1
|
Dai Q, Morita Y, Huang Y, Liaw PC, Wu J, Khang J, Islam D, Yu K, Li Y, Zhang H. Modulation of Human Neutrophil Peptides on P. aeruginosa Killing, Epithelial Cell Inflammation and Mesenchymal Stromal Cell Secretome Profiles. J Inflamm Res 2019; 12:335-343. [PMID: 31908518 PMCID: PMC6927223 DOI: 10.2147/jir.s219276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/27/2019] [Indexed: 11/23/2022] Open
Abstract
Objective Neutrophil infiltration and release of the abundant human neutrophil peptides (HNP) are a common clinical feature in critically ill patients. We tested a hypothesis that different cell types respond to HNP differently in lung microenvironment that may influence the host responses. Methods Plasma concentrations of HNP were measured in healthy volunteers and patients with sepsis. Cells including the bacteria P. aeruginosa, human lung epithelial cells and mesenchymal stromal cells (MSCs) were exposed to various concentrations of HNP. Bacterial killing, epithelial cell inflammation, MSC adhesion and behaviours were examined after HNP stimulation. Results Incubation of P. aeruginosa or stimulation of human lung epithelial cells with HNP resulted in bacterial killing or IL-8 production at a dose of 50 μg/mL, while MSC adhesion and alternations of secretome profiles took place after HNP stimulation at a dose of 10 μg/mL. The secretome profile changes were characterized by increased release of the IL-6 family members such as C-reactive protein (CRP), leukemia inhibitory factor (LIF) and interleukin (IL-11), and first apoptosis signal (FAS) and platelet-derived growth factor-AA as compared to a vehicle control group. Conclusion Stimulation of MSCs with HNP resulted in changes of secretome profiles at 5-fold lower concentration than that required for bacterial killing and lung epithelial inflammation. This undisclosed risk factor of HNP in lung environment should be taken into consideration when MSCs are applied as cell therapy in inflammatory lung diseases.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Critical Care Medicine, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yasumasa Morita
- Department of Emergency and Critical Care Medicine, Chiba Aoba Municipal Hospital, Chiba, Japan
| | - Yongbo Huang
- The State Key Laboratory of Respiratory Disease, and The 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Patricia C Liaw
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Jianfeng Wu
- Department of Critical Care Medicine, The 1st Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Julie Khang
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Canada
| | - Diana Islam
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Canada
| | - Kaijiang Yu
- Department of Critical Care Medicine, The 1st Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yimin Li
- The State Key Laboratory of Respiratory Disease, and The 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Haibo Zhang
- The State Key Laboratory of Respiratory Disease, and The 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Ontario, Canada.,Departments of Anesthesia, University of Toronto, Ontario, Canada.,Physiology, University of Toronto, Ontario, Canada
| |
Collapse
|
2
|
Jonigk D, Izykowski N, Rische J, Braubach P, Kühnel M, Warnecke G, Lippmann T, Kreipe H, Haverich A, Welte T, Gottlieb J, Laenger F. Molecular Profiling in Lung Biopsies of Human Pulmonary Allografts to Predict Chronic Lung Allograft Dysfunction. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3178-88. [PMID: 26476349 DOI: 10.1016/j.ajpath.2015.08.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/03/2015] [Accepted: 08/28/2015] [Indexed: 10/22/2022]
Abstract
Chronic lung allograft dysfunction (CLAD) is the main reason for poor long-term outcome of lung transplantation, with bronchiolitis obliterans (BO) representing the predominant pathological feature. BO is defined as a progressive fibrous obliteration of the small airways, thought to be triggered by a combination of nonimmune bronchial injury and alloimmune and autoimmune mechanisms. Because biopsy samples are too insensitive to reliably detect BO and a decline in lung function test results, which is clinically used to define CLAD, does not detect early stages, there is need for alternative biomarkers for early diagnosis. Herein, we analyzed the cellular composition and differential expression of 45 tissue remodeling-associated genes in transbronchial lung biopsy specimens from two cohorts with 18 patients each: patients who did not develop CLAD within 3 years after transplantation (48 biopsy specimens) and patients rapidly developing CLAD within the first 3 postoperative years (57 biopsy specimens). Integrating the mRNA expression levels of the five most significantly dysregulated genes from the transforming growth factor-β axis (BMP4, IL6, MMP1, SMAD1, and THBS1) into a score, patient groups could be confidently separated and the outcome predicted (P < 0.001). We conclude that overexpression of fibrosis-associated genes may be valuable as a tissue-based molecular biomarker to more accurately diagnose or predict the development of CLAD.
Collapse
Affiliation(s)
- Danny Jonigk
- Institute of Pathology, Hanover Medical School, Hanover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany.
| | - Nicole Izykowski
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Johanna Rische
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Peter Braubach
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Mark Kühnel
- Institute of Functional and Applied Anatomy, Hanover Medical School, Hanover, Germany
| | - Gregor Warnecke
- Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany; Department of Thoracic Surgery, Hanover Medical School, Hanover, Germany
| | - Torsten Lippmann
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Hans Kreipe
- Institute of Pathology, Hanover Medical School, Hanover, Germany
| | - Axel Haverich
- Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany; Department of Thoracic Surgery, Hanover Medical School, Hanover, Germany
| | - Tobias Welte
- Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany; Department of Respiratory Medicine, Hanover Medical School, Hanover, Germany
| | - Jens Gottlieb
- Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany; Department of Respiratory Medicine, Hanover Medical School, Hanover, Germany
| | - Florian Laenger
- Institute of Pathology, Hanover Medical School, Hanover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease, the Hanover Division of the German Center for Lung Research, Gießen, Germany
| |
Collapse
|
3
|
Zhao Y, Zhang X, Xue X, Li Z, Chen F, Li S, Kumar A, Zou G, Liang XJ. High throughput detection of human neutrophil peptides from serum, saliva, and tear by anthrax lethal factor-modified nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2013; 5:8267-8272. [PMID: 23965149 DOI: 10.1021/am4021523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Human α defensins human neutrophil peptide 1-3 (HNP 1-3) are potential prognostic cancer biomarkers. Metalloprotein anthrax lethal factor (ALF) binds to HNP 1-3 in a Zn2+-dependent manner. We conjugated ALF to the surface of magnetic nanoparticles (MNP) to magnetically isolate the HNPs, and used Zn2+ to control the capture and release HNPs.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology , 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Defensins: natural component of human innate immunity. Hum Immunol 2013; 74:1069-79. [PMID: 23756165 DOI: 10.1016/j.humimm.2013.05.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 04/23/2013] [Accepted: 05/29/2013] [Indexed: 12/19/2022]
Abstract
The widespread use of antibiotics has contributed to a huge increase in the number of resistant bacteria. New classes of drugs are therefore being developed of which defensins are a potential source. Defensins are a group of antimicrobial peptides found in different living organisms, involved in the first line of defense in their innate immune response against pathogens. This review summarizes the results of studies of this family of human antimicrobial peptides (AMPs). There is a special emphasis on describing the entire group and individual peptides, history of their discovery, their functions and expression sites. The results of the recent studies on the use of the biologically active peptides in human medicine are also presented. The pharmaceutical potential of human defensins cannot be ignored, especially considering their strong antimicrobial activity and properties such as low molecular weight, reduced immunogenicity, broad activity spectrum and resistance to proteolysis, but there are still many challenges and questions regarding the possibilities of their practical application.
Collapse
|