1
|
Sagini JPN, Possamai Rossatto FC, Souza F, Pilau E, Quines CB, Ávila DS, Ligabue-Braun R, Zimmer AR, Pereira RI, Zimmer KR. Inhibition of Staphylococcus epidermidis and Pseudomonas aeruginosa biofilms by grape and rice agroindustrial residues. Microb Pathog 2024; 197:107019. [PMID: 39442815 DOI: 10.1016/j.micpath.2024.107019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Agroindustrial wastes are generated daily and seem to be rich in bioactive molecules. Thus, they can potentially be used as source of compounds able to control bacterial biofilms. We investigated the potential of extracts from the residues of rice and grape to combat clinically important bacterial biofilms. Extracts of grape pomace and rice bran were obtained using different extractive methodologies and subjected to the evaluation of its antimicrobial and antibiofilm activities. After the in vivo toxicity, the chemical characterization of the most promising extract was assessed. The mass spectrometry analysis revealed the presence of dipeptides, alkaloids and phenolic compounds. Most grape extracts presented antibiofilm and antimicrobial activities against Staphylococcus epidermidis ATCC 35984 and Pseudomonas aeruginosa PA14. The hydromethanolic grape pomace extract obtained by ultrasound assisted extraction (MeOH 80 UAE) presented the most promising activity, being able to inhibit in 99 % and 80 % the biofilm formation of S. epidermidis and P. aeruginosa, respectively. Against the gram-negative model, this extract eradicated the biofilm by 80 %, induced the swarming motility and displayed a physical effect. It also did not present acute or chronic toxicity in Caenorhabditis elegans model. In this way, agroindustrial residues represent a promising source of molecules capable of controlling bacterial biofilms.
Collapse
Affiliation(s)
- João Pedro Nunes Sagini
- Programa de Pós-Graduação em Biociências, Laboratório de Biofilmes e Modelos Alternativos (BioModal), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170, Porto Alegre, RS, Brazil
| | - Fernanda Cristina Possamai Rossatto
- Programa de Pós-Graduação em Biociências, Laboratório de Biofilmes e Modelos Alternativos (BioModal), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170, Porto Alegre, RS, Brazil
| | - Felipe Souza
- Laboratório de Biomoléculas e Espectrometria de Massas (Labiomass), Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Eduardo Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas (Labiomass), Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Caroline Brandão Quines
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXCe), Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, 97500-970, Brazil
| | - Daiana Silva Ávila
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXCe), Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, 97500-970, Brazil
| | - Rodrigo Ligabue-Braun
- Programa de Pós-Graduação em Biociências, Laboratório de Biofilmes e Modelos Alternativos (BioModal), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170, Porto Alegre, RS, Brazil
| | - Aline Rigon Zimmer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Rebeca Inhoque Pereira
- Programa de Pós-Graduação em Biociências, Laboratório de Biofilmes e Modelos Alternativos (BioModal), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170, Porto Alegre, RS, Brazil
| | - Karine Rigon Zimmer
- Programa de Pós-Graduação em Biociências, Laboratório de Biofilmes e Modelos Alternativos (BioModal), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Oubohssaine M, Hnini M, Rabeh K. Exploring lipid signaling in plant physiology: From cellular membranes to environmental adaptation. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154295. [PMID: 38885581 DOI: 10.1016/j.jplph.2024.154295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Lipids have evolved as versatile signaling molecules that regulate a variety of physiological processes in plants. Convincing evidence highlights their critical role as mediators in a wide range of plant processes required for survival, growth, development, and responses to environmental conditions such as water availability, temperature changes, salt, pests, and diseases. Understanding lipid signaling as a critical process has helped us expand our understanding of plant biology by explaining how plants sense and respond to environmental cues. Lipid signaling pathways constitute a complex network of lipids, enzymes, and receptors that coordinate important cellular responses and stressing plant biology's changing and adaptable traits. Plant lipid signaling involves a wide range of lipid classes, including phospholipids, sphingolipids, oxylipins, and sterols, each of which contributes differently to cellular communication and control. These lipids function not only as structural components, but also as bioactive molecules that transfer signals. The mechanisms entail the production of lipid mediators and their detection by particular receptors, which frequently trigger downstream cascades that affect gene expression, cellular functions, and overall plant growth. This review looks into lipid signaling in plant physiology, giving an in-depth look and emphasizing its critical function as a master regulator of vital activities.
Collapse
Affiliation(s)
- Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco.
| | - Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| | - Karim Rabeh
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| |
Collapse
|
3
|
Jouhet J, Alves E, Boutté Y, Darnet S, Domergue F, Durand T, Fischer P, Fouillen L, Grube M, Joubès J, Kalnenieks U, Kargul JM, Khozin-Goldberg I, Leblanc C, Letsiou S, Lupette J, Markov GV, Medina I, Melo T, Mojzeš P, Momchilova S, Mongrand S, Moreira ASP, Neves BB, Oger C, Rey F, Santaeufemia S, Schaller H, Schleyer G, Tietel Z, Zammit G, Ziv C, Domingues R. Plant and algal lipidomes: Analysis, composition, and their societal significance. Prog Lipid Res 2024; 96:101290. [PMID: 39094698 DOI: 10.1016/j.plipres.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.
Collapse
Affiliation(s)
- Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/INRAE/CEA/Grenoble Alpes Univ., 38000 Grenoble, France.
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | | | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Pauline Fischer
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Joanna M Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Dryland Agriculture and Biotechnology, The J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 8499000, Israel
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Sophia Letsiou
- Department of Food Science and Technology, University of West Attica, Ag. Spiridonos str. Egaleo, 12243 Athens, Greece
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Isabel Medina
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Svetlana Momchilova
- Department of Lipid Chemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 9, BG-1113 Sofia, Bulgaria
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Ana S P Moreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Bruna B Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Felisa Rey
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Sergio Santaeufemia
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67083 Strasbourg, France
| | - Guy Schleyer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev 8531100, Israel
| | - Gabrielle Zammit
- Laboratory of Applied Phycology, Department of Biology, University of Malta, Msida MSD 2080, Malta
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal.
| |
Collapse
|
4
|
Sharma P, Lakra N, Goyal A, Ahlawat YK, Zaid A, Siddique KHM. Drought and heat stress mediated activation of lipid signaling in plants: a critical review. FRONTIERS IN PLANT SCIENCE 2023; 14:1216835. [PMID: 37636093 PMCID: PMC10450635 DOI: 10.3389/fpls.2023.1216835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Lipids are a principal component of plasma membrane, acting as a protective barrier between the cell and its surroundings. Abiotic stresses such as drought and temperature induce various lipid-dependent signaling responses, and the membrane lipids respond differently to environmental challenges. Recent studies have revealed that lipids serve as signal mediators forreducing stress responses in plant cells and activating defense systems. Signaling lipids, such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, and N-acylethanolamines, are generated in response to stress. Membrane lipids are essential for maintaining the lamellar stack of chloroplasts and stabilizing chloroplast membranes under stress. However, the effects of lipid signaling targets in plants are not fully understood. This review focuses on the synthesis of various signaling lipids and their roles in abiotic stress tolerance responses, providing an essential perspective for further investigation into the interactions between plant lipids and abiotic stress.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Botany and Plant Physiology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Nita Lakra
- Department of Molecular Biology, Biotechnology and Bioinformatics, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Alisha Goyal
- Division of Crop Improvement, Indian Council of Agricultural Research (ICAR)—Central Soil Salinity Research Institute, Karnal, India
| | - Yogesh K. Ahlawat
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Abbu Zaid
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Botany, Government Gandhi Memorial (GGM) Science College, Cluster University Jammu, Jammu, India
| | | |
Collapse
|
5
|
Adigun OA, Pham TH, Grapov D, Nadeem M, Jewell LE, Cheema M, Galagedara L, Thomas R. Phyto-oxylipin mediated plant immune response to colonization and infection in the soybean- Phytophthora sojae pathosystem. FRONTIERS IN PLANT SCIENCE 2023; 14:1141823. [PMID: 37251755 PMCID: PMC10219219 DOI: 10.3389/fpls.2023.1141823] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 05/31/2023]
Abstract
Introduction Food security is a major challenge to sustainably supply food to meet the demands of the ever-growing global population. Crop loss due to pathogens is a major concern to overcoming this global food security challenge. Soybean root and stem rot caused by Phytophthora sojae results in approximately 20B $US crop loss annually. Phyto-oxylipins are metabolites biosynthesized in the plants by oxidative transformation of polyunsaturated fatty acids through an array of diverging metabolic pathways and play an important role in plant development and defense against pathogen colonization and infection. Lipid mediated plant immunity is a very attractive target for developing long term resistance in many plants' disease pathosystem. However, little is known about the phyto-oxylipin's role in the successful strategies used by tolerant soybean cultivar to mitigate Phytophthora sojae infection. Methods We used scanning electron microscopy to observe the alterations in root morphology and a targeted lipidomics approach using high resolution accurate mass tandem mass spectrometry to assess phyto-oxylipin anabolism at 48 h, 72 h and 96 h post infection. Results and discussion We observed the presence of biogenic crystals and reinforced epidermal walls in the tolerant cultivar suggesting a mechanism for disease tolerance when compared with susceptible cultivar. Similarly, the unequivocally unique biomarkers implicated in oxylipin mediated plant immunity [10(E),12(Z)-13S-hydroxy-9(Z),11(E),15(Z)-octadecatrienoic acid, (Z)-12,13-dihydroxyoctadec-9-enoic acid, (9Z,11E)-13-Oxo-9,11-octadecadienoic acid, 15(Z)-9-oxo-octadecatrienoic acid, 10(E),12(E)-9-hydroperoxyoctadeca-10,12-dienoic acid, 12-oxophytodienoic acid and (12Z,15Z)-9, 10-dihydroxyoctadeca-12,15-dienoic acid] generated from intact oxidized lipid precursors were upregulated in tolerant soybean cultivar while downregulated in infected susceptible cultivar relative to non-inoculated controls at 48 h, 72 h and 96 h post infection by Phytophthora sojae, suggesting that these molecules may be a critical component of the defense strategies used in tolerant cultivar against Phytophthora sojae infection. Interestingly, microbial originated oxylipins, 12S-hydroperoxy-5(Z),8(Z),10(E),14(Z)-eicosatetraenoic acid and (4Z,7Z,10Z,13Z)-15-[3-[(Z)-pent-2-enyl]oxiran-2-yl]pentadeca-4,7,10,13-tetraenoic acid were upregulated only in infected susceptible cultivar but downregulated in infected tolerant cultivar. These microbial originated oxylipins are capable of modulating plant immune response to enhance virulence. This study demonstrated novel evidence for phyto-oxylipin metabolism in soybean cultivars during pathogen colonization and infection using the Phytophthora sojae-soybean pathosystem. This evidence may have potential applications in further elucidation and resolution of the role of phyto-oxylipin anabolism in soybean tolerance to Phytophthora sojae colonization and infection.
Collapse
Affiliation(s)
- Oludoyin Adeseun Adigun
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Thu Huong Pham
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Dmitry Grapov
- Creative Data Solution (CDS), Colfax, CA, United States
| | - Muhammad Nadeem
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Linda Elizabeth Jewell
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, St. John’s, NL, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Lakshman Galagedara
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Raymond Thomas
- School of Science and the Environment, Boreal Ecosystems and Agricultural Sciences, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, Canada
- Department of Biology/Biotron Climate Change Experimental Research Centre, Western University, London, ON, Canada
| |
Collapse
|
6
|
Liang Y, Huang Y, Liu C, Chen K, Li M. Functions and interaction of plant lipid signalling under abiotic stresses. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:361-378. [PMID: 36719102 DOI: 10.1111/plb.13507] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Lipids are the primary form of energy storage and a major component of plasma membranes, which form the interface between the cell and the extracellular environment. Several lipids - including phosphoinositide, phosphatidic acid, sphingolipids, lysophospholipids, oxylipins, and free fatty acids - also serve as substrates for the generation of signalling molecules. Abiotic stresses, such as drought and temperature stress, are known to affect plant growth. In addition, abiotic stresses can activate certain lipid-dependent signalling pathways that control the expression of stress-responsive genes and contribute to plant stress adaptation. Many studies have focused either on the enzymatic production and metabolism of lipids, or on the mechanisms of abiotic stress response. However, there is little information regarding the roles of plant lipids in plant responses to abiotic stress. In this review, we describe the metabolism of plant lipids and discuss their involvement in plant responses to abiotic stress. As such, this review provides crucial background for further research on the interactions between plant lipids and abiotic stress.
Collapse
Affiliation(s)
- Y Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, College of Life Science, Guilin, China
| | - Y Huang
- Guilin University of Electronic Technology, School of Mechanical and Electrical Engineering, Guilin, China
| | - C Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, College of Life Science, Guilin, China
| | - K Chen
- Department of Biotechnology, Huazhong University of Science and Technology, College of Life Science and Technology, Wuhan, China
| | - M Li
- Department of Biotechnology, Huazhong University of Science and Technology, College of Life Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Frontini A, De Bellis L, Luvisi A, Blando F, Allah SM, Dimita R, Mininni C, Accogli R, Negro C. The Green Leaf Volatile (Z)-3-Hexenyl Acetate Is Differently Emitted by Two Varieties of Tulbaghia violacea Plants Routinely and after Wounding. PLANTS (BASEL, SWITZERLAND) 2022; 11:3305. [PMID: 36501344 PMCID: PMC9739665 DOI: 10.3390/plants11233305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
While studying aromas produced by the edible flowers of Tulbaghia violacea, we noticed a different production of (Z)-3-Hexenyl acetate (a green-leaf volatile, GLV) by purple (var. ‘Violacea’) and white (var. ‘Alba’) flowers. The white Tulbaghia flowers constantly emits (Z)-3-Hexenyl acetate, which is instead produced in a lower amount by the purple-flowered variety. Thus, we moved to analyze the production of (Z)-3-Hexenyl acetate by whole plants of the two varieties by keeping them confined under a glass bell for 5 h together with a SPME (Solid Phase Micro Extraction) fiber. Results show that six main volatile compounds are emitted by T. violacea plants: (Z)-3-Hexenyl acetate, benzyl alcohol, nonanal, decanal, (Z)-3-Hexenyl-α-methylbutyrate, and one unknown compound. By cutting at half-height of the leaves, the (Z)-3-Hexenyl acetate is emitted in high quantities from both varieties, while the production of (Z)-3-Hexenyl-α-methylbutyrate increases. (Z)-3-Hexenyl acetate is a GLV capable of stimulating plant defenses, attracting herbivores and their natural enemies, and it is also involved in plant-to-plant communication and defense priming. Thus, T. violacea could represent a useful model for the study of GLVs production and a ‘signal’ plant capable of stimulating natural defenses in the neighboring plants.
Collapse
Affiliation(s)
- Alessandro Frontini
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Federica Blando
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Research Unit of Lecce, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Samar Min Allah
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Rosanna Dimita
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Carlo Mininni
- Ortogourmet Società Agricola S.r.l., S.C. 14 Madonna delle Grazie, 74014 Laterza, Italy
| | - Rita Accogli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Salento University, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
8
|
Zhu L, Huang J, Lu X, Zhou C. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:952397. [PMID: 36017257 PMCID: PMC9396261 DOI: 10.3389/fpls.2022.952397] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
A plant growing in nature is not an individual, but it holds an intricate community of plants and microbes with relatively stable partnerships. The microbial community has recently been demonstrated to be closely linked with plants since their earliest evolution, to help early land plants adapt to environmental threats. Mounting evidence has indicated that plants can release diverse kinds of signal molecules to attract beneficial bacteria for mediating the activities of their genetics and biochemistry. Several rhizobacterial strains can promote plant growth and enhance the ability of plants to withstand pathogenic attacks causing various diseases and loss in crop productivity. Beneficial rhizobacteria are generally called as plant growth-promoting rhizobacteria (PGPR) that induce systemic resistance (ISR) against pathogen infection. These ISR-eliciting microbes can mediate the morphological, physiological and molecular responses of plants. In the last decade, the mechanisms of microbial signals, plant receptors, and hormone signaling pathways involved in the process of PGPR-induced ISR in plants have been well investigated. In this review, plant recognition, microbial elicitors, and the related pathways during plant-microbe interactions are discussed, with highlights on the roles of root hair-specific syntaxins and small RNAs in the regulation of the PGPR-induced ISR in plants.
Collapse
Affiliation(s)
- Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Xiaoming Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Yasin M, Shahid W, Ashraf M, Saleem M, Muzaffar S, Aziz-ur-Rehman, Ejaz SA, Saeed A, Majer T, Bhattarai K, Riaz N. 4-Chlorophenyl- N-furfuryl-1,2,4-triazole Methylacetamides as Significant 15-Lipoxygenase Inhibitors: an Efficient Approach for Finding Lead Anti-inflammatory Compounds. ACS OMEGA 2022; 7:19721-19734. [PMID: 35721976 PMCID: PMC9202051 DOI: 10.1021/acsomega.2c01439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2023]
Abstract
Lipoxygenases (LOXs) are a class of enzymes that catalyze the production of pro-inflammatory mediators, such as leukotrienes and lipoxins, via an arachidonic acid cascade as soon as they are released from the membrane phospholipids after tissue injury. In continuation of our efforts in search for new LOX inhibitors, a series of chlorophenyl-furfuryl-based 1,2,4-triazole derivatives were prepared and evaluated for their 15-LOX inhibitory activities. A simple precursor, 4-chlorobenzoic acid (a), was consecutively transformed into benzoate (1), hydrazide (2), semicarbazide (3), and N-furfuryl 5-(4-chlorobenzyl)-4H-1,2,4-triazole (4), which when further merged with electrophiles (6a-o) resulted in end products (7a-o). The structural elucidations of the newly synthesized compounds (7a-o) were carried out by Fourier transform infrared, 1H-, 13C NMR spectroscopy, EI-MS, and HR-EI-MS spectrometry. The inhibitive capability of compounds (7a-o) on soybean 15-LOX was performed in vitro using the chemiluminescence method. The compounds 7k, 7o, 7m, 7b, and 7i demonstrated potent activities (IC50 17.43 ± 0.38, 19.35 ± 0.71, 23.59 ± 0.68, 26.35 ± 0.62, and 27.53 ± 0.82 μM, respectively). These compounds revealed 79.5 to 98.8% cellular viability as measured by the MTT assay at 0.25 mM concentration. The structure-activity relationship (SAR) studies showed that the positions and the nature of substituents bonded to the phenyl ring are important in the determination of 15-LOX inhibitory activities. ADME, in silico, and density functional theory studies supported the evidence as yet another class of triazoles with potential lead properties in search for anti-LOX compounds with a safe gastrointestinal safety profile for various inflammatory diseases. Further work is in progress on the synthesis of more derivatives in search for anti-inflammatory agents.
Collapse
Affiliation(s)
- Muhammad Yasin
- The
Islamia University of Bahawalpur, Institute
of Chemistry, Baghdad-ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| | - Wardah Shahid
- The
Islamia University of Bahawalpur, Institute
of Chemistry, Baghdad-ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| | - Muhammad Ashraf
- The
Islamia University of Bahawalpur, Institute
of Chemistry, Baghdad-ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| | - Muhammad Saleem
- The
Islamia University of Bahawalpur, Institute
of Chemistry, Baghdad-ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| | - Saima Muzaffar
- University
of Education Lahore, Department of Chemistry,
Division of Science and Technology, Vehari Campus, Lahore 54770, Pakistan
| | - Aziz-ur-Rehman
- Department
of Chemistry, Government College University
Lahore, Lahore 54000, Pakistan
| | - Syed Abid Ejaz
- The
Islamia University of Bahawalpur, Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Khawaja Fareed Campus, Bahawalpur 63100, Pakistan
| | - Amna Saeed
- The
Islamia University of Bahawalpur, Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Khawaja Fareed Campus, Bahawalpur 63100, Pakistan
| | - Thomas Majer
- University
of Tuebingen, Department of Pharmaceutical
Biology, Auf der Morgenstelle
8, Tuebingen 72076, Germany
| | - Keshab Bhattarai
- University
of Tuebingen, Department of Pharmaceutical
Biology, Auf der Morgenstelle
8, Tuebingen 72076, Germany
| | - Naheed Riaz
- The
Islamia University of Bahawalpur, Institute
of Chemistry, Baghdad-ul-Jadeed
Campus, Bahawalpur 63100, Pakistan
| |
Collapse
|
10
|
Hanano A, Perez-Matas E, Shaban M, Cusido RM, Murphy DJ. Characterization of lipid droplets from a Taxus media cell suspension and their potential involvement in trafficking and secretion of paclitaxel. PLANT CELL REPORTS 2022; 41:853-871. [PMID: 34984531 DOI: 10.1007/s00299-021-02823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Our paper describes the potential roles of lipid droplets of Taxus media cell suspension in the biosynthesis and secretion of paclitaxel and, therefore, highlights their involvement in improving its production. Paclitaxel (PTX) is a highly potent anticancer drug that is mainly produced using Taxus sp. cell suspension cultures. The main purpose of the current study is to characterize cellular LDs from T. media cell suspension with a particular focus on the biological connection of their associated proteins, the caleosins (CLOs), with the biosynthesis and secretion of PTX. A pure LD fraction obtained from T. media cells and characterized in terms of their proteome. Interestingly, the cellular LD in T. media sequester the PTX. This was confirmed in vitro, where about 96% of PTX (C0PTX,aq [mg L-1]) in the aqueous solution was partitioned into the isolated LDs. Furthermore, silencing of CLO-encoding genes in the T. media cells led to a net decrease in the number and size of LDs. This coincided with a significant reduction in expression levels of TXS, DBAT and DBTNBT, key genes in the PTX biosynthesis pathway. Subsequently, the biosynthesis of PTX was declined in cell culture. In contrast, treatment of cells with 13-hydroperoxide C18:3, a substrate of the peroxygenase activity, induced the expression of CLOs, and, therefore, the accumulation of cellular LDs in the T. media cells cultures, thus increasing the PTX secretion. The accumulation of stable LDs is critically important for effective secretion of PTX. This is modulated by the expression of caleosins, a class of LD-associated proteins with a dual role conferring the structural stability of LDs as well as regulating lipidic bioactive metabolites via their enzymatic activity, thus enhancing the biosynthesis of PTX.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| | - Edgar Perez-Matas
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII Sn., 08028, Barcelona, Spain
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Rosa M Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII Sn., 08028, Barcelona, Spain
| | - Denis J Murphy
- Genomics and Computational Biology Group, University of South Wales, Pontypridd, Wales, UK
| |
Collapse
|
11
|
Toporkova YY, Askarova EK, Gorina SS, Mukhtarova LS, Grechkin AN. Oxylipin biosynthesis in spikemoss Selaginella moellendorffii: Identification of allene oxide synthase (CYP74L2) and hydroperoxide lyase (CYP74L1). PHYTOCHEMISTRY 2022; 195:113051. [PMID: 34890887 DOI: 10.1016/j.phytochem.2021.113051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Nonclassical P450s of the CYP74 family catalyse the secondary conversions of fatty acid hydroperoxides to bioactive oxylipins in plants. The model organism, spikemoss Selaginella moellendorffii Hieron, possesses at least ten CYP74 genes of novel J, K, L, and M subfamilies. The cloning of three CYP74L genes and catalytic properties of recombinant proteins are described in the present work. The CYP74L1 possessed mainly hydroperoxide lyase (HPL) activity towards the 13(S)-hydroperoxide of α-linolenic acids (13-HPOT) and nearly equal HPL and allene oxide synthase (AOS) activities towards the 13(S)-hydroperoxide of linoleic acids (13-HPOD). The 9-hydroperoxides were poor substrates for CYP74L1 and led to the production of mainly the α-ketols (AOS products) and minorities of HPL and epoxyalcohol synthase (EAS) products. The CYP74L2 possessed the AOS activity towards all tested hydroperoxides. CYP74L3 possessed low HPL/EAS activity. Besides, the aerial parts of S. moellendorffii plants possessed complex oxylipins patterns including divinyl ethers, epoxyalcohols, and 12-oxo-phytodienoic acid. Characterization of the CYP74L enzymes and oxylipin pattern updates the knowledge on the complex oxylipin biosynthetic machinery in the surviving oldest taxa of vascular plants.
Collapse
Affiliation(s)
- Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia.
| | - Elena K Askarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Lucia S Mukhtarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia.
| |
Collapse
|
12
|
Bizzio LN, Tieman D, Munoz PR. Branched-Chain Volatiles in Fruit: A Molecular Perspective. FRONTIERS IN PLANT SCIENCE 2022; 12:814138. [PMID: 35154212 PMCID: PMC8829073 DOI: 10.3389/fpls.2021.814138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 05/03/2023]
Abstract
Branched-chain volatiles (BCVs) constitute an important family of fruit volatile metabolites essential to the characteristic flavor and aroma profiles of many edible fruits. Yet in contrast to other groups of volatile organic compounds important to fruit flavor such as terpenoids, phenylpropanoids, and oxylipins, the molecular biology underlying BCV biosynthesis remains poorly understood. This lack of knowledge is a barrier to efforts aimed at obtaining a more comprehensive understanding of fruit flavor and aroma and the biology underlying these complex phenomena. In this review, we discuss the current state of knowledge regarding fruit BCV biosynthesis from the perspective of molecular biology. We survey the diversity of BCV compounds identified in edible fruits as well as explore various hypotheses concerning their biosynthesis. Insights from branched-chain precursor compound metabolism obtained from non-plant organisms and how they may apply to fruit BCV production are also considered, along with potential avenues for future research that might clarify unresolved questions regarding BCV metabolism in fruits.
Collapse
Affiliation(s)
- Lorenzo N. Bizzio
- Blueberry Breeding and Genomics Lab, Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Denise Tieman
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Patricio R. Munoz
- Blueberry Breeding and Genomics Lab, Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Mironenka J, Różalska S, Bernat P. Potential of Trichoderma harzianum and Its Metabolites to Protect Wheat Seedlings against Fusarium culmorum and 2,4-D. Int J Mol Sci 2021; 22:ijms222313058. [PMID: 34884860 PMCID: PMC8657962 DOI: 10.3390/ijms222313058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Wheat is a critically important crop. The application of fungi, such as Trichoderma harzianum, to protect and improve crop yields could become an alternative solution to synthetic chemicals. However, the interaction between the fungus and wheat in the presence of stress factors at the molecular level has not been fully elucidated. In the present work, we exposed germinating seeds of wheat (Triticum aestivum) to the plant pathogen Fusarium culmorum and the popular herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of T. harzianum or its extracellular metabolites. Then, the harvested roots and shoots were analyzed using spectrometry, 2D-PAGE, and MALDI-TOF/MS techniques. Although F. culmorum and 2,4-D were found to disturb seed germination and the chlorophyll content, T. harzianum partly alleviated these negative effects and reduced the synthesis of zearalenone by F. culmorum. Moreover, T. harzianum decreased the activity of oxidoreduction enzymes (CAT and SOD) and the contents of the oxylipins 9-Hode, 13-Hode, and 13-Hotre induced by stress factors. Under the influence of various growth conditions, changes were observed in over 40 proteins from the wheat roots. Higher volumes of proteins and enzymes performing oxidoreductive functions, such as catalase, ascorbate peroxidase, cytochrome C peroxidase, and Cu/Zn superoxide dismutase, were found in the Fusarium-inoculated and 2,4-D-treated wheat roots. Additionally, observation of the level of 12-oxo-phytodienoic acid reductase involved in the oxylipin signaling pathway in wheat showed an increase. Trichoderma and its metabolites present in the system leveled out the mentioned proteins to the control volumes. Among the 30 proteins examined in the shoots, the expression of the proteins involved in photosynthesis and oxidative stress response was found to be induced in the presence of the herbicide and the pathogen. In summary, these proteomic and metabolomic studies confirmed that the presence of T. harzianum results in the alleviation of oxidative stress in wheat induced by 2,4-D or F. culmorum.
Collapse
|
14
|
Molina J, Nikolic D, Jeevarathanam JR, Abzalimov R, Park EJ, Pedales R, Mojica ERE, Tandang D, McLaughlin W, Wallick K, Adams J, Novy A, Pell SK, van Breemen RB, Pezzuto JM. Living with a giant, flowering parasite: metabolic differences between Tetrastigma loheri Gagnep. (Vitaceae) shoots uninfected and infected with Rafflesia (Rafflesiaceae) and potential applications for propagation. PLANTA 2021; 255:4. [PMID: 34841446 PMCID: PMC8627921 DOI: 10.1007/s00425-021-03787-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Metabolites in Rafflesia-infected and non-infected Tetrastigma were compared which may have applications in Rafflesia propagation. Benzylisoquinoline alkaloids, here reported for the first time in Vitaceae, were abundant in non-infected shoots and may be a form of defense. In Rafflesia-infected shoots, oxylipins, which mediate immune response, were elevated. Endemic to the forests of Southeast Asia, Rafflesia (Rafflesiaceae) is a genus of holoparasitic plants producing the largest flowers in the world, yet completely dependent on its host, the tropical grape vine, Tetrastigma. Rafflesia species are threatened with extinction, making them an iconic symbol of plant conservation. Thus far, propagation has proved challenging, greatly decreasing efficacy of conservation efforts. This study compared the metabolites in the shoots of Rafflesia-infected and non-infected Tetrastigma loheri to examine how Rafflesia infection affects host metabolomics and elucidate the Rafflesia infection process. Results from LC-MS-based untargeted metabolomics analysis showed benzylisoquinoline alkaloids were naturally more abundant in non-infected shoots and are here reported for the first time in the genus Tetrastigma, and in the grape family, Vitaceae. These metabolites have been implicated in plant defense mechanisms and may prevent a Rafflesia infection. In Rafflesia-infected shoots, oxygenated fatty acids, or oxylipins, and a flavonoid, previously shown involved in plant immune response, were significantly elevated. This study provides a preliminary assessment of metabolites that differ between Rafflesia-infected and non-infected Tetrastigma hosts and may have applications in Rafflesia propagation to meet conservation goals.
Collapse
Affiliation(s)
- Jeanmaire Molina
- Department of Biology, Long Island University, Brooklyn, NY, USA.
| | - Dejan Nikolic
- College of Pharmacy, University of Illinois, Chicago, IL, USA
| | | | - Rinat Abzalimov
- Biomolecular Mass Spectrometry Facility, Advanced Science Research Center, City University of New York, New York, NY, USA
| | - Eun-Jung Park
- College of Pharmacy, Long Island University, Brooklyn, NY, USA
| | - Ronniel Pedales
- Institute of Biology, University of the Philippines Diliman, Quezon City, Philippines
| | - Elmer-Rico E Mojica
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, New York, NY, USA
| | - Danilo Tandang
- Philippine National Herbarium (PNH), Botany Division, National Museum of the Philippines, Manila, Philippines
- Academia Sinica, National Taiwan Normal University, Taipei, Taiwan
| | | | - Kyle Wallick
- United States Botanic Garden, Washington, DC, USA
| | - James Adams
- United States Botanic Garden, Washington, DC, USA
| | - Ari Novy
- San Diego Botanic Garden, Encinitas, CA, USA
- Department of Anthropology, University of California-San Diego, San Diego, CA, USA
| | - Susan K Pell
- United States Botanic Garden, Washington, DC, USA
| | - Richard B van Breemen
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - John M Pezzuto
- College of Pharmacy, Long Island University, Brooklyn, NY, USA
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
15
|
Cavaco AR, Matos AR, Figueiredo A. Speaking the language of lipids: the cross-talk between plants and pathogens in defence and disease. Cell Mol Life Sci 2021; 78:4399-4415. [PMID: 33638652 PMCID: PMC11073031 DOI: 10.1007/s00018-021-03791-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/21/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022]
Abstract
Lipids and fatty acids play crucial roles in plant immunity, which have been highlighted over the past few decades. An increasing number of studies have shown that these molecules are pivotal in the interactions between plants and their diverse pathogens. The roles played by plant lipids fit in a wide spectrum ranging from the first physical barrier encountered by the pathogens, the cuticle, to the signalling pathways that trigger different immune responses and expression of defence-related genes, mediated by several lipid molecules. Moreover, lipids have been arising as candidate biomarkers of resistance or susceptibility to different pathogens. Studies on the apoplast and extracellular vesicles have been highlighting the possible role of lipids in the intercellular communication and the establishment of systemic acquired resistance during plant-pathogen interactions. From the pathogen perspective, lipid metabolism and specific lipid molecules play pivotal roles in the pathogen's life cycle completion, being crucial during recognition by the plant and evasion from the host immune system, therefore potentiating infection. Studies conducted in the last years have contributed to a better understanding of the language of lipids during the cross-talk between plants and pathogens. However, it is essential to continue exploring the knowledge brought up to light by transcriptomics and proteomics studies towards the elucidation of lipid signalling processes during defence and disease. In this review, we present an updated overview on lipids associated to plant-pathogen interactions, exploiting their roles from the two sides of this battle.
Collapse
Affiliation(s)
- Ana Rita Cavaco
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal
| | - Ana Rita Matos
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal
| | - Andreia Figueiredo
- Biosystems and Integrative Sciences Institute (BioISI), Faculty of Science, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
16
|
Cook R, Lupette J, Benning C. The Role of Chloroplast Membrane Lipid Metabolism in Plant Environmental Responses. Cells 2021; 10:cells10030706. [PMID: 33806748 PMCID: PMC8005216 DOI: 10.3390/cells10030706] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/30/2022] Open
Abstract
Plants are nonmotile life forms that are constantly exposed to changing environmental conditions during the course of their life cycle. Fluctuations in environmental conditions can be drastic during both day–night and seasonal cycles, as well as in the long term as the climate changes. Plants are naturally adapted to face these environmental challenges, and it has become increasingly apparent that membranes and their lipid composition are an important component of this adaptive response. Plants can remodel their membranes to change the abundance of different lipid classes, and they can release fatty acids that give rise to signaling compounds in response to environmental cues. Chloroplasts harbor the photosynthetic apparatus of plants embedded into one of the most extensive membrane systems found in nature. In part one of this review, we focus on changes in chloroplast membrane lipid class composition in response to environmental changes, and in part two, we will detail chloroplast lipid-derived signals.
Collapse
Affiliation(s)
- Ron Cook
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Josselin Lupette
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1319, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| |
Collapse
|
17
|
Jasmonates: biosynthesis, perception and signal transduction. Essays Biochem 2021; 64:501-512. [PMID: 32602544 DOI: 10.1042/ebc20190085] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
Jasmonates (JAs) are physiologically important molecules involved in a wide range of plant responses from growth, flowering, senescence to defence against abiotic and biotic stress. They are rapidly synthesised from α-linolenic acid (ALA; C18:3 ∆9,12,15) by a process of oxidation, cyclisation and acyl chain shortening involving co-operation between the chloroplast and peroxisome. The active form of JA is the isoleucine conjugate, JA-isoleucine (JA-Ile), which is synthesised in the cytoplasm. Other active metabolites of JA include the airborne signalling molecules, methyl JA (Me-JA) and cis-jasmone (CJ), which act as inter-plant signalling molecules activating defensive genes encoding proteins and secondary compounds such as anthocyanins and alkaloids. One of the key defensive metabolites in many plants is a protease inhibitor that inactivates the protein digestive capabilities of insects, thereby, reducing their growth. The receptor for JA-Ile is a ubiquitin ligase termed as SCFCoi1 that targets the repressor protein JA Zim domain (JAZ) for degradation in the 26S proteasome. Removal of JAZ allows other transcription factors (TFs) to activate the JA response. The levels of JA-Ile are controlled through catabolism by hydroxylating enzymes of the cytochrome P450 (CYP) family. The JAZ proteins act as metabolic hubs and play key roles in cross-talk with other phytohormone signalling pathways in co-ordinating genome-wide responses. Specific subsets of JAZ proteins are involved in regulating different response outcomes such as growth inhibition versus biotic stress responses. Understanding the molecular circuits that control plant responses to pests and pathogens is a necessary pre-requisite to engineering plants with enhanced resilience to biotic challenges for improved agricultural yields.
Collapse
|
18
|
Xiong CF, Ding J, Zhu QF, Bai YL, Yin XM, Ye TT, Yu QW, Feng YQ. Boron Isotope Tag-Assisted Ultrahigh-Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry for Discovery and Annotation of cis-Diol-Containing Metabolites. Anal Chem 2021; 93:3002-3009. [PMID: 33497194 DOI: 10.1021/acs.analchem.0c05037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
cis-Diol-containing metabolites are widely distributed in living organisms, and they participate in the regulation of various important biological activities. The profiling of cis-diol-containing metabolites could help us in fully understanding their functions. In this work, based on the characteristic isotope pattern of boron, we employed a boronic acid reagent as the isotope tag to establish a sensitive and selective liquid chromatography-high-resolution mass spectrometry method for the screening and annotation of cis-diol-containing metabolites in biological samples. Boronic acid reagent 2-methyl-4-phenylaminomethylphenylboronic acid was used to label the cis-diol-containing metabolites in biological samples to improve the selectivity and MS sensitivity of cis-diol-containing metabolites. Based on the characteristic 0.996 Da mass difference of precursor ions and the peak intensity ratio of 1:4 originating from 10B and 11B natural isotopes, the potential cis-diol-containing metabolites were rapidly screened from biological samples. Potential cis-diol-containing metabolites were annotated by database searching and analysis of fragmentation patterns obtained by multistage MS (MSn) via collision-induced dissociation. Importantly, the cis-diol position could be readily resolved by the MS3 spectrum. With this method, a total of 45 cis-diol-containing metabolites were discovered in rice, including monoglycerides, polyhydroxy fatty acids, fatty alcohols, and so forth. Furthermore, the established method showed superiority in avoiding false-positive results in profiling cis-diol-containing metabolites.
Collapse
Affiliation(s)
- Cai-Feng Xiong
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Jun Ding
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Quan-Fei Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Ya-Li Bai
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Ming Yin
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Tian-Tian Ye
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Qiong-Wei Yu
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, PR China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
19
|
Fitoussi N, Borrego E, Kolomiets MV, Qing X, Bucki P, Sela N, Belausov E, Braun Miyara S. Oxylipins are implicated as communication signals in tomato-root-knot nematode (Meloidogyne javanica) interaction. Sci Rep 2021; 11:326. [PMID: 33431951 PMCID: PMC7801703 DOI: 10.1038/s41598-020-79432-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
Throughout infection, plant-parasitic nematodes activate a complex host defense response that will regulate their development and aggressiveness. Oxylipins-lipophilic signaling molecules-are part of this complex, performing a fundamental role in regulating plant development and immunity. At the same time, the sedentary root-knot nematode Meloidogyne spp. secretes numerous effectors that play key roles during invasion and migration, supporting construction and maintenance of nematodes' feeding sites. Herein, comprehensive oxylipin profiling of tomato roots, performed using LC-MS/MS, indicated strong and early responses of many oxylipins following root-knot nematode infection. To identify genes that might respond to the lipidomic defense pathway mediated through oxylipins, RNA-Seq was performed by exposing Meloidogyne javanica second-stage juveniles to tomato protoplasts and the oxylipin 9-HOT, one of the early-induced oxylipins in tomato roots upon nematode infection. A total of 7512 differentially expressed genes were identified. To target putative effectors, we sought differentially expressed genes carrying a predicted secretion signal peptide. Among these, several were homologous with known effectors in other nematode species; other unknown, potentially secreted proteins may have a role as root-knot nematode effectors that are induced by plant lipid signals. These include effectors associated with distortion of the plant immune response or manipulating signal transduction mediated by lipid signals. Other effectors are implicated in cell wall degradation or ROS detoxification at the plant-nematode interface. Being an integral part of the plant's defense response, oxylipins might be placed as important signaling molecules underlying nematode parasitism.
Collapse
Affiliation(s)
- Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel
- Department of Plant Pathology and Microbiology, The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Eli Borrego
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, TAMU 2132, College Station, 77843-2132, USA
| | - Xue Qing
- Department of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, 50250, Bet Dagan, Israel
| | - Eduard Belausov
- Department of Plant Sciences, Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, 50250, Bet Dagan, Israel
| | - Sigal Braun Miyara
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, P.O. Box 15159, 50250, Rishon LeZion, Bet Dagan, Israel.
| |
Collapse
|
20
|
Isolation and Antitrypanosomal Characterization of Furoquinoline and Oxylipin from Zanthoxylum zanthoxyloides. Biomolecules 2020; 10:biom10121670. [PMID: 33322191 PMCID: PMC7763825 DOI: 10.3390/biom10121670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
In the absence of vaccines, there is a need for alternative sources of effective chemotherapy for African trypanosomiasis (AT). The increasing rate of resistance and toxicity of commercially available antitrypanosomal drugs also necessitates an investigation into the mode of action of new antitrypanosomals for AT. In this study, furoquinoline 4, 7, 8-trimethoxyfuro (2, 3-b) quinoline (compound 1) and oxylipin 9-oxo-10, 12-octadecadienoic acid (compound 2) were isolated from the plant species Zanthoxylum zanthoxyloides (Lam) Zepern and Timler (root), and their in vitro efficacy and mechanisms of action investigated in Trypanosoma brucei (T. brucei), the species responsible for AT. Both compounds resulted in a selectively significant growth inhibition of T. brucei (compound 1, half-maximal effective concentration EC50 = 1.7 μM, selectivity indices SI = 74.9; compound 2, EC50 = 1.2 μM, SI = 107.3). With regards to effect on the cell cycle phases of T. brucei, only compound 1 significantly arrested the second growth-mitotic (G2-M) phase progression even though G2-M and DNA replication (S) phase arrest resulted in the overall reduction of T. brucei cells in G0-G1 for both compounds. Moreover, both compounds resulted in the aggregation and distortion of the elongated slender morphology of T. brucei. Analysis of antioxidant potential revealed that at their minimum and maximum concentrations, the compounds exhibited significant oxidative activities in T. brucei (compound 1, 22.7 μM Trolox equivalent (TE), 221.2 μM TE; compound 2, 15.0 μM TE, 297.7 μM TE). Analysis of growth kinetics also showed that compound 1 exhibited a relatively consistent growth inhibition of T. brucei at different concentrations as compared to compound 2. The results suggest that compounds 1 and 2 are promising antitrypanosomals with the potential for further development into novel AT chemotherapy.
Collapse
|
21
|
Toporkova YY, Smirnova EO, Iljina TM, Mukhtarova LS, Gorina SS, Grechkin AN. The CYP74B and CYP74D divinyl ether synthases possess a side hydroperoxide lyase and epoxyalcohol synthase activities that are enhanced by the site-directed mutagenesis. PHYTOCHEMISTRY 2020; 179:112512. [PMID: 32927248 DOI: 10.1016/j.phytochem.2020.112512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
The CYP74 family of cytochromes P450 includes four enzymes of fatty acid hydroperoxide metabolism: allene oxide synthase (AOS), hydroperoxide lyase (HPL), divinyl ether synthase (DES), and epoxyalcohol synthase (EAS). The present work is concerned with catalytic specificities of three recombinant DESs, namely, the 9-DES (LeDES, CYP74D1) of tomato (Solanum lycopersicum), 9-DES (NtDES, CYP74D3) of tobacco (Nicotiana tabacum), and 13-DES (LuDES, CYP74B16) of flax (Linum usitatissimum), as well as their alterations upon the site-directed mutagenesis. Both LeDES and NtDES converted 9-hydroperoxides of linoleic and α-linolenic acids to divinyl ethers colneleic and colnelenic acids (respectively) with only minorities of HPL and EAS products. In contrast, LeDES and NtDES showed low efficiency towards the linoleate 13-hydroperoxide, affording only the low yield of epoxyalcohols. LuDES exhibited mainly the DES activity towards α-linolenate 13-hydroperoxide (preferred substrate), and HPL activity towards linoleate 13-hydroperoxide, respectively. In contrast, LuDES converted 9-hydroperoxides primarily to the epoxyalcohols. The F291V and A287G mutations within the I-helix groove region (SRS-4) of LuDES resulted in the loss of DES activity and the acquirement of the epoxyalcohol synthase activity. Thus, the studied enzymes exhibited the versatility of catalysis and its qualitative alterations upon the site-directed mutagenesis.
Collapse
Affiliation(s)
- Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia.
| | - Elena O Smirnova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Tatiana M Iljina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Lucia S Mukhtarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia.
| |
Collapse
|
22
|
Estelle D, Laurence L, Marc O, Caroline DC, Magali D, Marie-Laure F. Linolenic fatty acid hydroperoxide acts as biocide on plant pathogenic bacteria: Biophysical investigation of the mode of action. Bioorg Chem 2020; 100:103877. [DOI: 10.1016/j.bioorg.2020.103877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/27/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
|
23
|
Awad N, Vega-Estévez S, Griffiths G. Salicylic acid and aspirin stimulate growth of Chlamydomonas and inhibit lipoxygenase and chloroplast desaturase pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:256-265. [PMID: 32087537 DOI: 10.1016/j.plaphy.2020.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Chemical stimulants, used to enhance biomass yield, are highly desirable for the commercialisation of algal products for a wide range of applications in the food, pharma and biofuels sectors. In the present study, phenolic compounds, varying in substituents and positional isomers on the arene ring have been evaluated to determine structure-activity relationship and growth. The phenols, catechol, 4-methylcatechol and 2, 4-dimethyl phenol were generally inhibitory to growth as were the compounds containing an aldehyde function. By contrast, the phenolic acids, salicylic acid, aspirin and 4-hydroxybenzoate markedly stimulated cell proliferation enhancing cell numbers by 20-45% at mid-log phase. The order of growth stimulation was ortho > para > meta with respect to the position of the OH group. Both SA and aspirin reduced 16:3 in chloroplast galactolipids. In addition, both compounds inhibited lipoxygenase activity and lowered the levels of lipid hydroperoxides and malondialdehydes in the cells. The present study has demonstrated the possibility of using SA or aspirin to promote algal growth through the manipulation of lipid metabolising enzymes.
Collapse
Affiliation(s)
- Nahid Awad
- Chemical Engineering and Applied Chemistry, Energy and Bioproducts Research Institute, Aston University, B4 7ET, Birmingham, United Kingdom.
| | - Samuel Vega-Estévez
- Chemical Engineering and Applied Chemistry, Energy and Bioproducts Research Institute, Aston University, B4 7ET, Birmingham, United Kingdom.
| | - Gareth Griffiths
- Chemical Engineering and Applied Chemistry, Energy and Bioproducts Research Institute, Aston University, B4 7ET, Birmingham, United Kingdom.
| |
Collapse
|
24
|
Deboever E, Deleu M, Mongrand S, Lins L, Fauconnier ML. Plant-Pathogen Interactions: Underestimated Roles of Phyto-oxylipins. TRENDS IN PLANT SCIENCE 2020; 25:22-34. [PMID: 31668451 DOI: 10.1016/j.tplants.2019.09.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 05/28/2023]
Abstract
Plant (or phyto-) oxylipins (POs) are produced under a wide range of stress conditions and although they are well known to activate stress-related signalling pathways, the nonsignalling roles of POs are poorly understood. We describe oxylipins as direct biocidal agents and propose that structure-function relationships play here a pivotal role. Based on their chemical configuration, POs, such as reactive oxygen and electrophile species, activate defence-related gene expression. We also propose that their ability to interact with pathogen membranes is important, but still misunderstood, and that they are involved in cross-kingdom communication. Taken as a whole, the current literature suggests that POs have a high potential as biocontrol agents. However, the mechanisms underlying these multifaceted compounds remain largely unknown.
Collapse
Affiliation(s)
- Estelle Deboever
- Molecular Biophysics at Interface Laboratory (LBMI), Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, B-5030 Gembloux, Belgium; Laboratory of Natural Molecules Chemistry (LCMN), Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, B-5030 Gembloux, Belgium.
| | - Magali Deleu
- Molecular Biophysics at Interface Laboratory (LBMI), Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, B-5030 Gembloux, Belgium
| | - Sébastien Mongrand
- Laboratory of Membrane Biogenesis (LBM), Research Mix Unity (UMR) 5200, National Scientific Research Center (CNRS), University of Bordeaux, Bordeaux, France
| | - Laurence Lins
- Molecular Biophysics at Interface Laboratory (LBMI), Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, B-5030 Gembloux, Belgium
| | - Marie-Laure Fauconnier
- Laboratory of Natural Molecules Chemistry (LCMN), Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, B-5030 Gembloux, Belgium
| |
Collapse
|
25
|
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13367-13392. [PMID: 31591878 DOI: 10.1021/acs.jafc.9b02690] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- bisy e.U. , Wetzawinkel 20 , 8200 Hofstaetten , Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
26
|
Biocatalytic Synthesis of Natural Green Leaf Volatiles Using the Lipoxygenase Metabolic Pathway. Catalysts 2019. [DOI: 10.3390/catal9100873] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In higher plants, the lipoxygenase enzymatic pathway combined actions of several enzymes to convert lipid substrates into signaling and defense molecules called phytooxylipins including short chain volatile aldehydes, alcohols, and esters, known as green leaf volatiles (GLVs). GLVs are synthesized from C18:2 and C18:3 fatty acids that are oxygenated by lipoxygenase (LOX) to form corresponding hydroperoxides, then the action of hydroperoxide lyase (HPL) produces C6 or C9 aldehydes that can undergo isomerization, dehydrogenation, and esterification. GLVs are commonly used as flavors to confer a fresh green odor of vegetable to perfumes, cosmetics, and food products. Given the increasing demand in these natural flavors, biocatalytic processes using the LOX pathway reactions constitute an interesting application. Vegetable oils, chosen for their lipid profile are converted in natural GLVs with high added value. This review describes the enzymatic reactions of GLVs biosynthesis in the plant, as well as the structural and functional properties of the enzymes involved. The various stages of the biocatalytic production processes are approached from the lipid substrate to the corresponding aldehyde or alcoholic aromas, as well as the biotechnological improvements to enhance the production potential of the enzymatic catalysts.
Collapse
|
27
|
Rustgi S, Springer A, Kang C, von Wettstein D, Reinbothe C, Reinbothe S, Pollmann S. ALLENE OXIDE SYNTHASE and HYDROPEROXIDE LYASE, Two Non-Canonical Cytochrome P450s in Arabidopsis thaliana and Their Different Roles in Plant Defense. Int J Mol Sci 2019; 20:E3064. [PMID: 31234561 PMCID: PMC6627107 DOI: 10.3390/ijms20123064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 11/16/2022] Open
Abstract
The channeling of metabolites is an essential step of metabolic regulation in all living organisms. Multifunctional enzymes with defined domains for metabolite compartmentalization are rare, but in many cases, larger assemblies forming multimeric protein complexes operate in defined metabolic shunts. In Arabidopsis thaliana, a multimeric complex was discovered that contains a 13-lipoxygenase and allene oxide synthase (AOS) as well as allene oxide cyclase. All three plant enzymes are localized in chloroplasts, contributing to the biosynthesis of jasmonic acid (JA). JA and its derivatives act as ubiquitous plant defense regulators in responses to both biotic and abiotic stresses. AOS belongs to the superfamily of cytochrome P450 enzymes and is named CYP74A. Another CYP450 in chloroplasts, hydroperoxide lyase (HPL, CYP74B), competes with AOS for the common substrate. The products of the HPL reaction are green leaf volatiles that are involved in the deterrence of insect pests. Both enzymes represent non-canonical CYP450 family members, as they do not depend on O2 and NADPH-dependent CYP450 reductase activities. AOS and HPL activities are crucial for plants to respond to different biotic foes. In this mini-review, we aim to summarize how plants make use of the LOX2-AOS-AOC2 complex in chloroplasts to boost JA biosynthesis over volatile production and how this situation may change in plant communities during mass ingestion by insect pests.
Collapse
Affiliation(s)
- Sachin Rustgi
- Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC 29506, USA.
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Armin Springer
- Medizinische Biologie und Elektronenmikroskopisches Zentrum (EMZ), Universitätsmedizin Rostock, 18055 Rostock, Germany.
| | - ChulHee Kang
- Department of Chemistry, Biomolecular Crystallography Center, Washington State University, Pullman, WA 99164, USA.
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Christiane Reinbothe
- Biologie Environnementale et Systémique (BEEeSy), Université Grenoble Alpes, BP 53, CEDEX, F-38041 Grenoble, France.
| | - Steffen Reinbothe
- Biologie Environnementale et Systémique (BEEeSy), Université Grenoble Alpes, BP 53, CEDEX, F-38041 Grenoble, France.
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
28
|
Deochand DK, Pande A, Meariman JK, Grove A. Redox Sensing by PecS from the Plant Pathogen Pectobacterium atrosepticum and Its Effect on Gene Expression and the Conformation of PecS-Bound Promoter DNA. Biochemistry 2019; 58:2564-2575. [PMID: 31046241 DOI: 10.1021/acs.biochem.9b00288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The plant pathogen Pectobacterium atrosepticum encounters a stressful environment when it colonizes the plant apoplast. Chief among the stressors are the reactive oxygen species (ROS) that are produced by the host as a first line of defense. Bacterial transcription factors in turn use these signals as cues to upregulate expression of virulence-associated genes. We have previously shown that the transcription factor PecS from P. atrosepticum binds the promoters that drive expression of pecS and pecM, which encodes an efflux pump, to repress gene expression. We show here that addition of oxidant relieves repression in vivo and in vitro. While reduced PecS distorts promoter DNA on binding, oxidized PecS does not, as evidenced by DNaseI footprinting. PecS oxidation is reversible, as shown by an oxidant-dependent quenching of the intrinsic tryptophan fluorescence that is completely reversed upon addition of a reducing agent. Cysteine 45 positioned at the PecS dimer interface is the redox sensor. Reduced PecS-C45A causes less DNA distortion on binding compared to wild-type PecS; addition of an oxidant has no effect on binding, and PecS-C45A cannot repress gene expression. Our data suggest that reduced PecS distorts its cognate DNA on binding, perhaps inducing a conformation in which promoter elements are suboptimally aligned for RNA polymerase binding, resulting in transcriptional repression. In contrast, oxidized PecS binds promoter DNA such that RNA polymerase may successfully compete with PecS for binding, allowing gene expression. This mode of regulation would facilitate induction of the PecS regulon when the bacteria encounter host-derived ROS in the plant apoplast.
Collapse
Affiliation(s)
- Dinesh K Deochand
- Department of Biological Sciences , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Anuja Pande
- Department of Biological Sciences , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Jacob K Meariman
- Department of Biological Sciences , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Anne Grove
- Department of Biological Sciences , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
29
|
Gonzalez Ibarra AA, Wrobel K, Yanez Barrientos E, Corrales Escobosa AR, Gutierrez Corona JF, Enciso Donis I, Wrobel K. Impact of Cr(VI) on the oxidation of polyunsaturated fatty acids in Helianthus annuus roots studied by metabolomic tools. CHEMOSPHERE 2019; 220:442-451. [PMID: 30594795 DOI: 10.1016/j.chemosphere.2018.12.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 05/28/2023]
Abstract
The impact of Cr(VI) in sunflower roots has been studied, focusing on the oxidation of polyunsaturated fatty acids. Plants were grown hydroponically in the presence of 0, 1.0, 5.0 and 25 mgCr L-1. Methanolic root extracts were analyzed by capillary liquid chromatography coupled through negative electrospray ionization to a quadrupole-time of flight mass spectrometry (capHPLC-ESI-QTOF-MS). Using partial least squares algorithm, eighteen features strongly affected by Cr(VI) were detected and annotated as linoleic acid (LA), alpha-linolenic acid (ALA) and sixteen oxidation products containing hydroperoxy-, epoxy-, keto-, epoxyketo- or hydroxy-functionalities, all of them classified as oxylipins. Inspection of the MS/MS spectra acquired for features eluting at different retention times but assigned as a sole compound, confirmed isomers formation: three hydroperoxy-octadecadienoic acids (HpODE), two oxo-octadecadienoic acids (OxoODE) and four epoxyketo-octadecenoic acids (EKODE). Around 70% of metabolites in sunflower LA metabolic pathway were affected by Cr(VI) stress and additionally, four EKODE isomers not included in this pathway were found in the exposed roots. Among ALA-derived oxylipins, 13-epi-12-oxo-phytodienoic acid (OPDA) is of relevance, because of its participation in the activation of secondary metabolism. The abundances of all oxylipins were directly dependent on the Cr(VI) concentration in medium; furthermore, autooxidation of LA to HpODE isomers was observed after incubation with Cr(VI). These results point to the direct involvement of Cr(VI) in non-enzymatic oxidation of fatty acids; since oxylipins are signaling molecules important in plant defensive response, their synthesis under Cr(VI) exposure sustains the ability of sunflower to grow in Cr(VI)-contaminated environments.
Collapse
Affiliation(s)
| | - Katarzyna Wrobel
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, Mexico
| | | | | | | | - Israel Enciso Donis
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, Mexico
| | - Kazimierz Wrobel
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, Mexico.
| |
Collapse
|
30
|
An JU, Lee IG, Ko YJ, Oh DK. Microbial Synthesis of Linoleate 9 S-Lipoxygenase Derived Plant C18 Oxylipins from C18 Polyunsaturated Fatty Acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3209-3219. [PMID: 30808175 DOI: 10.1021/acs.jafc.8b05857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plant oxylipins, including hydroxy fatty acids, epoxy hydroxy fatty acids, and trihydroxy fatty acids, which are biosynthesized from C18 polyunsaturated fatty acids (PUFAs), are involved in pathogen-specific defense mechanisms against fungal infections. However, their quantitative biotransformation by plant enzymes has not been reported. A few bacteria produce C18 trihydroxy fatty acids, but the enzymes and pathways related to the biosynthesis of plant oxylipins in bacteria have not been reported. In this study, we first report the biotransformation of C18 PUFAs into plant C18 oxylipins by expressing linoleate 9 S-lipoxygenase with and without epoxide hydrolase from the proteobacterium Myxococcus xanthus in recombinant Escherichia coli. Among the nine types of plant oxylipins, 12,13-epoxy-14-hydroxy- cis, cis-9,15-octadecadienoic acid was identified as a new compound by NMR analysis, and 9,10,11-hydroxy- cis, cis-6,12-octadecadienoic acid and 12,13,14-trihydroxy- cis, cis-9,15-octadecadienoic were suggested as new compounds by LC-MS/MS analysis. This study shows that bioactive plant oxylipins can be produced by microbial enzymes.
Collapse
Affiliation(s)
- Jung-Ung An
- Department of Bioscience and Biotechnology , Konkuk University , Seoul 05029 , Republic of Korea
- Synthetic Biology and Bioengineering Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon 34141 , Republic of Korea
| | - In-Gyu Lee
- Department of Bioscience and Biotechnology , Konkuk University , Seoul 05029 , Republic of Korea
| | - Yoon-Joo Ko
- National Center for Inter-University Research Facilities (NCIRF) , Seoul National University , Seoul 08826 , Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology , Konkuk University , Seoul 05029 , Republic of Korea
| |
Collapse
|
31
|
Pollmann S, Springer A, Rustgi S, von Wettstein D, Kang C, Reinbothe C, Reinbothe S. Substrate channeling in oxylipin biosynthesis through a protein complex in the plastid envelope of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1483-1495. [PMID: 30690555 PMCID: PMC6411374 DOI: 10.1093/jxb/erz015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/06/2019] [Indexed: 05/20/2023]
Abstract
Oxygenated membrane fatty acid derivatives termed oxylipins play important roles in plant defense against biotic and abiotic cues. Plants challenged by insect pests, for example, synthesize a blend of different defense compounds that include volatile aldehydes and jasmonic acid (JA), among others. Because all oxylipins are derived from the same pathway, we investigated how their synthesis might be regulated, focusing on two closely related atypical cytochrome P450 enzymes designated CYP74A and CYP74B, respectively, allene oxide synthase (AOS) and hydroperoxide lyase (HPL). These enzymes compete for the same substrate but give rise to different products: the final product of the AOS branch of the oxylipin pathway is JA, while those of the HPL branch comprise volatile aldehydes and alcohols. AOS and HPL are plastid envelope enzymes in Arabidopsis thaliana but accumulate at different locations. Biochemical experiments identified AOS as a constituent of complexes also containing lipoxygenase 2 (LOX2) and allene oxide cyclase (AOC), which catalyze consecutive steps in JA precursor biosynthesis, while excluding the concurrent HPL reaction. Based on published X-ray data, the structure of this complex was modelled and amino acids involved in catalysis and subunit interactions predicted. Genetic studies identified the microRNA 319-regulated clade of TCP (TEOSINTE BRANCHED/CYCLOIDEA/PCF) transcription factor genes and CORONATINE INSENSITIVE 1 (COI1) as controlling JA production through the LOX2-AOS-AOC2 complex. Together, our results define a molecular branch point in oxylipin biosynthesis that allows fine-tuning of the plant's defense machinery in response to biotic and abiotic stimuli.
Collapse
Affiliation(s)
- Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid), Spain
- Correspondence: or
| | - Armin Springer
- Medizinische Biologie und Elektronenmikroskopisches Zentrum (EMZ), Universitätsmedizin Rostock, Rostock, Germany
| | - Sachin Rustgi
- Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA
| | - Diter von Wettstein
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
- Biomolecular Crystallography Center, Washington State University, Pullman, WA, USA
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble Alpes, CEDEX, France
| | - Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes, Université Grenoble Alpes, CEDEX, France
- Correspondence: or
| |
Collapse
|
32
|
Linoleic and linolenic acid hydroperoxides interact differentially with biomimetic plant membranes in a lipid specific manner. Colloids Surf B Biointerfaces 2019; 175:384-391. [DOI: 10.1016/j.colsurfb.2018.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 01/02/2023]
|
33
|
Watkinson JI, Bowerman PA, Crosby KC, Hildreth SB, Helm RF, Winkel BSJ. Identification of MOS9 as an interaction partner for chalcone synthase in the nucleus. PeerJ 2018; 6:e5598. [PMID: 30258711 PMCID: PMC6151112 DOI: 10.7717/peerj.5598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/17/2018] [Indexed: 01/12/2023] Open
Abstract
Plant flavonoid metabolism has served as a platform for understanding a range of fundamental biological phenomena, including providing some of the early insights into the subcellular organization of metabolism. Evidence assembled over the past three decades points to the organization of the component enzymes as a membrane-associated complex centered on the entry-point enzyme, chalcone synthase (CHS), with flux into branch pathways controlled by competitive protein interactions. Flavonoid enzymes have also been found in the nucleus in a variety of plant species, raising the possibility of alternative, or moonlighting functions for these proteins in this compartment. Here, we present evidence that CHS interacts with MOS9, a nuclear-localized protein that has been linked to epigenetic control of R genes that mediate effector-triggered immunity. Overexpression of MOS9 results in a reduction of CHS transcript levels and a metabolite profile that substantially intersects with the effects of a null mutation in CHS. These results suggest that the MOS9-CHS interaction may point to a previously-unknown mechanism for controlling the expression of the highly dynamic flavonoid pathway.
Collapse
Affiliation(s)
- Jonathan I Watkinson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Peter A Bowerman
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.,BASF Plant Science LP, Research Triangle Park, NC, USA
| | - Kevin C Crosby
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sherry B Hildreth
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA.,Department of Biochemistry, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| | - Brenda S J Winkel
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, USA
| |
Collapse
|
34
|
Mukhtarova LS, Brühlmann F, Hamberg M, Khairutdinov BI, Grechkin AN. Plant hydroperoxide-cleaving enzymes (CYP74 family) function as hemiacetal synthases: Structural proof of hemiacetals by NMR spectroscopy. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1316-1322. [PMID: 30305246 DOI: 10.1016/j.bbalip.2018.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
Hydroperoxide lyases (HPLs) of the CYP74 family (P450 superfamily) are widely distributed enzymes in higher plants and are responsible for the stress-initiated accumulation of short-chain aldehydes. Fatty acid hydroperoxides serve as substrates for HPLs; however, details of the HPL-promoted conversion are still incompletely understood. In the present work, we report first time the micropreparative isolation and the NMR structural studies of fatty acid hemiacetal (TMS/TMS), the short-lived HPL product. With this aim, linoleic acid 9(S)‑hydroperoxide (9(S)‑HPOD) was incubated with recombinant melon hydroperoxide lyase (CmHPL, CYP74C2) in a biphasic system of water/hexane for 60 s at 0 °C, pH 4.0. The hexane layer was immediately decanted and vortexed with a trimethylsilylating mixture. Analysis by GC-MS revealed a major product, i.e. the bis-TMS derivative of a hemiacetal which was conclusively identified as 9‑hydroxy‑9‑[(1'E,3'Z)‑nonadienyloxy]‑nonanoic acid by NMR-spectroscopy. Further support for the hemiacetal structure was provided by detailed NMR-spectroscopic analysis of the bis-TMS hemiacetal generated from [13C18]9(S)‑HPOD in the presence of CmHPL. The results obtained provide incontrovertible evidence that the true products of the HPL group of enzymes are hemiacetals, and that the short-chain aldehydes are produced by their rapid secondary chain breakdown. Therefore, we suggest replacing the name "hydroperoxide lyase", which does not reflect the factual isomerase (intramolecular oxidoreductase) activity, with "hemiacetal synthase" (HAS).
Collapse
Affiliation(s)
- Lucia S Mukhtarova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Fredi Brühlmann
- Firmenich S.A., Corporate R&D, Route des Jeunes 1, CH-1211 Geneva, Switzerland
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | - Bulat I Khairutdinov
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia.
| |
Collapse
|
35
|
Structural and functional insights into the reaction specificity of catalase-related hydroperoxide lyase: A shift from lyase activity to allene oxide synthase by site-directed mutagenesis. PLoS One 2017; 12:e0185291. [PMID: 28953966 PMCID: PMC5617202 DOI: 10.1371/journal.pone.0185291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/08/2017] [Indexed: 11/22/2022] Open
Abstract
Two highly identical fusion proteins, an allene oxide synthase-lipoxygenase (AOS-LOX) and a hydroperoxide lyase-lipoxygenase (HPL-LOX), were identified in the soft coral Capnella imbricata. Both enzymes initially catalyze the formation of 8R-hydroperoxy-eicosatetraenoic acid (8R-HpETE) from arachidonic acid by the C-terminal lipoxygenase (LOX) domain. Despite the fact that the defined catalytically important residues of N-terminal catalase-related allene oxide synthase (cAOS) domain are also conserved in C. imbricata hydroperoxide lyase (cHPL), their reaction specificities differ. In the present study, we tested which of the amino acid substitutions around the active site of cHPL are responsible for a control in the reaction specificity. The possible candidates were determined via comparative sequence and structural analysis of the substrate channel and the heme region of coral cAOSs and C. imbricata cHPL. The amino acid replacements in cHPL—R56G, ME59-60LK, P65A, F150L, YS176-177NL, I357V, and SSSAGE155-160PVKEGD—with the corresponding residues of cAOS were conducted by site-directed mutagenesis. Although all these mutations influenced the catalytic efficiency of cHPL, only F150L and YS176-177NL substitutions caused a shift in the reaction specificity from HPL to AOS. The docking analysis of P. homomalla cAOS with 8R-HpETE substrate revealed that the Leu150 of cAOS interacts with the C5-C6 double bond and the Leu177 with the hydrophobic tail of 8R-HpETE. We propose that the corresponding residues in cHPL, Phe150 and Ser177, are involved in a proper coordination of the epoxy allylic radical intermediate necessary for aldehyde formation in the hydroperoxide lyase reaction.
Collapse
|
36
|
García CJ, García-Villalba R, Gil MI, Tomas-Barberan FA. LC-MS Untargeted Metabolomics To Explain the Signal Metabolites Inducing Browning in Fresh-Cut Lettuce. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4526-4535. [PMID: 28506062 DOI: 10.1021/acs.jafc.7b01667] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Enzymatic browning is one of the main causes of quality loss in lettuce as a prepared and ready-to-eat cut salad. An untargeted metabolomics approach using UPLC-ESI-QTOF-MS was performed to explain the wound response of lettuce after cutting and to identify the metabolites responsible of browning. Two cultivars of Romaine lettuce with different browning susceptibilities were studied at short time intervals after cutting. From the total 5975 entities obtained from the raw data after alignment, filtration reduced the number of features to 2959, and the statistical analysis found that only 1132 entities were significantly different. Principal component analysis (PCA) clearly showed that these samples grouped according to cultivar and time after cutting. From those, only 15 metabolites belonging to lysophospholipids, oxylipin/jasmonate metabolites, and phenolic compounds were able to explain the browning process. These selected metabolites showed different trends after cutting; some decreased rapidly, others increased but decreased thereafter, whereas others increased during the whole period of storage. In general, the fast-browning cultivar showed a faster wound response and a higher raw intensity of some key metabolites than the slow-browning one. Just after cutting, the fast-browning cultivar contained 11 of the 15 browning-associated metabolites, whereas the slow-browning cultivar only had 5 of them. These metabolites could be used as biomarkers in breeding programs for the selection of lettuce cultivars with lower browning potential for fresh-cut applications.
Collapse
Affiliation(s)
- Carlos J García
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS (CSIC) , P.O. Box 164, Espinardo, Murcia 30100, Spain
| | - Rocío García-Villalba
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS (CSIC) , P.O. Box 164, Espinardo, Murcia 30100, Spain
| | - María I Gil
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS (CSIC) , P.O. Box 164, Espinardo, Murcia 30100, Spain
| | - Francisco A Tomas-Barberan
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS (CSIC) , P.O. Box 164, Espinardo, Murcia 30100, Spain
| |
Collapse
|
37
|
Brühlmann F, Bosijokovic B. Efficient Biochemical Cascade for Accessing Green Leaf Alcohols. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fredi Brühlmann
- Firmenich SA, Corporate R&D, Route des Jeunes 1, CH-1211 Geneva 8, Switzerland
| | - Bojan Bosijokovic
- Firmenich SA, Corporate R&D, Route des Jeunes 1, CH-1211 Geneva 8, Switzerland
| |
Collapse
|
38
|
Khosravi M, Dastar B, Aalami M, Shawrang P, Ashayerizadeh O. Comparison of gamma–Irradiation and enzyme supplementation to eliminate antinutritional factors in rice bran in broiler chicken diets. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Hou Q, Ufer G, Bartels D. Lipid signalling in plant responses to abiotic stress. PLANT, CELL & ENVIRONMENT 2016; 39:1029-48. [PMID: 26510494 DOI: 10.1111/pce.12666] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 05/18/2023]
Abstract
Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades.
Collapse
Affiliation(s)
- Quancan Hou
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Guido Ufer
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| | - Dorothea Bartels
- University of Bonn IMBIO Bonn Germany, Kirschallee 1, Bonn, D-53115, Germany
| |
Collapse
|
40
|
Fischer GJ, Keller NP. Production of cross-kingdom oxylipins by pathogenic fungi: An update on their role in development and pathogenicity. J Microbiol 2016; 54:254-64. [PMID: 26920885 DOI: 10.1007/s12275-016-5620-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/05/2016] [Indexed: 01/05/2023]
Abstract
Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived nonenzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease. This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions.
Collapse
Affiliation(s)
- Gregory J Fischer
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
41
|
Synthesis of Oxylipin Mimics and Their Antifungal Activity against the Citrus Postharvest Pathogens. Molecules 2016; 21:254. [PMID: 26907241 PMCID: PMC6273781 DOI: 10.3390/molecules21020254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 11/25/2022] Open
Abstract
Nine oxylipin mimics were designed and synthesized starting from d-mannose. Their antifungal activity against three citrus postharvest pathogens was evaluated by spore germination assay. The results indicated that all the compounds significantly inhibited the growth of Penicillium digitatum, Penicillium italicum and Aspergillus niger. The compound (3Z,6Z,8S,9R,10R)-octadeca-3,6-diene-8,9,10-triol (3) exhibited excellent inhibitory effect on both Penicillium digitatum (IC50 = 34 ppm) and Penicillium italicum (IC50 = 94 ppm). Their in vivo antifungal activities against citrus postharvest blue mold were tested with fruit inoculated with the pathogen Penicillium italicum. The compound (3R,4S)-methyl 3,4-dihydroxy-5-octyltetrahydrofuran-2-carboxylate (9) demonstrated significant efficacy by reducing the disease severity to 60%. The antifungal mechanism of these oxylipin mimics was postulated in which both inhibition of pathogenic mycelium and stimuli of the host oxylipin-mediated defense response played important roles.
Collapse
|
42
|
Parsons BJ, Spickett CM. Special issue on "Analytical methods for the detection of oxidized biomolecules and antioxidants". Free Radic Res 2015; 49:473-6. [PMID: 25884783 DOI: 10.3109/10715762.2015.1024678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- B J Parsons
- Faculty of Health and Social Sciences, Leeds Beckett University , Leeds , UK
| | | |
Collapse
|