1
|
|
2
|
Topiol S, Sabio M. X-ray structure breakthroughs in the GPCR transmembrane region. Biochem Pharmacol 2009; 78:11-20. [PMID: 19447219 DOI: 10.1016/j.bcp.2009.02.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 01/19/2023]
Affiliation(s)
- Sid Topiol
- Department of Computational Chemistry, Lundbeck Research USA, Inc., 215 College Road, Paramus, NJ 07652, USA
| | | |
Collapse
|
3
|
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of signal-transducing molecules known. They convey signals for light and many extracellular regulatory molecules. GPCRs have been found to be dysfunctional/dysregulated in a growing number of human diseases and have been estimated to be the targets of more than 30% of the drugs used in clinical medicine today. Thus, understanding how GPCRs function at the molecular level is an important goal of biological research. In order to understand function at this level, it is necessary to delineate the 3D structure of these receptors. Recently, the 3D structure of rhodopsin has been resolved, but in the absence of experimentally determined 3D structures of other GPCRs, a powerful approach is to construct a theoretical model for the receptor and refine it based on experimental results. Computer-generated models for many GPCRs have been constructed. In this article, we will review these studies. We will place the greatest emphasis on an iterative, bi-directional approach in which models are used to generate hypotheses that are tested by experimentation and the experimental findings are, in turn, used to refine the model. The success of this approach is due to the synergistic interaction between theory and experiment.
Collapse
Affiliation(s)
- M C Gershengorn
- Division of Molecular Medicine (M.C.G.), Department of Medicine, Weill Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York 10021, USA.
| | | |
Collapse
|
4
|
Abstract
G protein-coupled, seven-transmembrane segment receptors (GPCRs or 7TM receptors), with more than 1000 different members, comprise the largest superfamily of proteins in the body. Since the cloning of the first receptors more than a decade ago, extensive experimental work has uncovered multiple aspects of their function and challenged many traditional paradigms. However, it is only recently that we are beginning to gain insight into some of the most fundamental questions in the molecular function of this class of receptors. How can, for example, so many chemically diverse hormones, neurotransmitters, and other signaling molecules activate receptors believed to share a similar overall tertiary structure? What is the nature of the physical changes linking agonist binding to receptor activation and subsequent transduction of the signal to the associated G protein on the cytoplasmic side of the membrane and to other putative signaling pathways? The goal of the present review is to specifically address these questions as well as to depict the current awareness about GPCR structure-function relationships in general.
Collapse
Affiliation(s)
- U Gether
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
5
|
Abstract
Heterotrimeric G proteins in vertebrates constitute a family molecular switches that transduce the activation of a populous group of cell-surface receptors to a group of diverse effector units. The receptors include the photopigments such as rhodopsin and prominent families such as the adrenergic, muscarinic acetylcholine, and chemokine receptors involved in regulating a broad spectrum of responses in humans. Signals from receptors are sensed by heterotrimeric G proteins and transduced to effectors such as adenylyl cyclases, phospholipases, and various ion channels. Physiological regulation of G protein-linked receptors allows for integration of signals that directly or indirectly effect the signaling from receptor-->G protein-->effector(s). Steroid hormones can regulate signaling via transcriptional control of the activities of the genes encoding members of G protein-linked pathways. Posttranscriptional mechanisms are under physiological control, altering the stability of preexisting mRNA and affording an additional level for regulation. Protein phosphorylation, protein prenylation, and proteolysis constitute major posttranslational mechanisms employed in the physiological regulation of G protein-linked signaling. Drawing upon mechanisms at all three levels, physiological regulation permits integration of demands placed on G protein-linked signaling.
Collapse
Affiliation(s)
- A J Morris
- Department of Molecular Pharmacology, Diabetes and Metabolic Diseases Research Center, University Medical Center, State University of New York/Stony Brook, Stony Brook, New York 11794-8651, USA
| | | |
Collapse
|
6
|
Sakmar TP. Rhodopsin: a prototypical G protein-coupled receptor. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 59:1-34. [PMID: 9427838 DOI: 10.1016/s0079-6603(08)61027-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A variety of spectroscopic and biochemical studies of recombinant site-directed mutants of rhodopsin and related visual pigments have been reported over the past 9 years. These studies have elucidated key structural elements common to visual pigments. In addition, systematic analysis of the chromophore-binding pocket in rhodopsin and cone pigments has led to an improved understanding of the mechanism of the opsin shift, and of particular molecular determinants underlying color vision in humans. Identification of the conformational changes that occur on rhodopsin photoactivation has been of particular recent concern. Assignments of light-dependent molecular alterations to specific regions of the chromophore have also been attempted by studying native opsins regenerated with synthetic retinal analogs. Site-directed mutagenesis of rhodopsin has also provided useful information about the retinal-binding pocket and the molecular mechanism of rhodopsin photoactivation. Individual molecular groups have been identified to undergo structural alterations or environmental changes during photoactivation. Analysis of particular mutant pigments in which specific groups are locked into their respective "off" or "on" states has provided a framework to identify determinants of the active conformation, as well as the minimal number of intramolecular transitions required to switch between inactive and active conformations. A simple model for the active state of rhodopsin can be compared to structural models of its ground state to localize chromophore-protein interactions that may be important in the photoactivation mechanism. This review focuses on the recent functional characterization of site-directed mutants of bovine rhodopsin and some cone pigments. In addition, an attempt is made to reconcile previous key findings and existing structural models with information gained from the analysis of site-directed mutant pigments.
Collapse
Affiliation(s)
- T P Sakmar
- Howard Hughes Medical Institute, Laboratory of Molecular Biology and Biochemistry, Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
7
|
Gether U, Lin S, Ghanouni P, Ballesteros JA, Weinstein H, Kobilka BK. Agonists induce conformational changes in transmembrane domains III and VI of the beta2 adrenoceptor. EMBO J 1997; 16:6737-47. [PMID: 9362488 PMCID: PMC1170278 DOI: 10.1093/emboj/16.22.6737] [Citation(s) in RCA: 327] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Agonist binding to G protein-coupled receptors is believed to promote a conformational change that leads to the formation of the active receptor state. However, the character of this conformational change which provides the important link between agonist binding and G protein coupling is not known. Here we report evidence that agonist binding to the beta2 adrenoceptor induces a conformational change around 125Cys in transmembrane domain (TM) III and around 285Cys in TM VI. A series of mutant beta2 adrenoceptors with a limited number of cysteines available for chemical derivatization were purified, site-selectively labeled with the conformationally sensitive, cysteine-reactive fluorophore IANBD and analyzed by fluorescence spectroscopy. Like the wild-type receptor, mutant receptors containing 125Cys and/or 285Cys showed an agonist-induced decrease in fluorescence, while no agonist-induced response was observed in a receptor where these two cysteines were mutated. These data suggest that IANBD bound to 125Cys and 285Cys are exposed to a more polar environment upon agonist binding, and indicate that movements of transmembrane segments III and VI are involved in activation of G protein-coupled receptors.
Collapse
Affiliation(s)
- U Gether
- Howard Hughes Medical Institute, Stanford University Medical School, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Jacoby E, Boudon A, Kucharczyk N, Michel A, Fauchère JL. A structural rationale for the design of water soluble peptide-derived neurokinin-1 antagonists. J Recept Signal Transduct Res 1997; 17:855-73. [PMID: 9365934 DOI: 10.3109/10799899709039160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Molecular models of a pharmacophore for NK1 neurokinin antagonists and of ligand-receptor complexes for the human NK1 G protein-coupled receptor are presented. The models develop a structural rationale for the discovery of the recently described highly potent peptidomimetic NK1 antagonists S18523 and S19752 which were designed to be water soluble. Water solubility was conferred on these compounds by introduction of an anionic butyl-tetrazole substituent on the scaffold of dipeptide-derived NK1 antagonist analogues. The models provide convincing evidence that the anionic butyl-tetrazole moieties of S18523 and S19752 protrude outside the membrane-spanning domain of the receptor and do not interfere significantly with the core of the antagonist binding site. It is emphasized that this result could only be obtained through the combination of the two modelling approaches. The result suggest a general way to modify the transport properties of the peptidomimetic antagonists without altering the receptor-binding interaction, and it outlines the potential of including the combination of pharmacophore models and crude models of receptor-ligand complexes early in the drug design process.
Collapse
Affiliation(s)
- E Jacoby
- Institut de Recherches Servier, Suresnes, France
| | | | | | | | | |
Collapse
|
9
|
Grol CJ, Jansen JM. The high affinity melatonin binding site probed with conformationally restricted ligands--II. Homology modeling of the receptor. Bioorg Med Chem 1996; 4:1333-9. [PMID: 8879555 DOI: 10.1016/0968-0896(96)00112-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We present the first 3-D model of the melatonin receptor based on the recently published amino acid sequence of the cloned melatonin receptor. The seven trans membrane helices were positioned using the helices found in the structure of Bacterio Rhodopsine. From the results of an indirect modeling study with six melatonergic agents, an alignment of these compounds was found directing towards common interaction points. These points are suggested to be the two serines in helix three and the histidine in helix five, forming hydrogen bonds with the amide function and the methoxy-oxygen in melatonin, respectively. The ligands were docked into these binding sites and the receptor-ligand complexes were energy minimized. Considering the position of the active and inactive ligands in the receptor and their respective occupied volumes, the structure-activity relationships are rationalized by the suggested model. This model can be of use as a pharmacological test model in molecular biological studies and as a basis to develop compounds being active as synchronizing circadian agents.
Collapse
Affiliation(s)
- C J Grol
- Department of Medicinal Chemistry, State University Groningen, The Netherlands
| | | |
Collapse
|
10
|
Raffetseder U, Röper D, Mery L, Gietz C, Klos A, Grötzinger J, Wollmer A, Boulay F, Köhl J, Bautsch W. Site-directed mutagenesis of conserved charged residues in the helical region of the human C5a receptor. Arg2O6 determines high-affinity binding sites of C5a receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:82-90. [PMID: 8631370 DOI: 10.1111/j.1432-1033.1996.00082.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The human C5a receptor (C5aR) belongs to the family of G-protein-coupled receptors with seven transmembrane helices. This part of the molecule is thought to contain part of the ligand-binding pocket, specifically to bind the C-terminal Arg of human C5a. Guided by sequence similarity and molecular modelling studies, several residues including polar (Asn119, Thr168, Gln259) as well as all conserved charged amino acids in the upper transmembrane region of the C5aR (Asp37, Asp82, Arg175, Arg2O6, Asp282) were exchanged by site-directed mutagenesis. Receptor mutants were transiently expressed in COS cells and analyzed for altered binding behaviour and/or localization at the cell surface by immunofluorescence. For all residues, suitable mutants could be found that exhibited wild-type affinity towards the ligand, providing evidence against a major contribution of these residues to high-affinity ligand binding. Some mutants, however, exhibited a complete (Asp282-->Ala) or partial loss of ligand-binding capacity (Arg175-->Ala, Arg2O6-->Gln) despite adequate expression levels on the cell surface. This phenotype was further analyzed in the [Gln2O6]C5aR mutant: quantitative flow cytometric analysis of epitope-tagged receptor derivatives in 293 cells confirmed an equal level of wild-type and mutant C5aR on the cell surface. Competitive binding curves revealed the presence of only a small population (<10%) of high-affinity sites (Kd approximately 2 nM), which was functionally active at 20 nM in the heterologous Xenopus oocyte expression system after coexpression of G alpha-16. The number of high-affinity sites of wild-type and [Gln2O6]C5aR in 293 cells could be up-regulated by coexpression of Gi alpha-2 and down-regulated by GTP[gamma S]-mediated uncoupling of the G-protein receptor interaction in membrane preparations. These findings are compatible with a model in which the Arg2O6 residue located in the upper third of transmembrane helix V determines high-affinity binding in the human C5aR by affecting the intracellular G-protein coupling.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Binding Sites/genetics
- Binding, Competitive
- Cell Line
- Complement C5a/metabolism
- Conserved Sequence
- Electrochemistry
- Humans
- Kinetics
- Ligands
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Conformation
- Protein Structure, Secondary
- Receptor, Anaphylatoxin C5a
- Receptors, Complement/chemistry
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
Collapse
Affiliation(s)
- U Raffetseder
- Department of Medical Microbiology, Hannover Medical School, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
A variety of spectroscopic and biochemical studies of the photoreceptor rhodopsin have revealed conformation changes which occur upon its photoactivation. Assignment of these molecular alterations to specific regions in the receptor has been attempted by studying native opsin regenerated with synthetic retinal analogs or recombinant opsins regenerated with 11-cis retinal. We propose a model for the photoactivation mechanism which defines 'off' and 'on' states for individual molecular groups. These groups have been identified to undergo structural alterations during photoactivation. Analysis of mutant pigments in which specific groups are locked into their respective 'on' or 'off' states provides a framework to identify determinants of the active conformation as well as the minimal number of intramolecular transitions to switch to this conformation. The simple model proposed for the active-state of rhodopsin can be compared to structural models of its ground-state to localize chromophore-protein interactions that may be important in the photoactivation mechanism.
Collapse
Affiliation(s)
- K Fahmy
- Institut für Biophysik und Strahlenbiologie der Universität Freiburg, Germany
| | | | | |
Collapse
|
12
|
Joseph MP, Maigret B, Bonnafous JC, Marie J, Scheraga HA. A computer modeling postulated mechanism for angiotensin II receptor activation. JOURNAL OF PROTEIN CHEMISTRY 1995; 14:381-98. [PMID: 8590606 DOI: 10.1007/bf01886795] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The angiotensin II receptor of the AT1-type has been modeled starting from the experimentally determined three-dimensional structure of bacteriorhodopsin as the template. Intermediate 3D structures of rhodopsin and beta 2-adrenergic receptors were built because no direct sequence alignment is possible between the AT1 receptor and bacteriorhodopsin. Docking calculations were carried out on the complex of the modeled receptor with AII, and the results were used to analyze the binding possibilities of DuP753-type antagonistic non-peptide ligands. We confirm that the positively charged Lys199 on helix 5 is crucial for ligand binding, as in our model; the charged side chain of this amino acid interacts strongly with the C-terminal carboxyl group of peptide agonists or with the acidic group at the 2'-position of the biphenyl moiety of DuP753-type antagonists. Several other receptor residues which are implicated in the binding of ligands and the activation of receptor by agonists are identified, and their functional role is discussed. Therefore, a plausible mechanism of receptor activation is proposed. The three-dimensional docking model integrates most of the available experimental observations and helps to plan pertinent site-directed mutagenesis experiments which in turn may validate or modify the present model and the proposed mechanism of receptor activation.
Collapse
Affiliation(s)
- M P Joseph
- Laboratoire de Chimie Théorique, Université de Nancy I, Faculté des Sciences, Vandoeuvre-lès-Nancy, France
| | | | | | | | | |
Collapse
|