1
|
Hahn RC, Hagen F, Mendes RP, Burger E, Nery AF, Siqueira NP, Guevara A, Rodrigues AM, de Camargo ZP. Paracoccidioidomycosis: Current Status and Future Trends. Clin Microbiol Rev 2022; 35:e0023321. [PMID: 36074014 PMCID: PMC9769695 DOI: 10.1128/cmr.00233-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Paracoccidioidomycosis (PCM), initially reported in 1908 in the city of São Paulo, Brazil, by Adolpho Lutz, is primarily a systemic and neglected tropical mycosis that may affect individuals with certain risk factors around Latin America, especially Brazil. Paracoccidioides brasiliensis sensu stricto, a classical thermodimorphic fungus associated with PCM, was long considered to represent a monotypic taxon. However, advances in molecular taxonomy revealed several cryptic species, including Paracoccidioides americana, P. restrepiensis, P. venezuelensis, and P. lutzii, that show a preference for skin and mucous membranes, lymph nodes, and respiratory organs but can also affect many other organs. The classical diagnosis of PCM benefits from direct microscopy culture-based, biochemical, and immunological assays in a general microbiology laboratory practice providing a generic identification of the agents. However, molecular assays should be employed to identify Paracoccidioides isolates to the species level, data that would be complemented by epidemiological investigations. From a clinical perspective, all probable and confirmed cases should be treated. The choice of treatment and its duration must be considered, along with the affected organs, process severity, history of previous treatment failure, possibility of administering oral medication, associated diseases, pregnancy, and patient compliance with the proposed treatment regimen. Nevertheless, even after appropriate treatment, there may be relapses, which generally occur 5 years after the apparent cure following treatment, and also, the mycosis may be confused with other diseases. This review provides a comprehensive and critical overview of the immunopathology, laboratory diagnosis, clinical aspects, and current treatment of PCM, highlighting current issues in the identification, treatment, and patient follow-up in light of recent Paracoccidioides species taxonomic developments.
Collapse
Affiliation(s)
- Rosane Christine Hahn
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
- Júlio Muller Hospital, EBSERH, Cuiabá, Mato Grosso, Brazil
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Rinaldo Poncio Mendes
- Faculdade de Medicina de Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Faculdade de Medicina, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology, Federal University of Alfenasgrid.411180.d (UNIFAL), Alfenas, Minas Gerais, Brazil
| | - Andreia Ferreira Nery
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
- Júlio Muller Hospital, EBSERH, Cuiabá, Mato Grosso, Brazil
| | - Nathan Pereira Siqueira
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Armando Guevara
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Miyazawa H, Matsuda Y, Sakai S, Kamei K, Wada T. Mesenteric abscess caused by coinfection with Bacillus Calmette-Guérin and Phialemonium sp. in chronic granulomatous disease. IDCases 2022; 27:e01375. [PMID: 35028293 PMCID: PMC8739448 DOI: 10.1016/j.idcr.2022.e01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/02/2022] [Indexed: 11/23/2022] Open
Abstract
Opportunistic infections are life-threatening conditions in immunocompromised patients including those with primary immunodeficiency. We describe a case of X-linked chronic granulomatous disease presenting with mesenteric abscess caused by a coinfection with Bacillus Calmette-Guérin (BCG) and Phialemonium sp. The patient received BCG vaccination at 5 months old. He developed left axillary BCG lymphadenitis at 17 months of age, and 3 months later mesenteric abscess occurred. Concomitant use of rifampicin and itraconazole at 17 months of age might have reduced serum itraconazole concentrations and led to superinfection with Phialemonium sp. in our patient, which was susceptible to itraconazole and voriconazole in vitro. The patient was successfully treated with a combination of isoniazid, rifampicin, streptomycin, ciprofloxacin, prednisolone, interferon-γ, and an increased dose of itraconazole, followed by hematopoietic stem cell transplantation. Our results suggest that clinician need to be aware of rifampicin drug interactions, and that precise detection and identification of pathogens are essential to appropriate treatment.
Collapse
|
3
|
Ricci G, Campanini EB, Nishikaku AS, Puccia R, Marques M, Bialek R, Rodrigues AM, Batista WL. PbGP43 Genotyping Using Paraffin-Embedded Biopsies of Human Paracoccidioidomycosis Reveals a Genetically Distinct Lineage in the Paracoccidioides brasiliensis Complex. Mycopathologia 2021; 187:157-168. [PMID: 34870754 DOI: 10.1007/s11046-021-00608-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/12/2021] [Indexed: 11/26/2022]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by a group of cryptic species embedded in the Paracoccidioides brasiliensis complex and Paracoccidioides lutzii. Four species were recently inferred to belong to the P. brasiliensis complex, but the high genetic diversity found in both human and environmental samples have suggested that the number of lineages may be higher. This study aimed to assess the 43-kilodalton glycoprotein genotypes (PbGP43) in paraffin-embedded samples from PCM patients to infer the phylogenetic lineages of the P. brasiliensis complex responsible for causing the infection. Formalin-fixed, paraffin-embedded (FFPE) tissue samples from patients with histopathological diagnosis of PCM were analyzed. DNAs were extracted and amplified for a region of the second exon of the PbGP43 gene. Products were sequenced and aligned with other PbGP43 sequences available. A haplotype network and the phylogenetic relationships among sequences were inferred. Amino acid substitutions were investigated regarding the potential to modify physicochemical properties in the proteins. Six phylogenetic lineages were identified as belonging to the P. brasiliensis complex. Two lineages did not group with any of the four recognized species of the complex, and, interestingly, one of them comprised only FFPE samples. A coinfection involving two lineages was found. Five parsimony-informative sites were identified and three of them showed radical non-synonymous substitutions with the potential to promote changes in the protein. This study expands the knowledge regarding the genetic diversity existing in the P. brasiliensis complex and shows the potential of FFPE samples in species identification and in detecting coinfections.
Collapse
Affiliation(s)
- Giannina Ricci
- Centro de Diagnóstico e Pesquisa em Biologia Molecular Dr Ivo Ricci, São Carlos, SP, Brazil.
- Departamento de Patologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | - Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Angela Satie Nishikaku
- Centro de Diagnóstico e Pesquisa em Biologia Molecular Dr Ivo Ricci, São Carlos, SP, Brazil
| | - Rosana Puccia
- Disciplina de Biologia Celular, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Mariângela Marques
- Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Botucatu, SP, Brazil
| | - Ralf Bialek
- LADR GmbH MVZ Dr, Kramer & Kollegen, Lauenburger Straße 67, 21502, Geesthacht, Germany
| | - Anderson Messias Rodrigues
- Disciplina de Biologia Celular, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Wagner Luiz Batista
- Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo, Campus Diadema, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Assolini JP, Lenhard-Vidal A, Bredt CSDO, Tano ZN, Sano A, Cezar-Dos-Santos F, Ono MA, Itano EN. Distinct Pattern of Paracoccidioides lutzii, P. restrepiensis and P. americana Antigens Recognized by IgE in Human Paracoccidioidomycosis. Curr Microbiol 2021; 78:2608-2614. [PMID: 33983482 DOI: 10.1007/s00284-021-02508-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/25/2021] [Indexed: 11/28/2022]
Abstract
Paracoccidioidomycosis (PCM) is caused by the fungi Paracoccidioides spp. The main antigens recognized by IgE are known for P. brasiliensis species complex, but not for P. lutzii. Current research investigated the major P. lutzii (LDR2) antigens recognized by IgE, in comparison to P. restrepiensis and P. americana (former P. brasiliensis species complex), besides IgG recognition. Cell-free antigens (CFA) from P. lutzii (LDR2), P. restrepiensis (B339) and P. americana (LDR3) were analyzed by ELISA and immunoblotting (IB) by detecting specific IgG and IgE from sera from patients with PCM presumable by P. brasiliensis species complex (n = 24). Additionally, somatic antigen (SA) was analyzed by IB. P. lutzii (LDR2) antigens showed significantly lower reactivity than P. restrepiensis (B339) and P. americana (LDR3) in ELISA for both IgE and IgG (p < 0.05). The IgE-IB pattern was different between P. lutzii (LDR2) and the other species, regarding components with ~30 kDa and ~70 kDa in CFA and a ~200 kDa in SA. P. lutzii (LDR2) present at least three antigens recognized by IgE which mainly differ from P. restrepiensis (B339) and, to a lesser extent, from P. americana (LDR3). Current research evidenced for the first time the major P. lutzii (LDR2) antigens recognized by IgE.
Collapse
Affiliation(s)
- João P Assolini
- State University of Londrina, Londrina, PR, Brazil. .,Departamento de Ciências Patológicas, CCB, Universidade Estadual de Londrina, Campus Universitário, Londrina, PR, 86051-970, Brazil.
| | | | | | | | - Ayako Sano
- Department of Animal Sciences, University of the Ryukyus, Okinawa, Japan
| | | | - Mario A Ono
- State University of Londrina, Londrina, PR, Brazil
| | - Eiko N Itano
- State University of Londrina, Londrina, PR, Brazil. .,Departamento de Ciências Patológicas, CCB, Universidade Estadual de Londrina, Campus Universitário, Londrina, PR, 86051-970, Brazil.
| |
Collapse
|
5
|
Silva LBR, Taira CL, Cleare LG, Martins M, Junqueira M, Nosanchuk JD, Taborda CP. Identification of Potentially Therapeutic Immunogenic Peptides From Paracoccidioides lutzii Species. Front Immunol 2021; 12:670992. [PMID: 34046037 PMCID: PMC8144467 DOI: 10.3389/fimmu.2021.670992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Paracoccidioidomycosis (PCM) is an endemic mycosis in Latin America caused by the thermodimorphic fungi of the genus Paracoccidioides spp. Paracoccidioides lutzii (PL) is one of the 5 species that constitute the Paracoccidioides genus. PL expresses low amounts of glycoprotein (Gp) 43 (PLGp43) and PLGp43 displays few epitopes in common with the P. brasiliensis (PB) immunodominant antigen PBGp43, which is commonly used for serological diagnosis of PCM. This difference in structure between the glycoproteins markedly reduces the efficiency of serological diagnosis in patients infected with PL. We previously demonstrated that peptide 10 (P10) from the PBGp43 induces protective immune responses in in vitro and in vivo models of PB PCM. Since, P10 has proven to be a promising therapeutic to combat PB, we sought to identify peptides in PL that could similarly be applied for the treatment of PCM. PL yeast cell proteins were isolated from PL: dendritic cell co-cultures and subjected to immunoproteomics. This approach identified 18 PL peptides that demonstrated in silico predictions for immunogenicity. Eight of the most promising peptides were synthesized and applied to lymphocytes obtained from peptide-immunized or PL-infected mice as well as to in vitro cultures with peptides or dendritic cells pulsed the peptides. The peptides LBR5, LBR6 and LBR8 efficiently promoted CD4+ and CD8+ T cell proliferation and dendritic cells pulsed with LBR1, LBR3, LBR7 or LBR8 stimulated CD4+ T cell proliferation. We observed increases of IFN-γ in the supernatants from primed T cells for the conditions with peptides without or with dendritic cells, although IL-2 levels only increased in response to LBR8. These novel immunogenic peptides derived from PL will be employed to develop new peptide vaccine approaches and the proteins from which they are derived can be used to develop new diagnostic assays for PL and possibly other Paracoccidioides spp. These findings identify and characterize new peptides with a promising therapeutic profile for future against this important neglected systemic mycosis.
Collapse
Affiliation(s)
- Leandro B R Silva
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil.,Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Cleison L Taira
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Levi G Cleare
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Michele Martins
- Proteomics Unit, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Magno Junqueira
- Proteomics Unit, Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Carlos P Taborda
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil.,Laboratorio de Micologia Medica (LIM53), Departamento de Dermatologia, Faculdade de Medicina, Instituto de Medicina Tropical de Sao Paulo, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
6
|
Lenhard-Vidal A, Bender FR, Assolini JP, Maruo AEM, Vieira LT, Pereira EC, Ono MA, Sano A, Itano EN. IgG reactivity profile to Paracoccidioides spp. antigens in people with asymptomatic Paracoccidioidomycosis. J Med Microbiol 2021; 70. [PMID: 33258768 DOI: 10.1099/jmm.0.001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides spp. As the disease is known to affect mostly men over 40 years old who previously worked handling soil, some cities of agricultural economy in endemic regions may have more cases of paracoccidioidal infection.Gap statement. The true frequency of PCM cannot be established in Brazil because it is not a disease of mandatory reporting. The detection of paracoccidioidal infection may assist in the planning of health services, in order to provide early detection of the disease and to prevent its worsening or even progression to death. In addition, little is described about sera reactivity with antigens from different species of Paracoccidiodes, especially P. lutzii.Aim. Current research was conducted in an inland municipality of southern Brazil, in order to assess infection rate within this endemic region of PCM disease.Methodology. ELISA was employed to evaluate 359 sera from random volunteers from Guarapuava, Paraná, Brazil, to detect IgG against cell-free antigens (CFA) from P. restrepiensis B339, P. americana LDR3 and P. lutzii LDR2. Confirmatory ELISA employed gp43 from B339. Reduction of cross-reactions was sought by treatment with sodium metaperiodate (SMP-CFA, SMP-gp43). Immunoblot was performed with 37 selected sera among those reactive in ELISA. Epidemiological profile was assessed by questionnaire.Results. ELISA reactivity was: CFA/SMP-CFA in general 37.3/17.8 %, B339 25.3/14.5 %, LDR3 24.5/1.4 %, LDR2 8.3/5.8 %; gp43/SMP-gp43 7.2/4.7 %. There were sera reactive with multiple CFAs. In immunoblot, five sera showed the same reaction profile with P. lutzii's antigens as PCM disease sera. Rural residence and soil-related professions were risk factors for paracoccidioidal infection.Conclusion. The low prevalence is in accordance with previous reports of lower PCM disease endemicity in Guarapuava than in other areas of Paraná. Although P. brasiliensis seems to be the prevalent strain of the region, 21 sera from people who only lived in Guarapuava reacted with P. lutzii LDR2. CFA-ELISA with whole antigens seems a good option for serological screening in epidemiological surveys.
Collapse
Affiliation(s)
- Adriane Lenhard-Vidal
- State University of Londrina, Londrina, Brazil.,University Center Campo Real, Guarapuava, Brazil
| | | | | | | | | | | | | | - Ayako Sano
- Department of Animal Sciences, University of the Ryukyus, Okinawa, Japan
| | | |
Collapse
|
7
|
Cocio TA, Nascimento E, von Zeska Kress MR, Bagagli E, Martinez R. Phylogenetic Species of Paracoccidioides spp. Isolated from Clinical and Environmental Samples in a Hyperendemic Area of Paracoccidioidomycosis in Southeastern Brazil. J Fungi (Basel) 2020; 6:jof6030132. [PMID: 32796579 PMCID: PMC7559761 DOI: 10.3390/jof6030132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 01/17/2023] Open
Abstract
Paracoccidioides brasiliensis complex and P. lutzii are the etiological agents of paracoccidioidomycosis. The geographic distribution of these species in South America is still poorly comprehended. Fifty samples of Paracoccidioides spp. were genotyped, with 46 clinical isolates predominantly isolated in the geographic area of Ribeirão Preto, SP, and four environmental isolates collected in Ibiá, MG, southeastern Brazil. These isolates were evaluated by PCR-RFLP (Restriction Fragment Length Polymorphism) of the tub1 gene and the sequencing of the gp43 exon 2 loci. The species P. lutzii was confirmed by sequencing the internal transcribed spacer (ITS) region of the ribosomal DNA. P. brasiliensis sensu stricto S1b (n = 42) and S1a (n = 5), P. americana (n = 1), P. restrepiensis (n = 1), and P. lutzii (n = 1) were identified among the clinical isolates. All the environmental isolates were characterized as P. brasiliensis sensu stricto S1b. The patient infection by P. lutzii, P. americana (PS2), and one isolate of P. brasiliensis sensu stricto S1b most likely occurred in a geographic area far from the fungal isolation site. No association was found between the infecting genotype and the disease form. These results expand the knowledge of the Paracoccidioides species distribution and emphasize that human migration must also be considered to pinpoint the genotypes in the endemic area.
Collapse
Affiliation(s)
- Tiago A. Cocio
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.); (R.M.)
- Correspondence: ; Tel.: +55-16-3602-2468
| | - Erika Nascimento
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.); (R.M.)
| | - Marcia R. von Zeska Kress
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Ribeirão Preto 14040-903, Brazil;
| | - Eduardo Bagagli
- Department of Chemical and Biological Sciences, Institute of Biosciences—UNESP, São Paulo, Botucatu 18618-691, Brazil;
| | - Roberto Martinez
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Ribeirão Preto 14049-900, Brazil; (E.N.); (R.M.)
| |
Collapse
|
8
|
Pereira EF, Gegembauer G, Chang MR, de Camargo ZP, Nunes TF, Ribeiro SM, de Carvalho LR, Maldonado BM, Mendes RP, Paniago AMM. Comparison of clinico-epidemiological and radiological features in paracoccidioidomycosis patients regarding serological classification using antigens from Paracoccidioides brasiliensis complex and Paracoccidioides lutzii. PLoS Negl Trop Dis 2020; 14:e0008485. [PMID: 32841237 PMCID: PMC7447013 DOI: 10.1371/journal.pntd.0008485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 06/14/2020] [Indexed: 12/31/2022] Open
Abstract
Genotyping of the genus Paracoccidioides showed its diversity and geographical distribution. Four species constituting the Paracoccidioides brasiliensis complex and Paracoccidioides lutzii are etiological agents of paracoccidioidomycosis (PCM). However, there are no studies comparing the clinical and epidemiological aspects between PCM caused by the P. brasiliensis complex and by P. lutzii. Demographic and clinical data from 81 patients with PCM-confirmed by mycological and/or histopathological examination-from Mato Grosso do Sul state (Brazil) were studied. All patients underwent serology by immunodiffusion with antigens obtained from the P. brasiliensis complex (ExoPb and gp43) and Cell Free Antigens obtained from P.lutzii (CFAPl).The cases were classified regarding their serological profile into three groups: G1: PCM patients seropositive to ExoPb and/or gp43 and seronegative to CFAPl (n = 51), assumed to have PCM caused by P. brasiliensis complex; G2: PCM patients seronegative to gp43 and seropositive to CFAPl (n = 16), with PCM caused by P. lutzii; and G3: PCM patients seropositive to ExoPb or gp43 and seropositive to CFAPl (n = 14), with undetermined serological profile, was excluded from the analyses. The Fisher's exact test or the Mann-Whitney U test, and cluster analysis according to Ward's method and Euclidean distance were used to analyze the results. Patients with serological profile suggestive of P. lutzii lived predominantly in municipalities in the Central and Southern regions of the state, while those with serological profile indicative of the P. brasiliensis complex were distributed throughout the state. No differences were found between the two groups regarding gender, age, schooling, rural work, clinical form, severity, organs involved, intensity of pulmonary involvement, degree of anemia, erythrocyte sedimentation rate values, and therapeutic response. PCM patients with serological profile suggestive of P. lutzii and PCM patients with serological profile indicative of P. brasiliensis complex showed the same clinical and radiological presentations.
Collapse
Affiliation(s)
- Edy F. Pereira
- Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul state, Brazil
| | - Gregory Gegembauer
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo state, Brazil
| | - Marilene R. Chang
- Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul state, Brazil
| | - Zoilo P. de Camargo
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo state, Brazil
| | - Thiago F. Nunes
- Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul state, Brazil
| | - Sergio M. Ribeiro
- Faculdade de Medicina de Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo state, Brazil
| | - Lídia R. de Carvalho
- Institute of Biosciences, Botucatu—São Paulo State University (UNESP), Botucatu, São Paulo state, Brazil
| | - Bianca M. Maldonado
- Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul state, Brazil
| | - Rinaldo P. Mendes
- Faculdade de Medicina de Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo state, Brazil
| | - Anamaria M. M. Paniago
- Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul state, Brazil
| |
Collapse
|
9
|
Menolli N, Sánchez-García M. Brazilian fungal diversity represented by DNA markers generated over 20 years. Braz J Microbiol 2020; 51:729-749. [PMID: 31828716 PMCID: PMC7203393 DOI: 10.1007/s42770-019-00206-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022] Open
Abstract
Molecular techniques using fungal DNA barcoding (ITS) and other markers have been key to identifying the biodiversity of different geographic areas, mainly in megadiverse countries. Here, we provide an overview of the fungal diversity in Brazil based on DNA markers of phylogenetic importance generated since 1996. We retrieved fungal sequences of ITS, LSU, SSU, tef1-α, β-tubulin, rpb1, rpb2, actin, chitin synthase, and ATP6 from GenBank using different field keywords that indicated their origin in Brazil. A total of 19,440 sequences were recovered. ITS is the most representative marker (11,209 sequences), with 70.1% belonging to Ascomycota, 18.6% Basidiomycota, 10.2% unidentified, 1.1% Mucoromycota, two sequences of Olpidium bornovanus (Fungi incertae sedis), one sequence of Blastocladiomycota (Allomyces arbusculus), and one sequence of Chytridiomycota (Batrachochytrium dendrobatidis). Considering the sequences of all selected markers, only the phyla Cryptomycota and Entorrhizomycota were not represented. Based on ITS, using a cutoff of 98%, all sequences comprise 3047 OTUs, with the majority being Ascomycota (2088 OTUs) and Basidiomycota (681 OTUs). Previous numbers based mainly on morphological and bibliographical data revealed 5264 fungal species from Brazil, with a predominance of Basidiomycota (2741 spp.) and Ascomycota (1881 spp.). The unidentified ITS sequences not assigned to a higher taxonomic level represent 1.61% of all ITS sequences sampled and correspond to 38 unknown class-level lineages (75% cutoff). A maximum likelihood phylogeny based on LSU illustrates the fungal classes occurring in Brazil.
Collapse
Affiliation(s)
- Nelson Menolli
- Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Câmpus São Paulo, Rua Pedro Vicente 625, São Paulo, SP, 01109-010, Brazil.
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-012, Brazil.
| | - Marisol Sánchez-García
- Biology Department, Clark University, Worcester, MA, 01610, USA
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75005, Sweden
| |
Collapse
|
10
|
Gaspar GG, Cocio TA, Guioti-Puga F, Nascimento E, Fabro AT, Kress MRVZ, Bagagli E, Martinez R. Paracoccidioidomycosis due to Paracoccidioides lutzii complicated with adrenal injury and pulmonary arterial hypertension. Rev Inst Med Trop Sao Paulo 2020; 62:e89. [PMID: 33206863 PMCID: PMC7669275 DOI: 10.1590/s1678-9946202062089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/22/2020] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Eduardo Bagagli
- Universidade Estadual Paulista 'Júlio de Mesquita Filho', Brazil
| | | |
Collapse
|
11
|
Lenhard-Vidal A, Assolini JP, Chiyoda FAS, Ono MA, Sano A, Itano EN. Polyclonal antibodies toParacoccidioides brasiliensisare able to recognise antigens from different strains fromParacoccidioidesspecies complex, includingParacoccidioides lutziiLDR2. Mycoses 2018; 61:826-832. [DOI: 10.1111/myc.12819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/29/2018] [Accepted: 06/14/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | - Ayako Sano
- Department of Animal Sciences; University of the Ryukyus; Okinawa Japan
| | | |
Collapse
|
12
|
Cezar-Dos-Santos F, Lenhard-Vidal A, Assolini JP, de Souza Marquez A, Ono MA, Itano EN. Paracoccidioides restrepiensis B339 (PS3) and P. lutzii LDR2 yeast cells and soluble components display in vitro hemolytic and hemagglutinating activities on human erythrocytes. Microbiol Immunol 2018; 62:436-443. [PMID: 29733463 DOI: 10.1111/1348-0421.12599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 04/04/2018] [Accepted: 05/01/2018] [Indexed: 12/21/2022]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by thermodimorfic fungi of Paracoccidioides species complex. Several pathogenic fungi produce hemagglutinins and hemolysins, which are virulence factors involved in adhesion of pathogens to host tissues or cells and in destruction of erythrocytes. The present research investigated hemolytic and hemagglutinating activities of yeast cells and soluble components from P. restrepiensis (PS3; former P. brasiliensis B339) and P. lutzii (LDR2). Different concentrations of live and heat-killed yeast cells and soluble components from cell free antigen preparation (CFA) (native or heated - 56 and 100 °C, 30 min) were mixed with 1% human erythrocyte suspension. Yeast cells from both species caused hemolysis, but P. lutzii LDR2 was more hemolytic than P. restrepiensis B339, while the opposite phenomena occurred with soluble components in most conditions. Live or heat-killed yeast cells of both fungi agglutinated erythrocytes, but only heated soluble components from P. restrepiensis B339 showed hemagglutinating activity. In conclusion, yeast cells of P. restrepiensis B339 and P. lutzii LDR2 produce hemolysins and hemagglutinins, which most likely are more restricted to yeast cells in P. lutzii LDR2 and are more released in soluble form byP. restrepiensis B339, requiring further study.
Collapse
Affiliation(s)
- Fernando Cezar-Dos-Santos
- Department of Pathological Sciences, State University of Londrina, Londrina, PR, Brazil. Rod. Celso Garcia Cid (PR 445), km 380 - Campus Universitário. Zip Code 86.057-970
| | - Adriane Lenhard-Vidal
- Department of Pathological Sciences, State University of Londrina, Londrina, PR, Brazil. Rod. Celso Garcia Cid (PR 445), km 380 - Campus Universitário. Zip Code 86.057-970
| | - João Paulo Assolini
- Department of Pathological Sciences, State University of Londrina, Londrina, PR, Brazil. Rod. Celso Garcia Cid (PR 445), km 380 - Campus Universitário. Zip Code 86.057-970
| | - Audrey de Souza Marquez
- Health Sciences Research Center, University of Northern Paraná, Londrina, PR, Brazil. Av. Paris, 675 - Parque Res. João Piza. Zip Code 86.041-120
| | - Mário Augusto Ono
- Department of Pathological Sciences, State University of Londrina, Londrina, PR, Brazil. Rod. Celso Garcia Cid (PR 445), km 380 - Campus Universitário. Zip Code 86.057-970
| | - Eiko Nakagawa Itano
- Department of Pathological Sciences, State University of Londrina, Londrina, PR, Brazil. Rod. Celso Garcia Cid (PR 445), km 380 - Campus Universitário. Zip Code 86.057-970
| |
Collapse
|
13
|
Hrycyk MF, Garcia Garces H, Bosco SDMG, de Oliveira SL, Marques SA, Bagagli E. Ecology of Paracoccidioides brasiliensis, P. lutzii and related species: infection in armadillos, soil occurrence and mycological aspects. Med Mycol 2018; 56:950-962. [DOI: 10.1093/mmy/myx142] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/16/2017] [Indexed: 11/14/2022] Open
|
14
|
Bernardi T, da Silva JDF, Vicentin J, de Oliveira HC, Assato PA, Marcos CM, de Paula E Silva ACA, da Silva RAM, Regasini LO, Silva DHS, da Silva Bolzani V, Fusco-Almeida AM, Mendes-Giannini MJS. Anti-apoptotic effects of decyl gallate on the induction of apoptosis in A549 pneumocytes by Paracoccidioides brasiliensis gp43. Med Mycol 2017; 55:890-894. [PMID: 28339963 DOI: 10.1093/mmy/myx013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/08/2017] [Indexed: 02/07/2023] Open
Abstract
Apoptosis is considered an escape mechanism from the host immune system for the fungus Paracoccidioides spp, and it serves as a vehicle for entry into macrophages without stimulating microbicidal activities. Recently, gp43 of P. brasiliensis was demonstrated to be involved in this process. Therefore, as a new therapeutic alternative, it is very important to study compounds that could reduce the modulation of the induction of apoptosis caused by this fungus. Decyl gallate (G14) is a known antifungal compound, and we decided to investigate its anti-apoptotic properties. Our results demonstrate that G14 was effective against apoptosis induced by gp43, as observed in epithelial cells, and led to a reduction in DNA damage, Bak down-regulation and Bcl-2 up-regulation. Together, these data show that G14 presents promising anti-apoptotic activity.
Collapse
Affiliation(s)
- Thais Bernardi
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Julhiany de Fátima da Silva
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Juliana Vicentin
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Haroldo Cesar de Oliveira
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Patricia Akemi Assato
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Caroline Maria Marcos
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Ana Carolina Alves de Paula E Silva
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Rosangela Aparecida Moraes da Silva
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Luis Octávio Regasini
- Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, Campus São José do Rio Preto, Departamento de Química e Ciências Ambientais, São José do Rio Preto, São Paulo, Brasil
| | - Dulce Helena Siqueira Silva
- Universidade Estadual Paulista (UNESP), Instituto de Química, Campus Araraquara Departamento de Química Orgânica, Araraquara, São Paulo, Brasil
| | - Vanderlan da Silva Bolzani
- Universidade Estadual Paulista (UNESP), Instituto de Química, Campus Araraquara Departamento de Química Orgânica, Araraquara, São Paulo, Brasil
| | - Ana Marisa Fusco-Almeida
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Maria José Soares Mendes-Giannini
- Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| |
Collapse
|
15
|
Mendes RP, Cavalcante RDS, Marques SA, Marques MEA, Venturini J, Sylvestre TF, Paniago AMM, Pereira AC, da Silva JDF, Fabro AT, Bosco SDMG, Bagagli E, Hahn RC, Levorato AD. Paracoccidioidomycosis: Current Perspectives from Brazil. Open Microbiol J 2017; 11:224-282. [PMID: 29204222 PMCID: PMC5695158 DOI: 10.2174/1874285801711010224] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND This review article summarizes and updates the knowledge on paracoccidioidomycosis. P lutzii and the cryptic species of P. brasiliensis and their geographical distribution in Latin America, explaining the difficulties observed in the serological diagnosis. OBJECTIVES Emphasis has been placed on some genetic factors as predisposing condition for paracoccidioidomycosis. Veterinary aspects were focused, showing the wide distribution of infection among animals. The cell-mediated immunity was better characterized, incorporating the recent findings. METHODS Serological methods for diagnosis were also compared for their parameters of accuracy, including the analysis of relapse. RESULTS Clinical forms have been better classified in order to include the pictures less frequently observesiod. CONCLUSION Itraconazole and the trimethoprim-sulfamethoxazole combination was compared regarding efficacy, effectiveness and safety, demonstrating that azole should be the first choice in the treatment of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Rinaldo Poncio Mendes
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Ricardo de Souza Cavalcante
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Sílvio Alencar Marques
- Department of Dermatology, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | | | - James Venturini
- Laboratory of Experimental Immunology, Department of Biological Science, Faculty of Science, São Paulo State University – UNESP, São Paulo, Brazil
| | - Tatiane Fernanda Sylvestre
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Anamaria Mello Miranda Paniago
- Department of Infectious and Parasitic Diseases, Faculdade de Medicina – Federal University of Mato Grosso do Sul – UFMS, Brazil
| | | | - Julhiany de Fátima da Silva
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Alexandre Todorovic Fabro
- Unit of Experimental Research, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Sandra de Moraes Gimenes Bosco
- Department of Microbiology and Immunology – Instituto de Biociências de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Eduardo Bagagli
- Department of Microbiology and Immunology – Instituto de Biociências de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| | - Rosane Christine Hahn
- Laboratory of Investigation and Mycology, Federal University of Mato Grosso, Faculty of Medicine Cuiabá, Mato Grosso, Brazil
| | - Adriele Dandara Levorato
- Department of Tropical Diseases, Faculdade de Medicina de Botucatu – São Paulo State University – UNESP, São Paulo, Brazil
| |
Collapse
|
16
|
Matrix-assisted laser desorption ionization-time of flight mass spectrometry for differentiation of the dimorphic fungal species Paracoccidioides brasiliensis and Paracoccidioides lutzii. J Clin Microbiol 2015; 53:1383-6. [PMID: 25631803 DOI: 10.1128/jcm.02847-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isolates of Paracoccidioides brasiliensis and Paracoccidioides lutzii, previously characterized by molecular techniques, were identified for the first time by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). All isolates were correctly identified, with log score values of >2.0. Thus, MALDI-TOF MS is a new tool for differentiating species of the genus Paracoccidioides.
Collapse
|
17
|
Teixeira MDM, Theodoro RC, Oliveira FFMD, Machado GC, Hahn RC, Bagagli E, San-Blas G, Soares Felipe MS. Paracoccidioides lutzii sp. nov.: biological and clinical implications. Med Mycol 2014; 52:19-28. [PMID: 23768243 DOI: 10.3109/13693786.2013.794311] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Paracoccidioides lutzii, formerly known as 'Pb01-like' strains in the P. brasiliensis complex, is proposed as a new species based on phylogenetic and comparative genomics data, recombination analysis, and morphological characteristics. Conidia of P. lutzii are elongated, different from those of P. brasiliensis. P. lutzii occurs in the central and northern regions of Brazil. Studies comparing P. brasiliensis and P. lutzii may have significant clinical consequences for the diagnosis and treatment of paracoccidioidomycosis.
Collapse
|
18
|
Lenhard-Vidal A, Assolini JP, Ono MA, Bredt CSO, Sano A, Itano EN. Paracoccidioides brasiliensis and P. lutzii Antigens Elicit Different Serum IgG Responses in Chronic Paracoccidioidomycosis. Mycopathologia 2013; 176:345-52. [DOI: 10.1007/s11046-013-9698-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
|
19
|
Machado GC, Moris DV, Arantes TD, Silva LRF, Theodoro RC, Mendes RP, Vicentini AP, Bagagli E. Cryptic species of Paracoccidioides brasiliensis: impact on paracoccidioidomycosis immunodiagnosis. Mem Inst Oswaldo Cruz 2013; 108:637-43. [PMID: 23903981 PMCID: PMC3970600 DOI: 10.1590/0074-0276108052013016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/17/2013] [Indexed: 11/21/2022] Open
Abstract
We aimed to evaluate whether the occurrence of cryptic species of Paracoccidioides brasiliensis, S1, PS2, PS3 and Paracoccidioides lutzii, has implications in the immunodiagnosis of paracoccidioidomycosis (PCM). Small quantities of the antigen gp43 were found in culture filtrates of P. lutzii strains and this molecule appeared to be more variable within P. lutzii because the synonymous-nonsynonymous mutation rate was lower, indicating an evolutionary process different from that of the remaining genotypes. The production of gp43 also varied between isolates belonging to the same species, indicating that speciation events are important, but not sufficient to fully explain the diversity in the production of this antigen. The culture filtrate antigen AgEpm83, which was obtained from a PS3 isolate, showed large quantities of gp43 and reactivity by immunodiffusion assays, similar to the standard antigen (AgB-339) from an S1 isolate. Furthermore, AgEpm83 was capable of serologically differentiating five serum samples from patients from the Botucatu and Jundiaí regions. These patients had confirmed PCM but, were non-reactive to the standard antigen, thus demonstrating an alternative for serological diagnosis in regions in which S1 and PS2 occur. We also emphasise that it is not advisable to use a single antigen preparation to diagnose PCM, a disease that is caused by highly diverse pathogens.
Collapse
Affiliation(s)
| | - Daniela Vanessa Moris
- Departamento de Doenças Tropicais, Faculdade de Medicina de
Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, SP,
Brasil
| | | | | | | | - Rinaldo Pôncio Mendes
- Departamento de Doenças Tropicais, Faculdade de Medicina de
Botucatu, Universidade Estadual Paulista Júlio de Mesquita Filho, Botucatu, SP,
Brasil
| | - Adriana Pardini Vicentini
- Laboratório de Imunodiagnóstico das Micoses, Centro de Imunologia,
Instituto Adolfo Lutz, São Paulo, SP, Brasil
| | - Eduardo Bagagli
- Departamento de Microbiologia e Imunologia, Instituto de
Biociências de Botucatu
| |
Collapse
|
20
|
Abstract
Lacaziosis, formerly called lobomycosis, caused byLacazia loboi, is a zoonotic mycosis found in humans and dolphins and is endemic in the countries on the Atlantic Ocean. Although the Japanese coast is not considered an endemic area, photographic records of lacaziosis-like skin lesions were found in bottlenose dolphins (Tursiops truncatus) that were migrating in the Goto Islands (Nagasaki Prefecture, Japan). We diagnosed 2 cases of lacaziosis in bottlenose dolphins captured simultaneously at the same coast within Japanese territory on the basis of clinical characteristics, cytology, histopathology, immunological tests, and detection of partial sequences of a 43 kDa glycoprotein coding gene (gp43) with a nested-PCR system. The granulomatous skin lesions from the present cases were similar to those found in animals from endemic areas, containing multiple budding and chains of round yeast cells and positive in the immune-staining with anti-Paracoccidioides brasiliensisserum which is a fungal species related toL. loboi; however, thegp43gene sequences derived from the present cases showed 94.1% homology toP. brasiliensisand 84.1% toL. loboi. We confirmed that the causative agent at the present cases was different genotype ofL. loboifrom Amazon area.
Collapse
|
21
|
Marques-da-Silva SH, Rodrigues AM, de Hoog GS, Silveira-Gomes F, Camargo ZPD. Occurrence of Paracoccidioides lutzii in the Amazon region: description of two cases. Am J Trop Med Hyg 2012; 87:710-4. [PMID: 22927496 DOI: 10.4269/ajtmh.2012.12-0340] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Paracoccidioidomycosis (PCM), the most important human systemic mycosis in Latin America, is known to be caused by at least four different phylogenetic lineages within the Paracoccidioides brasiliensis complex, including S1, PS2, PS3, and Pb01-like group. Herein, we describe two cases of PCM in patients native from the Amazon region. The disease was originally thought to have been caused by P. brasiliensis. Despite the severity of the cases, sera from the patients were negative in immunodiffusion tests using the standard exoantigen from P. brasiliensis B-339. However, a positive response was recorded with an autologous preparation of Paracoccidioides lutzii exoantigen. A phylogenetic approach based on the gp43 and ARF loci revealed high similarity between our clinical isolates and the Pb01-like group. The occurrence of PCM caused by P. lutzii in the Brazilian Amazon (Pará State) was thus proven. The incidence of PCM caused by P. lutzii may be underestimated in northern Brazil.
Collapse
|
22
|
Arantes TD, Theodoro RC, Da Graça Macoris SA, Bagagli E. Detection of Paracoccidioides spp. in environmental aerosol samples. Med Mycol 2012; 51:83-92. [PMID: 22762209 DOI: 10.3109/13693786.2012.698444] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Taking into account that paracoccidioidomycosis infection occurs by inhalation of the asexual conidia produced by Paracoccidioides spp. in its saprobic phase, this work presents the collection of aerosol samples as an option for environmental detection of this pathogen, by positioning a cyclonic air sampler at the entrance of armadillo burrows. Methods included direct culture, extinction technique culture and Nested PCR of the rRNA coding sequence, comprising the ITS1-5.8S-ITS2 region. In addition, we evaluated one armadillo (Dasypus novemcinctus) as a positive control for the studied area. Although the pathogen could not be isolated by the culturing strategies, the aerosol sampling associated with molecular detection through Nested PCR proved the best method for discovering Paracoccidioides spp. in the environment. Most of the ITS sequences obtained in this investigation proved to be highly similar with the homologous sequences of Paracoccidioides lutzii from the GenBank database, suggesting that this Paracoccidioides species may not be exclusive to mid-western Brazil as proposed so far.
Collapse
Affiliation(s)
- Thales Domingos Arantes
- Departamento de Microbiologia e Imunologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, Brazil
| | | | | | | |
Collapse
|
23
|
Theodoro RC, Teixeira MDM, Felipe MSS, Paduan KDS, Ribolla PM, San-Blas G, Bagagli E. Genus paracoccidioides: Species recognition and biogeographic aspects. PLoS One 2012; 7:e37694. [PMID: 22666382 PMCID: PMC3364295 DOI: 10.1371/journal.pone.0037694] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 04/24/2012] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Paracoccidioidomycosis is a systemic mycosis caused by Paracoccidioides brasiliensis (species S1, PS2, PS3), and Paracoccidioides lutzii. This work aimed to differentiate species within the genus Paracoccidioides, without applying multilocus sequencing, as well as to obtain knowledge of the possible speciation processes. METHODOLOGY/PRINCIPAL FINDINGS Single nucleotide polymorphism analysis on GP43, ARF and PRP8 intein genes successfully distinguished isolates into four different species. Morphological evaluation indicated that elongated conidia were observed exclusively in P. lutzii isolates, while all other species (S1, PS2 and PS3) were indistinguishable. To evaluate the biogeographic events that led to the current geographic distribution of Paracoccidioides species and their sister species, Nested Clade and Likelihood Analysis of Geographic Range Evolution (LAGRANGE) analyses were applied. The radiation of Paracoccidioides started in northwest South America, around 11-32 million years ago, as calculated on the basis of ARF substitution rate, in the BEAST program. Vicariance was responsible for the divergence among S1, PS2 and P. lutzii and a recent dispersal generated the PS3 species, restricted to Colombia. Taking into account the ancestral areas revealed by the LAGRANGE analysis and the major geographic distribution of L. loboi in the Amazon basin, a region strongly affected by the Andes uplift and marine incursions in the Cenozoic era, we also speculate about the effect of these geological events on the vicariance between Paracoccidioides and L. loboi. CONCLUSIONS/SIGNIFICANCE The use of at least 3 SNPs, but not morphological criteria, as markers allows us to distinguish among the four cryptic species of the genus Paracoccidioides. The work also presents a biogeographic study speculating on how these species might have diverged in South America, thus contributing to elucidating evolutionary aspects of the genus Paracoccidioides.
Collapse
Affiliation(s)
| | | | | | | | | | - Gioconda San-Blas
- Venezuelan Institute for Scientific Research, Center of Microbiology and Cell Biology, Caracas, Venezuela
| | - Eduardo Bagagli
- Universidade Estadual Paulista, Campus de Botucatu-UNESP, São Paulo, Brazil
| |
Collapse
|
24
|
San-Blas G, Burger E. Experimental medical mycological research in Latin America - a 2000-2009 overview. Rev Iberoam Micol 2010; 28:1-25. [PMID: 21167301 DOI: 10.1016/j.riam.2010.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 11/26/2022] Open
Abstract
An overview of current trends in Latin American Experimental Medical Mycological research since the beginning of the 21(st) century is done (search from January 2000 to December 2009). Using the PubMed and LILACS databases, the authors have chosen publications on medically important fungi which, according to our opinion, are the most relevant because of their novelty, interest, and international impact, based on research made entirely in the Latin American region or as part of collaborative efforts with laboratories elsewhere. In this way, the following areas are discussed: 1) molecular identification of fungal pathogens; 2) molecular and clinical epidemiology on fungal pathogens of prevalence in the region; 3) cell biology; 4) transcriptome, genome, molecular taxonomy and phylogeny; 5) immunology; 6) vaccines; 7) new and experimental antifungals.
Collapse
Affiliation(s)
- Gioconda San-Blas
- Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| | | |
Collapse
|
25
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|