1
|
Sylvanus AG, Jones GM, Custelcean R, Vogiatzis KD. In Silico Screening of CO 2-Dipeptide Interactions for Bioinspired Carbon Capture. Chemphyschem 2024:e202400498. [PMID: 39607812 DOI: 10.1002/cphc.202400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
Carbon capture, sequestration and utilization offers a viable solution for reducing the total amount of atmospheric CO2 concentrations. On an industrial scale, amine-based solvents are extensively employed for CO2 capture through chemisorption. Nevertheless, this method is marked by the high cost associated with solvent regeneration, high vapor pressure, and the corrosive and toxic attributes of by-products, such as nitrosamines. An alternative approach is the biomimicry of sustainable materials that have strong affinity and selectivity for CO2. Bioinspired approaches, such as those based on naturally occurring amino acids, have been proposed for direct air capture methodologies. In this study, we present a database consisting of 960 dipeptide molecular structures, composed of the 20 naturally occurring amino acids. Those structures were analyzed with a novel computational workflow presented in this work that considers certain interaction sites that determine CO2 affinity. Density functional theory (DFT) and symmetry-adapted perturbation theory (SAPT) computations were performed for the calculation of CO2 interaction energies, which allowed to limit our search space to 400 unique dipeptide structures. Using this computational workflow, we provide statistical insights into dipeptides and their affinity for CO2 binding, as well as design principles that can further enhance CO2 capture through cooperative binding.
Collapse
Affiliation(s)
- Amarachi G Sylvanus
- Department of Chemistry, University of Tennessee, 37996, Knoxville, Tennessee, United States
| | - Grier M Jones
- Department of Chemistry, University of Tennessee, 37996, Knoxville, Tennessee, United States
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, 37830-6119, Oak Ridge, Tennessee, United States
| | | |
Collapse
|
2
|
Supuran CT. Multi- and poly-pharmacology of carbonic anhydrase inhibitors. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001125. [PMID: 39326898 DOI: 10.1124/pharmrev.124.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) were described in organisms allover the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons, and are involved in pH regulation, chemosensing and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or for Alzheimer's/Parkinson's disease management. CAs from pathogenic bacteria, fungi, protozoans and nematodes started to be considered as drug targets in recent years, with notable advances registered ultimately. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future, due to the emergence of drug design approaches which afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, (iso)coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed since drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide and high-ceiling diuretics) show efective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. Significance Statement Carbonic anhydrase inhibitors have multiple pharmacologic applications as diuretics, antiglaucoma, antiepileptic, antiobesity, anti-acute mountain sickness, anti-idiopathic intracranial hypertension and as antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations started to be investigated recently. Parasite carbonic anhydrases are also drug targets for antiinfectives with novel mechanisms of action which can by pass drug resistance to commonly used such agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.
Collapse
|
3
|
Vivenzio VM, Esposito D, Monti SM, De Simone G. Bacterial α-CAs: a biochemical and structural overview. Enzymes 2024; 55:31-63. [PMID: 39222995 DOI: 10.1016/bs.enz.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Carbonic anhydrases belonging to the α-class are widely distributed in bacterial species. These enzymes have been isolated from bacteria with completely different characteristics including both Gram-negative and Gram-positive strains. α-CAs show a considerable similarity when comparing the biochemical, kinetic and structural features, with only small differences which reflect the diverse role these enzymes play in Nature. In this chapter, we provide a comprehensive overview on bacterial α-CA data, with a highlight to their potential biomedical and biotechnological applications.
Collapse
|
4
|
Mwandira W, Mavroulidou M, Joshi S, Gunn MJ. Fruit and vegetable waste used as bacterial growth media for the biocementation of two geomaterials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174489. [PMID: 38986689 DOI: 10.1016/j.scitotenv.2024.174489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
This paper investigates the feasibility of using randomly collected fruit and vegetable (FV) waste as a cheap growing medium of bacteria for biocementation applications. Biocementation has been proposed in the literature as an environmentally-friendly ground improvement method to increase the stability of geomaterials, prevent erosion and encapsulate waste, but currently suffers from the high costs involved, such as bacteria cultivation costs. After analysis of FV waste of varied composition in terms of sugar and protein content, diluted FV waste was used to grow ureolytic (S. pasteurii, and B.licheniformis) and also an autochthonous heterotrophic carbonic anhydase (CA)-producing B.licheniformis strain, whose growth in FV media had not been attempted before. Bacterial growth and enzymatic activity in FV were of appropriate levels, although reduced compared to commercial media. Namely, the CA-producing B.licheniformis had a maximum OD600 of 1.799 and a CA activity of 0.817 U/mL in FV media. For the ureolytic pathway, B. licheniformis reached a maximum OD600 of 0.986 and a maximum urease activity of 0.675 mM urea/min, and S. pasteurii a maximum OD600 = 0.999 and a maximum urease activity of 0.756 mM urea/min. Biocementation of a clay and locomotive ash, a geomaterial specific to UK railway embankments, using precultured bacteria in FV was then proven, based on recorded unconfined compressive strengths of 1-3 MPa and calcite content increases of up to 4.02 and 8.62 % for the clay and ash respectively. Scanning Electron Microscope (SEM) and energy dispersive X-ray spectroscopy (EDS), attested the formation of bioprecipitates with characteristic morphologies and elementary composition of calcite crystals. These findings suggest the potential of employing FV to biocement these problematic geomaterials and are of wider relevance for environmental and geoenvironmental applications involving bioaugmentation. Such applications that require substrates in very large quantities can help tackle the management of the very voluminous fruit and vegetable waste produced worldwide.
Collapse
|
5
|
Capasso C, Supuran CT. Overview on bacterial carbonic anhydrase genetic families. Enzymes 2024; 55:1-29. [PMID: 39222988 DOI: 10.1016/bs.enz.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bacterial carbonic anhydrases (BCAs, EC 4.2.1.1) are indispensable enzymes in microbial physiology because they facilitate the hydration of carbon dioxide (CO2) to bicarbonate ions (HCO3-) and protons (H+), which are crucial for various metabolic processes and cellular homeostasis. Their involvement spans from metabolic pathways, such as photosynthesis, respiration, to organic compounds production, which are pivotal for bacterial growth and survival. This chapter elucidates the diversity of BCA genetic families, categorized into four distinct classes (α, β, γ, and ι), which may reflect bacterial adaptation to environmental niches and their metabolic demands. The diversity of BCAs is essential not only for understanding their physiological roles but also for exploring their potential in biotechnology. Knowledge of their diversity enables researchers to develop innovative biocatalysts for industrial applications, including carbon capture technologies to convert CO2 emissions into valuable products. Additionally, BCAs are relevant to biomedical research and drug development because of their involvement in bacterial pathogenesis and microbial survival within the host. Understanding the diversity and function of BCAs can aid in designing targeted therapeutics that interfere with bacterial metabolism and potentially reduce the risk of infections.
Collapse
Affiliation(s)
- Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
6
|
Capasso C, Supuran CT. Bacterial ι-CAs. Enzymes 2024; 55:121-142. [PMID: 39222989 DOI: 10.1016/bs.enz.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Recent research has identified a novel class of carbonic anhydrases (CAs), designated ι-CA, predominantly found in marine diatoms, eukaryotic algae, cyanobacteria, bacteria, and archaea genomes. This class has garnered attention owing to its unique biochemical properties and evolutionary significance. Through bioinformatic analyses, LCIP63, a protein initially annotated with an unknown function, was identified as a potential ι-CA in the marine diatom Thalassiosira pseudonana. Subsequent biochemical characterization revealed that LCIP63 has CA activity and its preference for manganese ions over zinc, indicative of evolutionary adaptation to marine environments. Further exploration of bacterial ι-CAs, exemplified by Burkholderia territorii ι-CA (BteCAι), demonstrated catalytic efficiency and sensitivity to sulfonamide and inorganic anion inhibitors, the classical CA inhibitors (CAIs). The classification of ι-CAs into two variant types based on their sequences, distinguished by the COG4875 and COG4337 domains, marks a significant advancement in our understanding of these enzymes. Structural analyses of COG4337 ι-CAs from eukaryotic microalgae and cyanobacteria thereafter revealed a distinctive structural arrangement and a novel catalytic mechanism involving specific residues facilitating CO2 hydration in the absence of metal ion cofactors, deviating from canonical CA behavior. These findings underscore the biochemical diversity within the ι-CA class and highlight its potential as a target for novel antimicrobial agents. Overall, the elucidation of ι-CA properties and mechanisms advances our knowledge of carbon metabolism in diverse organisms and underscores the complexity of CA evolution and function.
Collapse
Affiliation(s)
- Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Firenze, italy
| |
Collapse
|
7
|
Ghaedizadeh S, Zeinali M, Dabirmanesh B, Rasekh B, Khajeh K, Banaei-Moghaddam AM. Rational design engineering of a more thermostable Sulfurihydrogenibium yellowstonense carbonic anhydrase for potential application in carbon dioxide capture technologies. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140962. [PMID: 37716447 DOI: 10.1016/j.bbapap.2023.140962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Implementing hyperthermostable carbonic anhydrases into CO2 capture and storage technologies in order to increase the rate of CO2 absorption from the industrial flue gases is of great importance from technical and economical points of view. The present study employed a combination of in silico tools to further improve thermostability of a known thermostable carbonic anhydrase from Sulfurihydrogenibium yellowstonense. Experimental results showed that our rationally engineered K100G mutant not only retained the overall structure and catalytic efficiency but also showed a 3 °C increase in the melting temperature and a two-fold improvement in the enzyme half-life at 85 °C. Based on the molecular dynamics simulation results, rearrangement of salt bridges and hydrogen interactions network causes a reduction in local flexibility of the K100G variant. In conclusion, our study demonstrated that thermostability can be improved through imposing local structural rigidity by engineering a single-point mutation on the surface of the enzyme.
Collapse
Affiliation(s)
- Shima Ghaedizadeh
- Laboratory of Genomics and Epigenomics (LGE), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Zeinali
- Microbiology and Biotechnology Research Group, Research Institute of Petroleum Industry (RIPI), Tehran, Iran.
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnam Rasekh
- Microbiology and Biotechnology Research Group, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Khosrow Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Mohammad Banaei-Moghaddam
- Laboratory of Genomics and Epigenomics (LGE), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Supuran CT. Carbonic anhydrase versatility: from pH regulation to CO 2 sensing and metabolism. Front Mol Biosci 2023; 10:1326633. [PMID: 38028557 PMCID: PMC10676200 DOI: 10.3389/fmolb.2023.1326633] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
While the carbonic anhydrase (CA, EC 4.2.1.1) superfamily of enzymes has been described primarily as involved only in pH regulation for decades, it also has many other important functions. CO2, bicarbonate, and protons, the physiological substrates of CA, are indeed the main buffering system in organisms belonging to all life kingdoms; however, in the last period, relevant progress has been made in the direction of elucidating the involvement of the eight genetically distinct CA families in chemical sensing, metabolism, and several other crucial physiological processes. Interference with CA activity, both by inhibiting and activating these enzymes, has thus led to novel applications for CA inhibitors and activators in the field of innovative biomedicine and environment and health. In this perspective article, I will discuss the recent advances which have allowed for a deeper understanding of the biochemistry of these versatile enzymes and various applications of their modulators of activity.
Collapse
Affiliation(s)
- Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Villa R, Nieto S, Donaire A, Lozano P. Direct Biocatalytic Processes for CO 2 Capture as a Green Tool to Produce Value-Added Chemicals. Molecules 2023; 28:5520. [PMID: 37513391 PMCID: PMC10383722 DOI: 10.3390/molecules28145520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
Direct biocatalytic processes for CO2 capture and transformation in value-added chemicals may be considered a useful tool for reducing the concentration of this greenhouse gas in the atmosphere. Among the other enzymes, carbonic anhydrase (CA) and formate dehydrogenase (FDH) are two key biocatalysts suitable for this challenge, facilitating the uptake of carbon dioxide from the atmosphere in complementary ways. Carbonic anhydrases accelerate CO2 uptake by promoting its solubility in water in the form of hydrogen carbonate as the first step in converting the gas into a species widely used in carbon capture storage and its utilization processes (CCSU), particularly in carbonation and mineralization methods. On the other hand, formate dehydrogenases represent the biocatalytic machinery evolved by certain organisms to convert CO2 into enriched, reduced, and easily transportable hydrogen species, such as formic acid, via enzymatic cascade systems that obtain energy from chemical species, electrochemical sources, or light. Formic acid is the basis for fixing C1-carbon species to other, more reduced molecules. In this review, the state-of-the-art of both methods of CO2 uptake is assessed, highlighting the biotechnological approaches that have been developed using both enzymes.
Collapse
Affiliation(s)
- Rocio Villa
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
- Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Susana Nieto
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio Donaire
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
| |
Collapse
|
10
|
Zaidi S, Srivastava N, Kumar Khare S. Microbial carbonic anhydrase mediated carbon capture, sequestration & utilization: A sustainable approach to delivering bio-renewables. BIORESOURCE TECHNOLOGY 2022; 365:128174. [PMID: 36283672 DOI: 10.1016/j.biortech.2022.128174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
In the recent scenario, anthropogenic interventions have alarmingly disrupted climatic conditions. The persistent change in the climate necessitates carbon neutrality. Efficient ways of carbon capture and sequestration could be employed for sustainable product generation. Carbonic anhydrase (CA) is an enzyme that reversibly catalyzes the conversion of carbon dioxide to bicarbonate ions, further utilized by cells for metabolic processes. Hence, utilizing CA from microbial sources for carbon sequestration and the corresponding delivery of bio-renewables could be the eco-friendly approach. Consequently, the microbial CA and amine-based carbon capture chemicals are synergistically applied to enhance carbon capture efficiency and eventual utilization. This review comprehends recent developments coupled with engineering techniques, especially in microbial CA, to create integrated systems for CO2 sequestration. It envisages developing sustainable approaches towards mitigating environmental CO2 from industries and fossil fuels to generate bio-renewables and other value-added chemicals.
Collapse
Affiliation(s)
- Saniya Zaidi
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Nitin Srivastava
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
11
|
Adekomaya O, Majozi T. Promoting natural cycle and environmental resilience: A pathway toward sustainable development. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Zheng L, Dong Y, Li B, Yin T, Liu C, Lin H. Simultaneous removal of high concentrations of ammonia nitrogen and calcium by the novel strain Paracoccus denitrificans AC-3 with good environmental adaptability. BIORESOURCE TECHNOLOGY 2022; 359:127457. [PMID: 35700895 DOI: 10.1016/j.biortech.2022.127457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The novel Paracoccus denitrificans AC-3 strain was isolated and displayed outstanding purification capability for high concentrations of ammonia nitrogen (NH4+-N) and calcium (Ca2+). Meanwhile, the strain exhibited excellent environmental adaptability within a wide pH range and high levels of NH4+-N and Ca2+. Nitrogen balance analysis demonstrated that the pathways of NH4+-N removal consisted of 80.12% assimilation and 16.60% heterotrophic nitrification aerobic denitrification (HNAD). In addition, Ca2+ was removed by forming calcium carbonate (CaCO3) with carbonate (CO32-) and bicarbonate (HCO3-). CO32-and HCO3- were obtained from carbon dioxide (CO2) hydration, which was catalyzed by carbonic anhydrase (CA) secreted by strain AC-3. The alkaline environment for carbonate precipitation was provided by CA and HNAD. The resulting CaCO3 existed in the form of calcite and exhibited a unique morphology and elemental composition.
Collapse
Affiliation(s)
- Lili Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Tingting Yin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
13
|
Rasouli H, Nguyen K, Iliuta MC. Recent advancements in carbonic anhydrase immobilization and its implementation in CO2 capture technologies: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
de Oliveira Maciel A, Christakopoulos P, Rova U, Antonopoulou I. Carbonic anhydrase to boost CO 2 sequestration: Improving carbon capture utilization and storage (CCUS). CHEMOSPHERE 2022; 299:134419. [PMID: 35364080 DOI: 10.1016/j.chemosphere.2022.134419] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
CO2 Capture Utilization and Storage (CCUS) is a fundamental strategy to mitigate climate change, and carbon sequestration, through absorption, can be one of the solutions to achieving this goal. In nature, carbonic anhydrase (CA) catalyzes the CO2 hydration to bicarbonates. Targeting the development of novel biotechnological routes which can compete with traditional CO2 absorption methods, CA utilization has presented a potential to expand as a promising catalyst for CCUS applications. Driven by this feature, the search for novel CAs as biocatalysts and the utilization of enzyme improvement techniques, such as protein engineering and immobilization methods, has resulted in suitable variants able to catalyze CO2 absorption at relevant industrial conditions. Limitations related to enzyme recovery and recyclability are still a concern in the field, affecting cost efficiency. Under different absorption approaches, CA enhances both kinetics and CO2 absorption yields, besides reduced energy consumption. However, efforts directed to process optimization and demonstrative plants are still limited. A recent topic with great potential for development is the CA utilization in accelerated weathering, where industrial residues could be re-purposed towards becoming carbon sequestrating agents. Furthermore, research of new solvents has identified potential candidates for integration with CA in CO2 capture, and through techno-economic assessments, CA can be a path to increase the competitiveness of alternative CO2 absorption systems, offering lower environmental costs. This review provides a favorable scenario combining the enzyme and CO2 capture, with possibilities in reaching an industrial-like stage in the future.
Collapse
Affiliation(s)
- Ayanne de Oliveira Maciel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden.
| |
Collapse
|
15
|
Iraninasab S, Sharifian S, Homaei A, Homaee MB, Sharma T, Nadda AK, Kennedy JF, Bilal M, Iqbal HMN. Emerging trends in environmental and industrial applications of marine carbonic anhydrase: a review. Bioprocess Biosyst Eng 2022; 45:431-451. [PMID: 34821989 DOI: 10.1007/s00449-021-02667-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023]
Abstract
Biocatalytic conversion of greenhouse gases such as carbon dioxide into commercial products is one of the promising key approaches to solve the problem of climate change. Microbial enzymes, including carbonic anhydrase, NAD-dependent formate dehydrogenase, ribulose bisphosphate carboxylase, and methane monooxygenase, have been exploited to convert atmospheric gases into industrial products. Carbonic anhydrases are Zn2+-dependent metalloenzymes that catalyze the reversible conversion of CO2 into bicarbonate. They are widespread in bacteria, algae, plants, and higher organisms. In higher organisms, they regulate the physiological pH and contribute to CO2 transport in the blood. In plants, algae, and photosynthetic bacteria carbonic anhydrases are involved in photosynthesis. Converting CO2 into bicarbonate by carbonic anhydrases can solidify gaseous CO2, thereby reducing global warming due to the burning of fossil fuels. This review discusses the three-dimensional structures of carbonic anhydrases, their physiological role in marine life, their catalytic mechanism, the types of inhibitors, and their medicine and industry applications.
Collapse
Affiliation(s)
- Sudabeh Iraninasab
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | | | - Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, The Kyrewood Centre, Tenbury Wells, Worcs, WR15 8FF, UK
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| |
Collapse
|
16
|
Enhancement of Pigments Production by Nannochloropsis oculata Cells in Response to Bicarbonate Supply. SUSTAINABILITY 2021. [DOI: 10.3390/su132111904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, the effects of bicarbonate addition on growth and pigment contents of the unicellular microalga Nannochloropsis oculata, were evaluated. N. oculata represents an interesting source of biomolecules widely used for food supplements and nutraceuticals. The bicarbonate was supplemented to microalgae cultures at concentrations of 0, 6, 18, 30, 42 and 60 mM. The cultures supplemented with salt at highest concentrations (42 and 60 mM) showed a significant increase in algal growth, demonstrated by the optical density spread. The intracellular content of pigments such as chlorophyll a and total carotenoids reached the highest values in cells from cultures supplied with bicarbonate. In fact, concentrations of bicarbonate from 30 to 60 mM strongly improved, for a short period of only 72 h, the cellular levels of chlorophylls and carotenoids. These are interesting pigments with commercial applications. The utilization of bicarbonate could represent an interesting sustainable opportunity to improve microalgae cultivation for cellular growth and pigment contents.
Collapse
|
17
|
Parri L, Fort A, Lo Grasso A, Mugnaini M, Vignoli V, Capasso C, Del Prete S, Romanelli MN, Supuran CT. Evaluating the efficiency of enzyme accelerated CO 2 capture: chemical kinetics modelling for interpreting measurement results. J Enzyme Inhib Med Chem 2021; 36:394-401. [PMID: 33430654 PMCID: PMC7831361 DOI: 10.1080/14756366.2020.1864631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this paper, the efficiency of the carbonic anhydrase (CA) enzyme in accelerating the hydration of CO2 is evaluated using a measurement system which consists of a vessel in which a gaseous flow of mixtures of nitrogen and CO2 is bubbled into water or water solutions containing a known quantity of CA enzyme. The pH value of the solution and the CO2 concentration at the measurement system gas exhaust are continuously monitored. The measured CO2 level allows for assessing the quantity of CO2, which, subtracted from the gaseous phase, is dissolved into the liquid phase and/or hydrated to bicarbonate. The measurement procedure consists of inducing a transient and observing and modelling the different kinetics involved in the steady-state recovery with and without CA. The main contribution of this work is exploiting dynamical system theory and chemical kinetics modelling for interpreting measurement results for characterising the activity of CA enzymes. The data for model fitting are obtained from a standard bioreactor, in principle equal to standard two-phase bioreactors described in the literature, in which two different techniques can be used to move the process itself away from the steady-state, inducing transients.
Collapse
Affiliation(s)
- Lorenzo Parri
- Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
| | - Ada Fort
- Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
| | - Anna Lo Grasso
- Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
| | - Marco Mugnaini
- Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
| | - Valerio Vignoli
- Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, CNR -Institute of Biosciences and Bioresources (IBBR-CNR), Napoli, Italy
| | - Sonia Del Prete
- Department of Biology, Agriculture and Food Sciences, CNR -Institute of Biosciences and Bioresources (IBBR-CNR), Napoli, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
18
|
Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: A review. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101475] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Ren S, Chen R, Wu Z, Su S, Hou J, Yuan Y. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO 2 conversion. Colloids Surf B Biointerfaces 2021; 204:111779. [PMID: 33901810 DOI: 10.1016/j.colsurfb.2021.111779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 01/01/2023]
Abstract
Native carbonic anhydrase (CA) has been widely used in several different applications due to its catalytic function in the interconversion of carbon dioxide (CO2) and carbonic acid. However, subject to its stability and recyclability, native CA often deactivates when in harsh environments, which restricts its applications in the commercial market. Maintaining the stability and high catalytic activity of CA is challenging. Immobilization provides an effective route that can improve enzymatic stability. Through the interaction of covalent bonds and van der Waals forces, water-soluble CA can be combined with various insoluble supports to form water-insoluble immobilized CA so that CA stability and utilization can be greatly improved. However, if the immobilization method or immobilization condition is not suitable, it often leads to a decrease in CA activity, reducing the application effects on CO2 conversion. In this review, we discuss existing immobilization methods and applications of immobilized CA in the environmental field, such as the mineralization of carbon dioxide and multienzyme cascade catalysis based on CA. Additionally, prospects in current development are outlined. Because of the many outstanding and superior properties after immobilization, CA is likely to be used in a wide variety of scientific and technical areas in the future.
Collapse
Affiliation(s)
- Sizhu Ren
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China; Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, PR China; Edible and Medicinal Fungi Research and Development Center of Hebei Universities, PR China.
| | - Ruixue Chen
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin, No 29, 13th, Avenue, 300457, Tianjin, PR China
| | - Zhangfei Wu
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China; Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, PR China; Edible and Medicinal Fungi Research and Development Center of Hebei Universities, PR China
| | - Shan Su
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
| | - Jiaxi Hou
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China
| | - Yanlin Yuan
- Langfang Normal University, College of Life Sciences, Langfang, 065000, No 100, Aimin West Road, Hebei Province, PR China.
| |
Collapse
|
20
|
Liu Q, Bai X, Pham H, Hu J, Dinu CZ. Active Nanointerfaces Based on Enzyme Carbonic Anhydrase and Metal-Organic Framework for Carbon Dioxide Reduction. NANOMATERIALS 2021; 11:nano11041008. [PMID: 33920833 PMCID: PMC8071118 DOI: 10.3390/nano11041008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023]
Abstract
Carbonic anhydrases are enzymes capable of transforming carbon dioxide into bicarbonate to maintain functionality of biological systems. Synthetic isolation and implementation of carbonic anhydrases into membrane have recently raised hopes for emerging and efficient strategies that could reduce greenhouse emission and the footprint of anthropogenic activities. However, implementation of such enzymes is currently challenged by the resulting membrane’s wetting capability, overall membrane performance for gas sensing, adsorption and transformation, and by the low solubility of carbon dioxide in water, the required medium for enzyme functionality. We developed the next generation of enzyme-based interfaces capable to efficiently adsorb and reduce carbon dioxide at room temperature. For this, we integrated carbonic anhydrase with a hydrophilic, user-synthesized metal–organic framework; we showed how the framework’s porosity and controlled morphology contribute to viable enzyme binding to create functional surfaces for the adsorption and reduction of carbon dioxide. Our analysis based on electron and atomic microscopy, infrared spectroscopy, and colorimetric assays demonstrated the functionality of such interfaces, while Brunauer–Emmett–Teller analysis and gas chromatography analysis allowed additional evaluation of the efficiency of carbon dioxide adsorption and reduction. Our study is expected to impact the design and development of active interfaces based on enzymes to be used as green approaches for carbon dioxide transformation and mitigation of global anthropogenic activities.
Collapse
|
21
|
Verma M, Bhaduri GA, Phani Kumar VS, Deshpande PA. Biomimetic Catalysis of CO 2 Hydration: A Materials Perspective. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Manju Verma
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Gaurav A. Bhaduri
- Department of Chemical Engineering, Indian Institute of Technology Jammu, Jammu and Kashmir, 181221, India
| | - V. Sai Phani Kumar
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Parag A. Deshpande
- Quantum and Molecular Engineering Laboratory, Department of Chemical Engineering Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
22
|
Ren S, Jiang S, Yan X, Chen R, Cui H. Challenges and Opportunities: Porous Supports in Carbonic Anhydrase Immobilization. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101305] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Razzak MA, Lee DW, Lee J, Hwang I. Overexpression and Purification of Gracilariopsis chorda Carbonic Anhydrase (GcCAα3) in Nicotiana benthamiana, and Its Immobilization and Use in CO 2 Hydration Reactions. FRONTIERS IN PLANT SCIENCE 2020; 11:563721. [PMID: 33329625 PMCID: PMC7717956 DOI: 10.3389/fpls.2020.563721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/05/2020] [Indexed: 05/02/2023]
Abstract
Carbonic anhydrase (CA; EC 4.2.2.1) is a Zn-binding metalloenzyme that catalyzes the reversible hydration of CO2. Recently, CAs have gained a great deal of attention as biocatalysts for capturing CO2 from industrial flue gases owing to their extremely fast reaction rates and simple reaction mechanism. However, their general application for this purpose requires improvements to stability at high temperature and under in vitro conditions, and reductions in production and scale-up costs. In the present study, we developed a strategy for producing GcCAα3, a CA isoform from the red alga Gracilariopsis chorda, in Nicotiana benthamiana. To achieve high-level expression and facile purification of GcCAα3, we designed various constructs by incorporating various domains such as translation-enhancing M domain, SUMO domain and cellulose-binding domain CBM3. Of these constructs, MC-GcCAα3 that had the M and CBM3 domains was expressed at high levels in N. benthamiana via agroinfiltration with a yield of 1.0 g/kg fresh weight. The recombinant protein was targeted to the endoplasmic reticulum (ER) for high-level accumulation in plants. Specific and tight CBM3-mediated binding of recombinant GcCAα3 proteins to microcrystalline cellulose beads served as a means for both protein purification from total plant extracts and protein immobilization to a solid surface for increased stability, facilitating multiple rounds of use in CO2 hydration reactions.
Collapse
Affiliation(s)
- Md Abdur Razzak
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Junho Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
24
|
Aggarwal S, Chakravarty A, Ikram S. A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies. Int J Biol Macromol 2020; 167:962-986. [PMID: 33186644 DOI: 10.1016/j.ijbiomac.2020.11.052] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
Enzymes are the highly versatile bio-catalysts having the potential for being employed in biotechnological and industrial sectors to catalyze biosynthetic reactions over a commercial point of view. Immobilization of enzymes has improved catalytic properties, retention activities, thermal and storage stabilities as well as reusabilities of enzymes in synthetic environments that have enthralled significant attention over the past few years. Dreadful efforts have been emphasized on the renewable and synthetic supports/composite materials to reserve their inherent characteristics such as biocompatibility, non-toxicity, accessibility of numerous reactive sites for profitable immobilization of biological molecules that often serve diverse applications in the pharmaceutical, environmental, and energy sectors. Supports should be endowed with unique physicochemical properties including high specific surface area, hydrophobicity, hydrophilicity, enantioselectivities, multivalent functionalization which professed them as competent carriers for enzyme immobilization. Organic, inorganic, and nano-based platforms are more potent, stable, highly recovered even after used for continuous catalytic processes, broadly renders the enzymes to get efficiently immobilized to develop an inherent bio-catalytic system that displays higher activities as compared to free-counter parts. This review highlights the recent advances or developments on renewable and synthetic matrices that are utilized for the immobilization of enzymes to deliver emerging applications around the globe.
Collapse
Affiliation(s)
- Shalu Aggarwal
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Archana Chakravarty
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Saiqa Ikram
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
25
|
Kim S, Sureka HV, Kayitmazer AB, Wang G, Swan JW, Olsen BD. Effect of Protein Surface Charge Distribution on Protein–Polyelectrolyte Complexation. Biomacromolecules 2020; 21:3026-3037. [DOI: 10.1021/acs.biomac.0c00346] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sieun Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139 Cambridge, Massachusetts, United States
| | - Hursh V. Sureka
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139 Cambridge, Massachusetts, United States
| | | | - Gang Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139 Cambridge, Massachusetts, United States
| | - James W. Swan
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139 Cambridge, Massachusetts, United States
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139 Cambridge, Massachusetts, United States
| |
Collapse
|
26
|
Immobilization of genetically engineered whole-cell biocatalysts with periplasmic carbonic anhydrase in polyurethane foam for enzymatic CO2 capture and utilization. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Crosslinked on novel nanofibers with thermophilic carbonic anhydrase for carbon dioxide sequestration. Int J Biol Macromol 2020; 152:930-938. [DOI: 10.1016/j.ijbiomac.2019.11.234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 11/21/2022]
|
28
|
Wang SB, Zhang C, Ye JJ, Zou MZ, Liu CJ, Zhang XZ. Near-Infrared Light Responsive Nanoreactor for Simultaneous Tumor Photothermal Therapy and Carbon Monoxide-Mediated Anti-Inflammation. ACS CENTRAL SCIENCE 2020; 6:555-565. [PMID: 32342005 PMCID: PMC7181317 DOI: 10.1021/acscentsci.9b01342] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Indexed: 05/06/2023]
Abstract
Photothermal therapy (PTT) is an effective treatment modality with high selectivity for tumor suppression. However, the inflammatory responses caused by PTT may lead to adverse reactions including tumor recurrence and therapeutic resistance, which are regarded as major problems for PTT. Here, a near-infrared (NIR) light-responsive nanoreactor (P@DW/BC) is fabricated to simultaneously realize tumor PTT and carbon monoxide (CO)-mediated anti-inflammatory therapy. Defective tungsten oxide (WO3) nanosheets (DW NSs) are decorated with bicarbonate (BC) via ferric ion-mediated coordination and then modified with polyethylene glycol (PEG) on the surface to fabricate PEG@DW/BC or P@DW/BC nanosheets. Upon 808 nm NIR laser irradiation, the DW content in P@DW/BC can serve as not only a photothermal agent to realize photothermal conversion but also a photocatalyst to convert carbon dioxide (CO2) to CO. In particular, the generated heat can also trigger the decomposition of BC to produce CO2 near the NSs, thus enhancing the photocatalytic CO generation. Benefiting from the efficient hyperthermia and CO generation under single NIR laser irradiation, P@DW/BC can realize effective thermal ablation of tumor and simultaneous inhibition of PTT-induced inflammation.
Collapse
Affiliation(s)
- Shi-Bo Wang
- Key
Laboratory of Biomedical Polymers of Ministry of Education & Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Institute
for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Cheng Zhang
- Key
Laboratory of Biomedical Polymers of Ministry of Education & Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Jing-Jie Ye
- Key
Laboratory of Biomedical Polymers of Ministry of Education & Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Mei-Zhen Zou
- Key
Laboratory of Biomedical Polymers of Ministry of Education & Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Institute
for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Chuan-Jun Liu
- Key
Laboratory of Biomedical Polymers of Ministry of Education & Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key
Laboratory of Biomedical Polymers of Ministry of Education & Department
of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Institute
for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
29
|
Ileri Ercan N. Understanding Interactions of Curcumin with Lipid Bilayers: A Coarse-Grained Molecular Dynamics Study. J Chem Inf Model 2019; 59:4413-4426. [PMID: 31545601 DOI: 10.1021/acs.jcim.9b00650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The interactions of curcumin with various lipid bilayers (POPC, DOPC, oxidized POPC, and oxidized DOPC) and model biomembranes (symmetric bacteria and yeast plasma membranes, as well as asymmetric mammalian plasma membrane) are investigated. A nonlinear thinning effect of curcumin with respect to its concentration is demonstrated in PC membranes and in the yeast. Curcumin induces asymmetry to the symmetric yeast membranes but reduces the degree of asymmetry of the mammalian plasma membranes when the molecule is placed facing the outer leaflets. The molecule is found to diffuse through oxidized PC bilayers, POPC bilayers at a curcumin to lipid ratio C/L = 1/5, yeast membranes at C/L = 1/100, and the mammalian plasma membranes at C/L = 1/5 and when the molecule placed facing the outer leaflets. The results of this work demonstrate that the lipid type, the lipid distribution, and curcumin amount play a critical role in defining the interactions of curcumin with the lipids and their transport behavior through the bilayers.
Collapse
Affiliation(s)
- Nazar Ileri Ercan
- Chemical Engineering Department , Bogazici University , Bebek 34342 , Istanbul , Turkey
| |
Collapse
|
30
|
Sureka HV, Obermeyer AC, Flores RJ, Olsen BD. Catalytic Biosensors from Complex Coacervate Core Micelle (C3M) Thin Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32354-32365. [PMID: 31441305 DOI: 10.1021/acsami.9b08478] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Enzymes have been applied to a variety of industrially and medically relevant chemistries as both catalysts and sensors. Incorporation of proteins and enzymes into complex coacervates has been demonstrated to improve the thermal, chemical, and temporal stability of enzymes in solution. In this work, a neutral-cationic block copolymer and an enzyme, alkaline phosphatase, are incorporated into complex coacervate core micelles (C3Ms) and coated onto a solid substrate to create a biocatalytic film from aqueous solution. The incorporation of photo-cross-linkable groups into the neutral block of the polymer allows the film to be cross-linked under ultraviolet light, rendering it insoluble. The morphology of the film is shown to depend most strongly on the protein loading within the film, while solvent annealing is shown to have a minimal effect. These films are then demonstrated as specific sensors for Zn2+ in solution in the presence of other metals, a model reaction for ion-selective heavy metal biosensing useful in environmental monitoring. They are shown to have low leaching and maintain sufficient activity and response for sensing for 1 month after aging under ambient conditions and at 40 °C and 50% relative humidity. The C3M immobilization method demonstrated can be applied to a wide variety of proteins with minimal chemical or genetic modification and could be used for immobilization of charged macromolecules in general to produce a wide variety of thin-film devices.
Collapse
Affiliation(s)
- Hursh V Sureka
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Allie C Obermeyer
- Department of Chemical Engineering , Columbia University , New York , New York 10027 , United States
| | - Romeo J Flores
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Bradley D Olsen
- Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
31
|
Lim HK, Kim DR, Hwang IT. Sequestration of CO2 into CaCO3 using Carbonic Anhydrase Immobilization on Functionalized Aluminum Oxide. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819040112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Maheshwari N, Kumar M, Thakur IS, Srivastava S. Cloning, expression and characterization of β- and γ‑carbonic anhydrase from Bacillus sp. SS105 for biomimetic sequestration of CO2. Int J Biol Macromol 2019; 131:445-452. [DOI: 10.1016/j.ijbiomac.2019.03.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 11/25/2022]
|
33
|
Del Prete S, Merlo R, Valenti A, Mattossovich R, Rossi M, Carginale V, Supuran CT, Perugino G, Capasso C. Thermostability enhancement of the α-carbonic anhydrase from Sulfurihydrogenibium yellowstonense by using the anchoring-and-self-labelling-protein-tag system (ASL tag). J Enzyme Inhib Med Chem 2019; 34:946-954. [PMID: 31039618 PMCID: PMC6493269 DOI: 10.1080/14756366.2019.1605991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are a superfamily of ubiquitous metalloenzymes present in all living organisms on the planet. They are classified into seven genetically distinct families and catalyse the hydration reaction of carbon dioxide to bicarbonate and protons, as well as the opposite reaction. CAs were proposed to be used for biotechnological applications, such as the post-combustion carbon capture processes. In this context, there is a great interest in searching CAs with robust chemical and physical properties. Here, we describe the enhancement of thermostability of the α-CA from Sulfurihydrogenibium yellowstonense (SspCA) by using the anchoring-and-self-labelling-protein-tag system (ASLtag). The anchored chimeric H5-SspCA was active for the CO2 hydration reaction and its thermostability increased when the cells were heated for a prolonged period at high temperatures (e.g. 70 °C). The ASLtag can be considered as a useful method for enhancing the thermostability of a protein useful for biotechnological applications, which often need harsh operating conditions.
Collapse
Affiliation(s)
- Sonia Del Prete
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Rosa Merlo
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Anna Valenti
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Rosanna Mattossovich
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Mosè Rossi
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Vincenzo Carginale
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Claudiu T Supuran
- b Neurofarba Department , University of Florence, Polo Scientifico , Sesto Fiorentino Firenze , Italy
| | - Giuseppe Perugino
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| | - Clemente Capasso
- a Department of Biology Agriculture and Food Sciences , Institute of Bioscience and BioResources - National Research Council of Italy , Naples , Italy
| |
Collapse
|
34
|
Liu Q, Chapman J, Huang A, Williams KC, Wagner A, Garapati N, Sierros KA, Dinu CZ. User-Tailored Metal-Organic Frameworks as Supports for Carbonic Anhydrase. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41326-41337. [PMID: 30354066 DOI: 10.1021/acsami.8b14125] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Carbonic anhydrase (CA) was previously proposed as a green alternative for biomineralization of carbon dioxide (CO2). However, enzyme's fragile nature when in synthetic environment significantly limits such industrial application. Herein, we hypothesized that CA immobilization onto flexible and hydrated "bridges" that ensure proton-transfer at their interfaces leads to improved activity and kinetic behavior and potentially increases enzyme's feasibility for industrial implementation. Our hypothesis was formulated considering that water plays a key role in the CO2 hydration process and acts as both the reactant as well as the rate-limiting step of the CO2 capture and transformation process. To demonstrate our hypothesis, two types of user-synthesized organic metallic frameworks [metal-organic frameworks (MOFs), one hydrophilic and one hydrophobic] were considered as model supports and their surface characteristics (i.e., charge, shape, curvature, size, etc.) and influence on the immobilized enzyme's behavior were evaluated. Morphology, crystallinity and particle size, and surface area of the model supports were determined by scanning electron microscopy, dynamic light scattering, and nitrogen adsorption/desorption measurements, respectively. Enzyme activity, kinetics, and stability at the supports interfaces were determined using spectroscopical analyses. Analysis showed that enzyme functionality is dependent on the support used in the immobilization process, with the enzyme immobilized onto the hydrophilic support retaining 72% activity of the free CA, when compared with that immobilized onto the hydrophobic one that only retained about 28% activity. Both CA-MOF conjugates showed good storage stability relative to the free enzyme in solution, with CA immobilized at the hydrophilic support also revealing increased thermal stability and retention of almost all original enzyme activity even after heating treatment at 70 °C. In contrast, free CA lost almost half of its original activity when subject to the same conditions. This present work suggests that MOFs tunable hydration conditions allow high enzyme activity and stability retention. Such results are expected to impact CO2 storage and transformation strategies based on CA and potentially increase user-integration of enzyme-based green technologies in mitigating global warming.
Collapse
Affiliation(s)
| | | | - Aisheng Huang
- Institute of New Energy Technology, Ningbo Institute of Materials Technology and Engineering , CAS , 1219 Zhongguan Road , 315201 Ningbo , P. R. China
| | | | | | | | | | | |
Collapse
|
35
|
Yoshimoto M, Walde P. Immobilized carbonic anhydrase: preparation, characteristics and biotechnological applications. World J Microbiol Biotechnol 2018; 34:151. [PMID: 30259182 DOI: 10.1007/s11274-018-2536-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Carbonic anhydrase (CA) is an essential metalloenzyme in living systems for accelerating the hydration and dehydration of carbon dioxide. CA-catalyzed reactions can be applied in vitro for capturing industrially emitted gaseous carbon dioxide in aqueous solutions. To facilitate this type of practical application, the immobilization of CA on or inside solid or soft support materials is of great importance because the immobilization of enzymes in general offers the opportunity for enzyme recycling or long-term use in bioreactors. Moreover, the thermal/storage stability and reactivity of immobilized CA can be modulated through the physicochemical nature and structural characteristics of the support material used. This review focuses on (i) immobilization methods which have been applied so far, (ii) some of the characteristic features of immobilized forms of CA, and (iii) biotechnological applications of immobilized CA. The applications described not only include the CA-assisted capturing and sequestration of carbon dioxide, but also the CA-supported bioelectrochemical conversion of CO2 into organic molecules, and the detection of clinically important CA inhibitors. Furthermore, immobilized CA can be used in biomimetic materials synthesis involving cascade reactions, e.g. for bone regeneration based on calcium carbonate formation from urea with two consecutive reactions catalyzed by urease and CA.
Collapse
Affiliation(s)
- Makoto Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube, 755-8611, Japan.
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zurich, Switzerland
| |
Collapse
|
36
|
Perfetto R, Del Prete S, Vullo D, Sansone G, Barone C, Rossi M, Supuran CT, Capasso C. Biochemical characterization of the native α-carbonic anhydrase purified from the mantle of the Mediterranean mussel, Mytilus galloprovincialis. J Enzyme Inhib Med Chem 2017; 32:632-639. [PMID: 28229634 PMCID: PMC6010126 DOI: 10.1080/14756366.2017.1284069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 01/16/2017] [Indexed: 01/18/2023] Open
Abstract
A α-carbonic anhydrase (CA, EC 4.2.1.1) has been purified and characterized biochemically from the mollusk Mytilus galloprovincialis. As in most mollusks, this α-CA is involved in the biomineralization processes leading to the precipitation of calcium carbonate in the mussel shell. The new enzyme had a molecular weight of 50 kDa, which is roughly two times higher than that of a monomeric α-class enzyme. Thus, Mytilus galloprovincialis α-CA is either a dimer, or similar to the Tridacna gigas CA described earlier, may have two different CA domains in its polypeptide chain. The Mytilus galloprovincialis α-CA sequence contained the three His residues acting as zinc ligands and the gate-keeper residues present in all α-CAs (Glu106-Thr199), but had a Lys in position 64 and not a His as proton shuttling residue, being thus similar to the human isoform hCA III. This probably explains the relatively low catalytic activity of Mytilus galloprovincialis α-CA, with the following kinetic parameters for the CO2 hydration reaction: kcat = 4.1 × 105 s-1 and kcat/Km of 3.6 × 107 M-1 × s-1. The enzyme activity was poorly inhibited by the sulfonamide acetazolamide, with a KI of 380 nM. This study is one of the few describing in detail the biochemical characterization of a molluskan CA and may be useful for understanding in detail the phylogeny of these enzymes, their role in biocalcification processes and their potential use in the biomimetic capture of the CO2.
Collapse
Affiliation(s)
- Rosa Perfetto
- Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy
- Dipartimento Neurofarba, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico, Sesto Fiorentino, Florence, Italy
| | - Daniela Vullo
- Dipartimento Neurofarba, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico, Sesto Fiorentino, Florence, Italy
| | - Giovanni Sansone
- Dipartimento di Biologia, Università degli Studi di Napoli, Federico II, Napoli, Italy
| | - Carmela Barone
- Dipartimento di Agraria, Università degli Studi di Napoli, Federico II, Portici (Napoli), Italy
| | - Mosè Rossi
- Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico, Sesto Fiorentino, Florence, Italy
| | | |
Collapse
|
37
|
An Overview of the Bacterial Carbonic Anhydrases. Metabolites 2017; 7:metabo7040056. [PMID: 29137134 PMCID: PMC5746736 DOI: 10.3390/metabo7040056] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
Bacteria encode carbonic anhydrases (CAs, EC 4.2.1.1) belonging to three different genetic families, the α-, β-, and γ-classes. By equilibrating CO2 and bicarbonate, these metalloenzymes interfere with pH regulation and other crucial physiological processes of these organisms. The detailed investigations of many such enzymes from pathogenic and non-pathogenic bacteria afford the opportunity to design both novel therapeutic agents, as well as biomimetic processes, for example, for CO2 capture. Investigation of bacterial CA inhibitors and activators may be relevant for finding antibiotics with a new mechanism of action.
Collapse
|
38
|
Nocentini A, Vullo D, Del Prete S, Osman SM, Alasmary FAS, AlOthman Z, Capasso C, Carta F, Gratteri P, Supuran CT. Inhibition of the β-carbonic anhydrase from the dandruff-producing fungus Malassezia globosa with monothiocarbamates. J Enzyme Inhib Med Chem 2017; 32:1064-1070. [PMID: 28766952 PMCID: PMC6010091 DOI: 10.1080/14756366.2017.1355307] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A series of monothiocarbamates (MTCs) was investigated for the inhibition of the β-class carbonic anhydrase (CAs, EC 4.2.1.1) from the fungal parasite Malassezia globosa, MgCA. These MTCs incorporate various scaffolds, among which aliphatic amine with 1–4 carbons atom in their molecule, morpholine, piperazine, as well as phenethylamine and benzylamine derivatives. All the reported MTCs displayed a better efficacy in inhibiting MgCA compared to the clinically used sulphonamide drug acetazolamide (KI of 74 μM), with KIs spanning between 1.85 and 18.9 μM. The homology model of the enzyme previously reported by us was used to rationalize the results by docking some of these MTCs within the fungal CA active site. This study might be useful to enrich the knowledge of the MgCA inhibition profile, eliciting novel ideas pertaining the design of modulators with potential efficacy in combatting dandruff or other fungal infections.
Collapse
Affiliation(s)
- Alessio Nocentini
- a Department Neurofarba - Pharmaceutical and Nutraceutical Section , University of Firenze , Firenze , Italy.,b Department Neurofarba - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics and QSAR , University of Firenze , Firenze , Italy
| | - Daniela Vullo
- c Polo Scientifico, Laboratorio di Chimica Bioinorganica , University of Firenze , Firenze , Italy
| | - Sonia Del Prete
- a Department Neurofarba - Pharmaceutical and Nutraceutical Section , University of Firenze , Firenze , Italy.,d Istituto di Bioscienze e Biorisorse - CNR , Napoli , Italy
| | - Sameh M Osman
- e Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Fatmah A S Alasmary
- e Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Zeid AlOthman
- e Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | | | - Fabrizio Carta
- a Department Neurofarba - Pharmaceutical and Nutraceutical Section , University of Firenze , Firenze , Italy
| | - Paola Gratteri
- b Department Neurofarba - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics and QSAR , University of Firenze , Firenze , Italy
| | - Claudiu T Supuran
- a Department Neurofarba - Pharmaceutical and Nutraceutical Section , University of Firenze , Firenze , Italy
| |
Collapse
|
39
|
Del Prete S, Perfetto R, Rossi M, Alasmary FAS, Osman SM, AlOthman Z, Supuran CT, Capasso C. A one-step procedure for immobilising the thermostable carbonic anhydrase (SspCA) on the surface membrane of Escherichia coli. J Enzyme Inhib Med Chem 2017; 32:1120-1128. [PMID: 28791907 PMCID: PMC6010132 DOI: 10.1080/14756366.2017.1355794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The carbonic anhydrase superfamily (CA, EC 4.2.1.1) of metalloenzymes is present in all three domains of life (Eubacteria, Archaea, and Eukarya), being an interesting example of convergent/divergent evolution, with its seven families (α-, β-, γ-, δ-, ζ-, η-, and θ-CAs) described so far. CAs catalyse the simple, but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons. Recently, our groups characterised the α-CA from the thermophilic bacterium, Sulfurihydrogenibium yellowstonense finding a very high catalytic activity for the CO2 hydration reaction (kcat = 9.35 × 105 s-1 and kcat/Km = 1.1 × 108 M-1 s-1) which was maintained after heating the enzyme at 80 °C for 3 h. This highly thermostable SspCA was covalently immobilised within polyurethane foam and onto the surface of magnetic Fe3O4 nanoparticles. Here, we describe a one-step procedure for immobilising the thermostable SspCA directly on the surface membrane of Escherichia coli, using the INPN domain of Pseudomonas syringae. This strategy has clear advantages with respect to other methods, which require as the first step the production and the purification of the biocatalyst, and as the second step the immobilisation of the enzyme onto a specific support. Our results demonstrate that thermostable SspCA fused to the INPN domain of P. syringae ice nucleation protein (INP) was correctly expressed on the outer membrane of engineered E. coli cells, affording for an easy approach to design biotechnological applications for this highly effective thermostable catalyst.
Collapse
Affiliation(s)
- Sonia Del Prete
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy.,b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Florence , Italy
| | - Rosa Perfetto
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Mosè Rossi
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| | - Fatmah A S Alasmary
- c Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Sameh M Osman
- c Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Zeid AlOthman
- c Department of Chemistry, College of Science , King Saud University , Riyadh , Saudi Arabia
| | - Claudiu T Supuran
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Florence , Italy
| | - Clemente Capasso
- a Dipartimento di Scienze Bio-Agroalimentari, CNR-Istituto di Bioscienze e Biorisorse , CNR , Napoli , Italy
| |
Collapse
|
40
|
Bhagat C, Dudhagara P, Tank S. Trends, application and future prospectives of microbial carbonic anhydrase mediated carbonation process for CCUS. J Appl Microbiol 2017; 124:316-335. [PMID: 28921830 DOI: 10.1111/jam.13589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/17/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022]
Abstract
Growing industrialization and the desire for a better economy in countries has accelerated the emission of greenhouse gases (GHGs), by more than the buffering capacity of the earth's atmosphere. Among the various GHGs, carbon dioxide occupies the first position in the anthroposphere and has detrimental effects on the ecosystem. For decarbonization, several non-biological methods of carbon capture, utilization and storage (CCUS) have been in use for the past few decades, but they are suffering from narrow applicability. Recently, CO2 emission and its disposal related problems have encouraged the implementation of bioprocessing to achieve a zero waste economy for a sustainable environment. Microbial carbonic anhydrase (CA) catalyses reversible CO2 hydration and forms metal carbonates that mimic the natural phenomenon of weathering/carbonation and is gaining merit for CCUS. Thus, the diversity and specificity of CAs from different micro-organisms could be explored for CCUS. In the literature, more than 50 different microbial CAs have been explored for mineral carbonation. Further, microbial CAs can be engineered for the mineral carbonation process to develop new technology. CA driven carbonation is encouraging due to its large storage capacity and favourable chemistry, allowing site-specific sequestration and reusable product formation for other industries. Moreover, carbonation based CCUS holds five-fold more sequestration capacity over the next 100 years. Thus, it is an eco-friendly, feasible, viable option and believed to be the impending technology for CCUS. Here, we attempt to examine the distribution of various types of microbial CAs with their potential applications and future direction for carbon capture. Although there are few key challenges in bio-based technology, they need to be addressed in order to commercialize the technology.
Collapse
Affiliation(s)
- C Bhagat
- Department of Biosciences (UGC-SAP-DRS-II), Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - P Dudhagara
- Department of Biosciences (UGC-SAP-DRS-II), Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - S Tank
- Department of Biosciences (UGC-SAP-DRS-II), Veer Narmad South Gujarat University, Surat, Gujarat, India
| |
Collapse
|
41
|
Perfetto R, Del Prete S, Vullo D, Sansone G, Barone CMA, Rossi M, Supuran CT, Capasso C. Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles. J Enzyme Inhib Med Chem 2017; 32:759-766. [PMID: 28497711 PMCID: PMC6445167 DOI: 10.1080/14756366.2017.1316719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carbonic anhydrases (CAs; EC 4.2.1.1) are metalloenzymes with a pivotal potential role in the biomimetic CO2 capture process (CCP) because these biocatalysts catalyse the simple but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons in all life kingdoms. The CAs are among the fastest known enzymes, with kcat values of up to 106 s-1 for some members of the superfamily, providing thus advantages when compared with other CCP methods, as they are specific for CO2. Thermostable CAs might be used in CCP technology because of their ability to perform catalysis in operatively hard conditions, typical of the industrial processes. Moreover, the improvement of the enzyme stability and its reuse are important for lowering the costs. These aspects can be overcome by immobilising the enzyme on a specific support. We report in this article that the recombinant thermostable SspCA (α-CA) from the thermophilic bacterium Sulfurihydrogenibium yellowstonense can been heterologously produced by a high-density fermentation of Escherichia coli cultures, and covalently immobilised onto the surface of magnetic Fe3O4 nanoparticles (MNP) via carbodiimide activation reactions. Our results demonstrate that using a benchtop bioprocess station and strategies for optimising the bacterial growth, it is possible to produce at low cost a large amount SspCA. Furthermore, the enzyme stability and storage greatly increased through the immobilisation, as SspCA bound to MNP could be recovered from the reaction mixture by simply using a magnet or an electromagnetic field, due to the strong ferromagnetic properties of Fe3O4.
Collapse
Affiliation(s)
- Rosa Perfetto
- a Istituto di Bioscienze e Biorisorse, CNR , Napoli , Italy
| | - Sonia Del Prete
- a Istituto di Bioscienze e Biorisorse, CNR , Napoli , Italy.,b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | - Daniela Vullo
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | - Giovanni Sansone
- c Dipartimento di Biologia , Università degli Studi di Napoli, Federico II , Napoli , Italy
| | - Carmela M A Barone
- d Dipartimento di Agraria , Università degli Studi di Napoli, Federico II , Portici , Napoli , Italy
| | - Mosè Rossi
- a Istituto di Bioscienze e Biorisorse, CNR , Napoli , Italy
| | - Claudiu T Supuran
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | | |
Collapse
|
42
|
Bose H, Satyanarayana T. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives. Front Microbiol 2017; 8:1615. [PMID: 28890712 PMCID: PMC5574912 DOI: 10.3389/fmicb.2017.01615] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.
Collapse
|
43
|
Structure and function of carbonic anhydrases. Biochem J 2017; 473:2023-32. [PMID: 27407171 DOI: 10.1042/bcj20160115] [Citation(s) in RCA: 623] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) catalyse the interconversion between CO2 and bicarbonate as well as other hydrolytic reactions. Among the six genetic families known to date, the α-, β-, γ-, δ-, ζ- and η-CAs, detailed kinetic and X-ray crystallographic studies have allowed a deep understanding of the structure-function relationship in this superfamily of proteins. A metal hydroxide nucleophilic species of the enzyme, and a unique active site architecture, with half of it hydrophilic and the opposing part hydrophobic, allow these enzymes to act as some of the most effective catalysts known in Nature. The CA activation and inhibition mechanisms are also known in detail, with a large number of new inhibitor classes being described in the last years. Apart from the zinc binders, some classes of inhibitors anchor to the metal ion coordinated nucleophile, others occlude the entrance of the active site cavity and more recently, compounds binding outside the active site were described. CA inhibition has therapeutic applications for drugs acting as diuretics, antiepileptics, antiglaucoma, antiobesity and antitumour agents. Targeting such enzymes from pathogens may lead to novel anti-infectives. Successful structure-based drug design campaigns allowed the discovery of highly isoform selective CA inhibitors (CAIs), which may lead to a new generation of drugs targeting these widespread enzymes. The use of CAs in CO2 capture processes for mitigating the global temperature rise has also been investigated more recently.
Collapse
|
44
|
Abdelrahim MYM, Martins CF, Neves L, Capasso C, Supuran CT, Coelhoso IM, Crespo JG, Barboiu M. Supported ionic liquid membranes immobilized with carbonic anhydrases for CO2 transport at high temperatures. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Trincone A. Enzymatic Processes in Marine Biotechnology. Mar Drugs 2017; 15:E93. [PMID: 28346336 PMCID: PMC5408239 DOI: 10.3390/md15040093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
In previous review articles the attention of the biocatalytically oriented scientific community towards the marine environment as a source of biocatalysts focused on the habitat-related properties of marine enzymes. Updates have already appeared in the literature, including marine examples of oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases ready for food and pharmaceutical applications. Here a new approach for searching the literature and presenting a more refined analysis is adopted with respect to previous surveys, centering the attention on the enzymatic process rather than on a single novel activity. Fields of applications are easily individuated: (i) the biorefinery value-chain, where the provision of biomass is one of the most important aspects, with aquaculture as the prominent sector; (ii) the food industry, where the interest in the marine domain is similarly developed to deal with the enzymatic procedures adopted in food manipulation; (iii) the selective and easy extraction/modification of structurally complex marine molecules, where enzymatic treatments are a recognized tool to improve efficiency and selectivity; and (iv) marine biomarkers and derived applications (bioremediation) in pollution monitoring are also included in that these studies could be of high significance for the appreciation of marine bioprocesses.
Collapse
Affiliation(s)
- Antonio Trincone
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
| |
Collapse
|
46
|
Yuan H, Xing C, Fan Y, Chai R, Niu R, Zhan Y, Peng F, Qi J. Carbon Dioxide-Controlled Assembly of Water-Soluble Conjugated Polymers Catalyzed by Carbonic Anhydrase. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Hongbo Yuan
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300401 P. R. China
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Yibing Fan
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Ran Chai
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Ruimin Niu
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Yong Zhan
- School of Materials Science and Engineering; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Fei Peng
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P. R. China
| | - Junjie Qi
- Key Laboratory of Hebei Province for Molecular Biophysics; Institute of Biophysics; Hebei University of Technology; Tianjin 300401 P. R. China
| |
Collapse
|
47
|
Dithiocarbamates effectively inhibit the β-carbonic anhydrase from the dandruff-producing fungus Malassezia globosa. Bioorg Med Chem 2016; 25:1260-1265. [PMID: 28057408 DOI: 10.1016/j.bmc.2016.12.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/17/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022]
Abstract
A series of dithiocarbamates (DTCs) was investigated for the inhibition of the β-class carbonic anhydrase (CAs, EC 4.2.1.1) from the fungal parasite Malassezia globosa, MgCA, a validated anti-dandruff drug target. These DTCs incorporate various scaffold, among which those of N,N-dimethylaminoethylenediamine, the aminoalcohols with 3-5 carbon atoms in their molecule, 3-amino-quinuclidine, piperidine, morpholine and piperazine derivatives, as well as phenethylamine and its 4-sulfamoylated derivative. Several DTCs resulted more effective in inhibiting MgCA compared to the standard sulfonamide drug acetazolamide (KI of 74μM), with KIs ranging between 383 and 6235nM. A computational approach, involving a homology modeling of the enzyme and docking inhibitors within its active site, helped us rationalize the results. This study may contribute to better understand the inhibition profile of MgCA, and offer new ideas for the design of modulators of activity which belong to less investigated chemical classes, thus potentially useful to combat dandruff and other fungal infections.
Collapse
|
48
|
Sulfonamide inhibition profile of the γ-carbonic anhydrase identified in the genome of the pathogenic bacterium Burkholderia pseudomallei the etiological agent responsible of melioidosis. Bioorg Med Chem Lett 2016; 27:490-495. [PMID: 28025002 DOI: 10.1016/j.bmcl.2016.12.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/07/2016] [Accepted: 12/10/2016] [Indexed: 01/12/2023]
Abstract
A new γ-carbonic anhydrase (CA, EC 4.1.1.1) was cloned and characterized kinetically in the genome of the bacterial pathogen Burkholderia pseudomallei, the etiological agent of melioidosis, an endemic disease of tropical and sub-tropical regions of the world. The catalytic activity of this new enzyme, BpsCAγ, is significant with a kcat of 5.3×105s-1 and kcat/Km of 2.5×107M-1×s-1 for the physiologic CO2 hydration reaction. The inhibition constant value for this enzyme for 39 sulfonamide inhibitors was obtained. Acetazolamide, benzolamide and metanilamide were the most effective (KIs of 149-653nM) inhibitors of BpsCAγ activity, whereas other sulfonamides/sulfamates such as ethoxzolamide, topiramate, sulpiride, indisulam, sulthiame and saccharin were active in the micromolar range (KIs of 1.27-9.56μM). As Burkholderia pseudomallei is resistant to many classical antibiotics, identifying compounds that interfere with crucial enzymes in the B. pseudomallei life cycle may lead to antibiotics with novel mechanisms of action.
Collapse
|
49
|
Hou J, Zulkifli MY, Mohammad M, Zhang Y, Razmjou A, Chen V. Biocatalytic gas-liquid membrane contactors for CO2 hydration with immobilized carbonic anhydrase. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Watson SK, Han Z, Su WW, Deshusses MA, Kan E. Carbon dioxide capture using Escherichia coli expressing carbonic anhydrase in a foam bioreactor. ENVIRONMENTAL TECHNOLOGY 2016; 37:3186-3192. [PMID: 27109547 DOI: 10.1080/09593330.2016.1181110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The present study reports CO2 capture and conversion to bicarbonate using Escherichia coli expressing carbonic anhydrase (CA) on its cell surface in a novel foam bioreactor. The very large gas-liquid interfacial area in the foam bioreactor promoted rapid CO2 absorption while the CO2 in the aqueous phase was subsequently converted to bicarbonate ions by the CA. CO2 gas removal in air was investigated at various conditions such as gas velocity, cell density and CO2 inlet concentration. Regimes for kinetic and mass transfer limitations were defined. Very high removal rates of CO2 were observed: 9570 g CO2 m(-3) bioreactor h(-1) and a CO2 removal efficiency of 93% at 4% inlet CO2 when the gas retention time was 24 s, and cell concentration was 4 gdw L(-1). These performances are superior to earlier reports of experimental bioreactors using CA for CO2 capture. Overall, this bioreactor system has significant potential as an alternative CO2 capture technology.
Collapse
Affiliation(s)
- Stuart K Watson
- a Department of Molecular Bioscience and Bioengineering , University of Hawaii at Manoa , Honolulu , HI , USA
| | - Zhenlin Han
- a Department of Molecular Bioscience and Bioengineering , University of Hawaii at Manoa , Honolulu , HI , USA
| | - Wei Wen Su
- a Department of Molecular Bioscience and Bioengineering , University of Hawaii at Manoa , Honolulu , HI , USA
| | - Marc A Deshusses
- b Department of Civil and Environmental Engineering , Duke University , Durham , NC , USA
| | - Eunsung Kan
- a Department of Molecular Bioscience and Bioengineering , University of Hawaii at Manoa , Honolulu , HI , USA
| |
Collapse
|