1
|
Zhou H, Zhao C, Shao R, Xu Y, Zhao W. The functions and regulatory pathways of S100A8/A9 and its receptors in cancers. Front Pharmacol 2023; 14:1187741. [PMID: 37701037 PMCID: PMC10493297 DOI: 10.3389/fphar.2023.1187741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammation primarily influences the initiation, progression, and deterioration of many human diseases, and immune cells are the principal forces that modulate the balance of inflammation by generating cytokines and chemokines to maintain physiological homeostasis or accelerate disease development. S100A8/A9, a heterodimer protein mainly generated by neutrophils, triggers many signal transduction pathways to mediate microtubule constitution and pathogen defense, as well as intricate procedures of cancer growth, metastasis, drug resistance, and prognosis. Its paired receptors, such as receptor for advanced glycation ends (RAGEs) and toll-like receptor 4 (TLR4), also have roles and effects within tumor cells, mainly involved with mitogen-activated protein kinases (MAPKs), NF-κB, phosphoinositide 3-kinase (PI3K)/Akt, mammalian target of rapamycin (mTOR) and protein kinase C (PKC) activation. In the clinical setting, S100A8/A9 and its receptors can be used complementarily as efficient biomarkers for cancer diagnosis and treatment. This review comprehensively summarizes the biological functions of S100A8/A9 and its various receptors in tumor cells, in order to provide new insights and strategies targeting S100A8/A9 to promote novel diagnostic and therapeutic methods in cancers.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Horner E, Lord JM, Hazeldine J. The immune suppressive properties of damage associated molecular patterns in the setting of sterile traumatic injury. Front Immunol 2023; 14:1239683. [PMID: 37662933 PMCID: PMC10469493 DOI: 10.3389/fimmu.2023.1239683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Associated with the development of hospital-acquired infections, major traumatic injury results in an immediate and persistent state of systemic immunosuppression, yet the underlying mechanisms are poorly understood. Detected in the circulation in the minutes, days and weeks following injury, damage associated molecular patterns (DAMPs) are a heterogeneous collection of proteins, lipids and DNA renowned for initiating the systemic inflammatory response syndrome. Suggesting additional immunomodulatory roles in the post-trauma immune response, data are emerging implicating DAMPs as potential mediators of post-trauma immune suppression. Discussing the results of in vitro, in vivo and ex vivo studies, the purpose of this review is to summarise the emerging immune tolerising properties of cytosolic, nuclear and mitochondrial-derived DAMPs. Direct inhibition of neutrophil antimicrobial activities, the induction of endotoxin tolerance in monocytes and macrophages, and the recruitment, activation and expansion of myeloid derived suppressor cells and regulatory T cells are examples of some of the immune suppressive properties assigned to DAMPs so far. Crucially, with studies identifying the molecular mechanisms by which DAMPs promote immune suppression, therapeutic strategies that prevent and/or reverse DAMP-induced immunosuppression have been proposed. Approaches currently under consideration include the use of synthetic polymers, or the delivery of plasma proteins, to scavenge circulating DAMPs, or to treat critically-injured patients with antagonists of DAMP receptors. However, as DAMPs share signalling pathways with pathogen associated molecular patterns, and pro-inflammatory responses are essential for tissue regeneration, these approaches need to be carefully considered in order to ensure that modulating DAMP levels and/or their interaction with immune cells does not negatively impact upon anti-microbial defence and the physiological responses of tissue repair and wound healing.
Collapse
Affiliation(s)
- Emily Horner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Liu W, Wang D, Zhou Q, Wang J, Lian S. Effect of Mineral Element Imbalance on Neutrophil Respiratory Burst Function and Inflammatory and Antioxidant Responses in Sheep. Vet Sci 2023; 10:vetsci10040241. [PMID: 37104396 PMCID: PMC10141385 DOI: 10.3390/vetsci10040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
This study established a model of mineral element homeostatic imbalance and examined the respiratory burst function of peripheral blood neutrophils and inflammatory and antioxidant indicators before and after the imbalance in sheep. The results showed that after an EDTA injection, the number of activated neutrophils in the peripheral blood was significantly higher than that in the control group (p < 0.01). In addition, the serum IL-6 level was significantly increased (p < 0.05) and matrix metalloproteinase 7 (MMP7) was inhibited (p < 0.05), but returned to a normal level one week after the injection. Tissue inhibitor of metalloproteinase 1 (TIMP1) levels were consistently higher after the injection and significantly higher than in the control group (p < 0.05). CuZn-SOD, TNOS activity, serum creatinine and urea nitrogen levels were significantly higher than before the injection (p < 0.05). Combining the results of previous studies, the EDTA injection altered the metabolism and transcription of peripheral blood neutrophils. These changes enhance the respiratory burst function of neutrophils and alter the status of inflammatory and antioxidant indicators such as IL-6 and CuZn-SOD.
Collapse
Affiliation(s)
- Weiqi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Di Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qijun Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shuai Lian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
4
|
Bai B, Xu Y, Chen H. Pathogenic roles of neutrophil-derived alarmins (S100A8/A9) in heart failure: From molecular mechanisms to therapeutic insights. Br J Pharmacol 2023; 180:573-588. [PMID: 36464854 DOI: 10.1111/bph.15998] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
An excessive neutrophil count is recognized as a valuable predictor of inflammation and is associated with a higher risk of adverse cardiac events in patients with heart failure. Our understanding of the effectors used by neutrophils to inflict proinflammatory actions needs to be advanced. Recently, emerging evidence has demonstrated a causative role of neutrophil-derived alarmins (i.e. S100A8/A9) in aggravating cardiac injuries by induction of inflammation. In parallel with the neutrophil count, high circulating levels of S100A8/A9 proteins powerfully predict mortality in patients with heart failure. As such, a deeper understanding of the biological functions of neutrophil-derived S100A8/A9 proteins would offer novel therapeutic insights. Here, the basic biology of S100A8/A9 proteins and their pleiotropic roles in cardiovascular diseases are discussed, focusing on heart failure. We also consider the evidence that therapeutic targeting of S100A8/A9 proteins by the humanized vaccine, antibodies or inhibitors is able to town down inflammatory injuries.
Collapse
Affiliation(s)
- Bo Bai
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.,Department of Cardiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Yun Xu
- Department of Cardiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Haibo Chen
- Department of Cardiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| |
Collapse
|
5
|
ERdj5 protects goblet cells from endoplasmic reticulum stress-mediated apoptosis under inflammatory conditions. Exp Mol Med 2023; 55:401-412. [PMID: 36759578 PMCID: PMC9981579 DOI: 10.1038/s12276-023-00945-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
Endoplasmic reticulum stress is closely associated with the onset and progression of inflammatory bowel disease. ERdj5 is an endoplasmic reticulum-resident protein disulfide reductase that mediates the cleavage and degradation of misfolded proteins. Although ERdj5 expression is significantly higher in the colonic tissues of patients with inflammatory bowel disease than in healthy controls, its role in inflammatory bowel disease has not yet been reported. In the current study, we used ERdj5-knockout mice to investigate the potential roles of ERdj5 in inflammatory bowel disease. ERdj5 deficiency causes severe inflammation in mouse colitis models and weakens gut barrier function by increasing NF-κB-mediated inflammation. ERdj5 may not be indispensable for goblet cell function under steady-state conditions, but its deficiency induces goblet cell apoptosis under inflammatory conditions. Treatment of ERdj5-knockout mice with the chemical chaperone ursodeoxycholic acid ameliorated severe colitis by reducing endoplasmic reticulum stress. These findings highlight the important role of ERdj5 in preserving goblet cell viability and function by resolving endoplasmic reticulum stress.
Collapse
|
6
|
Kudo T, Nakazawa D, Watanabe-Kusunoki K, Kanda M, Shiratori-Aso S, Abe N, Nishio S, Koga JI, Iwasaki S, Tsuji T, Fukasawa Y, Yamasaki M, Watanabe M, Masuda S, Tomaru U, Murakami M, Aratani Y, Ishizu A, Atsumi T. Regulation of NETosis and Inflammation by Cyclophilin D in Myeloperoxidase-Positive Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Arthritis Rheumatol 2023; 75:71-83. [PMID: 35905194 DOI: 10.1002/art.42314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is pathologically characterized by focal fibrinoid necrosis, in which ANCA-mediated neutrophil extracellular trap (NET) formation and subsequent endothelial cell necrosis occur. Cyclophilin D (CypD) plays an important role in mediation of cell necrosis and inflammation via the opening of mitochondrial permeability transition pores. This study was undertaken to examine the role of CypD in AAV pathogenesis. METHODS We assessed the role and mechanism of CypD in ANCA-stimulated neutrophils in vitro by immunostaining and electron microscopy observation. We performed a comprehensive RNA-sequencing analysis on ANCA-treated murine neutrophils. To investigate the role of CypD in vivo, we assessed disease features in CypD-knockout mice and wild-type mice using 2 different murine AAV models: anti-myeloperoxidase IgG transfer-induced AAV and spontaneous AAV. RESULTS In vitro experiments showed that pharmacologic and genetic inhibition of CypD suppressed ANCA-induced NET formation via the suppression of reactive oxygen species and cytochrome c release from the mitochondria. RNA-sequencing analyses in ANCA-treated murine neutrophils revealed the involvement of inflammatory responses, with CypD deficiency reducing ANCA-induced alterations in gene expression. Furthermore, analyses of upstream regulators revealed the relevance of intracellular calcium (CypD activator) and cyclosporin (CypD inhibitor) in ANCA stimulation, indicating that the CypD-dependent opening of mitochondrial permeability transition pores is associated with ANCA-induced neutrophil activation and NETosis. In both AAV mouse models, the genetic deletion of CypD ameliorated crescentic glomerulonephritis via the inhibition of CypD-dependent neutrophil and endothelial necrosis. CONCLUSION CypD targeting is a novel and specific therapeutic strategy for AAV via the resolution of necrotizing vasculitis.
Collapse
Affiliation(s)
- Takashi Kudo
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daigo Nakazawa
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kanako Watanabe-Kusunoki
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masatoshi Kanda
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University, Sapporo, Japan
| | - Satoka Shiratori-Aso
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuya Abe
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, and Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jun-Ichiro Koga
- Department of Cardiovascular Medicine, Kyushu University, Graduate School of Medical Sciences, Fukuoka, Japan
| | - Sari Iwasaki
- Department of Pathology, Sapporo City General Hospital, Sapporo, Japan
| | - Takahiro Tsuji
- Department of Pathology, Sapporo City General Hospital, Sapporo, Japan
| | - Yuichiro Fukasawa
- Department of Pathology, Sapporo City General Hospital, Sapporo, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sakiko Masuda
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuaki Aratani
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Akihiro Ishizu
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology, and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Bai X, Xu PC, Chen T, Zhang HM, Wu SJ, Yang X, Gao S, Jia JY, Jiang JQ, Yan TK. The potential pathogenic roles of S100A8/A9 and S100A12 in patients with MPO-ANCA-positive vasculitis. BMC Immunol 2022; 23:42. [PMID: 36088289 PMCID: PMC9464401 DOI: 10.1186/s12865-022-00513-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/22/2022] [Indexed: 11/19/2022] Open
Abstract
Background The significance of S100A8/A9 and S100A12 in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) has not been clarified. This study was dedicated to exploring the potential pathogenic roles of S100A8/A9 and S100A12 in patients with myeloperoxidase (MPO)-ANCA-positive vasculitis. Methods Serum and urine concentrations of S100A8/A9 and S100A12 of forty-two AAV patients were evaluated. The influence of S100A8/A9 and S100A12 on the chemotaxis, the apoptosis, the release of IL-1β, the complement activation, the respiratory burst, as well as the neutrophil extracellular traps (NETs) formation of MPO-ANCA-activated neutrophils was investigated. Results The serum and urine S100A8/A9 and S100A12 of active MPO-AAV significantly increased (compared with inactive AAV and healthy controls, p < 0.001) and were correlated with the severity of the disease. In vitro study showed that S100A8/A9 and S100A12 activated the p38 MAPK/NF-κB p65 pathway, increased the chemotaxis index (CI) and the release of IL-1β, extended the life span, and enhanced the complement activation ability of MPO-ANCA-activated neutrophils. The Blockade of TLR4 and RAGE inhibited the effects of S100A8/A9 and S100A12. All above-mentioned effects of S100A8/A9 and S100A12 were ROS-independent because neither S100A8/A9 nor S100A12 enhanced the ROS formation and NETs formation of MPO-ANCA-activated neutrophils. Conclusion S100A8/A9 and S100A12 serve as markers for assessing the disease severity, and they may also play a role in MPO-AAV pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00513-4.
Collapse
|
8
|
Haist M, Ries F, Gunzer M, Bednarczyk M, Siegel E, Kuske M, Grabbe S, Radsak M, Bros M, Teschner D. Neutrophil-Specific Knockdown of β2 Integrins Impairs Antifungal Effector Functions and Aggravates the Course of Invasive Pulmonal Aspergillosis. Front Immunol 2022; 13:823121. [PMID: 35734179 PMCID: PMC9207500 DOI: 10.3389/fimmu.2022.823121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
β2-integrins are heterodimeric surface receptors that are expressed specifically by leukocytes and consist of a variable α (CD11a-d) and a common β-subunit (CD18). Functional impairment of CD18, which causes leukocyte adhesion deficiency type-1 results in an immunocompromised state characterized by severe infections, such as invasive pulmonary aspergillosis (IPA). The underlying immune defects have largely been attributed to an impaired migratory and phagocytic activity of polymorphonuclear granulocytes (PMN). However, the exact contribution of β2-integrins for PMN functions in-vivo has not been elucidated yet, since the mouse models available so far display a constitutive CD18 knockout (CD18-/- or CD18hypo). To determine the PMN-specific role of β2-integrins for innate effector functions and pathogen control, we generated a mouse line with a Ly6G-specific knockdown of the common β-subunit (CD18Ly6G cKO). We characterized CD18Ly6G cKO mice in-vitro to confirm the PMN-specific knockdown of β2-integrins. Next, we investigated the clinical course of IPA in A. fumigatus infected CD18Ly6G cKO mice with regard to the fungal burden, pulmonary inflammation and PMN response towards A. fumigatus. Our results revealed that the β2-integrin knockdown was restricted to PMN and that CD18Ly6G cKO mice showed an aggravated course of IPA. In accordance, we observed a higher fungal burden and lower levels of proinflammatory innate cytokines, such as TNF-α, in lungs of IPA-infected CD18Ly6G cKO mice. Bronchoalveolar lavage revealed higher levels of CXCL1, a stronger PMN-infiltration, but concomitantly elevated apoptosis of PMN in lungs of CD18Ly6G cKO mice. Ex-vivo analysis further unveiled a strong impairment of PMN effector function, as reflected by an attenuated phagocytic activity, and a diminished generation of reactive oxygen species (ROS) and neutrophil-extracellular traps (NET) in CD18-deficient PMN. Overall, our study demonstrates that β2-integrins are required specifically for PMN effector functions and contribute to the clearance of A. fumigatus by infiltrating PMN, and the establishment of an inflammatory microenvironment in infected lungs.
Collapse
Affiliation(s)
- Maximilian Haist
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- *Correspondence: Maximilian Haist,
| | - Frederic Ries
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
- Leibniz-Institut für Analytische Wissenschaften ISAS -e.V, Dortmund, Germany
| | - Monika Bednarczyk
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Ekkehard Siegel
- Institute for Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Michael Kuske
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Markus Radsak
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Daniel Teschner
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Saul-McBeth J, Dillon J, Launder D, Hickey M, Yi EMC, Daboul Y, Biswas P, Salari E, Parsai EI, Conti HR. Radiation Exposure Perturbs IL-17RA-Mediated Immunity Leading to Changes in Neutrophil Responses That Increase Susceptibility to Oropharyngeal Candidiasis. J Fungi (Basel) 2022; 8:jof8050495. [PMID: 35628751 PMCID: PMC9144824 DOI: 10.3390/jof8050495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 12/18/2022] Open
Abstract
Fungal infections caused by Candida albicans are a serious problem for immunocompromised individuals, including those undergoing radiotherapy for head and neck cancers. Targeted irradiation causes inflammatory dysregulation and damage to the oral mucosa that can be exacerbated by candidiasis. Post-irradiation the cytokine interleukin-17 (IL-17) protects the oral mucosae by promoting oral epithelial regeneration and balancing the oral immune cell populations, which leads to the eventual healing of the tissue. IL-17 signaling is also critical for the antifungal response during oropharyngeal candidiasis (OPC). Yet, the benefit of IL-17 during other forms of candidiasis, such as vulvovaginal candidiasis, is not straightforward. Therefore, it was important to determine the role of IL-17 during OPC associated with radiation-induced inflammatory damage. To answer this question, we exposed Il17ra−/− and wild-type mice to head-neck irradiation (HNI) and OPC to determine if the IL-17 signaling pathway was still protective against C. albicans. HNI increased susceptibility to OPC, and in Il17ra−/− mice, the mucosal damage and fungal burden were elevated compared to control mice. Intriguingly, neutrophil influx was increased in Il17ra−/− mice, yet these cells had reduced capacity to phagocytose C. albicans and failed to clear OPC compared to immunocompetent mice. These findings suggest that radiotherapy not only causes physical damage to the oral cavity but also skews immune mediators, leading to increased susceptibility to oropharyngeal candidiasis.
Collapse
Affiliation(s)
- Jessica Saul-McBeth
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
| | - John Dillon
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
| | - Dylan Launder
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
| | - Maura Hickey
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
| | - Elise Mein-Chiain Yi
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
| | - Yusuf Daboul
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
| | - Priosmita Biswas
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
| | - Elahheh Salari
- Department of Radiation Oncology, Division of Medical Physics, The University of Toledo, Toledo, OH 43606, USA; (E.S.); (E.I.P.)
| | - E. Ishmael Parsai
- Department of Radiation Oncology, Division of Medical Physics, The University of Toledo, Toledo, OH 43606, USA; (E.S.); (E.I.P.)
| | - Heather R. Conti
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA; (J.S.-M.); (J.D.); (D.L.); (M.H.); (E.M.-C.Y.); (Y.D.); (P.B.)
- Correspondence:
| |
Collapse
|
10
|
Kaltenmeier C, Simmons RL, Tohme S, Yazdani HO. Neutrophil Extracellular Traps (NETs) in Cancer Metastasis. Cancers (Basel) 2021; 13:6131. [PMID: 34885240 PMCID: PMC8657162 DOI: 10.3390/cancers13236131] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
Metastasis is the leading cause of cancer related morbidity and mortality. The metastatic process involves several identifiable biological stages, including tumor cell dissemination, intravasation, and the extravasation of circulating cancer cells to facilitate colonization at a distant site. Immune cell infiltration and inflammation within the tumor microenvironment coincide with tumor progression and metastatic spread and are thought to be the key mediators of this complex process. Amongst many infiltrating cells, neutrophils have recently emerged as an important player in fueling tumor progression, both in animal models and cancer patients. The production of Neutrophil Extracellular Traps (NETs) is particularly important in the pathogenesis of the metastatic cascade. NETs are composed of web-like DNA structures with entangled proteins that are released in response to inflammatory cues in the environment. NETs play an important role in driving tumor progression both in experimental and clinical models. In this review, we aim to summarize the current advances in understanding the role of NETs in cancer, with a specific focus on their role in promoting premetastatic niche formation, interaction with circulating cancer cells, and in epithelial to mesenchymal transition during cancer metastasis. We will furthermore discuss the possible role and different treatment options for targeting NETs to prevent tumor progression.
Collapse
Affiliation(s)
| | | | | | - Hamza O. Yazdani
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (C.K.); (R.L.S.); (S.T.)
| |
Collapse
|
11
|
Assessment of changes in genetic transcriptome in nasal epithelial cells exposed to ozone-aged black carbon and pollen allergen by high-throughput transcriptomics. Allergy Asthma Clin Immunol 2021; 17:52. [PMID: 34022950 PMCID: PMC8141196 DOI: 10.1186/s13223-021-00553-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/03/2021] [Indexed: 12/01/2022] Open
Abstract
Background Air pollution may be associated with increased airway responsiveness to allergens in allergic rhinitis (AR). Ozone-aged environmental black carbon (O3BC) is an important constituent of atmospheric particulate matter (PM), for which the mechanisms underlying its effects have not been fully elucidated in AR. The objective of the present study was to determine the O3BC and pollen-induced alterations in the transcriptome in human nasal epithelial cells (hNECs) in vitro. Methods hNECs from nasal epithelial mucosal samples of healthy individuals undergoing nasal surgery (turbinoplasty or septoplasty) were established as air–liquid interface (ALI) cultures and exposed to O3BC, pollen, or a combination of O3BC+ pollen. Changes in cell viability were analyzed by fluorescence and changes in the transcriptome by high-throughput RNA sequencing (RNA-seq). Several differentially expressed genes were verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Enrichment analysis, based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database, was performed to determine major biological functions and pathways involved. Results Exposure to ≥ 50 μg/ml O3BC or 25 μg/ml O3BC+ 200 μg /ml pollen significantly decreased cell viability of the hNECs compared to control (p < 0.05) or 25 μg/ml O3BC alone (p < 0.05); whereas exposure to pollen alone did not alter cell viability at any concentration investigated. High-throughput RNA sequencing analysis indicated that there was significant difference in gene expression between pollen or O3BC alone and O3BC+ pollen exposed cells. Exposure to 200 μg/ml O3BC was associated with hypoxia stress response GO terms, whereas exposure to 25 μg/ml O3BC+ 200 μg/ml pollen was associated with inflammatory response GO terms; including regulation of neutrophil migration and chemotaxis, macrophage differentiation and chemotaxis, mast cell activation, and phagocytosis. KEGG pathway analysis indicated the top 10 upstream regulators to be IL1B, CSF1, CCL2, TLR2, LPL, IGF8, SPP1, CXCL8, FCER1G and IL1RN; of which expressions of inflammation-related genes IL1B, CSF1 and FCER1G were significantly increased. Conclusion O3BC and pollen allergen combined exposure may induce innate immune and allergic inflammation in hNECs, and therefore potentially exacerbate the symptoms of AR in affected individuals.
Collapse
|
12
|
Hwang S, Yun H, Moon S, Cho YE, Gao B. Role of Neutrophils in the Pathogenesis of Nonalcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2021; 12:751802. [PMID: 34707573 PMCID: PMC8542869 DOI: 10.3389/fendo.2021.751802] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) includes a spectrum of liver disorders, from fatty liver to nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. Compared with fatty liver, NASH is characterized by increased liver injury and inflammation, in which liver-infiltrating immune cells, with neutrophil infiltration as a hallmark of NASH, play a critical role in promoting the progression of fatty liver to NASH. Neutrophils are the first responders to injury and infection in various tissues, establishing the first line of defense through multiple mechanisms such as phagocytosis, cytokine secretion, reactive oxygen species production, and neutrophil extracellular trap formation; however, their roles in the pathogenesis of NASH remain obscure. The current review summarizes the roles of neutrophils that facilitate the progression of fatty liver to NASH and their involvement in inflammation resolution during NASH pathogenesis. The notion that neutrophils are potential therapeutic targets for the treatment of NASH is also discussed.
Collapse
Affiliation(s)
- Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Hwayoung Yun
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Sungwon Moon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Ye Eun Cho
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Sreejit G, Abdel Latif A, Murphy AJ, Nagareddy PR. Emerging roles of neutrophil-borne S100A8/A9 in cardiovascular inflammation. Pharmacol Res 2020; 161:105212. [PMID: 32991974 DOI: 10.1016/j.phrs.2020.105212] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Elevated neutrophil count is associated with higher risk of major adverse cardiac events including myocardial infarction and early development of heart failure. Neutrophils contribute to cardiac damage through a number of mechanisms, including attraction of other immune cells and release of inflammatory mediators. Recently, a number of independent studies have reported a causal role for neutrophil-derived alarmins (i.e. S100A8/A9) in inducing inflammation and cardiac injury following myocardial infarction (MI). Furthermore, a positive correlation between serum S100A8/A9 levels and major adverse cardiac events (MACE) in MI patients was also observed implying that targeting neutrophils or their inflammatory cargo could be beneficial in reducing heart failure. However, contradictory to this idea, neutrophils and neutrophil-derived S100A8/A9 also seem to play a vital role in the resolution of inflammation. Thus, a better understanding of how neutrophils balance these seemingly contrasting functions would allow us to develop effective therapies that preserve the inflammation-resolving function while restricting the damage caused by inflammation. In this review, we specifically discuss the mechanisms behind neutrophil-derived S100A8/A9 in promoting inflammation and resolution in the context of MI. We also provide a perspective on how neutrophils could be potentially targeted to ameliorate cardiac inflammation and the ensuing damage.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmed Abdel Latif
- Division of Cardiovascular Medicine, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, Australia
| | - Prabhakara R Nagareddy
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
14
|
Leeds J, Scindia Y, Loi V, Wlazlo E, Ghias E, Cechova S, Portilla D, Ledesma J, Swaminathan S. Protective role of DJ-1 in endotoxin-induced acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F654-F663. [PMID: 32715759 DOI: 10.1152/ajprenal.00064.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury (AKI) is a frequent complication of sepsis and an important cause of morbidity and mortality worldwide. A cornerstone of sepsis-associated AKI is dysregulated inflammation, leading to increased tissue oxidative stress and free radical formation, which leads to multiple forms of cell death. DJ-1 is a peroxiredoxin protein with multiple functions, including its ability to control cellular oxidative stress. Although DJ-1 is expressed prominently by renal tubules, its role in AKI has not been investigated. In the present study, we examined the effect of DJ-1 deficiency in a murine model of endotoxin-induced AKI. Endotoxemia induced greater kidney injury in DJ-1-deficient mice. Furthermore, DJ-1 deficiency increased renal oxidative stress associated with increased renal tubular apoptosis and with expression of death domain-associated protein (DAXX). Similar to the in vivo model, in vitro experiments using a medullary collecting duct cell line (mIMCD3) and cytotoxic serum showed that serum obtained from wild-type mice resulted in increased expression of s100A8/s100A9, DAXX, and apoptosis in DJ-1-deficient mIMCD3 cells. Our findings demonstrate a novel renal protective role for renal tubular DJ-1 during endotoxemia through control of oxidative stress, renal inflammation, and DAXX-dependent apoptosis.
Collapse
Affiliation(s)
- Joseph Leeds
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | - Yogesh Scindia
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | - Valentina Loi
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia.,Department of Nephrology and Dialysis, G. Brotzu Hospital, Cagliari, Italy
| | - Ewa Wlazlo
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | - Elizabeth Ghias
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | - Sylvia Cechova
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | - Didier Portilla
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | - Jonathan Ledesma
- Division of Nephrology, University of Virginia Health System, Charlottesville, Virginia
| | | |
Collapse
|
15
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
16
|
Peng S, Sun X, Wang X, Wang H, Shan Z, Teng W, Li C. Myeloid related proteins are up-regulated in autoimmune thyroid diseases and activate toll-like receptor 4 and pro-inflammatory cytokines in vitro. Int Immunopharmacol 2018; 59:217-226. [PMID: 29656212 DOI: 10.1016/j.intimp.2018.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Myeloid-related protein (MRP) family plays an important role in the promotion of cell proliferation and the production of inflammatory cytokines. We investigated the expression of MRP6, MRP8 and MRP14 in thyroid tissues, serum, and peripheral blood monocular cells (PBMCs) in patients with autoimmune thyroid diseases (AITD). METHOD The expression of MRP6, MRP8, and MRP14 was investigated using immunohistochemical staining and quantitative real-time polymerase chain reaction in the thyroid glands of 7 patients with Graves' disease (GD), 8 with Hashimoto's thyroiditis (HT), and 7 healthy controls (HC). The serum levels of MRP8/MRP14 complex and MRP6 were investigated in 30 patients with GD, 36 with HT, and 30 with HC. The mRNA expression of MRP proteins in PBMCs was also explored. PBMCs from each group were incubated with MPRs and their effect on Toll-like receptor 4(TLR4) expression and their effect on the levels of the pro-inflammatory cytokines in supernatant were analyzed upon incubating with TLR4 and signaling pathways inhibitors. RESULTS Serum levels of MRP8/MRP14 and MRP6 were up-regulated in patients with AITD. In addition, mRNA expression of MRP proteins in PBMCs and the thyroid gland was markedly elevated in AITD patients. MRP6 and MPR8 promoted the secretion of TNF-α and IL-6 in cultured PBMCs, and this elevation was more pronounced in AITD patients; we also found that this up-regulation was regulated by TLR4/phosphoinositide 3-kinase/nuclear factor-κB signaling pathway. CONCLUSION The expression of MRP proteins was elevated in AITD patients. Therefore, an MRP-TLR4 dependent signaling may play an important role in the pathogenesis of AITD.
Collapse
Affiliation(s)
- Shiqiao Peng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Xuren Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Xinyi Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Haoyu Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Chenyan Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
17
|
Huang W, Rainbow DB, Wu Y, Adams D, Shivakumar P, Kottyan L, Karns R, Aronow B, Bezerra J, Gershwin ME, Peterson LB, Wicker LS, Ridgway WM. A Novel Pkhd1 Mutation Interacts with the Nonobese Diabetic Genetic Background To Cause Autoimmune Cholangitis. THE JOURNAL OF IMMUNOLOGY 2017; 200:147-162. [PMID: 29158418 DOI: 10.4049/jimmunol.1701087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
We previously reported that NOD.c3c4 mice develop spontaneous autoimmune biliary disease (ABD) with anti-mitochondrial Abs, histopathological lesions, and autoimmune T lymphocytes similar to human primary biliary cholangitis. In this article, we demonstrate that ABD in NOD.c3c4 and related NOD ABD strains is caused by a chromosome 1 region that includes a novel mutation in polycystic kidney and hepatic disease 1 (Pkhd1). We show that a long terminal repeat element inserted into intron 35 exposes an alternative polyadenylation site, resulting in a truncated Pkhd1 transcript. A novel NOD congenic mouse expressing aberrant Pkhd1, but lacking the c3 and c4 chromosomal regions (NOD.Abd3), reproduces the immunopathological features of NOD ABD. RNA sequencing of NOD.Abd3 common bile duct early in disease demonstrates upregulation of genes involved in cholangiocyte injury/morphology and downregulation of immunoregulatory genes. Consistent with this, bone marrow chimera studies show that aberrant Pkhd1 must be expressed in the target tissue (cholangiocytes) and the immune system (bone marrow). Mutations of Pkhd1 produce biliary abnormalities in mice but have not been previously associated with autoimmunity. In this study, we eliminate clinical biliary disease by backcrossing this Pkhd1 mutation onto the C57BL/6 genetic background; thus, the NOD genetic background (which promotes autoimmunity) is essential for disease. We propose that loss of functional Pkhd1 on the NOD background produces early bile duct abnormalities, initiating a break in tolerance that leads to autoimmune cholangitis in NOD.Abd3 congenic mice. This model is important for understanding loss of tolerance to cholangiocytes and is relevant to the pathogenesis of several human cholangiopathies.
Collapse
Affiliation(s)
- Wenting Huang
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Daniel B Rainbow
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Center for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Yuehong Wu
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - David Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Pranavkumar Shivakumar
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Leah Kottyan
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Rebekah Karns
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Jorge Bezerra
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616; and
| | | | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Center for Human Genetics, Nuffield Department of Medicine, National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - William M Ridgway
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267;
| |
Collapse
|
18
|
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol 2016. [PMID: 27199985 DOI: 10.3389/fimmu.2016.00.00160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as "resolution pharmacology."
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London , London , UK
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
19
|
Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of Inflammation: What Controls Its Onset? Front Immunol 2016; 7:160. [PMID: 27199985 PMCID: PMC4845539 DOI: 10.3389/fimmu.2016.00160] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
An effective resolution program may be able to prevent the progression from non-resolving acute inflammation to persistent chronic inflammation. It has now become evident that coordinated resolution programs initiate shortly after inflammatory responses begin. In this context, several mechanisms provide the fine-tuning of inflammation and create a favorable environment for the resolution phase to take place and for homeostasis to return. In this review, we focus on the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution. We suggest that several mediators that promote the inflammatory phase of inflammation can simultaneously initiate a program for active resolution. Indeed, several events enact a decrease in the local chemokine concentration, a reduction which is essential to inhibit further infiltration of neutrophils into the tissue. Interestingly, although neutrophils are cells that characteristically participate in the active phase of inflammation, they also contribute to the onset of resolution. Further understanding of the molecular mechanisms that initiate resolution may be instrumental to develop pro-resolution strategies to treat complex chronic inflammatory diseases, in humans. The efforts to develop strategies based on resolution of inflammation have shaped a new area of pharmacology referred to as “resolution pharmacology.”
Collapse
Affiliation(s)
- Michelle A Sugimoto
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Laboratório de Sinalização Inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratório de Resolução da Resposta Inflamatória, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London , London , UK
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
20
|
Tabur S, Korkmaz H, Özkaya M, Elboğa U, Tarakçıoglu M, Aksoy N, Akarsu E. Serum calprotectin: a new potential biomarker for thyroid papillary carcinoma. Tumour Biol 2015; 36:7549-56. [PMID: 25916207 DOI: 10.1007/s13277-015-3468-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/15/2015] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to evaluate serum calprotectin levels and oxidative stress status in patients with papillary thyroid carcinoma (PTC) and the changes in their levels after total thyroidectomy. The study involved 30 patients with PTC and 30 healthy controls. Blood samples were obtained from the PTC patients before and 1 month after the operation. Preoperative and postoperative serum samples from PTC patients and healthy controls were analysed for calprotectin, total antioxidant status (TAS), total oxidant status (TOS) and lipid hydroperokside (LOOH). The preoperative calprotectin, TOS, OSI and LOOH levels of the patients with PTC were significantly higher compared to those of the control group (p < 0.001, for each). The levels of calprotectin decreased significantly in patients with PTC after the operation (p < 0.001), while TAS, TOS and OSI levels remained unchanged (p = 0.313, p = 0.085 and p = 0.163, respectively). Preoperative serum calprotectin levels were positively correlated with TOS, OSI and LOOH levels and negatively correlated with TAS levels in patients with PTC. In conclusion, serum calprotectin levels is increased in patients with PTC, and calprotectin is positively correlated with TOS and LOOH. Serum calprotectin levels is significantly decreased after total thyroidectomy.
Collapse
Affiliation(s)
- S Tabur
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Gaziantep University, 27100, Sahinbey, Gaziantep, Turkey
| | - H Korkmaz
- Edirne State Hospital, Endocrinology and Metabolic Disease, 22030, Edirne, Turkey.
| | - M Özkaya
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Gaziantep University, 27100, Sahinbey, Gaziantep, Turkey
| | - U Elboğa
- Department of Nuclear Medicine, Faculty of Medicine, Gaziantep University, 27100, Sahinbey, Gaziantep, Turkey
| | - M Tarakçıoglu
- Department of Clinical Biochemistry, Faculty of Medicine, Gaziantep University, 27100, Sahinbey, Gaziantep, Turkey
| | - N Aksoy
- Department of Clinical Biochemistry, Faculty of Medicine, Harran University, 63300, Sanliurfa, Turkey
| | - E Akarsu
- Department of Internal Medicine, Division of Endocrinology, Faculty of Medicine, Gaziantep University, 27100, Sahinbey, Gaziantep, Turkey
| |
Collapse
|
21
|
Lu H, Poirier C, Cook T, Traktuev DO, Merfeld-Clauss S, Lease B, Petrache I, March KL, Bogatcheva NV. Conditioned media from adipose stromal cells limit lipopolysaccharide-induced lung injury, endothelial hyperpermeability and apoptosis. J Transl Med 2015; 13:67. [PMID: 25889857 PMCID: PMC4358867 DOI: 10.1186/s12967-015-0422-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/28/2015] [Indexed: 01/08/2023] Open
Abstract
Background Acute Respiratory Distress Syndrome (ARDS) is a condition that contributes to morbidity and mortality of critically ill patients. We investigated whether factors secreted by adipose stromal cells (ASC) into conditioned media (ASC-CM) will effectively decrease lung injury in the model of lipopolysaccharide (LPS)-induced ARDS. Methods To assess the effect of ASC-CM on ARDS indices, intravenous delivery of ASC and ASC-CM to C57Bl/6 mice was carried out 4 h after LPS oropharyngeal aspiration; Evans Blue Dye (EBD) was injected intravenously 1 h prior to animal sacrifice (48 h post-LPS). Lungs were either fixed for histopathology, or used to extract bronchoalveolar lavage fluid (BALF) or EBD. To assess the effect of ASC-CM on endothelial barrier function and apoptosis, human pulmonary artery endothelial cells were treated with ASC-CM for 48-72 h. Results ASC-CM markedly reduced LPS-induced histopathologic changes of lung, protein extravasation into BALF, and suppressed the secretion of proinflammatory cytokines TNFα and IL6. White Blood Cells (WBC) from BALF of LPS-challenged mice receiving ASC-CM had decreased reactive oxygen species (ROS) generation compared to WBC from LPS-challenged mice receiving control media injection. Treatment of pulmonary endothelial monolayers with ASC-CM significantly suppressed H2O2-induced leakage of FITC dextran and changes in transendothelial resistance, as well as gap formation in endothelial monolayer. ASC-CM exposure reduced the percentage of endothelial cells expressing ICAM-1, and suppressed TNFα-induced expression of E-selectin and cleavage of caspase-3. ASC-CM reduced the endothelial level of pro-apoptotic protein Bim, but did not affect the level of Bcl-2, Bad, or Bad phosphorylation. Conclusions Factors secreted by ASC efficiently reduce ARDS indices, endothelial barrier hyperpermeability, and activation of pro-inflammatory and pro-apoptotic pathways in endothelium.
Collapse
Affiliation(s)
- Hongyan Lu
- Division of Cardiology, Indiana University, Indianapolis, IN, USA. .,Indiana Center for Vascular Biology and Medicine and VC-CAST Signature Center, Indianapolis, IN, USA. .,Roudebush Veterans Affairs Medical Center, Indiana University, Indianapolis, IN, USA.
| | - Christophe Poirier
- Division of Pulmonary and Critical Care Medicine, Indiana University, Indianapolis, IN, USA.
| | - Todd Cook
- Division of Cardiology, Indiana University, Indianapolis, IN, USA. .,Indiana Center for Vascular Biology and Medicine and VC-CAST Signature Center, Indianapolis, IN, USA.
| | - Dmitry O Traktuev
- Division of Cardiology, Indiana University, Indianapolis, IN, USA. .,Indiana Center for Vascular Biology and Medicine and VC-CAST Signature Center, Indianapolis, IN, USA. .,Roudebush Veterans Affairs Medical Center, Indiana University, Indianapolis, IN, USA.
| | - Stephanie Merfeld-Clauss
- Division of Cardiology, Indiana University, Indianapolis, IN, USA. .,Indiana Center for Vascular Biology and Medicine and VC-CAST Signature Center, Indianapolis, IN, USA. .,Roudebush Veterans Affairs Medical Center, Indiana University, Indianapolis, IN, USA.
| | - Benjamin Lease
- Indiana Center for Vascular Biology and Medicine and VC-CAST Signature Center, Indianapolis, IN, USA.
| | - Irina Petrache
- Indiana Center for Vascular Biology and Medicine and VC-CAST Signature Center, Indianapolis, IN, USA. .,Roudebush Veterans Affairs Medical Center, Indiana University, Indianapolis, IN, USA. .,Division of Pulmonary and Critical Care Medicine, Indiana University, Indianapolis, IN, USA.
| | - Keith L March
- Division of Cardiology, Indiana University, Indianapolis, IN, USA. .,Indiana Center for Vascular Biology and Medicine and VC-CAST Signature Center, Indianapolis, IN, USA. .,Roudebush Veterans Affairs Medical Center, Indiana University, Indianapolis, IN, USA.
| | - Natalia V Bogatcheva
- Division of Cardiology, Indiana University, Indianapolis, IN, USA. .,Indiana Center for Vascular Biology and Medicine and VC-CAST Signature Center, Indianapolis, IN, USA. .,Roudebush Veterans Affairs Medical Center, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
22
|
Bøyum A, Forstrøm RJ, Sefland I, Sand KL, Benestad HB. Intricacies of redoxome function demonstrated with a simple in vitro chemiluminescence method, with special reference to vitamin B12 as antioxidant. Scand J Immunol 2015; 80:390-7. [PMID: 25345916 PMCID: PMC4285856 DOI: 10.1111/sji.12220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 08/21/2014] [Indexed: 11/27/2022]
Abstract
The homeostatic control of the redox system (the redoxome) in mammalian cells depends upon a large number of interacting molecules, which tend to buffer the electronegativity of cells against oxidants or reductants. Some of these components kill – at high concentration – microbes and by-stander normal cells, elaborated by professional phagocytes. We examined whether a simple, in vitro chemiluminescence set-up, utilizing redox components from human polymorphonuclear neutrophils (PMN) and red blood cells (RBC), could clarify some unexplained workings of the redoxome. PMN or purified myeloperoxidase (MPO) triggers formation of reactive oxygen species (ROS), quantified by light emission from oxidized luminol. Both PMN and RBC can generate abundant amounts of ROS, necessitating the presence of a high-capacity redoxome to keep the cellular electronegativity within physiological limits. We obtained proof-of-principle evidence that our assay could assess redox effects, but also demonstrated the intricacies of redox reactions. Simple dose–responses were found, as for the PMN proteins S100A9 (A9) and S100A8 (A8), and the system also revealed the reducing capacity of vitamin B12 (Cbl) and lutein. However, increased concentrations of oxidants in the assay mixture could decrease the chemiluminescence. Even more remarkable, A9 and NaOCl together stimulated the MPO response, but alone they inhibited MPO chemiluminescence. Biphasic responses were also recorded for some dose–response set-ups and are tentatively explained by a ‘balance hypothesis’ for the redoxome.
Collapse
Affiliation(s)
- A Bøyum
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
23
|
Hou A, Lan W, Law KP, Khoo SCJ, Tin MQ, Lim YP, Tong L. Evaluation of global differential gene and protein expression in primary Pterygium: S100A8 and S100A9 as possible drivers of a signaling network. PLoS One 2014; 9:e97402. [PMID: 24825356 PMCID: PMC4019582 DOI: 10.1371/journal.pone.0097402] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/16/2014] [Indexed: 01/12/2023] Open
Abstract
Purpose Pterygium is a wing shaped fibrovascular growth on the ocular surface, characterized by fibrosis, angiogenesis, extracellular matrix remodeling, and inflammatory infiltrates. Epidemiologic studies have linked pterygium formation to various chronic inflammatory conditions, such as ultraviolet radiation, sawdust exposure, and dry eye disease. The purpose of this study is to identify proteins that are differentially expressed in primary pterygium by using a combination of gene microarray and proteomic platforms. Methods Paired pterygium and uninvolved conjunctiva tissues of four patients were evaluated for differences in global gene transcript levels using a genechip microarray. Proteins extracted from another four pairs of tissues were quantified by iTRAQ approach. Western blot and immunofluorescent staining on additional patients were used to validate dysregulated protein expression obtained from microarray and proteomics data. In addition, primary conjunctival fibroblasts were treated with recombinant S100A8, S100A9 or both. Transcript level changes of a panel of potential target genes were evaluated by real time-PCR. Results The following were up-regulated at both protein and transcript levels S100 A8 and A9, aldehyde dehydrogenase 3 family, member1 (ALDH3A1) and vimentin (VIM). Conversely, serpin peptidase inhibitor clade A member 1 (SERPINA1) and transferrin (TF) were down-regulated. Upon adding S100A8, S100A9 or both, the inflammatory chemokine CXCL1, matrix proteins vimentin, biglycan, and gelsolin, as well as annexin-A2, thymosin-β4, chymase (CMA1), member of Ras oncogene family RAB10 and SERPINA1 were found to be up-regulated. Conclusions We identified 3 up-regulated and 2 down-regulated proteins by using a stringent approach comparing microarray and proteomic data. On stimulating cells with S100A8/9, a repertoire of key genes found to be up-regulated in pterygium tissue, were induced in these cells. S100A8/9 may be an upstream trigger for inflammation and other disease pathways in pterygium.
Collapse
Affiliation(s)
- Aihua Hou
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore
- * E-mail: (AH); (LT)
| | - Wanwen Lan
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Kai Pong Law
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ser Chin Jasmine Khoo
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Min Qi Tin
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Yoon Pin Lim
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Louis Tong
- Ocular Surface Research Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore, Singapore
- Singapore National Eye Center, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (AH); (LT)
| |
Collapse
|
24
|
Hiroshima Y, Hsu K, Tedla N, Chung YM, Chow S, Herbert C, Geczy CL. S100A8 Induces IL-10 and Protects against Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2014; 192:2800-11. [DOI: 10.4049/jimmunol.1302556] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Abstract
S100A8, S100A9 and S100A12 are considered proinflammatory mediators of atherosclerosis. Known as calgranulins, they are major components of neutrophils and are upregulated in macrophages and foam cells. They influence leukocyte recruitment, and may propagate inflammation by binding TLR4 and/or receptor for advanced glycation endproducts (RAGE). However, the receptors for calgranulins remain an enigma; we have no evidence for TLR4 or RAGE activation by S100A8 or S100A12. Moreover, gene regulation studies suggest antiinflammatory functions for S100A8 and emerging reports indicate pleiotropic roles. Unlike S100A9, S100A8 effectively scavenges oxidants generated by the myeloperoxidase system in vivo, forming novel thiol modifications. S100A8 is also readily S-nitrosylated, stabilizing nitric oxide and transporting it to hemoglobin. S100A8-SNO reduces leukocyte transmigration in the vasculature. S-glutathionylation of S100A9 modifies its effects on leukocyte adhesion. Both S100A8 forms inhibit mast cell activation, at least partially by scavenging reactive oxygen species required for signaling. Conversely, S100A12 activates and sequesters mast cells. However S100A12 suppresses proinflammatory cytokine induction by SAA-activated monocytes and macrophages, and inhibits matrix metalloprotease activity. We propose that the abundance and types of cells expressing calgranulins in particular microenvironments, their relative concentrations and post-translational modifications may have distinct functional outcomes, including those that are protective, at different stages of atherogenesis.
Collapse
Affiliation(s)
- Carolyn L Geczy
- Inflammation and Infection Research Centre, School of Medical Sciences, University of New South Wales
| | | | | |
Collapse
|
26
|
S100A8 and S100A9: DAMPs at the crossroads between innate immunity, traditional risk factors, and cardiovascular disease. Mediators Inflamm 2013; 2013:828354. [PMID: 24453429 PMCID: PMC3881579 DOI: 10.1155/2013/828354] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 12/15/2022] Open
Abstract
Amplification of innate immune responses by endogenous danger-associated molecular patterns (DAMPs) promotes inflammation. The involvement of S100A8 and S100A9, DAMPs belonging to the S100 calgranulin family, in the pathogenesis of cardiovascular disease is attracting an increasing amount of interest. S100A8 and S100A9 (also termed MRP8 and MRP14) preferentially form the S100A8/A9 heterodimer (MRP8/14 or calprotectin) and are constitutively expressed in myeloid cells. The levels of circulating S100A8/A9 in humans strongly correlate to blood neutrophil counts and are increased by traditional cardiovascular risk factors such as smoking, obesity, hyperglycemia, and dyslipidemia. S100A8/A9 is an endogenous ligand of toll-like receptor 4 (TLR4) and of the receptor for advanced glycation end products (RAGE) and has been shown to promote atherogenesis in mice. In humans, S100A8/A9 correlates with the extent of coronary and carotid atherosclerosis and with a vulnerable plaque phenotype. S100A8/A9 is locally released following myocardial infarction and amplifies the inflammatory responses associated with myocardial ischemia/reperfusion injury. Elevated plasma levels of S100A8/A9 are associated with increased risk of future coronary events in healthy individuals and in myocardial infarction survivors. Thus, S100A8/A9 might represent a useful biomarker and therapeutic target in cardiovascular disease. Importantly, S100A8/A9 blockers have been developed and are approved for clinical testing.
Collapse
|
27
|
Abstract
The S100 protein family consists of 24 members functionally distributed into three main subgroups: those that only exert intracellular regulatory effects, those with intracellular and extracellular functions and those which mainly exert extracellular regulatory effects. S100 proteins are only expressed in vertebrates and show cell-specific expression patterns. In some instances, a particular S100 protein can be induced in pathological circumstances in a cell type that does not express it in normal physiological conditions. Within cells, S100 proteins are involved in aspects of regulation of proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and migration/invasion through interactions with a variety of target proteins including enzymes, cytoskeletal subunits, receptors, transcription factors and nucleic acids. Some S100 proteins are secreted or released and regulate cell functions in an autocrine and paracrine manner via activation of surface receptors (e.g. the receptor for advanced glycation end-products and toll-like receptor 4), G-protein-coupled receptors, scavenger receptors, or heparan sulfate proteoglycans and N-glycans. Extracellular S100A4 and S100B also interact with epidermal growth factor and basic fibroblast growth factor, respectively, thereby enhancing the activity of the corresponding receptors. Thus, extracellular S100 proteins exert regulatory activities on monocytes/macrophages/microglia, neutrophils, lymphocytes, mast cells, articular chondrocytes, endothelial and vascular smooth muscle cells, neurons, astrocytes, Schwann cells, epithelial cells, myoblasts and cardiomyocytes, thereby participating in innate and adaptive immune responses, cell migration and chemotaxis, tissue development and repair, and leukocyte and tumor cell invasion.
Collapse
Affiliation(s)
- R Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Gomes LH, Raftery MJ, Yan WX, Goyette JD, Thomas PS, Geczy CL. S100A8 and S100A9-oxidant scavengers in inflammation. Free Radic Biol Med 2013; 58:170-86. [PMID: 23277148 DOI: 10.1016/j.freeradbiomed.2012.12.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/24/2012] [Accepted: 12/17/2012] [Indexed: 12/19/2022]
Abstract
S100A8 and S100A9 are generally considered proinflammatory. Hypohalous acids generated by activated phagocytes promote novel modifications in murine S100A8 but modifications to human S100A8 are undefined and there is no evidence that these proteins scavenge oxidants in human disease. Recombinant S100A8 was exquisitely sensitive to equimolar ratios of HOCl, which generated sulfinic and sulfonic acid intermediates and novel oxathiazolidine oxide/dioxide forms (mass additions, m/z +30 and +46) on the single Cys42 residue. Met78(O) and Trp54(+16) were also present. HOBr generated sulfonic acid intermediates and oxidized Trp54(+16). Evidence for oxidation of the single Cys3 residue in recS100A9 HOCl was weak; Met63, Met81, Met83, and Met94 were converted to Met(O) in vitro. Oxidized S100A8 was prominent in lungs from patients with asthma and significantly elevated in sputum compared to controls, whereas S100A8 and S100A9 were not significantly increased. Oxidized monomeric S100A8 was the major component in asthmatic sputum, and modifications, including the oxathiazolidine adducts, were similar to those generated by HOCl in vitro. Oxidized Met63, Met81, and Met94 were variously present in S100A9 from asthmatic sputum. Results have broad implications for conditions under which hypohalous acid oxidants are generated by activated phagocytes. Identification in human disease of the novel S100A8 Cys derivatives typical of those generated in vitro strongly supports the notion that S100A8 contributes to antioxidant defense during oxidative stress.
Collapse
Affiliation(s)
- Lincoln H Gomes
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | |
Collapse
|
29
|
The anti-oxidative, anti-inflammatory, and protective effect of S100A8 in endotoxemic mice. Mol Immunol 2012; 53:443-9. [PMID: 23127860 DOI: 10.1016/j.molimm.2012.10.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/27/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) produce and release copious amounts of reactive oxygen species (ROS) which target potential bacterial invaders but also contribute to the inflammation-associated organ injuries seen in sepsis. Calprotectin is an immune regulatory protein complex made of S100A8 and S100A9 that inhibits the oxidative metabolism of PMNs in vitro, an effect that can be potentiated by the controlled activation of the protease activated receptor-2 (PAR2). The aim of this study was to test the use of a dual strategy of calprotectin and PAR2 administration to mitigate the deleterious inflammation seen in sepsis. We hypothesized that exogenous calprotectin would protect against the injuries produced by lipopolysaccharides (LPS)-induced endotoxemia and that the controlled activation of PAR2 would potentiate this beneficial effect. Exogenous S100A8 and/or a PAR2 activating peptide (PAR2 AP) were administered in a mouse model of LPS induced endotoxemia. The survival rates as well as markers of inflammation and oxidative damage were measured in the lungs, kidneys, and livers of endotoxemic mice. Mice treated with S100A8 following LPS had less PMN infiltration and less severe histological changes in their lungs, kidneys, and livers. A significantly lower score of oxidative damage in the livers and lungs of S100A8/LPS treated mice was also noted when compared to mice treated with LPS alone. This protective and anti-inflammatory effect of S100A8 was potentiated by the controlled activation of PAR2. Finally, in further support to our hypothesis, the survival rate was almost doubled from 33% to 65% and 63% in mice treated by, respectively, S100A8 and PAR2 AP, whereas 85% of the mice treated with both PAR2 AP and S100A8 survived, a statistically significant higher rate. These results support an anti-inflammatory, anti-oxidative, and protective effect of S100A8 in sepsis, and warrant further studies on the role of PAR2.
Collapse
|
30
|
Sroussi HY, Burke-Miller J, French AL, Adeyemi OM, Weber KM, Lu Y, Cohen M. Association among vitamin D, oral candidiasis, and calprotectinemia in HIV. J Dent Res 2012; 91:666-70. [PMID: 22538413 DOI: 10.1177/0022034512446342] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Vitamin D deficiency is associated with negative health outcomes, including infections. Vitamin D modulates inflammation and down-regulates the expression of calprotectin, a molecule which influences neutrophil functions and which has been linked to oral candidiasis (OC), the most prevalent oral lesion in human immunodeficiency virus (HIV). We hypothesized a positive association between vitamin D deficiency and OC, and that this effect was partially modulated by calprotectinemia. Plasma calprotectin and serum 25 (OH) vitamin D levels were measured in stored samples from 84 HIV-seropositive Chicago women enrolled in the Oral Substudy of the Women's Interagency HIV Study (WIHS). OC and vitamin D deficiency were diagnosed in, respectively, 14 (16.7%) and 46 (54.8%) of those studied. Vitamin D deficiency was positively associated with OC (p = 0.011) and with higher calprotectinemia (p = 0.019) in univariate analysis. After adjustment for CD4, HIV viral load, HIV treatment, and tobacco and heroin/methadone use, vitamin D deficiency remained a significant predictor of OC (OR 5.66; 95% confidence interval 1.01-31.71). This association weakened after adjustment for calprotectinemia, supporting a role for calprotectinemia as a moderator of this effect. These findings support studies to examine the effect of vitamin D status on calprotectinemia, neutrophil functions, and opportunistic mucosal infections in HIV.
Collapse
Affiliation(s)
- H Y Sroussi
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina, M/C 838, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
The down regulation of neutrophil oxidative metabolism by S100A8 and S100A9: implication of the protease-activated receptor-2. Mol Immunol 2011; 50:42-8. [PMID: 22204866 DOI: 10.1016/j.molimm.2011.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 11/21/2011] [Accepted: 12/02/2011] [Indexed: 11/24/2022]
Abstract
S100A8 and S100A9 regulate polymorphonuclear neutrophils (PMNs) recruitment and represent 40% of PMN cytosolic protein weight. We have shown that S100A8/S100A9 inhibit PMN oxidative metabolism. The present study was designed to elucidate the mechanisms of this anti-oxidative effect. We hypothesized that the protease activated receptor-2 (PAR-2) played a role in the down-regulation of PMN oxidative metabolism by S100A8/S100A9. Freshly isolated PMNs were tested for their ability to oxidize dichlorofluorescin-diacetate. Functional inhibition of PAR-2 with ENMD-1068, the pepducin P2pal-21 or an antibody directed at PAR-2 cleavage/activation site, resulted in a significant inhibition of S100A8 and S100A9 anti-oxidative effect. Conversely, the controlled activation of PAR-2 potentiated S100 anti-oxidative effect. Taken together, the data indicate that the anti-oxidative effect of S100A8/A9 is initiated by PAR-2 activation. S100A8/S100A9 may therefore dampen inflammation without interfering with its initial strength. This finding opens translational possibilities to limit deleterious PMN activation with a dual PAR-2/S100 strategy.
Collapse
|
32
|
Lim SY, Raftery MJ, Geczy CL. Oxidative modifications of DAMPs suppress inflammation: the case for S100A8 and S100A9. Antioxid Redox Signal 2011; 15:2235-48. [PMID: 20919939 DOI: 10.1089/ars.2010.3641] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several S100 Ca(2+)-binding proteins are considered damage-associated molecular pattern molecules (DAMPs). They are actively secreted or released from necrotic cells in response to tissue injury or stress and have various functions important in innate immunity. Here, we review several DAMPs, with particular focus on S100A8 and S100A9, which are susceptible to oxidative modifications by various forms of reactive oxygen species. We discuss the unique posttranslational modifications generated in S100A8 by hypochlorite and the likely structural consequences that alter function. We propose that some reversible modifications act as regulatory switches, representing a mechanism to arrest their novel antiinflammatory activities. These may be important in dampening mast cell activation and altering properties of the activated microcirculation to limit leukocyte adhesion, transmigration, and accumulation. S-nitrosylation of S100A8 in the vasculature could regulate nitric oxide transport and contribute to vessel reflow during resolution of inflammation.
Collapse
Affiliation(s)
- Su Yin Lim
- Centre for Infection and Inflammation Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
33
|
Simard JC, Simon MM, Tessier PA, Girard D. Damage-associated molecular pattern S100A9 increases bactericidal activity of human neutrophils by enhancing phagocytosis. THE JOURNAL OF IMMUNOLOGY 2011; 186:3622-31. [PMID: 21325622 DOI: 10.4049/jimmunol.1002956] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The damage-associated molecular-pattern S100A9 is found at inflammatory sites in infections and various autoimmune diseases. It is released at very high concentrations in the extracellular milieu by activated neutrophils and monocytes in response to various agents. This proinflammatory protein is found in infected mucosae and tissue abscesses where it acts notably as a potent neutrophil activator. In this study, we examined the role of S100A9 in the control of infections. S100A9 was found to increase human neutrophil bactericidal activity toward Escherichia coli. Although S100A9 induced the accumulation of reactive oxygen species over time through the activation of NADPH oxidase, its antimicrobial activity was mediated mainly by enhancing the efficiency of neutrophil phagocytosis. Interestingly, S100A9 did not act by increasing cell surface expression of CD16, CD32, or CD64 in neutrophils, indicating that its biological effect in FcR-mediated phagocytosis is independent of upregulation of FcγR levels. However, S100A9-induced phagocytic activity required the phosphorylation of Erk1/2, Akt, and Syk. Taken together, our results demonstrate that S100A9 stimulates neutrophil microbicidal activity by promoting phagocytosis.
Collapse
Affiliation(s)
- Jean-Christophe Simard
- Laboratoire de Recherche en Inflammation et Physiologie des Granulocytes, Université du Québec, Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Québec City, Québec H7V 1B7, Canada
| | | | | | | |
Collapse
|
34
|
Schwartz R, Lu Y, Villines D, Sroussi HY. Effect of human immunodeficiency virus infection on S100A8/A9 inhibition of peripheral neutrophils oxidative metabolism. Biomed Pharmacother 2010; 64:572-5. [PMID: 20630697 DOI: 10.1016/j.biopha.2010.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 03/26/2010] [Indexed: 01/04/2023] Open
Abstract
Neutrophils are endowed with a highly active oxidative metabolism that is crucial for their antimicrobial functions but can produce oxidative conditions disruptive to the host. Opportunistic infections associated with HIV disease and ex vivo studies of neutrophils from HIV patients suggest that neutrophil dysfunctions significantly contribute to HIV disease. The calcium-binding proteins S100A8 and S100A9 are abundant cytosolic constituents of human neutrophils. Our previous work has shown that S100A8 and S100A9 inhibit neutrophil oxidative metabolism. In this study, we tested the hypothesis that neutrophils from HIV infected subjects respond differently to S100A8 and S100A9 when compared to neutrophils isolated from control HIV naive subjects. Neutrophils, freshly isolated from whole blood, were tested in a 96-well plate assay for their ability to oxidize the DCFH-DA probe. The neutrophils from HIV+ and HIV- subjects were stimulated with LPS and inhibited with recombinant S100A8 and S100A9. Our data indicate that when compared to neutrophils isolated from HIV- subjects, neutrophils from HIV+ subjects display an exaggerated response to LPS and a diminished response to S100A8 and S100A9 inhibition. Our data support our hypothesis and signify that, in HIV disease, dysregulated neutrophil responses to endotoxins stimulation and S100A8/A9 inhibition may contribute to a higher risk for oxidative stress associated ailments. The mechanism for the observed differences in neutrophil response and their biological significance in the course of HIV disease should be addressed in further studies.
Collapse
Affiliation(s)
- Robert Schwartz
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois, 801 S. Paulina Street, M/C838, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|