1
|
Nacarkucuk E, Bernis ME, Bremer AS, Grzelak K, Zweyer M, Maes E, Burkard H, Sabir H. Neuroprotective Effect of Melatonin in a Neonatal Hypoxia-Ischemia Rat Model Is Regulated by the AMPK/mTOR Pathway. J Am Heart Assoc 2024; 13:e036054. [PMID: 39319465 DOI: 10.1161/jaha.124.036054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Melatonin has been shown to be neuroprotective in different animal models of neonatal hypoxic-ischemic brain injury. However, its exact molecular mechanism of action remains unknown. Our aim was to prove melatonin's short- and long-term neuroprotection and investigate its role on the AMPK (AMP-activated protein kinase)/mTOR (mammalian target of rapamycin) pathway following neonatal hypoxic-ischemic brain injury. METHODS AND RESULTS Seven-day-old Wistar rat pups were exposed to hypoxia-ischemia, followed by melatonin or vehicle treatment. Detailed analysis of the AMPK/mTOR/autophagy pathway, short- and long-term neuroprotection, myelination, and oligodendrogenesis was performed at different time points. At 7 days after hypoxia-ischemia, melatonin-treated animals showed a significant decrease in tissue loss, increased oligodendrogenesis, and myelination. Long-term neurobehavioral results showed significant motor improvement following melatonin treatment. Molecular pathway analysis showed a decrease in the AMPK expression, with a significant increase at mTOR's downstream substrates, and a significant decrease at the autophagy marker levels in the melatonin group compared with the vehicle group. CONCLUSIONS Melatonin treatment reduced brain area loss and promoted oligodendrogenesis with a clear improvement of motor function. We found that melatonin associated neuroprotection is regulated via the AMPK/mTOR/autophagy pathway. Considering the beneficial effects of melatonin and the results of our study, melatonin seems to be an optimal candidate for the treatment of newborns with hypoxic-ischemic brain injury in high- as well as in low- and middle-income countries.
Collapse
Affiliation(s)
- Efe Nacarkucuk
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Maria E Bernis
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Anna-Sophie Bremer
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Kora Grzelak
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Elke Maes
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Hannah Burkard
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care Children's Hospital University of Bonn Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Bonn Germany
| |
Collapse
|
2
|
Abdelaal SM, Abdel Rahman MM, Mahmoud LM, Rashed LA, Abd El-Galil TI, Mahmoud MM. Combined swimming with melatonin protects against behavioural deficit in cerebral ischemia-reperfusion injury induced rats associated with modulation of Mst1- MAPK -ERK signalling pathway. Arch Physiol Biochem 2024:1-16. [PMID: 39152720 DOI: 10.1080/13813455.2024.2392186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND The inconvenience of social and behavioural deficits after cerebral ischaemia reperfusion (I/R) injury is still not well documented. AIM We aimed to study the protective effect of preconditioning swimming exercise combined with melatonin against cerebral I/R induced injury. METHODOLOGY Sixty rats were allocated into 6 groups; groups I and II served as control. Groups 3,4,5,6 subjected to bilateral carotid ligation for 30 minutes (min.) followed by reperfusion. Group 3 left untreated while groups 4 and 6; underwent swimming exercise 30 min/day, five days a week for three weeks before the surgery. Groups 5 and 6 treated with melatonin 30 minutes before the operation, then, all rats in groups 4, 5,6 were subjected to I/R. After that, groups 5 and 6 treated with 2nd dose of melatonin 30 minutes after reperfusion. RESULTS Combined strategy exhibited the most neuroprotective effect through prevention of cerebral I/R induced inflammation, oxidative stress and apoptosis with subsequent improvement in socio behaviour deficits and enhanced Glial cell proliferative capacity. CONCLUSION The protective contribution of combined strategy is associated with modulation in Macrophage-stimulating 1/mitogen-activated protein kinase/extracellular signal-regulated kinase (MST1/MAPK/ERK) pathway which may explain, at least in part, its protective potential.
Collapse
Affiliation(s)
| | | | | | - Laila Ahmed Rashed
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
3
|
Guo S, Tong Y, Li T, Yang K, Gao W, Peng F, Zou X. Endoplasmic Reticulum Stress-Mediated Cell Death in Renal Fibrosis. Biomolecules 2024; 14:919. [PMID: 39199307 PMCID: PMC11352060 DOI: 10.3390/biom14080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The endoplasmic reticulum (ER) is indispensable for maintaining normal life activities. Dysregulation of the ER function results in the accumulation of harmful proteins and lipids and the disruption of intracellular signaling pathways, leading to cellular dysfunction and eventual death. Protein misfolding within the ER disrupts its delicate balance, resulting in the accumulation of misfolded or unfolded proteins, a condition known as endoplasmic reticulum stress (ERS). Renal fibrosis, characterized by the aberrant proliferation of fibrotic tissue in the renal interstitium, stands as a grave consequence of numerous kidney disorders, precipitating a gradual decline in renal function. Renal fibrosis is a serious complication of many kidney conditions and is characterized by the overgrowth of fibrotic tissue in the glomerular and tubular interstitium, leading to the progressive failure of renal function. Studies have shown that, during the onset and progression of kidney disease, ERS causes various problems in the kidneys, a process that can lead to kidney fibrosis. This article elucidates the underlying intracellular signaling pathways modulated by ERS, delineating its role in triggering diverse forms of cell death. Additionally, it comprehensively explores a spectrum of potential pharmacological agents and molecular interventions aimed at mitigating ERS, thereby charting novel research avenues and therapeutic advancements in the management of renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangyu Zou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China; (S.G.); (Y.T.); (T.L.); (K.Y.); (W.G.); (F.P.)
| |
Collapse
|
4
|
Pluta R, Furmaga-Jabłońska W, Januszewski S, Tarkowska A. Melatonin: A Potential Candidate for the Treatment of Experimental and Clinical Perinatal Asphyxia. Molecules 2023; 28:1105. [PMID: 36770769 PMCID: PMC9919754 DOI: 10.3390/molecules28031105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Perinatal asphyxia is considered to be one of the major causes of brain neurodegeneration in full-term newborns. The worst consequence of perinatal asphyxia is neurodegenerative brain damage, also known as hypoxic-ischemic encephalopathy. Hypoxic-ischemic encephalopathy is the leading cause of mortality in term newborns. To date, due to the complex mechanisms of brain damage, no effective or causal treatment has been developed that would ensure complete neuroprotection. Although hypothermia is the standard of care for hypoxic-ischemic encephalopathy, it does not affect all changes associated with encephalopathy. Therefore, there is a need to develop effective treatment strategies, namely research into new agents and therapies. In recent years, it has been pointed out that natural compounds with neuroprotective properties, such as melatonin, can be used in the treatment of hypoxic-ischemic encephalopathy. This natural substance with anti-inflammatory, antioxidant, anti-apoptotic and neurofunctional properties has been shown to have pleiotropic prophylactic or therapeutic effects, mainly against experimental brain neurodegeneration in hypoxic-ischemic neonates. Melatonin is a natural neuroprotective hormone, which makes it promising for the treatment of neurodegeneration after asphyxia. It is supposed that melatonin alone or in combination with hypothermia may improve neurological outcomes in infants with hypoxic-ischemic encephalopathy. Melatonin has been shown to be effective in the last 20 years of research, mainly in animals with perinatal asphyxia but, so far, no clinical trials have been performed on a sufficient number of newborns. In this review, we summarize the advantages and limitations of melatonin research in the treatment of experimental and clinical perinatal asphyxia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Ecotech-Complex Analytical and Programme Centre for Advanced Environmentally-Friendly Technologies, Marie Curie-Skłodowska University in Lublin, 20-612 Lublin, Poland
| | - Wanda Furmaga-Jabłońska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sławomir Januszewski
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Agata Tarkowska
- Department of Neonate and Infant Pathology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Pedroza-García KA, Calderón-Vallejo D, Quintanar JL. Neonatal Hypoxic-Ischemic Encephalopathy: Perspectives of Neuroprotective and Neuroregenerative Treatments. Neuropediatrics 2022; 53:402-417. [PMID: 36030792 DOI: 10.1055/s-0042-1755235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a serious condition that could have deleterious neurological outcomes, such as cerebral palsy, neuromotor disability, developmental disability, epilepsy, and sensitive or cognitive problems, and increase the risk of death in severe cases. Once HIE occurs, molecular cascades are triggered favoring the oxidative stress, excitotoxicity, and inflammation damage that promote cell death via apoptosis or necrosis. Currently, the therapeutic hypothermia is the standard of care in HIE; however, it has a small window of action and only can be used in children of more than 36 gestational weeks; for this reason, it is very important to develop new therapies to prevent the progression of the hypoxic-ischemic injury or to develop neuroregenerative therapies in severe HIE cases. The objective of this revision is to describe the emerging treatments for HIE, either preventing cell death for oxidative stress, excitotoxicity, or exacerbated inflammation, as well as describing a new therapeutic approach for neuroregeneration, such as mesenchymal stem cells, brain-derived neurotrophic factor, and gonadotropin realizing hormone agonists.
Collapse
Affiliation(s)
- Karina A Pedroza-García
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.,Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
6
|
D'angelo G, Cannavò L, Reiter RJ, Gitto E. Melatonin Administration from 2000 to 2020 to Human Newborns with Hypoxic-Ischemic Encephalopathy. Am J Perinatol 2022; 39:824-829. [PMID: 33129208 DOI: 10.1055/s-0040-1719151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is the main cause of long-term neurodevelopmental morbidity in term born infants worldwide. Melatonin is a hormone with antioxidant and anti-inflammatory effects that make it a promising molecule for the treatment of perinatal asphyxia. Probably, the synergistic use of hypothermia associated with melatonin treatment may improve the neurological outcome in infants with HIE. In the past 20 years, the efficacy of melatonin in reducing oxidative stress has been demonstrated in animals; however, clinical trials with sufficient sample size of newborns are lacking to date. Since in 2000 we were among the first to study the neuroprotective properties of melatonin on infants, in this review, we want to summarize the advantages and limitations of the investigations conducted to date. KEY POINTS: · HIE is the main cause of morbidity in term born infants worldwide.. · Melatonin is a promising molecule for the treatment of perinatal asphyxia.. · This review summarizes advantages and limitations of the investigations conducted on melatonin..
Collapse
Affiliation(s)
- Gabriella D'angelo
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi," University of Messina, Messina, Italy
| | - Laura Cannavò
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi," University of Messina, Messina, Italy
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Eloisa Gitto
- Neonatal and Pediatric Intensive Care Unit, Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi," University of Messina, Messina, Italy
| |
Collapse
|
7
|
Landucci E, Pellegrini-Giampietro DE, Facchinetti F. Experimental Models for Testing the Efficacy of Pharmacological Treatments for Neonatal Hypoxic-Ischemic Encephalopathy. Biomedicines 2022; 10:937. [PMID: 35625674 PMCID: PMC9138693 DOI: 10.3390/biomedicines10050937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Representing an important cause of long-term disability, term neonatal hypoxic-ischemic encephalopathy (HIE) urgently needs further research aimed at repurposing existing drug as well as developing new therapeutics. Since various experimental in vitro and in vivo models of HIE have been developed with distinct characteristics, it becomes important to select the appropriate preclinical screening cascade for testing the efficacy of novel pharmacological treatments. As therapeutic hypothermia is already a routine therapy for neonatal encephalopathy, it is essential that hypothermia be administered to the experimental model selected to allow translational testing of novel or repurposed drugs on top of the standard of care. Moreover, a translational approach requires that therapeutic interventions must be initiated after the induction of the insult, and the time window for intervention should be evaluated to translate to real world clinical practice. Hippocampal organotypic slice cultures, in particular, are an invaluable intermediate between simpler cell lines and in vivo models, as they largely maintain structural complexity of the original tissue and can be subjected to transient oxygen-glucose deprivation (OGD) and subsequent reoxygenation to simulate ischemic neuronal injury and reperfusion. Progressing to in vivo models, generally, rodent (mouse and rat) models could offer more flexibility and be more cost-effective for testing the efficacy of pharmacological agents with a dose-response approach. Large animal models, including piglets, sheep, and non-human primates, may be utilized as a third step for more focused and accurate translational studies, including also pharmacokinetic and safety pharmacology assessments. Thus, a preclinical proof of concept of efficacy of an emerging pharmacological treatment should be obtained firstly in vitro, including organotypic models, and, subsequently, in at least two different animal models, also in combination with hypothermia, before initiating clinical trials.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | | | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy;
| |
Collapse
|
8
|
Pang R, Han HJ, Meehan C, Golay X, Miller SL, Robertson NJ. Efficacy of melatonin in term neonatal models of perinatal hypoxia-ischaemia. Ann Clin Transl Neurol 2022; 9:795-809. [PMID: 35413154 PMCID: PMC9186150 DOI: 10.1002/acn3.51559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Neonatal encephalopathy (NE) is an important cause of mortality and disability worldwide. Therapeutic hypothermia (HT) is an effective therapy, however not all babies benefit. Novel agents are urgently needed to improve outcomes. Melatonin in preclinical studies has promising neuroprotective properties. This meta-analysis assessed the efficacy of melatonin in term animal models of NE on cerebral infarct size, neurobehavioural tests and cell death. METHODS A literature search was carried out using Embase, MEDLINE and Web of Science (31 May 2021). We identified 14 studies and performed a meta-analysis with a random effects model using standardised mean difference (SMD) as the effect size. The risk of bias was assessed using the Systematic Review Centre for Laboratory animal Experimentation tool and publication bias was assessed with funnel plots, and adjusted using trim and fill analysis. Subgroup and meta-regression analyses were performed to assess the effects of study design variables. RESULTS We observed significant reduction in brain infarct size (SMD -2.05, 95% CI [-2.93, -1.16]), improved neurobehavioural outcomes (SMD -0.86, 95% CI [-1.23, -0.53]) and reduction in cell death (SMD -0.60, 95% CI [-1.06, -0.14]) favouring treatment with melatonin. Neuroprotection was evident as a single therapy and combined with HT. Subgroup analysis showed greater efficacy with melatonin given before or immediately after injury and with ethanol excipients. The overall effect size remained robust even after adjustment for publication bias. INTERPRETATION These studies demonstrate a significant neuroprotective efficacy of melatonin in term neonatal models of hypoxia-ischaemia, and suggest melatonin is a strong candidate for translation to clinical trials in babies with moderate-severe NE.
Collapse
Affiliation(s)
- Raymand Pang
- Institute for Women's Health, University College London, London, UK
| | - Hyun Jee Han
- Institute for Women's Health, University College London, London, UK
| | | | - Xavier Golay
- Institute of Neurology, Queen's Square, University College London, London, UK
| | - Suzanne L Miller
- The Ritchie Centre, Translational Research Facility, Hudson Institute of Medical Research, Clayton, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Antioxidant Effect of Melatonin in Preterm Newborns. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6308255. [PMID: 34840669 PMCID: PMC8626170 DOI: 10.1155/2021/6308255] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/08/2021] [Accepted: 10/29/2021] [Indexed: 01/13/2023]
Abstract
Introduction Preterm infants are at risk of free radical-mediated diseases from oxidative stress (OS) injury. Increased free radical generation has been demonstrated in preterm infants during the first seven days of life. Melatonin (MEL) is a powerful antioxidant and scavenger of free radicals. In preterm neonates, melatonin deficiency has been reported. Exogenous melatonin administration appears a promising strategy in the treatment of neonatal morbidities in which OS has a leading role. Objective The aim was to evaluate plasma MEL concentrations and OS biomarkers in preterm newborns after early administration of melatonin. Methods A prospective, randomized double-blind placebo-controlled pilot study was conducted from January 2019 to September 2020. Thirty-six preterm newborns were enrolled. Starting from the first day of life, 21 received a single dose of oral melatonin 0.5 mg/kg once a day, in the morning (MEL group); 15 newborns received an equivalent dose of placebo (placebo group). Samples of 0.2 mL of plasma were collected at 24 and 48 hours after MEL administration. Plasma concentrations of melatonin, non-protein-bound iron (NPBI), advanced oxidation protein products (AOPP), and F2-isoprostanes (F2-Isopr) were measured. Babies were clinically followed until discharge. Results At 24 and 48 hours after MEL administration, the MEL concentrations were significantly higher in the MEL group than in the placebo group (52759.30 ± 63529.09 vs. 28.57 ± 46.24 pg/mL and 279397.6 ± 516344.2 vs. 38.50 ± 44.01 pg/mL, respectively). NPBI and AOPP did not show any statistically significant differences between the groups both at 24 and 48 hours. At 48 hours, the mean blood concentrations of F2-Isopr were significantly lower in the MEL group than in the placebo group (36.48 ± 33.85 pg/mL vs.89.97 ± 52.01 pg/mL). Conclusions Early melatonin administration in preterm newborns reduces lipid peroxidation in the first days of life showing a potential role to protect high-risk newborns. Trial Registration. This trial is registered with NCT04785183, Early Supplementation of Melatonin in Preterm Newborns: the Effects on Oxidative Stress.
Collapse
|
10
|
Favrais G, Saliba E, Savary L, Bodard S, Gulhan Z, Gressens P, Chalon S. Partial protective effects of melatonin on developing brain in a rat model of chorioamnionitis. Sci Rep 2021; 11:22167. [PMID: 34773065 PMCID: PMC8589852 DOI: 10.1038/s41598-021-01746-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022] Open
Abstract
Melatonin has shown promising neuroprotective effects due to its anti-oxidant, anti-inflammatory and anti-apoptotic properties, making it a candidate drug for translation to humans in conditions that compromise the developing brain. Our study aimed to explore the impact of prenatal melatonin in an inflammatory/infectious context on GABAergic neurons and on oligodendrocytes (OLs), key cells involved in the encephalopathy of prematurity. An inflammatory/infectious agent (LPS, 300 μg/kg) was injected intraperitoneally (i.p.) to pregnant Wistar rats at gestational day 19 and 20. Melatonin (5 mg/kg) was injected i.p. following the same schedule. Immunostainings focusing on GABAergic neurons, OL lineage and myelination were performed on pup brain sections. Melatonin succeeded in preventing the LPS-induced decrease of GABAergic neurons within the retrospenial cortex, and sustainably promoted GABAergic neurons within the dentate gyrus in the inflammatory/infectious context. However, melatonin did not effectively prevent the LPS-induced alterations on OLs and myelination. Therefore, we demonstrated that melatonin partially prevented the deleterious effects of LPS according to the cell type. The timing of exposure related to the cell maturation stage is likely to be critical to achieve an efficient action of melatonin. Furthermore, it can be speculated that melatonin exerts a modest protective effect on extremely preterm infant brains.
Collapse
Affiliation(s)
- Geraldine Favrais
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France. .,Neonatology Unit, CHRU de Tours, Tours, France.
| | - Elie Saliba
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | - Léa Savary
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | - Sylvie Bodard
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | - Zuhal Gulhan
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | | | - Sylvie Chalon
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| |
Collapse
|
11
|
Hao S, Zhong Z, Qu W, Huang Z, Sun F, Qiu M. Melatonin supplementation in the subacute phase after ischemia alleviates postischemic sleep disturbances in rats. Brain Behav 2021; 11:e2366. [PMID: 34520636 PMCID: PMC8553311 DOI: 10.1002/brb3.2366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Sleep disorders are highly prevalent among stroke survivors and impede stroke recovery. It is well established that melatonin has neuroprotective effects in animal models of ischemic stroke. However, as a modulator of endogenous physiological circadian rhythms, the effects of melatonin on poststroke sleep disorders remain unclear. In the present study, we investigated how melatonin delivered intraperitoneally once daily in the subacute phase after stroke onset, influencing neuronal survival, motor recovery, and sleep-wake profiles in rats. METHODS Transient ischemic stroke in male Sprague-Dawley rats was induced with 30 min occlusion of the middle cerebral artery. Melatonin or vehicle was delivered intraperitoneally once daily in the subacute phase, from 2 to 7 days after stroke. Electroencephalogram and electromyogram recordings were obtained simultaneously. RESULTS Compared to the effects observed in the vehicle-treated ischemic group, after 6 daily consecutive treatment of melatonin at 10 mg/kg starting at ischemic/reperfusion day 2, the infarct volume was significantly decreased (from 39.6 to 26.2%), and the degeneration of axons in the ipsilateral striatum and the contralateral corpus callosum were significantly alleviated. Sensorimotor performances were obviously improved as evidenced by significant increases in the latency to falling off the wire and in the use of the impaired forelimb. In addition to those predictable results of reducing brain tissue damage and mitigating behavioral deficits, repeated melatonin treatment during the subacute phase of stroke also alleviated sleep fragmentation through reducing sleep-wake stage transitions and stage bouts, together with increasing stage durations. Furthermore, daily administration of melatonin at 9 a.m. significantly increased the nonrapid eye movement sleep delta power during both the light and dark periods and decreased the degree of reduction of the circadian index. CONCLUSIONS Melatonin promptly reversed ischemia-induced sleep disturbances. The neuroprotective effects of melatonin on ischemic injury may be partially associated with its role in sleep modulation.
Collapse
Affiliation(s)
- Shu‐Mei Hao
- Department of NeurobiologyInstitute for Basic Research on Aging and MedicineSchool of Basic Medical ScienceFudan UniversityShanghaiChina
| | - Zhi‐Gang Zhong
- Department of NeurobiologyInstitute for Basic Research on Aging and MedicineSchool of Basic Medical ScienceFudan UniversityShanghaiChina
- Department of PharmacologySchool of Basic Medical ScienceState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Wei‐Min Qu
- Department of PharmacologySchool of Basic Medical ScienceState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Zhi‐Li Huang
- Department of PharmacologySchool of Basic Medical ScienceState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Feng‐Yan Sun
- Department of NeurobiologyInstitute for Basic Research on Aging and MedicineSchool of Basic Medical ScienceFudan UniversityShanghaiChina
| | - Mei‐Hong Qiu
- Department of NeurobiologyInstitute for Basic Research on Aging and MedicineSchool of Basic Medical ScienceFudan UniversityShanghaiChina
- Department of PharmacologySchool of Basic Medical ScienceState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
12
|
Pang R, Advic-Belltheus A, Meehan C, Fullen DJ, Golay X, Robertson NJ. Melatonin for Neonatal Encephalopathy: From Bench to Bedside. Int J Mol Sci 2021; 22:5481. [PMID: 34067448 PMCID: PMC8196955 DOI: 10.3390/ijms22115481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
Neonatal encephalopathy is a leading cause of morbidity and mortality worldwide. Although therapeutic hypothermia (HT) is now standard practice in most neonatal intensive care units in high resource settings, some infants still develop long-term adverse neurological sequelae. In low resource settings, HT may not be safe or efficacious. Therefore, additional neuroprotective interventions are urgently needed. Melatonin's diverse neuroprotective properties include antioxidant, anti-inflammatory, and anti-apoptotic effects. Its strong safety profile and compelling preclinical data suggests that melatonin is a promising agent to improve the outcomes of infants with NE. Over the past decade, the safety and efficacy of melatonin to augment HT has been studied in the neonatal piglet model of perinatal asphyxia. From this model, we have observed that the neuroprotective effects of melatonin are time-critical and dose dependent. Therapeutic melatonin levels are likely to be 15-30 mg/L and for optimal effect, these need to be achieved within the first 2-3 h after birth. This review summarises the neuroprotective properties of melatonin, the key findings from the piglet and other animal studies to date, and the challenges we face to translate melatonin from bench to bedside.
Collapse
Affiliation(s)
- Raymand Pang
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Adnan Advic-Belltheus
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Christopher Meehan
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Daniel J. Fullen
- Translational Research Office, University College London, London W1T 7NF, UK;
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Nicola J. Robertson
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
13
|
Gurunathan S, Kang MH, Kim JH. Role and Therapeutic Potential of Melatonin in the Central Nervous System and Cancers. Cancers (Basel) 2020; 12:cancers12061567. [PMID: 32545820 PMCID: PMC7352348 DOI: 10.3390/cancers12061567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Melatonin (MLT) is a powerful chronobiotic hormone that controls a multitude of circadian rhythms at several levels and, in recent times, has garnered considerable attention both from academia and industry. In several studies, MLT has been discussed as a potent neuroprotectant, anti-apoptotic, anti-inflammatory, and antioxidative agent with no serious undesired side effects. These characteristics raise hopes that it could be used in humans for central nervous system (CNS)-related disorders. MLT is mainly secreted in the mammalian pineal gland during the dark phase, and it is associated with circadian rhythms. However, the production of MLT is not only restricted to the pineal gland; it also occurs in the retina, Harderian glands, gut, ovary, testes, bone marrow, and lens. Although most studies are limited to investigating the role of MLT in the CNS and related disorders, we explored a considerable amount of the existing literature. The objectives of this comprehensive review were to evaluate the impact of MLT on the CNS from the published literature, specifically to address the biological functions and potential mechanism of action of MLT in the CNS. We document the effectiveness of MLT in various animal models of brain injury and its curative effects in humans. Furthermore, this review discusses the synthesis, biology, function, and role of MLT in brain damage, and as a neuroprotective, antioxidative, anti-inflammatory, and anticancer agent through a collection of experimental evidence. Finally, it focuses on the effect of MLT on several neurological diseases, particularly CNS-related injuries.
Collapse
|
14
|
Yang L, Zhao H, Cui H. Treatment and new progress of neonatal hypoxic-ischemic brain damage. Histol Histopathol 2020; 35:929-936. [PMID: 32167570 DOI: 10.14670/hh-18-214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neonatal hypoxic ischemia (HI) results in different extents of brain damage, and immature brain tissue is particularly sensitive to the stimulation of HI. Hypoxic-ischemic brain damage (HIBD) is a common and serious nervous system disease in neonates, for both full-term infants and preterm infants, and is one of the main causes of neonatal death. The surviving infants are often associated with cerebral palsy, mental retardation, and other sequelae, which severely affect quality of life. For term infants, hypoxia and ischemia mainly affect gray matter, whereas in preterm infants, the white matter. However, up to now, inadequate standards and specific measures that can be used to treat hypoxic-ischemic brain injury are available. Recently, in addition to supportive therapy and symptomatic treatment, research on the treatment of hypoxic-ischemic brain injury has focused on the following aspects: hypothermia therapy, stem cell therapy, neuroprotective agents, ibuprofen, and combination therapy. In this review, we will summarize the treatment of HIBD and make suggestions for the future treatment direction.
Collapse
Affiliation(s)
- Lijun Yang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Hehua Zhao
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Cui
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Merlo S, Luaces JP, Spampinato SF, Toro-Urrego N, Caruso GI, D’Amico F, Capani F, Sortino MA. SIRT1 Mediates Melatonin's Effects on Microglial Activation in Hypoxia: In Vitro and In Vivo Evidence. Biomolecules 2020; 10:biom10030364. [PMID: 32120833 PMCID: PMC7175216 DOI: 10.3390/biom10030364] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Melatonin exerts direct neuroprotection against cerebral hypoxic damage, but the mechanisms of its action on microglia have been less characterized. Using both in vitro and in vivo models of hypoxia, we here focused on the role played by silent mating type information regulation 2 homolog 1 (SIRT1) in melatonin's effects on microglia. Viability of rat primary microglia or microglial BV2 cells and SH-SY5Y neurons was significantly reduced after chemical hypoxia with CoCl2 (250 μM for 24 h). Melatonin (1 μM) significantly attenuated CoCl2 toxicity on microglia, an effect prevented by selective SIRT1 inhibitor EX527 (5 μM) and AMP-activated protein kinase (AMPK) inhibitor BML-275 (2 μM). CoCl2 did not modify SIRT1 expression, but prevented nuclear localization, while melatonin appeared to restore it. CoCl2 induced nuclear localization of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-kB), an effect contrasted by melatonin in an EX527-dependent fashion. Treatment of microglia with melatonin attenuated potentiation of neurotoxicity. Common carotid occlusion was performed in p7 rats, followed by intraperitoneal injection of melatonin (10 mg/kg). After 24 h, the number of Iba1+ microglia in the hippocampus of hypoxic rats was significantly increased, an effect not prevented by melatonin. At this time, SIRT1 was only detectable in the amoeboid, Iba1+ microglial population selectively localized in the corpus callosum. In these cells, nuclear localization of SIRT1 was significantly lower in hypoxic animals, an effect prevented by melatonin. NF-kB showed an opposite expression pattern, where nuclear localization in Iba1+ cells was significantly higher in hypoxic, but not in melatonin-treated animals. Our findings provide new evidence for a direct effect of melatonin on hypoxic microglia through SIRT1, which appears as a potential pharmacological target against hypoxic-derived neuronal damage.
Collapse
Affiliation(s)
- Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
| | - Juan Pablo Luaces
- Laboratorio de Citoarquitectura y Plasticidad, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1122, Argentina; (J.P.L.); (N.T.-U.); (F.C.)
| | - Simona Federica Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
| | - Nicolas Toro-Urrego
- Laboratorio de Citoarquitectura y Plasticidad, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1122, Argentina; (J.P.L.); (N.T.-U.); (F.C.)
| | - Grazia Ilaria Caruso
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
| | - Fabio D’Amico
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Francisco Capani
- Laboratorio de Citoarquitectura y Plasticidad, Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1122, Argentina; (J.P.L.); (N.T.-U.); (F.C.)
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy; (S.M.); (S.F.S.); (G.I.C.)
- Correspondence: ; Tel.: +39-095-4781192
| |
Collapse
|
16
|
Melatonin's efficacy in stroke patients; a matter of dose? A systematic review. Toxicol Appl Pharmacol 2020; 392:114933. [PMID: 32112789 DOI: 10.1016/j.taap.2020.114933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
There is a lack of effective therapies for stroke patients; its treatment is even more difficult considering the unexpected onset of the disease. In the last decade, melatonin has emerged as a promising neuroprotective agent which is able to cross the blood-brain-barrier (BBB) and with a low toxicity profile. The aim of this systematic review was to summarize and critically review clinical and pre-clinical evidence related to melatonin's effectiveness as a stroke treatment. Together with a comparative dose extrapolation with those used in the selected randomized controlled trials (RCTs), and based on these data to discuss whether the administered doses correlate with those advisable in human patients. To address this purpose, we performed a systematic review of the available literature. A total of 529 records were screened with the selecting of six full articles containing RCTs that met the inclusion/exclusion criteria. The evidence drawn from these six reports was analyzed to identify remaining gaps, treatment efficacy, and to suggest future directions. The primary outcome reported was the reduction of the oxidative response; the secondary outcome was the increase of the survival rate of the patients in the intervention groups. Calculations derived from animal studies revealed that the translational doses to humans were substantially higher than those employed in the RCTs. The findings of this systematic review revealed that there are insufficient RCTs to prove melatonin's value in stroke patients. Nevertheless, the evidence is promising, and further clinical research may support the benefits of melatonin in stroke patients, if the adequate dose is administered.
Collapse
|
17
|
Cardinali DP. An Assessment of Melatonin's Therapeutic Value in the Hypoxic-Ischemic Encephalopathy of the Newborn. Front Synaptic Neurosci 2019; 11:34. [PMID: 31920617 PMCID: PMC6914689 DOI: 10.3389/fnsyn.2019.00034] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the most frequent causes of brain injury in the newborn. From a pathophysiological standpoint, a complex process takes place at the cellular and tissue level during the development of newborn brain damage in the absence of oxygen. Initially, the lesion is triggered by a deficit in the supply of oxygen to cells and tissues, causing a primary energy insufficiency. Subsequently, high energy phosphate levels recover transiently (the latent phase) that is followed by a secondary phase, in which many of the pathophysiological mechanisms involved in the development of neonatal brain damage ensue (i.e., excitotoxicity, massive influx of Ca2+, oxidative and nitrosative stress, inflammation). This leads to cell death by necrosis or apoptosis. Eventually, a tertiary phase occurs, characterized by the persistence of brain damage for months and even years after the HI insult. Hypothermia is the only therapeutic strategy against HIE that has been incorporated into neonatal intensive care units with limited success. Thus, there is an urgent need for agents with the capacity to curtail acute and chronic damage in HIE. Melatonin, a molecule of unusual phylogenetic conservation present in all known aerobic organisms, has a potential role as a neuroprotective agent both acutely and chronically in HIE. Melatonin displays a remarkable antioxidant and anti-inflammatory activity and is capable to cross the blood-brain barrier readily. Moreover, in many animal models of brain degeneration, melatonin was effective to impair chronic mechanisms of neuronal death. In animal models, and in a limited number of clinical studies, melatonin increased the level of protection developed by hypothermia in newborn asphyxia. This review article summarizes briefly the available therapeutic strategies in HIE and assesses the role of melatonin as a potentially relevant therapeutic tool to cover the hypoxia-ischemia phase and the secondary and tertiary phases following a hypoxic-ischemic insult.
Collapse
Affiliation(s)
- Daniel P. Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| |
Collapse
|
18
|
Variations in melatonin levels in preterm and term human breast milk during the first month after delivery. Sci Rep 2019; 9:17984. [PMID: 31784629 PMCID: PMC6884443 DOI: 10.1038/s41598-019-54530-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
The objectives of the present study were to examine the dynamic changes in breast milk melatonin throughout the course of lactation and to explore factors associated with changes in melatonin concentrations and rhythms in both preterm and term breast milk. Breast milk was collected sequentially at 03:00, 09:00, 15:00, and 21:00 in one day. Melatonin was analyzed in 392 breast milk samples from 98 healthy nursing mothers at 0 to 30 days postpartum. In both preterm and term breast milk, the melatonin concentration presented a circadian rhythm with the acrophase at around 03:00. Subgroup analysis showed the peak melatonin concentrations differed significantly across lactation stages, with the highest concentration in the colostrum, followed by transitional and mature breast milk. At 03:00, preterm breast milk had a higher concentration of melatonin than term breast milk in the colostrum (28.67 pg/mL vs. 25.31 pg/mL, p < 0.022), transitional breast milk (24.70 pg/mL vs. 22.55 pg/mL), and mature breast milk (22.37 pg/mL vs. 20.12 pg /mL). Further studies are warranted for their roles and significance on melatonin in breast milk in nutrition and metabolism of neonates.
Collapse
|
19
|
Higher Serum Melatonin Levels during the First Week of Malignant Middle Cerebral Artery Infarction in Non-Surviving Patients. Brain Sci 2019; 9:brainsci9120346. [PMID: 31795260 PMCID: PMC6955878 DOI: 10.3390/brainsci9120346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Objective: The activation of different physiopathological pathways (neuroinflammation, apoptosis, and oxidation) can lead to secondary brain injury in ischemic stroke, and in animal models the administration of melatonin has reduced that secondary injury. Lower levels of serum melatonin were found at the time of admission of cerebral infarction in surviving patients than in non-surviving patients. Thus, we carried out this prospective and observational study with the aim of exploring serum melatonin levels in the first week of a malignant middle cerebral artery infarction (MMCAI) in surviving and non-surviving patients, and to explore the capacity of those levels to predict mortality. Methods: Patients with severe MMCAI, defined as computed tomography showing acute infarction in more than 50% of the territory and Glasgow Coma Scale (GCS) lower than 9, were included in the study. We measured serum melatonin concentrations at days 1, 4, and 8 of MMCAI. Mortality at 30 days was the endpoint of our study. Results: Non-surviving patients (n = 34) compared to surviving patients (n = 34) showed higher serum melatonin levels at days 1 (p < 0.001), 4 (p < 0.001), and 8 (p = 0.001) of MMCAI. Serum melatonin concentrations at days 1, 4, and 8 of MMCAI had an area under the curve (AUC) (95% confidence interval (CI)) in the prediction of mortality of 0.89 (0.80–0.96; p < 0.001), 0.81 (0.68–0.91; p < 0.001), and 0.82 (0.68–0.92; p < 0.001), respectively. Conclusions: The novel findings of our study were that serum melatonin levels in the first week of MMCAI were higher in non-surviving patients, and were able to predict mortality.
Collapse
|
20
|
Lorente L, Martín MM, Abreu-González P, Sabatel R, Ramos L, Argueso M, Solé-Violán J, Cáceres JJ, Jiménez A, García-Marín V. Non-survivor patients with malignant middle cerebral artery infarction showed persistently high serum malondialdehyde levels. BMC Neurol 2019; 19:238. [PMID: 31623565 PMCID: PMC6798363 DOI: 10.1186/s12883-019-1479-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 11/20/2022] Open
Abstract
Objective Previously there have been found higher circulating malondialdehyde levels during the first week of ischemic stroke in patients with worst neurological functional outcome, and at moment of ischemic stroke in non-survivor patients. Thus, the aim of our study was to determine the potential role of serum malondialdehyde levels during the first week of a severe cerebral infarction to mortality prediction. Methods This study was observational, prospective, and multicenter. We included patients with a severe malignant middle cerebral artery infarction (MMCAI) defined as patients with computed tomography showing acute infarction in more than of 50% of the territory and Glasgow Coma Scale (GCS) lower than 9. We determined serum concentrations of malondialdehyde on days 1, 4 and 8 of MMCAI. Results Serum malondialdehyde concentrations at days 1 (p < 0.001), 4 (p < 0.001), and 8 (p = 0.001) of MMCAI in non-survivor patients (n = 34) were higher than in survivor patients (n = 34). ROC curve analyses showed that serum malondialdehyde concentrations at days 1, 4, and 8 of MMCAI had an AUC (95% CI) to predict 30-day mortality of 0.77 (0.65–0.86; p < 0.001), 0.82 (0.69–0.91; p < 0.001) and 0.84 (0.70–0.93; p < 0.001) respectively. Conclusions The new findings of our study were that serum malondialdehyde levels during the first week of MMCAI could be used as biomarkers to mortality prediction.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna -, 38320, Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, 38010, Santa Cruz de Tenerife, Spain
| | - Pedro Abreu-González
- Deparment of Phisiology, Faculty of Medicine, University of the La Laguna, 38320, Santa Cruz de Tenerife, La Laguna, Spain
| | - Rafael Sabatel
- Deparment of Radiology, Hospital Universitario de Canarias, Ofra, s/n. La Laguna -, 38320, Santa Cruz de Tenerife, Spain
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, 38713, Breña Alta, La Palma, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez n°17-19, 46004, Valencia, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, CIBERES, Barranco de la Ballena s/n, 35010, Las Palmas de Gran Canaria, Spain
| | - Juan J Cáceres
- Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n, ia-35016, Las Palmas de Gran Canar, Spain
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna -, 38320, Santa Cruz de Tenerife, Spain
| | - Victor García-Marín
- Deparment of Neurosurgery, Hospital Universitario de Canarias, Ofra, s/n. La Laguna -, 38320, Santa Cruz de Tenerife, Spain
| |
Collapse
|
21
|
McNamara NB, Miron VE. Microglia in developing white matter and perinatal brain injury. Neurosci Lett 2019; 714:134539. [PMID: 31614181 DOI: 10.1016/j.neulet.2019.134539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022]
Abstract
Perinatal brain injury (PBI) to the developing white matter results in hypomyelination of axons and can cause long-term motor and cognitive deficits e.g. cerebral palsy. There are currently no approved therapies aimed at repairing the white matter following insult, underscoring the need to investigate the mechanisms underlying the pathogenesis of PBI. Microglia have been strongly implicated, but their function and heterogeneity in this context remain poorly understood, posing a barrier to the development of microglia-targeted therapies for white matter repair following PBI. In this review, we discuss the roles of microglia in normal white matter development and in PBI, and potential drug strategies to influence microglial responses in this setting.
Collapse
Affiliation(s)
- Niamh B McNamara
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique E Miron
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
22
|
Balduini W, Weiss MD, Carloni S, Rocchi M, Sura L, Rossignol C, Longini M, Bazzini F, Perrone S, Ott D, Wadhawan R, Buonocore G. Melatonin pharmacokinetics and dose extrapolation after enteral infusion in neonates subjected to hypothermia. J Pineal Res 2019; 66:e12565. [PMID: 30734962 DOI: 10.1111/jpi.12565] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Neonates with hypoxic-ischemic encephalopathy (HIE) undergoing hypothermia may benefit from adjunctive therapy with melatonin. However, melatonin safety, pharmacokinetics (PK), and dosage in this sensitive population are still unknown. METHODS AND RESULTS This study assessed the PK and safety of melatonin enteral administration to neonates with HIE undergoing hypothermia. Melatonin was infused at 0.5 mg/kg in five neonates with HIE undergoing hypothermia. Infusion started 1 hour after the neonates reached the target temperature of 33.5°C. Blood samples were collected before and at selective times after melatonin infusion. Abdominal complications or clinically significant changes in patients' vital signs were not found during or after melatonin. The peak plasma concentration reached 0.25 µg/mL. The area under the curve in 24 hours was 4.35 µg/mL*h. DISCUSSION Melatonin half-life and clearance were prolonged, and the distribution volume decreased compared to adults. In silico simulation estimated that the steady state can be reached after four infusions. Hypothermia does not affect melatonin PK. In humans high blood concentrations with lower doses can be achieved compared to animal experimentation, although intravenous administration is advised in the neonate population. Our study is a preparatory step for future clinical studies aimed at assessing melatonin efficacy in HIE.
Collapse
Affiliation(s)
- Walter Balduini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Michael D Weiss
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Marco Rocchi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Livia Sura
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Candace Rossignol
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Mariangela Longini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Francesco Bazzini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Serafina Perrone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Deborah Ott
- Department of Pediatrics, Florida Hospital, Orlando, Florida
| | - Rajan Wadhawan
- Department of Pediatrics, Florida Hospital, Orlando, Florida
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
23
|
Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis 2019; 10:317. [PMID: 30962427 PMCID: PMC6453953 DOI: 10.1038/s41419-019-1556-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Melatonin, more commonly known as the sleep hormone, is mainly secreted by the pineal gland in dark conditions and regulates the circadian rhythm of the organism. Its intrinsic properties, including high cell permeability, the ability to easily cross both the blood–brain and placenta barriers, and its role as an endogenous reservoir of free radical scavengers (with indirect extra activities), confer it beneficial uses as an adjuvant in the biomedical field. Melatonin can exert its effects by acting through specific cellular receptors on the plasma membrane, similar to other hormones, or through receptor-independent mechanisms that involve complex molecular cross talk with other players. There is increasing evidence regarding the extraordinary beneficial effects of melatonin, also via exogenous administration. Here, we summarize molecular pathways in which melatonin is considered a master regulator, with attention to cell death and inflammation mechanisms from basic, translational and clinical points of view in the context of newborn care.
Collapse
|
24
|
Guo WL, Qi ZP, Yu L, Sun TW, Qu WR, Liu QQ, Zhu Z, Li R. Melatonin combined with chondroitin sulfate ABC promotes nerve regeneration after root-avulsion brachial plexus injury. Neural Regen Res 2019; 14:328-338. [PMID: 30531017 PMCID: PMC6301163 DOI: 10.4103/1673-5374.244796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
After nerve-root avulsion injury of the brachial plexus, oxidative damage, inflammatory reaction, and glial scar formation can affect nerve regeneration and functional recovery. Melatonin (MT) has been shown to have good anti-inflammatory, antioxidant, and neuroprotective effects. Chondroitin sulfate ABC (ChABC) has been shown to metabolize chondroitin sulfate proteoglycans and can reduce colloidal scar formation. However, the effect of any of these drugs alone in the recovery of nerve function after injury is not completely satisfactory. Therefore, this experiment aimed to explore the effect and mechanism of combined application of melatonin and chondroitin sulfate ABC on nerve regeneration and functional recovery after nerve-root avulsion of the brachial plexus. Fifty-two Sprague-Dawley rats were selected and their C5-7 nerve roots were avulsed. Then, the C6 nerve roots were replanted to construct the brachial plexus nerve-root avulsion model. After successful modeling, the injured rats were randomly divided into four groups. The first group (injury) did not receive any drug treatment, but was treated with a pure gel-sponge carrier nerve-root implantation and an ethanol-saline solution via intraperitoneal (i.p.) injection. The second group (melatonin) was treated with melatonin via i.p. injection. The third group (chondroitin sulfate ABC) was treated with chondroitin sulfate ABC through local administration. The fourth group (melatonin + chondroitin sulfate ABC) was treated with melatonin through i.p. injection and chondroitin sulfate ABC through local administration. The upper limb Terzis grooming test was used 2-6 weeks after injury to evaluate motor function. Inflammation and oxidative damage within 24 hours of injury were evaluated by spectrophotometry. Immunofluorescence and neuroelectrophysiology were used to evaluate glial scar, neuronal protection, and nerve regeneration. The results showed that the Terzis grooming-test scores of the three groups that received treatment were better than those of the injury only group. Additionally, these three groups showed lower levels of C5-7 intramedullary peroxidase and malondialdehyde. Further, glial scar tissue in the C6 spinal segment was smaller and the number of motor neurons was greater. The endplate area of the biceps muscle was larger and the structure was clear. The latency of the compound potential of the myocutaneous nerve-biceps muscle was shorter. All these indexes were even greater in the melatonin + chondroitin sulfate ABC group than in the melatonin only or chondroitin sulfate ABC only groups. Thus, the results showed that melatonin combined with chondroitin sulfate ABC can promote nerve regeneration after nerve-root avulsion injury of the brachial plexus, which may be achieved by reducing oxidative damage and inflammatory reaction in the injury area and inhibiting glial scar formation.
Collapse
Affiliation(s)
- Wen-Lai Guo
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhi-Ping Qi
- Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Li Yu
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Tian-Wen Sun
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Wen-Rui Qu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qian-Qian Liu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhe Zhu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rui Li
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
25
|
Lorente L, Martín MM, Abreu-González P, Pérez-Cejas A, Ramos L, Argueso M, Solé-Violán J, Cáceres JJ, Jiménez A, García-Marín V. Serum melatonin levels are associated with mortality in patients with malignant middle cerebral artery infarction. J Int Med Res 2018; 46:3268-3277. [PMID: 29848129 PMCID: PMC6134645 DOI: 10.1177/0300060518775008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives Lower serum melatonin levels are found in patients with ischaemic stroke compared with healthy controls. This study aimed to determine whether serum melatonin levels are associated with peroxidation status, antioxidant status, and mortality in patients with ischaemic stroke. Methods Patients with severe malignant middle cerebral artery infarction (MMCAI), defined as a Glasgow coma scale (GCS) score lower than 9, were included. Serum levels of melatonin, malondialdehyde (to assess lipid peroxidation), and total antioxidant capacity at the time of diagnosing MMCAI were determined. We chose 30-day mortality as the endpoint of the study. Results We found significantly higher serum levels of melatonin, total antioxidant capacity, and malondialdehyde in non-survivors (n = 32) than in survivors (n = 32) with MMCAI. Serum melatonin levels were associated with 30-day mortality (odds ratio = 2.205; 95% confidence interval = 1.294-3.759) after controlling for GCS score and age. We found a positive association between serum melatonin levels and total antioxidant capacity (rho = 0.36), and between serum melatonin and malondialdehyde levels (rho = 0.35). Conclusions Our study shows that serum melatonin levels are associated with peroxidation status, antioxidant status, and mortality in patients with MMCAI.
Collapse
Affiliation(s)
- Leonardo Lorente
- 1 Intensive Care Unit, Hospital Universitario de Canarias, Ofra s/n, La Laguna, Santa Cruz de Tenerife, Spain
| | - María M Martín
- 2 Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, Santa Cruz de Tenerife, Spain
| | - Pedro Abreu-González
- 3 Department of Physiology, Faculty of Medicine, University of the La Laguna, Ofra s/n, La Laguna, Santa Cruz de Tenerife, Spain
| | - Antonia Pérez-Cejas
- 4 Laboratory Department, Hospital Universitario de Canarias, Ofra s/n, La Laguna, Tenerife, Spain
| | - Luis Ramos
- 5 Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, Breña Alta, La Palma, Spain
| | - Mónica Argueso
- 6 Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda, Blasco Ibáñez n°17-19, Valencia, Spain
| | - Jordi Solé-Violán
- 7 Intensive Care Unit, Hospital Universitario Dr. Negrín, CIBERES, Barranco de la Ballena s/n, Las Palmas de Gran Canaria, Spain
| | - Juan J Cáceres
- 8 Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n, Las Palmas de Gran Canaria, Spain
| | - Alejandro Jiménez
- 9 Research Unit, Hospital Universitario de Canarias, Ofra s/n, La Laguna, Santa Cruz de Tenerife, Spain
| | - Victor García-Marín
- 10 Department of Neurosurgery, Hospital Universitario de Canarias, Ofra s/n, La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
26
|
Wang Q, Lv H, Lu L, Ren P, Li L. Neonatal hypoxic-ischemic encephalopathy: emerging therapeutic strategies based on pathophysiologic phases of the injury. J Matern Fetal Neonatal Med 2018; 32:3685-3692. [PMID: 29681183 DOI: 10.1080/14767058.2018.1468881] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neonatal hypoxic ischemic encephalopathy (HIE) is an important cause of neonatal death and disability. At present, there is no unified standard and specialized treatment method for neonatal HIE. In clinical practice, we have found that a gap remains between preclinical medical research and clinical application in the treatment of neonatal HIE. To promote an organic combination of preclinical research and clinical application, we propose the different phases as intervention targets, based on the pathophysiologic changes in phases I, II, and III of neonatal HIE; moreover, we suggest transformative medicine as a principle that may improve the therapeutic effect by blocking the progression of the disease to an irreversible stage. For instance, in phase I, mild hypothermia, free radical scavenger (erythropoietin, hydrogen-rich saline), excitatory amino acid receptor blocker, and neuroprotective agents should be administered to neonates with moderate/severe HIE; in phase II, following phase I treatment, anti-inflammatory agents, neuroprotective or nerve regeneration agents, and stem cell transplantation should be administered to patients; in phase III, anti-inflammatory agents, neuroprotective or nerve regeneration agents, and stem cell transplantation should be administered to patients. As soon as the patient's condition has stabilized, acupuncture, massage, and rehabilitation training should be performed. Following further study of stem cells, stem cell transplantation is expected to become the most promising therapeutic candidate for treatment of severe neonatal HIE with its sequelae.
Collapse
Affiliation(s)
- Qiuli Wang
- a Department of Neonatology , Handan Maternal and Child Health Care Hospital , Handan , PR China
| | - Hongyan Lv
- a Department of Neonatology , Handan Maternal and Child Health Care Hospital , Handan , PR China.,b Department of Neonatal Pathology , Handan Maternal and Child Health Care Hospital , Handan , PR China
| | - Lixin Lu
- c Department of Pediatrics , Handan 7th Hospital , Handan , PR China
| | - Pengshun Ren
- a Department of Neonatology , Handan Maternal and Child Health Care Hospital , Handan , PR China
| | - Lianxiang Li
- b Department of Neonatal Pathology , Handan Maternal and Child Health Care Hospital , Handan , PR China.,d Department of Neural Development and Neural Pathology , Hebei University of Engineering School of Medicine , Handan , PR China
| |
Collapse
|
27
|
Jantzie LL, Oppong AY, Conteh FS, Yellowhair TR, Kim J, Fink G, Wolin AR, Northington FJ, Robinson S. Repetitive Neonatal Erythropoietin and Melatonin Combinatorial Treatment Provides Sustained Repair of Functional Deficits in a Rat Model of Cerebral Palsy. Front Neurol 2018; 9:233. [PMID: 29706928 PMCID: PMC5908903 DOI: 10.3389/fneur.2018.00233] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/26/2018] [Indexed: 12/21/2022] Open
Abstract
Cerebral palsy (CP) is the leading cause of motor impairment for children worldwide and results from perinatal brain injury (PBI). To test novel therapeutics to mitigate deficits from PBI, we developed a rat model of extreme preterm birth (<28 weeks of gestation) that mimics dual intrauterine injury from placental underperfusion and chorioamnionitis. We hypothesized that a sustained postnatal treatment regimen that combines the endogenous neuroreparative agents erythropoietin (EPO) and melatonin (MLT) would mitigate molecular, sensorimotor, and cognitive abnormalities in adults rats following prenatal injury. On embryonic day 18 (E18), a laparotomy was performed in pregnant Sprague–Dawley rats. Uterine artery occlusion was performed for 60 min to induce placental insufficiency via transient systemic hypoxia-ischemia, followed by intra-amniotic injections of lipopolysaccharide, and laparotomy closure. On postnatal day 1 (P1), approximately equivalent to 30 weeks of gestation, injured rats were randomized to an extended EPO + MLT treatment regimen, or vehicle (sterile saline) from P1 to P10. Behavioral assays were performed along an extended developmental time course (n = 6–29). Open field testing shows injured rats exhibit hypermobility and disinhibition and that combined neonatal EPO + MLT treatment repairs disinhibition in injured rats, while EPO alone does not. Furthermore, EPO + MLT normalizes hindlimb deficits, including reduced paw area and paw pressure at peak stance, and elevated percent shared stance after prenatal injury. Injured rats had fewer social interactions than shams, and EPO + MLT normalized social drive. Touchscreen operant chamber testing of visual discrimination and reversal shows that EPO + MLT at least partially normalizes theses complex cognitive tasks. Together, these data indicate EPO + MLT can potentially repair multiple sensorimotor, cognitive, and behavioral realms following PBI, using highly translatable and sophisticated developmental testing platforms.
Collapse
Affiliation(s)
- Lauren L Jantzie
- Department of Pediatrics, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, NM, United States.,Department of Neurosciences, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Akosua Y Oppong
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Fatu S Conteh
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Tracylyn R Yellowhair
- Department of Pediatrics, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Joshua Kim
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Gabrielle Fink
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Adam R Wolin
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| | - Frances J Northington
- Neonatology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Shenandoah Robinson
- Pediatric Neurosurgery, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
28
|
Carloni S, Proietti F, Rocchi M, Longini M, Marseglia L, D'Angelo G, Balduini W, Gitto E, Buonocore G. Melatonin Pharmacokinetics Following Oral Administration in Preterm Neonates. Molecules 2017; 22:molecules22122115. [PMID: 29194416 PMCID: PMC6149762 DOI: 10.3390/molecules22122115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 12/11/2022] Open
Abstract
Melatonin possesses potential efficacy in perinatal brain injuries, and has been proposed as adjunctive pharmacological therapy in combination with hypothermia in the clinical setting. However, the pharmacokinetics of melatonin in preterm and term newborns is still unknown. The aim of this study was to analyze the pharmacokinetics of melatonin after intragastric administration in preterm infants. Preterm newborns were enrolled 24–72 h after birth, and randomly assigned to three groups receiving a single bolus of 0.5 mg·kg−1 melatonin, or 3 boluses of 1 or 5 mg·kg−1 of melatonin at 24-h intervals. Blood samples were collected before and at selective times after melatonin administration. The half-life of melatonin in plasma ranged from 7.98 to 10.94 h, and the area under the curve (AUC) from 10.48 to 118.17 µg·mL−1·h−1. Our results indicate a different pharmacokinetic profile in premature newborns, compared to adults and experimental animals. The high peak plasma concentrations and the long half-life indicate that in the neonatal clinical setting, it is possible to obtain and maintain high serum concentrations using a single administration of melatonin repeated every 12/24 h.
Collapse
Affiliation(s)
- Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy.
| | - Fabrizio Proietti
- Department of Molecular and Developmental Medicine, University of Siena, Viale Bracci, 53100 Siena, Italy.
| | - Marco Rocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy.
| | - Mariangela Longini
- Department of Molecular and Developmental Medicine, University of Siena, Viale Bracci, 53100 Siena, Italy.
| | - Lucia Marseglia
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi"-Neonatal Intensive Care Unit, University of Messina, Via Consolare Valeria 1, 98125 Gazzi Messina, Italy.
| | - Gabriella D'Angelo
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi"-Neonatal Intensive Care Unit, University of Messina, Via Consolare Valeria 1, 98125 Gazzi Messina, Italy.
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy.
| | - Eloisa Gitto
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi"-Neonatal Intensive Care Unit, University of Messina, Via Consolare Valeria 1, 98125 Gazzi Messina, Italy.
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Viale Bracci, 53100 Siena, Italy.
| |
Collapse
|
29
|
Domínguez Rubio AP, Correa F, Aisemberg J, Dorfman D, Bariani MV, Rosenstein RE, Zorrilla Zubilete M, Franchi AM. Maternal administration of melatonin exerts short- and long-term neuroprotective effects on the offspring from lipopolysaccharide-treated mice. J Pineal Res 2017; 63. [PMID: 28776755 DOI: 10.1111/jpi.12439] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/31/2017] [Indexed: 01/02/2023]
Abstract
Preterm birth is a major contributor to early and delayed physical and cognitive impairment. Epidemiological and experimental data indicate that maternal infections are a significant and preventable cause of preterm birth. Recently, melatonin has been suggested to exert neuroprotective effects in several models of brain injury. Here, we sought to investigate whether the administration of melatonin is able to prevent lipopolysaccharide (LPS)-induced fetal brain damage in a model of LPS-induced preterm labor. For this purpose, 15-day pregnant BALB/c mice received intraperitoneally 2 doses of LPS or vehicle: the first one at 10:00 hours (0.26 mg/kg) and the second at 13:00 hours (0.52 mg/kg). On day 14 of pregnancy, a group of mice was subcutaneously implanted with a pellet of 25 mg melatonin. This experimental protocol resulted in 100% of preterm birth and pup death in the LPS group and a 50% of term birth and pup survival in the melatonin + LPS group. In the absence of melatonin, fetuses from LPS-treated mothers showed histological signs of brain damage, microglial/macrophage activation, and higher levels of IL-1β, inducible nitric oxide synthase (NOS), and neuronal NOS mRNAs as well as increased histone acetyltransferase activity and histone H3 hyperacetylation. In contrast, antenatal administration of melatonin prevented LPS-induced fetal brain damage. Moreover, when behavioral traits were analyzed in the offspring from control, melatonin, and melatonin + LPS, no significant differences were found, suggesting that melatonin prevented LPS-induced long-term neurodevelopmental impairments. Collectively, our results suggest that melatonin could be a new therapeutic tool to prevent fetal brain damage and its long-term consequences induced by maternal inflammation.
Collapse
Affiliation(s)
- Ana Paula Domínguez Rubio
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Correa
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julieta Aisemberg
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratorio de Neuroquimíca Retiniana y Oftalmología Experimental, Departamento de Bioquímica Humana, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Victoria Bariani
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ruth Estela Rosenstein
- Laboratorio de Neuroquimíca Retiniana y Oftalmología Experimental, Departamento de Bioquímica Humana, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Zorrilla Zubilete
- Laboratorio de Neuropsicofarmacología del Estrés, Departamento de Farmacología, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana María Franchi
- Laboratorio de Fisiopatología de la Preñez y el Parto, Facultad de Medicina, Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
30
|
Yawno T, Mahen M, Li J, Fahey MC, Jenkin G, Miller SL. The Beneficial Effects of Melatonin Administration Following Hypoxia-Ischemia in Preterm Fetal Sheep. Front Cell Neurosci 2017; 11:296. [PMID: 29018332 PMCID: PMC5615225 DOI: 10.3389/fncel.2017.00296] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/06/2017] [Indexed: 11/24/2022] Open
Abstract
Melatonin (MLT) is an endogenous hormone that controls circadian cycle. MLT has additional important properties that make it appealing as a neuroprotective agent—it is a potent anti-oxidant, with anti-apoptotic and anti-inflammatory properties. MLT is safe for administration during pregnancy or to the newborn after birth, and can reduce white matter brain injury under conditions of chronic fetal hypoxia. Accordingly, in the current study, we examined whether an intermediate dose of MLT could restore white matter brain development when administered after an acute hypoxic ischemic (HI) insult in preterm fetal sheep. Fifteen fetal sheep at 95–98 days gestation were instrumented with femoral artery and vein catheters, and a silastic cuff placed around the umbilical cord. At 102 days gestation, the cuff was inflated, causing complete umbilical cord occlusion for 25 min in 10 fetuses, to induce acute severe HI. Five HI fetuses received intravenous MLT for 24 h beginning at 2 h after HI. The remaining five fetuses were administered saline alone. Ten days after HI, the fetal brain was collected from each animal and white and gray matter neuropathology assessed. HI caused a significant increase in apoptotic cell death (TUNEL+), activated microglia (Iba-1+), and oxidative stress (8-OHdG+) within the subventricular and subcortical white matter. HI reduced the total number of oligodendrocytes and CNPase+ myelin density. MLT administration following HI decreased apoptosis, inflammation and oxidative stress within the white matter. MLT had intermediate benefits for the developing white matter: it increased oligodendrocyte cell number within the periventricular white matter only, and improved CNPase+ myelin density within the subcortical but not the striatal white matter. MLT administration following HI was also associated with improved neuronal survival within the cortex. Neuropathology in preterm infants is complex and mediated by multiple mechanisms, including inflammation, oxidative stress and apoptotic pathways. Treatment with MLT presents a safe approach to neuroprotective therapy in preterm infants but appears to have brain region-specific benefits within the white matter.
Collapse
Affiliation(s)
- Tamara Yawno
- The Ritchie Centre, Hudson Institute of Medical Research, ClaytonVIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, ClaytonVIC, Australia
| | - Mawin Mahen
- The Ritchie Centre, Hudson Institute of Medical Research, ClaytonVIC, Australia
| | - Jingang Li
- The Ritchie Centre, Hudson Institute of Medical Research, ClaytonVIC, Australia
| | - Michael C Fahey
- The Ritchie Centre, Hudson Institute of Medical Research, ClaytonVIC, Australia.,Department of Paediatrics, Monash Medical Centre, ClaytonVIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, ClaytonVIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, ClaytonVIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, ClaytonVIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, ClaytonVIC, Australia
| |
Collapse
|
31
|
Leaw B, Nair S, Lim R, Thornton C, Mallard C, Hagberg H. Mitochondria, Bioenergetics and Excitotoxicity: New Therapeutic Targets in Perinatal Brain Injury. Front Cell Neurosci 2017; 11:199. [PMID: 28747873 PMCID: PMC5506196 DOI: 10.3389/fncel.2017.00199] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022] Open
Abstract
Injury to the fragile immature brain is implicated in the manifestation of long-term neurological disorders, including childhood disability such as cerebral palsy, learning disability and behavioral disorders. Advancements in perinatal practice and improved care mean the majority of infants suffering from perinatal brain injury will survive, with many subtle clinical symptoms going undiagnosed until later in life. Hypoxic-ischemia is the dominant cause of perinatal brain injury, and constitutes a significant socioeconomic burden to both developed and developing countries. Therapeutic hypothermia is the sole validated clinical intervention to perinatal asphyxia; however it is not always neuroprotective and its utility is limited to developed countries. There is an urgent need to better understand the molecular pathways underlying hypoxic-ischemic injury to identify new therapeutic targets in such a small but critical therapeutic window. Mitochondria are highly implicated following ischemic injury due to their roles as the powerhouse and main energy generators of the cell, as well as cell death processes. While the link between impaired mitochondrial bioenergetics and secondary energy failure following loss of high-energy phosphates is well established after hypoxia-ischemia (HI), there is emerging evidence that the roles of mitochondria in disease extend far beyond this. Indeed, mitochondrial turnover, including processes such as mitochondrial biogenesis, fusion, fission and mitophagy, affect recovery of neurons after injury and mitochondria are involved in the regulation of the innate immune response to inflammation. This review article will explore these mitochondrial pathways, and finally will summarize past and current efforts in targeting these pathways after hypoxic-ischemic injury, as a means of identifying new avenues for clinical intervention.
Collapse
Affiliation(s)
- Bryan Leaw
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia
| | - Syam Nair
- Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical ResearchClayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University ClaytonClayton, VIC, Australia
| | - Claire Thornton
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom
| | - Carina Mallard
- Perinatal Center, Institute of Physiology and Neuroscience, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Henrik Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' HospitalLondon, United Kingdom.,Perinatal Center, Department of Clinical Sciences, Sahlgrenska Academy, Gothenburg UniversityGothenburg, Sweden
| |
Collapse
|
32
|
Ramos E, Patiño P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, de Los Rios C, Romero A, Egea J. Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med 2017; 104:32-53. [PMID: 28065781 DOI: 10.1016/j.freeradbiomed.2017.01.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/20/2016] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Russel J Reiter
- Department of Cellular and Structural Biology. University of Texas Health Science Center at San Antonio, USA
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | - José Marco-Contelles
- Medicinal Chemistry Laboratory, Institute of General Organic Chemistry (CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Esther Parada
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Cristobal de Los Rios
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology & Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Egea
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain; Instituto de I+D del Medicamento Teófilo Hernando (ITH), Facultad de Medicina, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
33
|
Arteaga O, Álvarez A, Revuelta M, Santaolalla F, Urtasun A, Hilario E. Role of Antioxidants in Neonatal Hypoxic-Ischemic Brain Injury: New Therapeutic Approaches. Int J Mol Sci 2017; 18:E265. [PMID: 28134843 PMCID: PMC5343801 DOI: 10.3390/ijms18020265] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
Hypoxic-ischemic brain damage is an alarming health and economic problem in spite of the advances in neonatal care. It can cause mortality or detrimental neurological disorders such as cerebral palsy, motor impairment and cognitive deficits in neonates. When hypoxia-ischemia occurs, a multi-faceted cascade of events starts out, which can eventually cause cell death. Lower levels of oxygen due to reduced blood supply increase the production of reactive oxygen species, which leads to oxidative stress, a higher concentration of free cytosolic calcium and impaired mitochondrial function, triggering the activation of apoptotic pathways, DNA fragmentation and cell death. The high incidence of this type of lesion in newborns can be partly attributed to the fact that the developing brain is particularly vulnerable to oxidative stress. Since antioxidants can safely interact with free radicals and terminate that chain reaction before vital molecules are damaged, exogenous antioxidant therapy may have the potential to diminish cellular damage caused by hypoxia-ischemia. In this review, we focus on the neuroprotective effects of antioxidant treatments against perinatal hypoxic-ischemic brain injury, in the light of the most recent advances.
Collapse
Affiliation(s)
- Olatz Arteaga
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Antonia Álvarez
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Miren Revuelta
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Francisco Santaolalla
- Department of Otorhinolaryngology, Basurto University Hospital, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Andoni Urtasun
- Department of Neuroscience, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
- Neurogenomiks Laboratory, Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170 Zamudio, Spain.
| | - Enrique Hilario
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| |
Collapse
|
34
|
Pierre WC, Smith PLP, Londono I, Chemtob S, Mallard C, Lodygensky GA. Neonatal microglia: The cornerstone of brain fate. Brain Behav Immun 2017; 59:333-345. [PMID: 27596692 DOI: 10.1016/j.bbi.2016.08.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/30/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022] Open
Abstract
Microglia, mainly known for their role in innate immunity and modulation of neuroinflammation, play an active role in central nervous system development and homeostasis. Depending on the context and environmental stimuli, microglia adopt a broad spectrum of activation status from pro-inflammatory, associated with neurotoxicity, to anti-inflammatory linked to neuroprotection. Pro-inflammatory microglial activation is a key hallmark of white matter injury in preterm infants and is involved in developmental origin of adult neurological diseases. Characterization of neonatal microglia function in brain development and inflammation has allowed the investigation of promising therapeutic targets with potential long-lasting neuroprotective effects. True prevention of neuro-degenerative diseases might eventually occur as early as the perinatal period.
Collapse
Affiliation(s)
- Wyston C Pierre
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada
| | - Peter L P Smith
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Irène Londono
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada
| | - Sylvain Chemtob
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada; Departments of Ophtalmology, Université de Montréal, Montreal, Quebec, Canada; Departments of Pharmacology, Université de Montréal, Montreal, Quebec, Canada
| | - Carina Mallard
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gregory A Lodygensky
- Sainte-Justine Hospital and Research Center, Department of Pediatrics, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, Canada; Montreal Heart Institute, 5000 Rue Bélanger, Montreal, Quebec, Canada; Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada; Departments of Pharmacology, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
35
|
Romero A, Ramos E, Patiño P, Oset-Gasque MJ, López-Muñoz F, Marco-Contelles J, Ayuso MI, Alcázar A. Melatonin and Nitrones As Potential Therapeutic Agents for Stroke. Front Aging Neurosci 2016; 8:281. [PMID: 27932976 PMCID: PMC5120103 DOI: 10.3389/fnagi.2016.00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/10/2016] [Indexed: 01/20/2023] Open
Abstract
Stroke is a disease of aging affecting millions of people worldwide, and recombinant tissue-type plasminogen activator (r-tPA) is the only treatment approved. However, r-tPA has a low therapeutic window and secondary effects which limit its beneficial outcome, urging thus the search for new more efficient therapies. Among them, neuroprotection based on melatonin or nitrones, as free radical traps, have arisen as drug candidates due to their strong antioxidant power. In this Perspective article, an update on the specific results of the melatonin and several new nitrones are presented.
Collapse
Affiliation(s)
- Alejandro Romero
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid Madrid, Spain
| | - Eva Ramos
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Complutense University of Madrid Madrid, Spain
| | - Paloma Patiño
- Paediatric Unit, La Paz University Hospital Madrid, Spain
| | - Maria J Oset-Gasque
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University of Madrid, Ciudad Universitaria Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela UniversityMadrid, Spain; Neuropsychopharmacology Unit, "Hospital 12 de Octubre" Research InstituteMadrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry (CSIC) Madrid, Spain
| | - María I Ayuso
- Neurovascular Research Group, Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, Sevilla, Spain
| | - Alberto Alcázar
- Department of Investigation, IRYCIS, Hospital Ramón y Cajal, Madrid, Spain
| |
Collapse
|
36
|
Hendaus MA, Jomha FA, Alhammadi AH. Melatonin in the management of perinatal hypoxic-ischemic encephalopathy: light at the end of the tunnel? Neuropsychiatr Dis Treat 2016; 12:2473-2479. [PMID: 27729791 PMCID: PMC5045913 DOI: 10.2147/ndt.s115533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) affects one to three per 1,000 live full-term births and can lead to severe and permanent neuropsychological sequelae, such as cerebral palsy, epilepsy, mental retardation, and visual motor or visual perceptive dysfunction. Melatonin has begun to be contemplated as a good choice in order to diminish the neurological sequelae from hypoxic-ischemic brain injury. Melatonin emerges as a very interesting medication, because of its capacity to cross all physiological barriers extending to subcellular compartments and its safety and effectiveness. The purpose of this commentary is to detail the evidence on the use of melatonin as a neuroprotection agent. The pharmacologic aspects of the drug as well as its potential neuroprotective characteristics in human and animal studies are described in this study. Melatonin seems to be safe and beneficial in protecting neonatal brains from perinatal HIE. Larger randomized controlled trials in humans are required, to implement a long-awaited feasible treatment in order to avoid the dreaded sequelae of HIE.
Collapse
Affiliation(s)
- Mohamed A Hendaus
- Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation
- Department of Clinical Pediatrics, Weill-Cornell Medical College, Doha, Qatar
| | - Fatima A Jomha
- School of Pharmacy, Lebanese International University, Khiara, Lebanon
| | - Ahmed H Alhammadi
- Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation
- Department of Clinical Pediatrics, Weill-Cornell Medical College, Doha, Qatar
| |
Collapse
|
37
|
Cuyamendous C, de la Torre A, Lee YY, Leung KS, Guy A, Bultel-Poncé V, Galano JM, Lee JCY, Oger C, Durand T. The novelty of phytofurans, isofurans, dihomo-isofurans and neurofurans: Discovery, synthesis and potential application. Biochimie 2016; 130:49-62. [PMID: 27519299 DOI: 10.1016/j.biochi.2016.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/07/2016] [Indexed: 01/15/2023]
Abstract
Polyunsaturated fatty acids (PUFA) are oxidized in vivo under oxidative stress through free radical pathway and release cyclic oxygenated metabolites, which are commonly classified as isoprostanes and isofurans. The discovery of isoprostanes goes back twenty-five years compared to fifteen years for isofurans, and great many are discovered. The biosynthesis, the nomenclature, the chemical synthesis of furanoids from α-linolenic acid (ALA, C18:3 n-3), arachidonic acid (AA, C20:4 n-6), adrenic acid (AdA, 22:4 n-6) and docosahexaenoic acid (DHA, 22:6 n-3) as well as their identification and implication in biological systems are highlighted in this review.
Collapse
Affiliation(s)
- Claire Cuyamendous
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie de Montpellier, 15 Avenue Charles Flahault, Bâtiment D, 34093, Montpellier Cedex 05, France
| | - Aurélien de la Torre
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie de Montpellier, 15 Avenue Charles Flahault, Bâtiment D, 34093, Montpellier Cedex 05, France
| | - Yiu Yiu Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie de Montpellier, 15 Avenue Charles Flahault, Bâtiment D, 34093, Montpellier Cedex 05, France
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie de Montpellier, 15 Avenue Charles Flahault, Bâtiment D, 34093, Montpellier Cedex 05, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie de Montpellier, 15 Avenue Charles Flahault, Bâtiment D, 34093, Montpellier Cedex 05, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie de Montpellier, 15 Avenue Charles Flahault, Bâtiment D, 34093, Montpellier Cedex 05, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université de Montpellier, ENSCM, Faculté de Pharmacie de Montpellier, 15 Avenue Charles Flahault, Bâtiment D, 34093, Montpellier Cedex 05, France.
| |
Collapse
|
38
|
Paterniti I, Cordaro M, Esposito E, Cuzzocrea S. The antioxidative property of melatonin against brain ischemia. Expert Rev Neurother 2016; 16:841-8. [PMID: 27108742 DOI: 10.1080/14737175.2016.1182020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION This review briefly summarizes some of the large amount of data documenting the ability of melatonin to limit molecular and organ tissue damage in neural ischemia-reperfusion injury (stroke), where free radicals are generally considered as being responsible for much of the resulting tissue destruction. AREA COVERED Melatonin actions that have been identified include its ability to directly neutralize a number of toxic reactants and stimulate antioxidative enzymes. Furthermore, several of its metabolites such as N(1)-acetyl-N(2)-formyl-5- methoxykynuramine (AFMK) and N(1)-acetyl-5-methoxykynuramine (AMF), are themselves scavengers suggesting that there is a cascade of reactions that greatly increase the efficacy of melatonin. Expert Commentary: However, the mechanisms by which melatonin is protective in such widely diverse areas of the cell and different organs are likely not yet all identified.
Collapse
Affiliation(s)
- Irene Paterniti
- a Department of Biological and Environmental Sciences , University of Messina , Messina , Italy
| | - Marika Cordaro
- a Department of Biological and Environmental Sciences , University of Messina , Messina , Italy
| | - Emanuela Esposito
- a Department of Biological and Environmental Sciences , University of Messina , Messina , Italy
| | - Salvatore Cuzzocrea
- a Department of Biological and Environmental Sciences , University of Messina , Messina , Italy.,b Department of Pharmacological and Physiological Science , Saint Louis University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
39
|
Abstract
BACKGROUND Melatonin is an antioxidant with anti-inflammatory and anti-apoptotic effects. Animal studies have supported a fetal neuroprotective role for melatonin when administered maternally. It is important to assess whether melatonin, given to the mother, can reduce the risk of neurosensory disabilities (including cerebral palsy) and death, associated with fetal brain injury, for the preterm or term compromised fetus. OBJECTIVES To assess the effects of melatonin when used for neuroprotection of the fetus. SEARCH METHODS We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 January 2016). SELECTION CRITERIA We planned to include randomised controlled trials and quasi-randomised controlled trials comparing melatonin given to women in pregnancy (regardless of the route, timing, dose and duration of administration) for fetal neuroprotection with placebo, no treatment, or with an alternative agent aimed at providing fetal neuroprotection. We also planned to include comparisons of different regimens for administration of melatonin. DATA COLLECTION AND ANALYSIS Two review authors planned to independently assess trial eligibility, trial quality and extract the data. MAIN RESULTS We found no randomised trials for inclusion in this review. One study is ongoing. AUTHORS' CONCLUSIONS As we did not identify any randomised trials for inclusion in this review, we are unable to comment on implications for practice at this stage.Although evidence from animals studies has supported a fetal neuroprotective role for melatonin when administered to the mother during pregnancy, no trials assessing melatonin for fetal neuroprotection in pregnant women have been completed to date. However, there is currently one ongoing randomised controlled trial (with an estimated enrolment target of 60 pregnant women) which examines the dose of melatonin, administered to women at risk of imminent very preterm birth (less than 28 weeks' gestation) required to reduce brain damage in the white matter of the babies that were born very preterm.Further high-quality research is needed and research efforts should directed towards trials comparing melatonin with either no intervention (no treatment or placebo), or with alternative agents aimed at providing fetal neuroprotection (such as magnesium sulphate for the very preterm infant). Such trials should evaluate maternal and infant short- and longer-term outcomes (including neurosensory disabilities such as cerebral palsy), and consider the costs of care.
Collapse
Affiliation(s)
- Dominic Wilkinson
- University of OxfordOxford Uehiro Centre for Practical EthicsOxfordUK
| | - Emily Shepherd
- The University of AdelaideARCH: Australian Research Centre for Health of Women and Babies, Robinson Research Institute, Discipline of Obstetrics and GynaecologyAdelaideSouth AustraliaAustralia5006
| | - Euan M Wallace
- Monash UniversityThe Ritchie CentreMelbourneVictoriaAustralia3168
| | | |
Collapse
|
40
|
Abstract
This article reviews the evidence for an association between infant colic and migraine. Infant colic, or excessive crying in an otherwise healthy and well-fed infant, affects approximately 5%-19% of infants. Multiple case-control studies, a cross-sectional study, and a prospective cohort study have all found an association between infant colic and migraine. Although infant colic is often assumed to have a gastrointestinal cause, several treatment trials aimed at gastrointestinal etiologies have been negative. Teaching parents how to respond best to inconsolable crying may be helpful and important for preventing shaken baby syndrome. Given accumulating evidence for a connection between infant colic and pediatric migraine, future studies should examine migraine-oriented treatments for infant colic. Infant colic should be moved into the main body of International Classification of Headache Disorders (ICHD-III beta) as one of the "Episodic syndromes that may be associated with migraine."
Collapse
Affiliation(s)
- Amy A Gelfand
- Departments of Neurology and Pediatrics, University of California San Francisco (UCSF), San Francisco, CA.
| |
Collapse
|
41
|
Berger HR, Morken TS, Vettukattil R, Brubakk AM, Sonnewald U, Widerøe M. No improvement of neuronal metabolism in the reperfusion phase with melatonin treatment after hypoxic-ischemic brain injury in the neonatal rat. J Neurochem 2015; 136:339-50. [PMID: 26526584 DOI: 10.1111/jnc.13420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/13/2023]
Abstract
Mitochondrial impairment is a key feature underlying neonatal hypoxic-ischemic (HI) brain injury and melatonin is potentially neuroprotective through its effects on mitochondria. In this study, we have used (1) H and (13) C NMR spectroscopy after injection of [1-(13) C]glucose and [1,2-(13) C]acetate to examine neuronal and astrocytic metabolism in the early reperfusion phase after unilateral HI brain injury in 7-day-old rat pups, exploring the effects of HI on mitochondrial function and the potential protective effects of melatonin on brain metabolism. One hour after hypoxia-ischemia, astrocytic metabolism was recovered and glycolysis was normalized, whereas mitochondrial metabolism in neurons was clearly impaired. Pyruvate carboxylation was also lower in both hemispheres after HI. The transfer of glutamate from neurons to astrocytes was higher whereas the transfer of glutamine from astrocytes to neurons was lower 1 h after HI in the contralateral hemisphere. Neuronal metabolism was equally affected in pups treated with melatonin (10 mg/kg) immediately after HI as in vehicle treated pups indicating that the given dose of melatonin was not capable of protecting the neuronal mitochondria in this early phase after HI brain injury. However, any beneficial effects of melatonin might have been masked by modulatory effects of the solvent dimethyl sulfoxide on cerebral metabolism. Neuronal and astrocytic metabolism was examined by (13) C and (1) H NMR spectroscopy in the early reperfusion phase after unilateral hypoxic-ischemic brain injury and melatonin treatment in neonatal rats. One hour after hypoxia-ischemia astrocytic mitochondrial metabolism had recovered and glycolysis was normalized, whereas mitochondrial metabolism in neurons was impaired. Melatonin treatment did not show a protective effect on neuronal metabolism.
Collapse
Affiliation(s)
- Hester R Berger
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tora Sund Morken
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Ophthalmology, Trondheim University Hospital, Trondheim, Norway
| | - Riyas Vettukattil
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ann-Mari Brubakk
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ursula Sonnewald
- Department of Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marius Widerøe
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
42
|
Hassell KJ, Ezzati M, Alonso-Alconada D, Hausenloy DJ, Robertson NJ. New horizons for newborn brain protection: enhancing endogenous neuroprotection. Arch Dis Child Fetal Neonatal Ed 2015; 100:F541-52. [PMID: 26063194 PMCID: PMC4680177 DOI: 10.1136/archdischild-2014-306284] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/28/2015] [Indexed: 01/09/2023]
Abstract
Intrapartum-related events are the third leading cause of childhood mortality worldwide and result in one million neurodisabled survivors each year. Infants exposed to a perinatal insult typically present with neonatal encephalopathy (NE). The contribution of pure hypoxia-ischaemia (HI) to NE has been debated; over the last decade, the sensitising effect of inflammation in the aetiology of NE and neurodisability is recognised. Therapeutic hypothermia is standard care for NE in high-income countries; however, its benefit in encephalopathic babies with sepsis or in those born following chorioamnionitis is unclear. It is now recognised that the phases of brain injury extend into a tertiary phase, which lasts for weeks to years after the initial insult and opens up new possibilities for therapy.There has been a recent focus on understanding endogenous neuroprotection and how to boost it or to supplement its effectors therapeutically once damage to the brain has occurred as in NE. In this review, we focus on strategies that can augment the body's own endogenous neuroprotection. We discuss in particular remote ischaemic postconditioning whereby endogenous brain tolerance can be activated through hypoxia/reperfusion stimuli started immediately after the index hypoxic-ischaemic insult. Therapeutic hypothermia, melatonin, erythropoietin and cannabinoids are examples of ways we can supplement the endogenous response to HI to obtain its full neuroprotective potential. Achieving the correct balance of interventions at the correct time in relation to the nature and stage of injury will be a significant challenge in the next decade.
Collapse
Affiliation(s)
- K Jane Hassell
- Institute for Women's Health, University College London, London, UK
| | - Mojgan Ezzati
- Institute for Women's Health, University College London, London, UK
| | | | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, NIHR University College London Hospitals Biomedical Research Centre, University College London Hospital & Medical School, London, UK
| | | |
Collapse
|
43
|
Jin C, Londono I, Mallard C, Lodygensky GA. New means to assess neonatal inflammatory brain injury. J Neuroinflammation 2015; 12:180. [PMID: 26407958 PMCID: PMC4583178 DOI: 10.1186/s12974-015-0397-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/10/2015] [Indexed: 01/23/2023] Open
Abstract
Preterm infants are especially vulnerable to infection-induced white matter injury, associated with cerebral palsy, cognitive and psychomotor impairment, and other adverse neurological outcomes. The etiology of such lesions is complex and multifactorial. Furthermore, timing and length of exposure to infection also influence neurodevelopmental outcomes. Different mechanisms have been posited to mediate the observed brain injury including microglial activation followed by subsequent release of pro-inflammatory species, glutamate-induced excitotoxicity, and vulnerability of developing oligodendrocytes to cerebral insults. The prevalence of such neurological impairments requires an urgent need for early detection and effective neuroprotective strategies. Accordingly, noninvasive methods of monitoring disease progression and therapy effectiveness are essential. While diagnostic tools using biomarkers from bodily fluids may provide useful information regarding potential risks of developing neurological diseases, the use of magnetic resonance imaging/spectroscopy has emerged as a promising candidate for such purpose. Various pharmacological agents have demonstrated protective effects in the immature brain in animal models; however, few studies have progressed to clinical trials with promising results.
Collapse
Affiliation(s)
- Chen Jin
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
| | - Irene Londono
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada.
| | - Carina Mallard
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30, Gothenburg, Sweden.
| | - Gregory A Lodygensky
- Department of Pediatrics, Sainte-Justine Hospital and Research Center, Université de Montréal, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, Québec, H3T 1C5, Canada. .,Montreal Heart Institute, 5000 Rue Bélanger, Montréal, Québec, Canada. .,Department of Neuroscience and Pharmacology, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
44
|
Andrabi SS, Parvez S, Tabassum H. Melatonin and Ischemic Stroke: Mechanistic Roles and Action. Adv Pharmacol Sci 2015; 2015:384750. [PMID: 26435711 PMCID: PMC4575994 DOI: 10.1155/2015/384750] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/09/2015] [Accepted: 08/19/2015] [Indexed: 11/21/2022] Open
Abstract
Stroke is one of the most devastating neurological disabilities and brain's vulnerability towards it proves to be fatal and socio-economic loss of millions of people worldwide. Ischemic stroke remains at the center stage of it, because of its prevalence amongst the several other types attacking the brain. The various cascades of events that have been associated with stroke involve oxidative stress, excitotoxicity, mitochondrial dysfunction, upregulation of Ca(2+) level, and so forth. Melatonin is a neurohormone secreted by pineal and extra pineal tissues responsible for various physiological processes like sleep and mood behaviour. Melatonin has been implicated in various neurological diseases because of its antioxidative, antiapoptotic, and anti-inflammatory properties. We have previously reviewed the neuroprotective effect of melatonin in various models of brain injury like traumatic brain injury and spinal cord injury. In this review, we have put together the various causes and consequence of stroke and protective role of melatonin in ischemic stroke.
Collapse
Affiliation(s)
- Syed Suhail Andrabi
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Heena Tabassum
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| |
Collapse
|
45
|
Tataranno ML, Perrone S, Buonocore G. Plasma Biomarkers of Oxidative Stress in Neonatal Brain Injury. Clin Perinatol 2015; 42:529-39. [PMID: 26250915 DOI: 10.1016/j.clp.2015.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Perinatal encephalopathy is a leading cause of lifelong disability. Increasing evidence indicates that the pathogenesis of perinatal brain damage is much more complex than originally thought, with multiple pathways involved. An important role of oxidative stress (OS) in the pathogenesis of brain injury is recognized for preterm and term infants. This article examines potential reliable and specific OS biomarkers that can be used in premature and term infants for the early detection and follow-up of the most common neonatal brain injuries, such as hypoxic-ischemic encephalopathy, intraventricular hemorrhage, and periventricular leukomalacia. The next step will be to explore the correlation between brain-specific OS biomarkers and functional brain outcomes.
Collapse
Affiliation(s)
- Maria Luisa Tataranno
- Department of Molecular and Developmental Medicine, University of Siena, Via Banchi di Sotto, 55, 53100 Siena, Italy
| | - Serafina Perrone
- Department of Molecular and Developmental Medicine, University of Siena, Via Banchi di Sotto, 55, 53100 Siena, Italy.
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Via Banchi di Sotto, 55, 53100 Siena, Italy
| |
Collapse
|
46
|
Melatonin modulates endoplasmic reticulum stress and Akt/GSK3-beta signaling pathway in a rat model of renal warm ischemia reperfusion. Anal Cell Pathol (Amst) 2015; 2015:635172. [PMID: 26229743 PMCID: PMC4502281 DOI: 10.1155/2015/635172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/28/2015] [Indexed: 12/17/2022] Open
Abstract
Melatonin (Mel) is widely used to attenuate ischemia/reperfusion (I/R) injury in several organs. Nevertheless, the underlying mechanisms remain unclear. This study was conducted to explore the effect of Mel on endoplasmic reticulum (ER) stress, Akt and MAPK cascades after renal warm I/R. Eighteen Wistar rats were randomized into three groups: Sham, I/R, and Mel + I/R. The ischemia period was 60 min followed by 120 min of reperfusion. Mel (10 mg/kg) was administrated 30 min prior to ischemia. The creatinine clearance, MDA, LDH levels, and histopathological changes were evaluated. In addition, Western blot was performed to study ER stress and its downstream apoptosis as well as phosphorylation of Akt, GSK-3β, VDAC, ERK, and P38. Mel decreased cytolysis and lipid peroxidation and improved renal function and morphology compared to I/R group. Parallely, it significantly reduced the ER stress parameters including GRP 78, p-PERK, XBP 1, ATF 6, CHOP, and JNK. Simultaneously, p-Akt level was significantly enhanced and its target molecules GSK-3β and VDAC were inhibited. Furthermore, the ERK and P38 phosphorylation were evidently augmented after Mel administration in comparison to I/R group. In conclusion, Mel improves the recovery of renal function by decreasing ER stress and stimulating Akt pathway after renal I/R injury.
Collapse
|
47
|
Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR. Melatonin and brain inflammaging. Prog Neurobiol 2015; 127-128:46-63. [DOI: 10.1016/j.pneurobio.2015.02.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/27/2014] [Accepted: 02/05/2015] [Indexed: 02/07/2023]
|
48
|
Galano JM, Lee JCY, Gladine C, Comte B, Le Guennec JY, Oger C, Durand T. Non-enzymatic cyclic oxygenated metabolites of adrenic, docosahexaenoic, eicosapentaenoic and α-linolenic acids; bioactivities and potential use as biomarkers. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:446-55. [PMID: 25463478 DOI: 10.1016/j.bbalip.2014.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/07/2014] [Accepted: 11/07/2014] [Indexed: 02/04/2023]
Abstract
Cyclic oxygenated metabolites are formed in vivo through non-enzymatic free radical reaction of n-6 and n-3 polyunsaturated fatty acids (PUFAs) such as arachidonic (ARA C20:4 n-6), adrenic (AdA 22:4 n-6), α-linolenic (ALA 18:3 n-3), eicosapentaenoic (EPA 20:5 n-3) and docosahexaenoic (DHA 22:6 n-3) acids. These cyclic compounds are known as isoprostanes, neuroprostanes, dihomo-isoprostanes and phytoprostanes. Evidence has emerged for their use as biomarkers of oxidative stress and, more recently, the n-3PUFA-derived compounds have been shown to mediate bioactivities as secondary messengers. Accordingly, this review will focus on the cyclic oxygenated metabolites generated from AdA, ALA, EPA and DHA. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, Montpellier, France
| | | | - Cecile Gladine
- INRA, UMR1019, UNH, CRNH Auvergne, Clermont-Ferrand, Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Blandine Comte
- INRA, UMR1019, UNH, CRNH Auvergne, Clermont-Ferrand, Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Jean-Yves Le Guennec
- INSERM U1046, Physiologie & Médecine Expérimentale du Cœur et des Muscles, University Montpellier I and II, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, Montpellier, France
| |
Collapse
|
49
|
Carloni S, Albertini MC, Galluzzi L, Buonocore G, Proietti F, Balduini W. Melatonin reduces endoplasmic reticulum stress and preserves sirtuin 1 expression in neuronal cells of newborn rats after hypoxia-ischemia. J Pineal Res 2014; 57:192-9. [PMID: 24980917 DOI: 10.1111/jpi.12156] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 06/27/2014] [Indexed: 12/29/2022]
Abstract
Conditions that interfere with the endoplasmic reticulum (ER) functions cause accumulation of unfolded proteins in the ER lumen, referred to as ER stress, and activate a homeostatic signaling network known as unfolded protein response (UPR). We have previously shown that in neonatal rats subjected to hypoxia-ischemia (HI), melatonin administration significantly reduces brain damage. This study assessed whether attenuation of ER stress is involved in the neuroprotective effect of melatonin after neonatal HI. We found that the UPR was strongly activated after HI. Melatonin significantly reduced the neuron splicing of XBP-1 mRNA, the increased phosphorylation of eIF2α, and elevated expression of chaperone proteins GRP78 and Hsp70 observed after HI in the brain. CHOP, which plays a convergent role in the UPR, was reduced as well. Melatonin also completely prevented the depletion of SIRT-1 induced by HI, and this effect was observed in the same neurons that over-express CHOP. These results demonstrate that melatonin reduces ER stress induced by neonatal HI and preserves SIRT-1 expression, suggesting that SIRT-1, due to its action in the modulation of a wide variety of signaling pathways involved in neuroprotection, may play a key role in the reduction of ER stress and neuroprotection observed after melatonin.
Collapse
Affiliation(s)
- Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Urbino, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Biran V, Phan Duy A, Decobert F, Bednarek N, Alberti C, Baud O. Is melatonin ready to be used in preterm infants as a neuroprotectant? Dev Med Child Neurol 2014; 56:717-23. [PMID: 24575840 DOI: 10.1111/dmcn.12415] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2014] [Indexed: 01/08/2023]
Abstract
The prevention of neurological disabilities following preterm birth remains a major public health challenge and efforts are still needed to test the neuroprotective properties of candidate molecules. Melatonin serves as a neuroprotectant in adult models of cerebral ischemia through its potent antioxidant and anti-inflammatory effects. An increasing number of preclinical studies have consistently demonstrated that melatonin protects the damaged developing brain by preventing abnormal myelination and an inflammatory glial reaction, a major cause of white matter injury. The main questions asked in this review are whether preclinical data on the neuroprotective properties of melatonin are sufficient to translate this concept into the clinical setting, and whether melatonin can reduce white matter damage in preterm infants. This review provides support for our view that melatonin is now ready to be tested in human preterm neonates, and discusses ongoing and planned clinical trials.
Collapse
Affiliation(s)
- Valérie Biran
- Neonatal Intensive Care Unit, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Université Paris Diderot, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, INSERM, Paris, France; PremUP Foundation, Paris, France
| | | | | | | | | | | |
Collapse
|