1
|
Casertano M, Vito A, Aiello A, Imperatore C, Menna M. Natural Bioactive Compounds from Marine Invertebrates That Modulate Key Targets Implicated in the Onset of Type 2 Diabetes Mellitus (T2DM) and Its Complications. Pharmaceutics 2023; 15:2321. [PMID: 37765290 PMCID: PMC10538088 DOI: 10.3390/pharmaceutics15092321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is an ongoing, risky, and costly health problem that therefore always requires new treatment options. Moreover, although several drugs are available, only 36% of patients achieve glycaemic control, and patient adherence is a major obstacle. With monotherapy, T2DM and its comorbidities/complications often cannot be managed, and the concurrent administration of several hypoglycaemic drugs is required, which increases the risk of side effects. In fact, despite the efficacy of the drugs currently on the market, they generally come with serious side effects. Therefore, scientific research must always be active in the discovery of new therapeutic agents. DISCUSSION The present review highlights some of the recent discoveries regarding marine natural products that can modulate the various targets that have been identified as crucial in the establishment of T2DM disease and its complications, with a focus on the compounds isolated from marine invertebrates. The activities of these metabolites are illustrated and discussed. OBJECTIVES The paper aims to capture the relevant evidence of the great chemical diversity of marine natural products as a key tool that can advance understanding in the T2DM research field, as well as in antidiabetic drug discovery. The variety of chemical scaffolds highlighted by the natural hits provides not only a source of chemical probes for the study of specific targets involved in the onset of T2DM, but is also a helpful tool for the development of drugs that are capable of acting via novel mechanisms. Thus, it lays the foundation for the design of multiple ligands that can overcome the drawbacks of polypharmacology.
Collapse
Affiliation(s)
| | | | | | | | - Marialuisa Menna
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.C.); (A.V.); (A.A.); (C.I.)
| |
Collapse
|
2
|
Paulose SK, Chakraborty K. Anti-hyperglycemic Δ 5 steroids, marginoids A-C from marine veined octopus Amphioctopus marginatus (Octopodidae): Prospective natural leads inhibit serineexopeptidase dipeptidyl peptidase-4. Steroids 2022; 186:109090. [PMID: 35850257 DOI: 10.1016/j.steroids.2022.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/25/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Three Δ5 steroid analogues, marginoids A-C were purified from the organic extract of marine veined octopus Amphioctopus marginatus (Taki, 1964) (family Octopodidae) distributed on the Asian and Mediterranean coasts. Their structures were elucidated as (5Z)-3β-acetoxy-cholesta-5-en-25-ethylene-22β-hydroxy-23,26-lactone (marginoid A), (5Z, 25Z)-3β-yl-(1'-(E)-3'-hydroxy-4'-methyl-hex-5'-enoate)-22-oxo-26-furanyl-cholesta-5,25-diene (marginoid B), and (5Z)-3β-yl-(7'-methoxypropan-8'-yl)-tetrahydro-2H-pyran-2-one-cholesta-5,24-dien (marginoid C) based on extensive spectroscopic experiments. Marginoid B with hydroxyl-methyl-hexanoate at the C-3 position in conjunction with the heterocyclic furanyl ring displayed superior anti-hyperglycemic properties as acknowledged by its promising serine protease dipeptidyl peptidase-4 attenuation potential (IC50 3.49 µM) displaying comparable activity with the standard DPP-4 inhibitor (DPP-4i) diprotin A (IC50 4.53 µM). The anti-hyperglycemic properties were corroborated by the promising antioxidant activities (IC50 ∼ 0.8-1.0 mM) of these Δ5 steroids, marginoids A-C. Sizeably greater electronic properties, balanced hydrophobic-lipophilic properties (log POW 6.4-8.3), and comparatively lower steric factors were directly proportional to their bioactive properties. Molecular simulation studies in the binding sites of DPP-4 and lesser binding energy (-12.17 kcal/mol) and inhibition constant (Ki 1.20 nM) of marginoid B could be correlated with anti-hyperglycemic properties. Promising bioactivities of marginoid B isolated from A. marginatus are anticipated for nutraceutical applications against hyperglycemia.
Collapse
Affiliation(s)
- Silpa Kunnappilly Paulose
- Marine Bioprospecting Section of Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| | - Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| |
Collapse
|
3
|
Paulose SK, Chakraborty K. Newly described antioxidant disecolactonic ergosteroids from marine cuttlefish Sepia pharaonis: Pharaonoids A-B as prospective carbohydrate digestive enzyme inhibitors. Steroids 2022; 182:108995. [PMID: 35245531 DOI: 10.1016/j.steroids.2022.108995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022]
Abstract
Biochemical investigation of crude solvent extract of pharaoh cuttlefish Sepia pharaonis (family Sepiidae) led to the isolation of two undescribed disecolactonic ergosteroids, pharaonoids A-B. The compounds were characterized as 11β-acteoxy-7α-hydroxy-19-Nor-1,10:9,10-disecoergosta-3-ene-61-oxa-1-one (pharaonoid A) and 11β-hydroxy-19-Nor-1,10:9,10-disecoergosta-3-ene-61-oxa-1-one (pharaonoid B) in conjunction with spectroscopic analysis encompassing one and two-dimensional nuclear magnetic resonance and mass spectrometric analyses. Pharaonoid A, bearing an acetoxy and hydroxyl groups, respectively at C-11 and C-7 positions exhibited considerably greater inhibition potential against carbohydrate hydrolysing enzymes α-amylase (IC50 1.14 mM) and α-glucosidase (IC50 1.23 mM) than those displayed by pharaonoid B (IC50 1.49/1.38 mM), and was proportionate with those exhibited by standard drug acarbose (IC50 0.60 and 0.40 mM, respectively), thereby recognizing the anti-hyperglycemic potential of pharaonoid A. Promising anti-oxidant property for pharaonoid A (IC50 ∼ 1 mM) could conceivably corroborate its attenuation potential against carbohydrate digestive enzymes. Greater electronic parameters along with optimum lipophilic-hydrophobic balance of pharaonoid A were directly corroborated to the anti-carbolytic properties occurring via transcellular mechanism. Greater binding energies (-9.50 kcal mol-1) and inhibition constant (Ki 48.21 nM) at the active site of α-amylase enzyme were displayed by pharaonoid A than those exhibited by its B analogue. Promising bioactive properties of the disecolactonic steroids isolated from the marine pharaoh cuttlefish are anticipated to be utilized as functional food components and potential nutraceuticals against oxidative stress and hyperglycemic disorders.
Collapse
Affiliation(s)
- Silpa Kunnappilly Paulose
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| | - Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| |
Collapse
|
4
|
Two New Bioactive Metabolites from Xestospongia sp. with Antimicrobial and Anticancer Activities. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Aguiar ACC, Parisi JR, Granito RN, de Sousa LRF, Renno ACM, Gazarini ML. Metabolites from Marine Sponges and Their Potential to Treat Malarial Protozoan Parasites Infection: A Systematic Review. Mar Drugs 2021; 19:134. [PMID: 33670878 PMCID: PMC7997450 DOI: 10.3390/md19030134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Malaria is an infectious disease caused by protozoan parasites of the Plasmodium genus through the bite of female Anopheles mosquitoes, affecting 228 million people and causing 415 thousand deaths in 2018. Artemisinin-based combination therapies (ACTs) are the most recommended treatment for malaria; however, the emergence of multidrug resistance has unfortunately limited their effects and challenged the field. In this context, the ocean and its rich biodiversity have emerged as a very promising resource of bioactive compounds and secondary metabolites from different marine organisms. This systematic review of the literature focuses on the advances achieved in the search for new antimalarials from marine sponges, which are ancient organisms that developed defense mechanisms in a hostile environment. The principal inclusion criterion for analysis was articles with compounds with IC50 below 10 µM or 10 µg/mL against P. falciparum culture. The secondary metabolites identified include alkaloids, terpenoids, polyketides endoperoxides and glycosphingolipids. The structural features of active compounds selected in this review may be an interesting scaffold to inspire synthetic development of new antimalarials for selectively targeting parasite cell metabolism.
Collapse
Affiliation(s)
- Anna Caroline Campos Aguiar
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Rua Silva Jardim 136, Santos 11015-020, SP, Brazil; (A.C.C.A.); (J.R.P.); (R.N.G.); (A.C.M.R.)
| | - Julia Risso Parisi
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Rua Silva Jardim 136, Santos 11015-020, SP, Brazil; (A.C.C.A.); (J.R.P.); (R.N.G.); (A.C.M.R.)
| | - Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Rua Silva Jardim 136, Santos 11015-020, SP, Brazil; (A.C.C.A.); (J.R.P.); (R.N.G.); (A.C.M.R.)
| | - Lorena Ramos Freitas de Sousa
- Special Academic Unit of Chemistry, Federal University of Goiás (UFG/UFCAT), Catalão Regional, Catalão 75704-020, GO, Brazil;
| | - Ana Cláudia Muniz Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Rua Silva Jardim 136, Santos 11015-020, SP, Brazil; (A.C.C.A.); (J.R.P.); (R.N.G.); (A.C.M.R.)
| | - Marcos Leoni Gazarini
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Rua Silva Jardim 136, Santos 11015-020, SP, Brazil; (A.C.C.A.); (J.R.P.); (R.N.G.); (A.C.M.R.)
| |
Collapse
|
6
|
Chakraborty K, Joy M. High-value compounds from the molluscs of marine and estuarine ecosystems as prospective functional food ingredients: An overview. Food Res Int 2020; 137:109637. [PMID: 33233216 PMCID: PMC7457972 DOI: 10.1016/j.foodres.2020.109637] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/02/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Extensive biodiversity and availability of marine and estuarine molluscs, along with their their wide-range of utilities as food and nutraceutical resources developed keen attention of the food technologists and dieticians, particularly during the recent years. The current review comprehensively summarized the nutritional qualities, functional food attributes, and bioactive properties of these organisms. Among the phylum mollusca, Cephalopoda, Bivalvia, and Gastropoda were mostly reported for their nutraceutical applications and bioactive properties. The online search tools, like Scifinder/Science Direct/PubMed/Google Scholar/MarinLit database and marine natural product reports (1984-2019) were used to comprehend the information about the molluscs. More than 1334 secondary metabolites were reported from marine molluscs between the periods from 1984 to 2019. Among various classes of specialized metabolites, terpenes were occupied by 55% in gastropods, whereas sterols occupied 41% in bivalves. The marketed nutraceuticals, such as CadalminTM green mussel extract (Perna viridis) and Lyprinol® (Perna canaliculus) were endowed with potential anti-inflammatory activities, and were used against arthritis. Molluscan-derived therapeutics, for example, ziconotide was used as an analgesic, and elisidepsin was used in the treatment of cancer. Greater numbers of granted patents (30%) during 2016-2019 recognized the increasing importance of bioactive compounds from molluscs. Consumption of molluscs as daily diets could be helpful in the enhancement of immunity, and reduce the risk of several ailments. The present review comprehended the high value compounds and functional food ingredients from marine and estuarine molluscs.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin-682018, Kerala, India.
| | - Minju Joy
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin-682018, Kerala, India
| |
Collapse
|
7
|
Ye F, Zhou YB, Li J, Gu YC, Guo YW, Li XW. New Steroids from the South China Sea Soft Coral Lobophytum sp. Chem Biodivers 2020; 17:e2000214. [PMID: 32314539 DOI: 10.1002/cbdv.202000214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/20/2020] [Indexed: 11/11/2022]
Abstract
Two new steroids, (22R,23S)-3β-hydroxy-23-methyl-17,20-epoxyergost-5-en-22-yl acetate and (22R,23S)-5-hydroperoxy-23-methyl-5α-17,20-epoxyergost-6-ene-3β,22-diol, were isolated from the South China Sea soft coral Lobophytum sp., together with two related known ones. The structures of all compounds were elucidated by extensive spectroscopic analysis and by comparing their spectral data with those previously reported. The structure of (22R,23S)-3β-hydroxy-23-methyl-17,20-epoxyergost-5-en-22-yl acetate was further confirmed through chemical correlation. All the isolates were evaluated for the in vitro inhibitory activity against NF-κB, a potential target for the treatment of cancer, and (22R,23S)-5-hydroperoxy-23-methyl-5α-17,20-epoxyergost-6-ene-3β,22-diol exhibited moderate inhibition activity with IC50 value of 8.96 μg/mL.
Collapse
Affiliation(s)
- Fei Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Yu-Bo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P. R. China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P. R. China.,Open Studio for Druggability Research of Marine Natural Products, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, P. R. China.,University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P. R. China.,Open Studio for Druggability Research of Marine Natural Products, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, P. R. China.,University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P. R. China.,Open Studio for Druggability Research of Marine Natural Products, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, P. R. China.,University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Matulja D, Kolympadi Markovic M, Ambrožić G, Laclef S, Pavelić SK, Marković D. Secondary Metabolites from Gorgonian Corals of the Genus Eunicella: Structural Characterizations, Biological Activities, and Synthetic Approaches. Molecules 2019; 25:molecules25010129. [PMID: 31905691 PMCID: PMC6983218 DOI: 10.3390/molecules25010129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022] Open
Abstract
Gorgonian corals, which belong to the genus Eunicella, are known as natural sources of diverse compounds with unique structural characteristics and interesting bioactivities both in vitro and in vivo. This review is focused primarily on the secondary metabolites isolated from various Eunicella species. The chemical structures of 64 compounds were divided into three main groups and comprehensively presented: a) terpenoids, b) sterols, and c) alkaloids and nucleosides. The observed biological activities of depicted metabolites with an impact on cytotoxic, anti-inflammatory, and antimicrobial activities were reviewed. The most promising biological activities of certain metabolites point to potential candidates for further development in pharmaceutical, cosmetic, and other industries, and are highlighted. Total synthesis or the synthetic approaches towards the desired skeletons or natural products are also summarized.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| | - Maria Kolympadi Markovic
- Department of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (M.K.M.); (G.A.)
| | - Gabriela Ambrožić
- Department of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (M.K.M.); (G.A.)
| | - Sylvain Laclef
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A) UMR CNRS 7378—Institut de Chimie de Picardie FR 3085, Université de Picardie Jules Verne, 33 rue Saint Leu, FR-80039 Amiens CEDEX, France;
| | - Sandra Kraljević Pavelić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-584-550 (S.K.P.); +385-51-584-816 (D.M.)
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-584-550 (S.K.P.); +385-51-584-816 (D.M.)
| |
Collapse
|
9
|
Pereira RB, Pereira DM, Jiménez C, Rodríguez J, Nieto RM, Videira RA, Silva O, Andrade PB, Valentão P. Anti-Inflammatory Effects of 5α,8α-Epidioxycholest-6-en-3β-ol, a Steroidal Endoperoxide Isolated from Aplysia depilans, Based on Bioguided Fractionation and NMR Analysis. Mar Drugs 2019; 17:E330. [PMID: 31163615 PMCID: PMC6628248 DOI: 10.3390/md17060330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/17/2023] Open
Abstract
Sea hares of Aplysia genus are recognized as a source of a diverse range of metabolites. 5α,8α-Endoperoxides belong to a group of oxidized sterols commonly found in marine organisms and display several bioactivities, including antimicrobial, anti-tumor, and immunomodulatory properties. Herein we report the isolation of 5α,8α-epidioxycholest-6-en-3β-ol (EnP(5,8)) from Aplysia depilans Gmelin, based on bioguided fractionation and nuclear magnetic resonance (NMR) analysis, as well as the first disclosure of its anti-inflammatory properties. EnP(5,8) revealed capacity to decrease cellular nitric oxide (NO) levels in RAW 264.7 macrophages treated with lipopolysaccharide (LPS) by downregulation of the Nos2 (inducible nitric oxide synthase, iNOS) gene. Moreover, EnP(5,8) also inhibited the LPS-induced expression of cyclooxygenase-2 (COX-2), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) at the mRNA and protein levels. Mild selective inhibition of COX-2 enzyme activity was also evidenced. Our findings provide evidence of EnP(5,8) as a potential lead drug molecule for the development of new anti-inflammatory agents.
Collapse
Affiliation(s)
- Renato B Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Carlos Jiménez
- Departamento de Química, Facultade de Ciencias e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, E-15071 A Coruña, Spain.
| | - Jaime Rodríguez
- Departamento de Química, Facultade de Ciencias e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, E-15071 A Coruña, Spain.
| | - Rosa M Nieto
- Departamento de Química, Facultade de Ciencias e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, E-15071 A Coruña, Spain.
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal.
| |
Collapse
|
10
|
Huang C, Zhang Z, Cui W. Marine-Derived Natural Compounds for the Treatment of Parkinson's Disease. Mar Drugs 2019; 17:md17040221. [PMID: 30978965 PMCID: PMC6520879 DOI: 10.3390/md17040221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/23/2019] [Accepted: 04/05/2019] [Indexed: 12/29/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons, leading to the motor dysfunctions of patients. Although the etiology of PD is still unclear, the death of dopaminergic neurons during PD progress was revealed to be associated with the abnormal aggregation of α-synuclein, the elevation of oxidative stress, the dysfunction of mitochondrial functions, and the increase of neuroinflammation. However, current anti-PD therapies could only produce symptom-relieving effects, because they could not provide neuroprotective effects, stop or delay the degeneration of dopaminergic neurons. Marine-derived natural compounds, with their novel chemical structures and unique biological activities, may provide anti-PD neuroprotective effects. In this study, we have summarized anti-PD marine-derived natural products which have shown pharmacological activities by acting on various PD targets, such as α-synuclein, monoamine oxidase B, and reactive oxygen species. Moreover, marine-derived natural compounds currently evaluated in the clinical trials for the treatment of PD are also discussed.
Collapse
Affiliation(s)
- Chunhui Huang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.
- Laboratory of Marine Natural Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Zaijun Zhang
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.
- Laboratory of Marine Natural Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
11
|
Chakraborty K, Joy M, Salas S. First report of a lactonic disecosteroid from the buccinid gastropod Babylonia spirata. Steroids 2019; 143:41-48. [PMID: 30571956 DOI: 10.1016/j.steroids.2018.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 11/25/2022]
Abstract
A lactonic steroid with an unprecedented 1, 10: 8, 9-disecoergostane framework was identified from the ethyl acetate-methanol extract of buccinid gastropod mollusk, Babylonia spirata collected from the southwestern coast of Indian peninsular region. The compound was characterized as 1, 10: 8, 9-disecoergosta-8-en-A-homo-6a-oxa-1-one by exhaustive spectroscopic methods including two-dimensional nuclear magnetic resonance and mass spectroscopic investigations. The disecosteroid displayed moderate carbolytic enzyme inhibition activity as distinguished by its inhibitive effects against α-amylase and α-glucosidase (IC50 0.40 and 0.54 mg/mL, respectively). The anti-inflammatory (5-lipoxidase inhibitory) activity of the titled secondary metabolite was found to be superior (IC50 < 0.85 mg/mL) than the commercial anti-inflammatory drug (ibuprofen IC50 > 0.85 mg/mL). However, significantly greater antioxidant property was recorded for the studied disecosteroid as evaluated by in vitro 2, 2-diphenyl-1-picrylhydrazyl radical inhibition potential (IC50 0.30 mg/mL) than that of standard, α-tocopherol (IC50 > 0.50 mg/mL). The in silico molecular docking studies were conducted to explain the anti-5-lipoxidase and anti-α-amylase properties of the isolated compound. The molecular binding interactions of the ligands with the pro-inflammatory 5-lipoxidase and the carbolytic enzyme α-amylase, demonstrated that their binding energies/docking scores were positively associated with their in vitro bioactivities. A plausible pathway for the biosynthetic origin of lactonic disecosteroid in B. spirata was proposed from an ergosterol precursor. Structure-activity correlation study demonstrated that the biological activities of the disecosteroid were directly proportional to their electronic properties allied with lesser steric restrictions.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| | - Minju Joy
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| | - Soumya Salas
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| |
Collapse
|
12
|
Ren Y, Xu B, Zhong Z, Pittman CU, Zhou A. Using SeO2 as a selenium source to make RSe-substituted aniline and imidazo[1,2-a]pyridine derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo00299e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A mild and practical method is developed for the synthesis of ArSe-substituted aniline and imidazo[1,2-a]pyridine derivatives using SeO2 as a selenium agent.
Collapse
Affiliation(s)
- Yaokun Ren
- Pharmacy School
- Jiangsu University
- Zhenjiang City
- China
| | - Baojun Xu
- Pharmacy School
- Jiangsu University
- Zhenjiang City
- China
| | - Zijian Zhong
- Pharmacy School
- Jiangsu University
- Zhenjiang City
- China
| | | | - Aihua Zhou
- Pharmacy School
- Jiangsu University
- Zhenjiang City
- China
| |
Collapse
|
13
|
Ezzat SM, Bishbishy MHE, Habtemariam S, Salehi B, Sharifi-Rad M, Martins N, Sharifi-Rad J. Looking at Marine-Derived Bioactive Molecules as Upcoming Anti-Diabetic Agents: A Special Emphasis on PTP1B Inhibitors. Molecules 2018; 23:E3334. [PMID: 30558294 PMCID: PMC6321226 DOI: 10.3390/molecules23123334] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/03/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease with high morbimortality rates. DM has two types: type 1, which is often associated with a total destruction of pancreatic beta cells, and non-insulin-dependent or type 2 diabetes mellitus (T2DM), more closely associated with obesity and old age. The main causes of T2DM are insulin resistance and/or inadequate insulin secretion. Protein-tyrosine phosphatase 1B (PTP1B) negatively regulates insulin signaling pathways and plays an important role in T2DM, as its overexpression may induce insulin resistance. Thus, since PTP1B may be a therapeutic target for both T2DM and obesity, the search for novel and promising natural inhibitors has gained much attention. Hence, several marine organisms, including macro and microalgae, sponges, marine invertebrates, sea urchins, seaweeds, soft corals, lichens, and sea grasses, have been recently evaluated as potential drug sources. This review provides an overview of the role of PTP1B in T2DM insulin signaling and treatment, and highlights the recent findings of several compounds and extracts derived from marine organisms and their relevance as upcoming PTP1B inhibitors. In this systematic literature review, more than 60 marine-derived metabolites exhibiting PTP1B inhibitory activity are listed. Their chemical classes, structural features, relative PTP1B inhibitory potency (assessed by IC50 values), and structure⁻activity relationships (SARs) that could be drawn from the available data are discussed. The upcoming challenge in the field of marine research-metabolomics-is also addressed.
Collapse
Affiliation(s)
- Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Science and Arts (MSA), Cairo 12566, Egypt.
| | - Mahitab H El Bishbishy
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Science and Arts (MSA), Cairo 12566, Egypt.
| | - Solomon Habtemariam
- Herbal Analysis Services UK & Pharmacognosy Research Laboratories, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| | - Bahare Salehi
- Student Research Committee, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663-335, Iran.
| | - Natália Martins
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, 599 Portage Avenue, Winnipeg, MB R3B 2G3, Canada.
| |
Collapse
|
14
|
Haubrich BA. Microbial Sterolomics as a Chemical Biology Tool. Molecules 2018; 23:E2768. [PMID: 30366429 PMCID: PMC6278499 DOI: 10.3390/molecules23112768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolomics has become a powerful tool in chemical biology. Profiling the human sterolome has resulted in the discovery of noncanonical sterols, including oxysterols and meiosis-activating sterols. They are important to immune responses and development, and have been reviewed extensively. The triterpenoid metabolite fusidic acid has developed clinical relevance, and many steroidal metabolites from microbial sources possess varying bioactivities. Beyond the prospect of pharmacognostical agents, the profiling of minor metabolites can provide insight into an organism's biosynthesis and phylogeny, as well as inform drug discovery about infectious diseases. This review aims to highlight recent discoveries from detailed sterolomic profiling in microorganisms and their phylogenic and pharmacological implications.
Collapse
Affiliation(s)
- Brad A Haubrich
- Department of Chemistry, University of Nevada, Reno, Reno, NV 89557, USA.
| |
Collapse
|
15
|
Salas S, Chakraborty K. First report of bioactive sterols from the muricid gastropod Chicoreus ramosus. Steroids 2018; 137:57-63. [PMID: 30055192 DOI: 10.1016/j.steroids.2018.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/21/2018] [Accepted: 07/09/2018] [Indexed: 01/07/2023]
Abstract
Two unusual △5 sterols with unprecedented skeletons were isolated from the organic extract of muricid gastropod Chicoreus ramosus collected off the Gulf of Mannar Coast. This is the first report of isolation of bioactive sterols endowed with anti-inflammatory potentials from this species. The compounds were characterized as (5Z)-24a-homo-cholesta-5,24a1(24a2) dien-3β-ol (1) and 27(25 → 23)-abeo-(5Z)-3β-hydroxy-24-isopropyl cholesteno-26,23-lactone (2) by the interpretation of a series of spectroscopic techniques involving two-dimensional nuclear magnetic resonance and mass spectral data. The compound 1 is unusual in that it has an ethylene attachment stemming from the additional methylene group at the 24a position of the steroid side chain, whereas compound 2 has a unique side chain bearing a γ-valerolactone ring. The △5 sterol bearing ethylene group (1) displayed comparatively better antidiabetic activity as characterized by inhibitory effects towards α-amylase and α-glucosidase enzymes (IC50 1.97 mM and 1.78 mM, respectively), whereas the cholestenolactone analogue (2) manifested higher anti-inflammatory activity (IC50 1.42 mM) as determined by in vitro 5-lipoxygenase inhibitory potential. Structure-activity correlation study showed that the biological activities of the studied sterols were directly related to their electronic properties. The homosterol (1) exhibiting improved antidiabetic properties showed higher lipophilic character coupled with lesser steric restrictions.
Collapse
Affiliation(s)
- Soumya Salas
- Department of Chemistry, Mangalore University, Mangalagangothri-574199, Karnataka State, India
| | - Kajal Chakraborty
- Department of Chemistry, Mangalore University, Mangalagangothri-574199, Karnataka State, India.
| |
Collapse
|
16
|
Protein tyrosine phosphatase 1B inhibitors from natural sources. Arch Pharm Res 2017; 41:130-161. [PMID: 29214599 DOI: 10.1007/s12272-017-0997-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/26/2017] [Indexed: 01/25/2023]
Abstract
Since PTP1B enzyme was discovered in 1988, it has captured the research community's attention. This landmark discovery has stimulated numerous research studies on a variety of human diseases, including cancer, inflammation, and diabetes. Tremendous progress has been made in finding PTP1B inhibitors and exploring PTP1B regulatory mechanisms. This review investigates for the natural PTP1B inhibitors, and focuses on the common characteristics of the discovered structures and structure-activity relationships. To facilitate understanding, all the natural compounds are here divided into five different classes (fatty acids, phenolics, terpenoids, steroids, and alkaloids), according to their skeletons. These PTP1B inhibitors of scaffold structures could serve as a theoretical basis for new concept drug discovery and design.
Collapse
|
17
|
Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer's disease, Parkinson's disease and ischemic brain stroke: their molecular targets and action mechanisms. Arch Pharm Res 2014; 38:139-70. [PMID: 25348867 DOI: 10.1007/s12272-014-0503-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/14/2014] [Indexed: 12/20/2022]
Abstract
Continuous increases in the incidence of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and brain stroke demand the urgent development of therapeutics. Marine organisms are well-known producers of natural products with diverse structures and pharmacological activities. Therefore, researchers have endeavored to identify marine natural products with neuroprotective effects. In this regard, this review summarizes therapeutic targets for AD, PD, and ischemic brain stroke and marine natural products with pharmacological activities on the targets according to taxonomies of marine organisms. Furthermore, several marine natural products on the clinical trials for the treatment of neurological disorders are discussed.
Collapse
|