1
|
Patial S, Saini Y. Lung macrophages: current understanding of their roles in Ozone-induced lung diseases. Crit Rev Toxicol 2020; 50:310-323. [PMID: 32458707 DOI: 10.1080/10408444.2020.1762537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Through the National Ambient Air Quality Standards (NAAQS), the Clean Air Act of the United States outlines acceptable levels of six different air pollutants considered harmful to humans and the environment. Included in this list is ozone (O3), a highly reactive oxidant gas, respiratory health hazard, and common environmental air pollutant at ground level. The respiratory health effects due to O3 exposure are often associated with molecular and cellular perturbations in the respiratory tract. Periodic review of NAAQS requires comprehensive scientific evaluation of the public health effects of these pollutants, which is formulated through integrated science assessment (ISA) of the most policy-relevant scientific literature. This review focuses on the protective and pathogenic effects of macrophages in the O3-exposed respiratory tract, with emphasis on mouse model-based toxicological studies. Critical findings from 39 studies containing the words O3, macrophage, mice, and lung within the full text were assessed. While some of these studies highlight the presence of disease-relevant pathogenic macrophages in the airspaces, others emphasize a protective role for macrophages in O3-induced lung diseases. Moreover, a comprehensive list of currently known macrophage-specific roles in O3-induced lung diseases is included in this review and the significant knowledge gaps that still exist in the field are outlined. In conclusion, there is a vital need in this field for additional policy-relevant scientific information, including mechanistic studies to further define the role of macrophages in response to O3.
Collapse
Affiliation(s)
- Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
2
|
Prueitt RL, Goodman JE. Evaluation of neural reflex activation as a mode of action for the acute respiratory effects of ozone. Inhal Toxicol 2016; 28:484-99. [DOI: 10.1080/08958378.2016.1213332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
3
|
Lund K, Dunster C, Ramis I, Sandström T, Kelly FJ, Søstrand P, Schwarze P, Skovlund E, Boe J, Kongerud J, Refsnes M. Inflammatory markers in bronchoalveolar lavage fluid from human volunteers 2 hours after hydrogen fluoride exposure. Hum Exp Toxicol 2016; 24:101-8. [PMID: 15901049 DOI: 10.1191/0960327104ht506oa] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fluoride has been in focus as a possible causal agent for respiratory symptoms amongst aluminium potroom workers for several decades. Previously, using bronchoalveolar lavage (BAL), we demonstrated airway inflammation in healthy volunteers 24 hours after exposure to hydrogen fluoride (HF). The objective of the present study was to examine early lung responses to HF exposure. Bronchoscopy with BAL was performed 2 hours after the end of 1-hour exposure to HF. Significant reductions in the total cell number and the number of neutrophils and lymphocytes were observed in bronchoalveolar portion (BAP), whereas there were no significant changes in the bronchial portion (BP). Significantly decreased concentrations of b2-MG, IL-6 and total protein were found in both BAP and BP. Additionally, IL-8 was significantly reduced in BP, and ICAM-1 and albumin were present in lower concentrations in BAP. Lung function measurements were not affected by HF exposure. These reported effects are presumably transitory, as many were not present in the airways 24 hours after a similar HF exposure.
Collapse
Affiliation(s)
- K Lund
- Department of Respiratory Medicine, National Hospital, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Poljšak B, Fink R. The protective role of antioxidants in the defence against ROS/RNS-mediated environmental pollution. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:671539. [PMID: 25140198 PMCID: PMC4129148 DOI: 10.1155/2014/671539] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/03/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023]
Abstract
Overproduction of reactive oxygen and nitrogen species can result from exposure to environmental pollutants, such as ionising and nonionising radiation, ultraviolet radiation, elevated concentrations of ozone, nitrogen oxides, sulphur dioxide, cigarette smoke, asbestos, particulate matter, pesticides, dioxins and furans, polycyclic aromatic hydrocarbons, and many other compounds present in the environment. It appears that increased oxidative/nitrosative stress is often neglected mechanism by which environmental pollutants affect human health. Oxidation of and oxidative damage to cellular components and biomolecules have been suggested to be involved in the aetiology of several chronic diseases, including cancer, cardiovascular disease, cataracts, age-related macular degeneration, and aging. Several studies have demonstrated that the human body can alleviate oxidative stress using exogenous antioxidants. However, not all dietary antioxidant supplements display protective effects, for example, β-carotene for lung cancer prevention in smokers or tocopherols for photooxidative stress. In this review, we explore the increases in oxidative stress caused by exposure to environmental pollutants and the protective effects of antioxidants.
Collapse
Affiliation(s)
- Borut Poljšak
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Rok Fink
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Khatri SB, Peabody J, Burwell L, Harris F, Brown LS. Systemic antioxidants and lung function in asthmatics during high ozone season: a closer look at albumin, glutathione, and associations with lung function. Clin Transl Sci 2014; 7:314-8. [PMID: 24750854 DOI: 10.1111/cts.12152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Asthma is a chronic airway inflammatory disease with episodic symptoms of wheezing, chest tightness, cough, and shortness of breath. High ambient ozone levels have been associated with increased airway inflammation and asthma morbidity in prior studies. Mechanisms underlying individual susceptibility to asthma exacerbations from poor air quality are not fully understood. OBJECTIVE As part of a panel observational study, we hypothesized that systemic antioxidant ability and antioxidant status may be associated with more stable asthma during high ozone season. METHODS A cross sectional study was performed to evaluate the antioxidant profile in systemic circulation and its associations with clinical parameters in asthmatics and healthy controls during three summers in Atlanta, Georgia. RESULTS In this panel of individuals with and without asthma, we found that although systemic glutathione levels were not different between the groups, serum albumin was significantly lower in the asthmatic group. Albumin also significantly correlated with lung function (%FEV(1)) and asthma quality of life scores. In a subgroup tested, plasma reduced glutathione (GSH) levels were associated with worse airways obstruction. CONCLUSION Antioxidants GSH and albumin may have a role in maintaining lung function and asthma stability during times of poor ambient air quality.
Collapse
Affiliation(s)
- Sumita B Khatri
- Department of Medicine, Respiratory Institute, Cleveland Clinic, Cleveland Clinic Lerner College of Medicine-CWRU, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
6
|
Goodman JE, Prueitt RL, Chandalia J, Sax SN. Evaluation of adverse human lung function effects in controlled ozone exposure studies. J Appl Toxicol 2013; 34:516-24. [PMID: 23836463 DOI: 10.1002/jat.2905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/16/2013] [Accepted: 05/19/2013] [Indexed: 11/11/2022]
Abstract
The US EPA is evaluating controlled human ozone exposure studies to determine the adequacy of the current ozone National Ambient Air Quality Standard of 75 ppb. These studies have shown that ozone exposures of 80 ppb and greater are associated with lung function decrements. Here, we critically review studies with exposures below 80 ppb to determine the lowest ozone concentration at which decrements are causally associated with ozone exposure and could be considered adverse using the Adverse Effects/Causation Framework. Regarding causation, the framework includes consideration of whether exposure-related effects are primary or secondary, statistically significant, isolated or independent, or due to study limitations. Regarding adversity, the framework indicates one should consider whether effects are adaptive, compensatory, precursors to an apical effect, severe, transient and/or reversible. We found that, at exposures below 72 ppb ozone, lung function effects are primary effects, but are isolated, independent and not statistically different compared to effects observed during filtered air exposure, indicating a lack of causation. Up to 72 ppb, lung function effects may be precursors to an apical effect, but are not likely adverse because they are transient, reversible, of low severity, do not interfere with normal activity and do not result in permanent respiratory injury or progressive respiratory dysfunction. Overall, these studies do not demonstrate a causal association between ozone concentrations in the range of the current National Ambient Air Quality Standard and adverse effects on lung function.
Collapse
Affiliation(s)
- Julie E Goodman
- Gradient, 20 University Road, Suite 5, Cambridge, MA, 02138, USA
| | | | | | | |
Collapse
|
7
|
Lee MS, Moon KY, Bae DJ, Park MK, Jang AS. The effects of pycnogenol on antioxidant enzymes in a mouse model of ozone exposure. Korean J Intern Med 2013; 28:216-23. [PMID: 23526176 PMCID: PMC3604612 DOI: 10.3904/kjim.2013.28.2.216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/15/2012] [Accepted: 11/20/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND/AIMS Ozone is an environmentally reactive oxidant, and pycnogenol is a mixture of flavonoid compounds extracted from pine tree bark that have antioxidant activity. We investigated the effects of pycnogenol on reactive nitrogen species, antioxidant responses, and airway responsiveness in BALB/c mice exposed to ozone. METHODS Antioxidant levels were determined using high performance liquid chromatography with electrochemical detection. Nitric oxide (NO) metabolites in bronchoalveolar lavage (BAL) fluid from BALB/c mice in filtered air and 2 ppm ozone with pycnogenol pretreatment before ozone exposure (n = 6) were quantified colorimetrically using the Griess reaction. RESULTS Uric acid and ascorbic acid concentrations were significantly higher in BAL fluid following pretreatment with pycnogenol, whereas γ-tocopherol concentrations were higher in the ozone exposed group but were similar in the ozone and pycnogenol pretreatment groups. Retinol and γ-tocopherol concentrations tended to increase in the ozone exposure group but were similar in the ozone and pycnogenol pretreatment groups following ozone exposure. Malonylaldehyde concentrations increased in the ozone exposure group but were similar in the ozone and pycnogenol plus ozone groups. The nitrite and total NO metabolite concentrations in BAL fluid, which parallel the in vivo generation of NO in the airways, were significantly greater in the ozone exposed group than the group exposed to filtered air, but decreased with pycnogenol pretreatment. CONCLUSIONS Pycnogenol may increase levels of antioxidant enzymes and decrease levels of nitrogen species, suggesting that antioxidants minimize the effects of acute ozone exposure via a protective mechanism.
Collapse
Affiliation(s)
- Min-Sung Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Kuk-Young Moon
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Da-Jeong Bae
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Moo-Kyun Park
- Department of Otolaryngology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
8
|
Rutkowski JM, Santiag LY, Ben-Jebria A, Ultman JS. Comparison of ozone-specific (OZAC) and oxygen radical (ORAC) antioxidant capacity assays for use with nasal lavage fluid. Toxicol In Vitro 2011; 25:1406-13. [DOI: 10.1016/j.tiv.2011.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/17/2011] [Accepted: 04/06/2011] [Indexed: 11/17/2022]
|
9
|
Lefohn AS, Hazucha MJ, Shadwick D, Adams WC. An alternative form and level of the human health ozone standard. Inhal Toxicol 2011; 22:999-1011. [PMID: 20735151 DOI: 10.3109/08958378.2010.505253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Controlled human laboratory studies have shown that there is a disproportionately greater pulmonary function response from higher hourly average ozone (O3) concentrations than from lower hourly average values and thus, a nonlinear relationship exists between O3 dose and pulmonary function (FEV1) response. The nonlinear dose-response relationship affects the efficacy of the current 8-h O3 standard to describe adequately the observed spirometric response to typical diurnal O3 exposure patterns. We have reanalyzed data from five controlled human response to O3 health laboratory experiments as reported by Hazucha et al. (1992), Adams (2003, 2006a, 2006b), and Schelegle et al. (2009). These investigators exposed subjects to multi-hour variable/stepwise O3 concentration profiles that mimicked typical diurnal patterns of ambient O3 concentrations. Our findings indicate a common response pattern across most of the studies that provides valuable information for the development of a lung function (FEV1)-based alternate form for the O3 standard. Based on our reanalysis of the realistic exposure profiles used in these experiments, we suggest that an alternative form of the human health standard, similar to the proposed secondary (i.e., vegetation) standard form, be considered. The suggested form is an adjusted 5-h cumulative concentration weighted O3 exposure index, which addresses both the delay associated with the onset of response (FEV1 decrement) and the nonlinearity of response (i.e., the greater effect of higher concentrations over the mid- and low-range values) on an hourly basis.
Collapse
|
10
|
Behndig AF, Blomberg A, Helleday R, Duggan ST, Kelly FJ, Mudway IS. Antioxidant responses to acute ozone challenge in the healthy human airway. Inhal Toxicol 2009; 21:933-42. [PMID: 19459773 DOI: 10.1080/08958370802603789] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The aim of the study was to characterize ozone-induced antioxidant responses in the human airway, including the resident leukocyte population, bronchial mucosa, and respiratory-tract lining fluids. Fifteen healthy subjects were exposed to 0.2 ppm ozone for 2 h, with bronchial wash, bronchoalveolar lavage, and biopsy sampling performed 6 h postexposure. Nasal lavage was also performed at multiple time points pre- and postexposure to evaluate responses during the actual exposure period. During the ozone challenge significant losses of nasal lining fluid urate and vitamin C were observed, which resolved 6 h postexposure. At this time point, increased numbers of neutrophils and enhanced concentrations of total glutathione, vitamin C, and urate were seen in bronchial airway lavages. In bronchoalveolar lavage, increased concentrations of total glutathione, vitamin C, urate, alpha-tocopherol, and extracellular superoxide dismutase occurred 6 h post ozone. In alveolar leukocytes significant losses of glutathione were observed, whereas ascorbate concentrations in endobronchial mucosal biopsies were elevated after ozone at this time. These data demonstrate that ozone elicits a broad spectrum of airway antioxidant responses, with initial losses of vitamin C and urate followed by a phase of augmentation of low-molecular-weight antioxidant concentrations at the air-lung interface. The temporal association between the increased RTLF glutathione following ozone and the loss of this thiol from macrophages implies a mobilization to the lung surface, despite the absence of a quantitative association. We propose this constitutes an acute protective adaptation to ozone.
Collapse
Affiliation(s)
- Annelie F Behndig
- Department of Respiratory Medicine and Allergy, University Hospital, Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
11
|
Anna Clouter Catherine E. Houghton. EFFECT OF INHALATION OF LOW DOSES OF CROCIDOLITE AND FIBROUS GYPSUM ON THE GLUTATHIONE CONCENTRATION AND-GLUTAMYL TRANSPEPTIDASE ACTIVITY IN MACROPHAGES AND BRONCHOALVEOLAR LAVAGE FLUID. Inhal Toxicol 2008. [DOI: 10.1080/089583798197835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Kermani S, Ben-Jebria A, Ultman JS. Kinetics of ozone reaction with uric acid, ascorbic acid, and glutathione at physiologically relevant conditions. Arch Biochem Biophys 2006; 451:8-16. [PMID: 16759632 DOI: 10.1016/j.abb.2006.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 03/31/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
This study quantified the reaction kinetics of O3 with three low molecular weight antioxidants-uric acid (UA), ascorbic acid (AH2), and glutathione (GSH)-found in respiratory mucous. Using a semi-batch reactor in which a 500 ml/min flow of air containing 1-5 parts per million of O3 contacted 3 ml of well-stirred physiological saline solution containing 100-200 microM antioxidant, we found that: (1) mass transfer resistances in the gas and liquid phases were successfully eliminated by the reactor design; (2) the reaction of O3 with UA, AH2 and GSH had stoichiometries of 1:1, 1:1, and 1:2.5, respectively; (3) the reactivity between O3 and antioxidants was in the order UA approximately AH2>GSH. Simulating the measured amounts of O3 absorbed and antioxidant consumed with a mathematical model, reaction rate constants of O(3) with UA, AH2, and GSH were found to be 5.83 x 10(4) M(-1) s(-1), 5.5 x 10(4) M(-1) s(-1), and 57.5 M(-0.75) s(-1), respectively.
Collapse
Affiliation(s)
- Sanaz Kermani
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
13
|
Deaton CM, Marlin DJ, Smith NC, Roberts CA, Harris PA, Schroter RC, Kelly FJ. Antioxidant and inflammatory responses of healthy horses and horses affected by recurrent airway obstruction to inhaled ozone. Equine Vet J 2005; 37:243-9. [PMID: 15892234 DOI: 10.2746/0425164054530605] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY Inhaled ozone can induce oxidative injury and airway inflammation. Horses affected by recurrent airway obstruction (RAO) have a decreased pulmonary antioxidant capacity, which may render them more susceptible to oxidative challenge. It is currently unknown whether RAO-affected horses are more susceptible to oxidative stress than those unaffected by RAO. OBJECTIVES To determine whether ozone exposure induces greater oxidative stress and airway inflammation in RAO-affected horses in remission than in healthy horses. METHODS Seven healthy control horses and 7 RAO-affected horses were exposed to 0.8 ppm ozone for 2 h at rest. RESULTS At baseline, bronchoalveolar lavage fluid (BALF) ascorbic acid concentrations were lower in RAO-affected horses than healthy controls. Ozone appeared to preferentially oxidise glutathione rather than ascorbic acid 6 h after exposure. Individual healthy and RAO-affected horses demonstrated oxidation of BALF glutathione after ozone exposure. Overall, RAO-affected horses did not demonstrate increased oxidative stress following ozone exposure, compared with healthy horses. Ozone did not induce significant airway inflammation in either group. CONCLUSIONS RAO-affected horses in remission are not more sensitive to ozone despite a decreased pulmonary antioxidant capacity. Sensitivity to ozone appears to be independent of initial pulmonary antioxidant status. POTENTIAL RELEVANCE Horses with high susceptibility to oxidative stress may benefit from antioxidant supplementation.
Collapse
Affiliation(s)
- C M Deaton
- Centre for Equine Studies, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Jang AS, Choi IS, Yang SY, Kim YG, Lee JH, Park SW, Park CS. Antioxidant Responsiveness in BALB/c Mice Exposed to Ozone. Respiration 2005; 72:79-84. [PMID: 15753639 DOI: 10.1159/000083405] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 05/05/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A single, acute exposure to ozone has been shown to modify the antioxidant defense mechanism in the respiratory tract. OBJECTIVE The aim of this study was to evaluate the effects of ozone exposure on antioxidant response in BALB/c mice. METHODS We measured enhanced pause of breathing (Penh) as a marker of airway obstruction using barometric whole-body plethysmography before and after ozone exposure [groups (n = 6): filtered air, 0.12 ppm, 0.5 ppm, 1 ppm, 2 ppm] for 3 h. Antioxidant levels were measured using high-performance liquid chromatography with electrochemical detection in bronchoalveolar lavage (BAL) fluid and lung tissue homogenates. RESULTS Malondialdehyde concentrations in lung tissue homogenates were significantly increased in the group exposed to 2-ppm ozone compared to the filtered air group. Uric acid and gamma-tocopherol concentrations in BAL fluid were significantly increased in the ozone exposure group compared to the filtered air group (p < 0.01). Uric acid concentrations were increased in a concentration-dependent manner according to ozone concentration to which the animals were exposed. Increases in Penh after ozone exposure were significantly higher in an ozone concentration-dependent manner. The proportion of neutrophils in BAL fluid was significantly higher in the group exposed to 2 ppm than in the filtered air and the group exposed to 0.12 ppm (p < 0.01, respectively). The level of ascorbate correlated with the level of gamma-tocopherol. CONCLUSION These findings suggest that antioxidant responses may serve as a protective mechanism against a range of oxidants in BALB/c mice exposed to ozone.
Collapse
Affiliation(s)
- An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Hospital, Bucheon, Korea.
| | | | | | | | | | | | | |
Collapse
|
15
|
Schock BC, Koostra J, Kwack S, Hackman RM, Van Der Vliet A, Cross CE. Ascorbic acid in nasal and tracheobronchial airway lining fluids. Free Radic Biol Med 2004; 37:1393-401. [PMID: 15454278 DOI: 10.1016/j.freeradbiomed.2004.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 06/29/2004] [Accepted: 07/15/2004] [Indexed: 10/26/2022]
Abstract
Ascorbic acid (AA) is thought to be an important antioxidant in the respiratory tract, whose regulation is yet to be fully characterized. We investigated whether AA in respiratory tract lining fluids (RTLFs) can be augmented by oral supplementation with AA. Plasma, nasal lavage fluids (NLFs), induced sputum (IS), and saliva were analyzed for AA immediately before and 2 h after ingestion of 2 g of AA in 13 healthy subjects. Concentrations of AA (median and range) were 52.5 (16.0-88.5), 2.4 (0.18-4.66), 2.4 (0.18-6.00), and 0.55 (0.18-18.90) micromol/l, respectively. Two hours after ingestion of AA, plasma AA increased 2-fold (p = .004), NLF AA increased 3-fold (p = .039), but IS and saliva AA did not increase. As AA concentrations in saliva and tracheobronchial secretions were low compared with other common extracellular components (such as urate), we evaluated the fate of AA in these fluids. Addition of AA to freshly obtained saliva or IS resulted in rapid depletion, which could be largely prevented or reversed by sodium azide or dithiothreitol. These findings suggest that oxidant-producing systems in saliva and airway secretions, such as heme peroxidases and other oxidizing substances, rapidly consume AA. Whereas oral supplementation resulted in detectable increases of AA in NLFs, its levels in tracheobronchial lining fluid, as measured by IS, were unaffected and remained relatively low, suggesting that AA may play a less significant antioxidant role in this compartment as compared with most other extracellular compartments.
Collapse
Affiliation(s)
- Bettina C Schock
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and Center for Comparative Lung Biology and Medicine, School of Medicine, University of California, Davis, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
16
|
Sienra-Monge JJ, Ramirez-Aguilar M, Moreno-Macias H, Reyes-Ruiz NI, Del Río-Navarro BE, Ruiz-Navarro MX, Hatch G, Crissman K, Slade R, Devlin RB, Romieu I. Antioxidant supplementation and nasal inflammatory responses among young asthmatics exposed to high levels of ozone. Clin Exp Immunol 2004; 138:317-22. [PMID: 15498043 PMCID: PMC1809210 DOI: 10.1111/j.1365-2249.2004.02606.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The inflammatory response to ozone in atopic asthma suggests that soluble mediators of inflammation are released in response to oxidant stress. Antioxidants may alleviate additional oxidative stress associated with photochemical oxidant pollution. This study investigates the impact of antioxidant supplementation on the nasal inflammatory response to ozone exposure in atopic asthmatic children. We conducted a randomized trial using a double-blinded design. Children with asthma (n = 117), residents of Mexico City, were given randomly a daily supplement of vitamins (50 mg/day of vitamin E and 250 mg/day of vitamin C) or placebo. Nasal lavages were performed three times during the 4-month follow-up and analysed for content of interleukin-6 (IL-6), IL-8, uric acid and glutathione (GSx). IL-6 levels in the nasal lavage were increased significantly in the placebo group after ozone exposure while no increase was observed in the supplement group. The difference in response to ozone exposure between the two groups was significant (P = 0.02). Results were similar for IL-8, but with no significant difference between the groups (P = 0.12). GSx decreased significantly in both groups. Uric acid decreased slightly in the placebo group. Our data suggest that vitamin C and E supplementation above the minimum dietary requirement in asthmatic children with a low intake of vitamin E might provide some protection against the nasal acute inflammatory response to ozone.
Collapse
|
17
|
Schock BC, Young IS, Brown V, Fitch PS, Shields MD, Ennis M. Antioxidants and oxidative stress in BAL fluid of atopic asthmatic children. Pediatr Res 2003; 53:375-81. [PMID: 12595583 DOI: 10.1203/01.pdr.0000049625.51462.d1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Earlier studies in adults have indicated that increased oxidative stress may occur in the blood and airways of asthmatic subjects. Therefore the aim of this study was to compare the concentrations of antioxidants and protein carbonyls in bronchoalveolar lavage fluid of clinically stable atopic asthmatic children (AA, n = 78) with our recently published reference intervals for nonasthmatic children (C, n = 124). Additionally, lipid peroxidation products (malondialdehyde) in bronchoalveolar lavage fluid and several antioxidants in plasma were determined. Bronchoalveolar lavage concentrations (median and interquartile range) of ascorbate [AA: 0.433 (0.294-0.678) versus C: 0.418 (0.253-0.646) micromol/L], urate [AA: 0.585 (0.412-0.996) versus C: 0.511 (0.372-0.687) micromol/L], alpha-tocopherol [AA: 0.025 (0.014-0.031) versus C: 0.017 (0.017-0.260) micromol/L], and oxidized proteins as reflected by protein carbonyls [AA: 1.222 (0.970-1.635) versus C: 1.243 (0.813-1.685) nmol/mg protein] were similar in both groups (p > 0.05 in all cases). The concentration of protein carbonyls correlated significantly with the number of eosinophils, mast cells, and macrophages in AA children only. Concentrations of oxidized proteins and lipid peroxidation products (malondialdehyde) correlated significantly in AA children (r = 0.614, n = 11, p = 0.044). Serum concentrations of ascorbate, urate, retinol, alpha-tocopherol, beta-carotene, and lycopene were similar in both groups whereas alpha-carotene was significantly reduced in asthmatics. Overall, increased bronchoalveolar lavage eosinophils indicate ongoing airway inflammation, which may increase oxidatively modified proteins as reflected by increased protein carbonyl concentrations.
Collapse
Affiliation(s)
- Bettina C Schock
- Department of Clinical Biochemistry, The Queen's University of Belfast, Belfast BT12 6BJ, Northern Ireland, UK
| | | | | | | | | | | |
Collapse
|
18
|
Long NC, Suh J, Morrow JD, Schiestl RH, Murthy GG, Brain JD, Frei B. Ozone causes lipid peroxidation but little antioxidant depletion in exercising and nonexercising hamsters. J Appl Physiol (1985) 2001; 91:1694-700. [PMID: 11568152 DOI: 10.1152/jappl.2001.91.4.1694] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ozone (O(3)), a major component of urban air pollution, is a strong oxidizing agent that can cause lung injury and inflammation. In the present study, we investigated the effect of inhalation of O(3) on levels of F(2)-isoprostanes in bronchoalveolar lavage fluid (BALF) and on levels of antioxidants in the BALF and plasma of hamsters. Because antioxidants, including urate, ascorbate, GSH, and vitamin E, defend the lungs by reacting with oxidizing agents, we expected to find a decrease in antioxidant levels after O(3) exposure. Similarly, we expected an increase in the levels of F(2)-isoprostanes, which are lipid peroxidation products. Exposure to 1.0 or 3.0 parts/million (ppm) O(3) for 6 h resulted in an increase in BALF neutrophil numbers, an indicator of acute inflammation, as well as elevation of BALF F(2)-isoprostanes. The higher dose of O(3) caused an increase in the BALF level of urate and a decrease in the plasma level of ascorbate, but 1.0 ppm O(3) had no effect on BALF or plasma antioxidant levels. Exposure to 0.12 ppm O(3) had no effect on BALF neutrophils or F(2)-isoprostanes nor on BALF and plasma antioxidants. We also investigated the effect of O(3) exposure of hamsters during exercise on F(2)-isoprostane and antioxidant levels. We found that exposure to 1.0 ppm O(3) during 1 h of exercise on a laddermill increased BALF levels of F(2)-isoprostanes but had no effect on BALF neutrophils or on BALF and plasma antioxidants. These results indicate that O(3) induces inflammation and biomolecule oxidation in the lungs, whereas extracellular antioxidant levels are relatively unchanged.
Collapse
Affiliation(s)
- N C Long
- Physiology Program, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Blomberg A. Airway inflammatory and antioxidant responses to oxidative and particulate air pollutants - experimental exposure studies in humans. Clin Exp Allergy 2000; 30:310-7. [PMID: 10691887 DOI: 10.1046/j.1365-2222.2000.00814.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- A Blomberg
- Department of Respiratory Medicine and Allergy, University Hospital, Umeå, Sweden.
| |
Collapse
|
20
|
Mudway IS, Krishna MT, Frew AJ, MacLeod D, Sandstrom T, Holgate ST, Kelly FJ. Compromised concentrations of ascorbate in fluid lining the respiratory tract in human subjects after exposure to ozone. Occup Environ Med 1999; 56:473-81. [PMID: 10472319 PMCID: PMC1757764 DOI: 10.1136/oem.56.7.473] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Ozone (O3) imposes an oxidative burden on the lung in two ways. Firstly, directly as a consequence of its oxidising character during exposure, and secondly, indirectly by engendering inflammation. In this study the second pathway was considered by ascertaining the impact of O3 on the redox state of the fluid lining the respiratory tract 6 hours after challenge. METHODS Nine subjects were exposed in a double blind crossover control trial to air and 200 ppb O3 for 2 hours with an intermittent exercise and rest protocol. Blood samples were obtained and lung function (forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1)) assessed before, immediately after, and 6 hours after exposure. Bronchoalveolar lavage (BAL) was performed 6 hours after challenge. Inflammation was assessed in BAL fluid (total and differential cell counts, plus myeloperoxidase concentrations), and plasma and BAL fluid redox state were determined by measuring concentrations of antioxidants and markers of oxidative damage. RESULTS Neutrophil numbers in BAL fluid increased 2.2-fold (p = 0.07) 6 hours after exposure and this was accompanied by increased myeloperoxidase concentrations in BAL fluid (p = 0.08). On the other hand, BAL fluid macrophage and lymphocyte numbers decreased 2.5-fold (p = 0.08) and 3.1-fold (p = 0.08), respectively at this time. Of the antioxidants examined, only ascorbate in BAL fluid was affected by O3, falling in all subjects relative to air values (0.1 (0.0-0.3) v 0.3 (0.2-1.2) mumol/l (p = 0.008)). A marginal decrease in plasma ascorbate was also detected at this time (p < 0.05). Although the decrease in macrophage numbers seemed to be causally related to the increase in neutrophils (R = -0.79), myeloperoxidase concentrations (R = -0.93) and ascorbate concentrations (R = 0.6), no clear associations were apparent between ascorbate changes and neutrophils or myeloperoxidase concentration after O3. CONCLUSIONS Ascorbate in the fluid lining the respiratory tract is depleted as a consequence of O3 exposure at 6 hours after exposure. This was contemporaneous with, although not quantitatively related to the increase in neutrophil numbers and myeloperoxidase concentrations. Decreased macrophage numbers 6 hours after O3 related to the degree of neutrophilic inflammation with populations conserved where ascorbate concentration in the fluid lining the respiratory tract were high after exposure. These results imply that ascorbate has a critical protective role against inflammatory oxidative stress induced by O3.
Collapse
Affiliation(s)
- I S Mudway
- Rayne Institute, St Thomas' Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Saintot M, Bernard N, Astre C, Gerber M. Ozone exposure and blood antioxidants: a study in a periurban area in Southern France. ARCHIVES OF ENVIRONMENTAL HEALTH 1999; 54:34-9. [PMID: 10025414 DOI: 10.1080/00039899909602234] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Major carotenoids in plasma--especially beta-carotene--are affected by oxidative stress (e.g., tobacco smoking). Environmental ozone induced oxidative stress in experimental in vitro and in vivo studies, and it also increased the incidence of lung cancer in mice. We proposed to measure, after controlling for other determinants, the impact of personal ozone exposure on carotenoids levels in plasma. During the summer, we recruited 58 volunteer subjects who worked in a periurban zone. We asked each subject to wear a passive sample, which measured ozone exposure for 5 consecutive d. At the end of this period, we assessed plasma antioxidants. We observed a negative significant regression coefficient between alpha- or beta-carotene and ozone exposure (r = -.39, p < .01, and r = -.45, p = .02, respectively). In a subsample of 45 nonsmoker subjects, among whom carotene intake was lower than the median intake value (i.e., 6.6 mg/d) of the overall group, we noted that a relatively low exposure to ozone (> or = 50 microg/m3 x h or > or = 23.8 ppb) induced a significant decrease in plasma beta-carotene levels (i.e., 0.7 micromol/l to 0.4 micromol/l). This significant decrease suggested that a high dietary intake of fruit or vegetables can have a beneficial influence on the levels of plasma antioxidants generated in response to ozone exposure.
Collapse
Affiliation(s)
- M Saintot
- Groupe d'Epidemiologie Métabolique, Centre de Recherche en Cancérologie, INSERM-CRLC, Montpellier, France
| | | | | | | |
Collapse
|
22
|
Postlethwait EM, Cueto R, Velsor LW, Pryor WA. O3-induced formation of bioactive lipids: estimated surface concentrations and lining layer effects. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L1006-16. [PMID: 9609740 DOI: 10.1152/ajplung.1998.274.6.l1006] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence suggests that inhaled ozone (O3) does not induce toxicity via direct epithelial interactions. Reactions with epithelial lining fluid (ELF) constituents limit cellular contact and generate products, including lipid ozonation products, postulated to initiate pathophysiological cascades. To delineate specific aspects of lipid ozonation product formation and to estimate in situ surface concentrations, we studied the O3 absorption characteristics of ELF constituent mixtures and measured hexanal, heptanal, and nonanal yields as a function of ascorbic acid (AH2) concentration. Exposures of isolated rat lungs, bronchoalveolar lavage fluid (BALF) and egg phosphatidylcholine (PC) liposomes were conducted. 1) O3 absorption by AH2, uric acid, and albumin exceeded that by egg PC and glutathione. O3 reaction with egg PC occurred when AH2 concentrations were reduced. 2) Aldehydes were produced in low yield during lung and BALF exposures in a time- and O3 concentration-dependent manner. 3) Diminishing BALF AH2 content lowered O3 uptake but increased aldehyde yields. Conversely, AH2 addition to egg PC increased O3 uptake but reduced aldehyde yields. Estimations of bioactive ozonation and autoxidation product accumulation within the ELF suggested possible nanomolar to low micromolar concentrations. The use of reaction products as metrics of O3 exposure may have intrinsic sensitivity and specificity limitations. Moreover, due to the heterogenous nature of O3 reactions within the ELF, dose-response relationships may not be linear with respect to O3 absorption.
Collapse
Affiliation(s)
- E M Postlethwait
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-0876, USA
| | | | | | | |
Collapse
|
23
|
Mudway IS, Kelly FJ. Modeling the interactions of ozone with pulmonary epithelial lining fluid antioxidants. Toxicol Appl Pharmacol 1998; 148:91-100. [PMID: 9465268 DOI: 10.1006/taap.1997.8318] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Water soluble antioxidant--ascorbate (AA), urate (UA), and reduced glutathione (GSH)--consumption by ozone (O3) was investigated in a range of pulmonary epithelial lining fluid (ELF) models. Antioxidants were exposed individually and as a composite mixture, with and without human albumin to a range of ambient O3 concentrations: 0-1500 ppb using a continually mixed, interfacial exposure setup. We observed the following: (1) UA constituted the most o3-reactive substrate in each of the models examined. Reactivity hierarchies in each were as follows: UA > AA >> GSH (individual antioxidant), UA > AA > GSH (composite antioxidant), and UA >> AA approximately equal to GSH (composite antioxidant + albumin). Consumption of GSH as a pure antioxidant solution was associated with a 2:1 stoichiometric conversion of GSH to GSSG. This simplistic relationship was lost in the more complex models. (3) Consumption of antioxidants by O3 occurred without alteration of sample pH. (4) Protein carbonyl formation was observed when albumin alone was exposed to O3. However, in the presence of the composite antioxidant solution no evidence of this oxidative modification was apparent. These data indicate that GSH does not represent an important substrate for O3. In contrast, UA displays high reactivity consistent with its acting as a sacrificial substrate in the ELF. As UA concentrations are highest in the ELF of the proximal airways, its localization, allied to its reactivity, suggesting that it plays important roles, both in conferring protection locally and also by "scrubbing" O3, from inhaled air, limiting its penetration to the more sensitive distal lung.
Collapse
Affiliation(s)
- I S Mudway
- Rayne Institute, St Thomas' Hospital, London, United Kingdom
| | | |
Collapse
|
24
|
Kelly FJ, Mudway IS. Sensitivity to ozone: could it be related to an individual's complement of antioxidants in lung epithelium lining fluid? Redox Rep 1997; 3:199-206. [PMID: 27415020 DOI: 10.1080/13510002.1997.11747110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Ozone, though not a free radical species, mediates its toxic effects through free radical reactions as a consequence of its high redox potential. Upon inspiration the first physical interface encountered by ozone is a thin layer of aqueous material, the epithelium lining fluid (ELF) which overlays, and is partially derived from, the underlying pulmonary epithelium. ELF is the first physical interface encountered by ozone and the majority of its primary actions are confined to this compartment. ELF contains a range of antioxidants, including the small molecular weight antioxidants: uric acid (UA), ascorbic acid (AH2) and reduced glutathione (GSH). These compounds are present in large quantities and display high intrinsic reactivities toward ozone, consistent with their role as sacrificial substrates in this setting. In this paper we examine the concept that antioxidants, in ELF, represent the first tier of defence against the oxidizing effects of ozone. Since the concentration of these antioxidants appears to differ between individuals, we propose that these protective substances may dictate, in part, an individual's sensitivity to oxidizing air pollutants such as ozone.
Collapse
Affiliation(s)
- F J Kelly
- a Lung Biology, Cardiovascular Research , The Rayne Institute , St Thomas' Hospital , London , UK
| | - I S Mudway
- a Lung Biology, Cardiovascular Research , The Rayne Institute , St Thomas' Hospital , London , UK
| |
Collapse
|