the importance of diagnosis for immediate treatment, referral is not usually possible. It is the role of the pathologist to make optimal use of a small specimen to reach the relevant diagnosis in the minimum space of time.
Collapse
Affiliation(s)
- Sonja Klebe
- Department of Anatomical Pathology, Flinders Medical Centre, Bedford Park, SA, Australia.
| | | | | |
Collapse
|
25
|
McClellan SA, Huang X, Barrett RP, van Rooijen N, Hazlett LD. Macrophages restrict Pseudomonas aeruginosa growth, regulate polymorphonuclear neutrophil influx, and balance pro- and anti-inflammatory cytokines in BALB/c mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5219-27. [PMID: 12734370 DOI: 10.4049/jimmunol.170.10.5219] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of macrophages in Pseudomonas aeruginosa corneal infection in susceptible (cornea perforates), C57BL/6 (B6) vs resistant (cornea heals), BALB/c mice was tested by depleting macrophages using subconjunctival injections of clodronate-containing liposomes before corneal infection. Both groups of inbred mice treated with clodronate-liposomes compared with PBS-liposomes (controls) exhibited more severe disease. In B6 mice, the cornea perforated and the eye became extremely shrunken, whereas in BALB/c mice, the cornea perforated rather than healed. The myeloperoxidase assay detected significantly more PMN in the cornea of both groups of mice treated with clodronate-liposomes vs PBS-liposomes. In independent experiments, ELISA analysis showed that protein levels for IL-1 beta, macrophage-inflammatory protein 2, and macrophage-inflammatory protein 1 alpha, all regulators of PMN chemotaxis, also were elevated in both groups of mice treated with clodronate-liposomes. Bacterial plate counts in B6 mice treated with clodronate-liposomes were unchanged at 3 days and were higher in control-treated mice at 5 days postinfection (p.i.), whereas in BALB/c mice, bacterial load was significantly elevated in the cornea of mice treated with clodronate-liposomes at both 3 and 5 days p.i. mRNA expression levels for pro (IFN-gamma and TNF-alpha)- and anti (IL-4 and IL-10)-inflammatory cytokines also were determined in BALB/c mice treated with clodronate-liposomes vs control-treated mice. Expression levels for IFN-gamma were significantly elevated in mice treated with clodronate-liposomes at 3 and 5 days p.i., while IL-10 levels (mRNA and protein) were reduced. These data provide evidence that macrophages control resistance to P. aeruginosa corneal infection through regulation of PMN number, bacterial killing and balancing pro- and anti-inflammatory cytokine levels.
Collapse
Affiliation(s)
- Sharon A McClellan
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201,USA
| | | | | | | | | |
Collapse
|
26
|
Akimoto Y, Yamakawa N, Furukawa K, Kimata K, Kawakami H, Hirano H. Changes in distribution of the long form of type XII collagen during chicken corneal development. J Histochem Cytochem 2002; 50:851-62. [PMID: 12019301 DOI: 10.1177/002215540205000611] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The expression and distribution of the long form of Type XII collagen were investigated histochemically during chicken corneal development using a monoclonal antibody (P3D11) raised against the N-terminal domain of chicken Type XII collagen. Specificity of the antibody was confirmed by immunoprecipitation before and after bacterial collagenase digestion. Immunofluorescent microscopic studies showed that during chicken cornea formation, the long form of Type XII collagen is initially detected on Day 3 embryo (stage 19) in the sub-epithelial matrix of the corneal periphery and in the matrix around the optic cup. On Day 5 embryo (stage 27) the long form was expressed in the primary stroma. Thereafter, as the secondary stroma was formed, the long form localized in the sub-epithelial and sub-endothelial matrices and in the anterior region of the limbus (corneoscleral junction) before the formation of Descemet's and Bowman's membranes. After hatching, the immunoreactivity decreased predominantly in the sub-epithelial and sub-endothelial matrices but remained at the anterior region of the limbus. Immunoelectron microscopic examination demonstrated that the long form localizes in the Descemet's and Bowman's membranes and along the collagen fibrils in the stroma with a periodic repeat. Based on the distribution of the long form of Type XII collagen in the sub-epithelial and sub-endothelial matrices and limbus, it was suggested that the long form of Type XII collagen is involved in formation of the Descemet's and Bowman's membranes and in stabilization of the limbus.
Collapse
Affiliation(s)
- Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Filenius S, Hormia M, Rissanen J, Burgeson RE, Yamada Y, Araki-Sasaki K, Nakamura M, Virtanen I, Tervo T. Laminin synthesis and the adhesion characteristics of immortalized human corneal epithelial cells to laminin isoforms. Exp Eye Res 2001; 72:93-103. [PMID: 11133187 DOI: 10.1006/exer.2000.0933] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have studied the synthesis of laminins (Ln) and determined the specific integrins mediating the adhesion of immortalized human corneal epithelial cells to mouse Ln-1, and human Lns-5 and -10. Immunofluorescence microscopy of the cells demonstrated integrin alpha(2), alpha(3), alpha(6), beta(1)and beta(4)subunits, integrins alpha(6)and beta(4)being found in a typical 'leopard-skin' like manner. Immunoprecipitation studies showed that the cells produced alpha 3, beta 3 and gamma 2 chains of Ln-5, but not Lns-1 or -10. In culture Ln-5 was found as small plaques beneath the adhering cells within 1 hr, while in 4 hr widely spread Ln-5 plaques were observed in colocalization with beta(4)integrin subunit. By using a quantitative cell adhesion assay and function-blocking monoclonal antibodies we showed that integrin beta(1)subunit plays a role in mediating corneal epithelial cell adhesion to mouse Ln-1. However, none of the available function-blocking antibodies to integrin alpha-subunits inhibited the adhesion. Integrin alpha(3)beta(1)complex mediated the adhesion of corneal epithelial cells to human Lns-5 and -10. Integrin complex alpha(3)beta(1), as well as laminin alpha(3)chain, was also shown to mediate cell adhesion to newly produced endogenous Ln-5. The present results show that integrin alpha(3)beta(1)complex mediates the adhesion of corneal epithelial cells to Lns-5 and -10, while a yet unknown integrin alpha subunit appears to play a role in the adhesion to Ln-1. The results also show that among corneal basement membrane laminins, Ln-5 is synthetized by epithelial cells while Ln-10 may be a product of keratocytes.
Collapse
Affiliation(s)
- S Filenius
- Department of Anatomy, Institute of Biomedicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|