1
|
Xu C, Yao X, Kong W, Mu B, Duan G, Wang J, Xu Y, Li X. Ecotoxicological risk of co-exposure to fosthiazate and microplastics on earthworms (Eisenia fetida): Integrating biochemical and transcriptomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125053. [PMID: 39357558 DOI: 10.1016/j.envpol.2024.125053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Fosthiazate (FOS) is a widely used organophosphorus insecticide effective against soil root-knot nematodes. However, its ecotoxicity to non-target soil organisms, particularly in combination with microplastics (MPs), is unclear. This study explores the toxic-effects and molecular mechanisms of co-exposure to FOS and MPs on earthworms (Eisenia fetida) using multilevel toxicity endpoints and transcriptomics. Results showed that both FOS and MPs elevated the intracellular levels of reactive oxygen species (ROS), malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG) in earthworms' cells. The superoxide dismutase (SOD) and catalase (CAT) activities followed a similar trend in all treatments, with changes observed at 14 and 28 days, indicating that co-exposure to FOS and MPs increased DNA oxidative damage. Notably, the co-exposure more significantly inhibited Ca2+-ATPase activity and exacerbated neurotoxicity compared to individual treatments, closely associated with changes in intracellular ROS levels that mediate neuroinhibition and lead to neurotoxicity. KEGG enrichment analysis revealed that MPs and FOS disrupted pathways related to metabolism, immunity, and apoptosis, while co-exposure primarily impaired endocrine and receptor pathways, showing higher toxicity. Our study offers novel insights into the ecotoxicological effects and mechanisms of pesticides and microplastics on earthworms, providing valuable data for evaluating the soil environmental health risks associated with compound pollution.
Collapse
Affiliation(s)
- Chonglin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangfeng Yao
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Weizheng Kong
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Baoyan Mu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Yuxin Xu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China.
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, China.
| |
Collapse
|
2
|
Karatas T, Cakir M. Assessment of deltamethrin-induced DNA damage, neurotoxic and neuroimmune effects in the brain tissue of brown trout ( Salmo trutta fario). VET MED-CZECH 2024; 69:77-83. [PMID: 38623154 PMCID: PMC11016297 DOI: 10.17221/115/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/13/2024] [Indexed: 04/17/2024] Open
Abstract
This study investigated the impact of deltamethrin (DM) toxicity on brown trout (Salmo trutta fario), examining its effects on the immune system, including the white blood cell (WBC), lymphocyte (Lym), total immunoglobulin (T. Ig), and lysozyme levels, as well as its neurotoxic consequences on the brain tissue. The neurotoxic effects encompassed oxidative stress, the activity of the antioxidant enzymes, such as the superoxide dismutase (SOD) and catalase (CAT), acetylcholinesterase (AChE) activity, and DNA damage using 8-hydroxy-2-deoxyguanosine (8-OHdG). The DM exposure led to elevated levels of malondialdehyde (MDA), and 8-OHdG, while concurrently causing a reduction in the AChE activity, protein and lipid content, WBC count, Lym, lysozyme activity, T. Ig levels, as well as the SOD and CAT levels in the brain tissues of groups 2 and 3 when compared to those in group 1. In summary, the findings of this study strongly indicate that DM induces DNA damage, immunotoxicity, and neurotoxicity in the brain tissue of brown trout, primarily due to the excessive production of reactive oxygen species (ROS). Moreover, the observed dose-dependent responses of DM to the environmental concentrations on all the investigated parameters suggest its potential utility in aquaculture risk assessment.
Collapse
Affiliation(s)
- Tayfun Karatas
- Health Services Vocational School, Agri Ibrahim Cecen University, Agri, Turkiye
| | - Murteza Cakir
- Department of Neurosurgery, Medical Faculty, Ataturk University, Erzurum, Turkiye
| |
Collapse
|
3
|
He F, Liu R, Tian G, Qi Y, Wang T. Ecotoxicological evaluation of oxidative stress-mediated neurotoxic effects, genetic toxicity, behavioral disorders, and the corresponding mechanisms induced by fluorene-contaminated soil targeted to earthworm (Eisenia fetida) brain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162014. [PMID: 36740067 DOI: 10.1016/j.scitotenv.2023.162014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Fluorene is a commonly identified PAH pollutant in soil and exhibits various worrisome hazardous effects to soil organisms. Currently, the toxicity profiles of fluorene on earthworm brain are rare, and the mechanisms and their corresponding pathways involved in fluorene-triggered neurotoxicity, genotoxicity, and behavior changes have not been reported hitherto. Herein, earthworm (Eisenia fetida) brain was chosen as targeted receptor to explore the neurotoxic effects, genetic toxicity, behavioral disorders, and related mechanisms caused by fluorene-induced oxidative stress pathways. The results showed excess fluorene initiated the release of excessive quantities of ROS in earthworm brain, which have caused oxidative stress and accompanied by serious oxidative effects, including LPO (lipid peroxidation) and DNA injury. To minimize the damage effects, the antioxidant defense mechanisms (antioxidant enzymes and non-enzymatic antioxidants) were activated, and entailed a decrease of the antioxidant capacity in E. fetida brain, which, in turn, causes further ROS-induced ROS release. Exposure of fluorene induced the abnormal mRNA expression of genes relevant to oxidative stress (e.g., GST, SOD, CAT, GPx, MT, and Hsp70) and neurotoxicity (e.g., H02, C04, D06, and E08) in E. fetida brain. Specifically, fluorene can bind directly to AChE, destroying the conformation of this protein, and even affecting its physiological functions. This occurrence caused the inhibition of AChE activity and excess ACh accumulation at the nicotinic post-synaptic membrane, finally triggering neurotoxicity by activation of pathways related to oxidative stress. Moreover, the avoidance responses and burrowing behavior were obviously disturbed by oxidative stress-induced neurotoxicity after exposure to fluorene. The results form IBR suggested more severe poisoning effects to E. fetida brain initiated by high-dose and long-term exposure of fluorene. Among, oxidative stress injury and genotoxic potential are more sensitive endpoint than others. Collectively, fluorene stress can provoke potential neurotoxicity, genotoxicity, and behavioral disturbances targeted to E. fetida brain through the ROS-mediated pathways involving oxidative stress. These findings are of great significance to estimate the detrimental effects of fluorene and the corresponding mechanisms on soil eco-safety.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Tingting Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| |
Collapse
|
4
|
Bastidas JG, Maurmann N, Oliveira L, Alcantara B, Pinheiro CV, Leipnitz G, Meyer F, Oliveira M, Rigon P, Pranke P. Bilayer scaffold from PLGA/fibrin electrospun membrane and fibrin hydrogel layer supports wound healing in vivo. Biomed Mater 2023; 18. [PMID: 36599168 DOI: 10.1088/1748-605x/acb02f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Hybrid scaffolds from natural and synthetic polymers have been widely used due to the complementary nature of their physical and biological properties. The aim of the present study, therefore, has been to analyzein vivoa bilayer scaffold of poly(lactide-co-glycolide)/fibrin electrospun membrane and fibrin hydrogel layer on a rat skin model. Fibroblasts were cultivated in the fibrin hydrogel layer and keratinocytes on the electrospun membrane to generate a skin substitute. The scaffolds without and with cells were tested in a full-thickness wound model in Wistar Kyoto rats. The histological results demonstrated that the scaffolds induced granulation tissue growth, collagen deposition and epithelial tissue remodeling. The wound-healing markers showed no difference in scaffolds when compared with the positive control. Activities of antioxidant enzymes were decreased concerning the positive and negative control. The findings suggest that the scaffolds contributed to the granulation tissue formation and the early collagen deposition, maintaining an anti-inflammatory microenvironment.
Collapse
Affiliation(s)
- Juliana Girón Bastidas
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Ipiranga Av., 2752, room 304G, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Sarmento Leite Av., 500, 90050-170 Porto Alegre, RS, Brazil
| | - Natasha Maurmann
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Ipiranga Av., 2752, room 304G, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Sarmento Leite Av., 500, 90050-170 Porto Alegre, RS, Brazil
| | - Luiza Oliveira
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Ipiranga Av., 2752, room 304G, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruno Alcantara
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Ipiranga Av., 2752, room 304G, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Vieira Pinheiro
- Post Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Sarmento Leite Av., 500, 90050-170 Porto Alegre, RS, Brazil.,Biochemistry Department, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Post Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Sarmento Leite Av., 500, 90050-170 Porto Alegre, RS, Brazil.,Biochemistry Department, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil.,Post Graduation Program in Biological Sciences: Biochemistry, Biochemistry Department, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil
| | - Fabíola Meyer
- Biochemistry Department, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-003 Porto Alegre, RS, Brazil
| | - Maikel Oliveira
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90050-170, Brazil
| | - Paula Rigon
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90050-170, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Ipiranga Av., 2752, room 304G, 90610-000 Porto Alegre, Rio Grande do Sul, Brazil.,Post Graduate Program in Biological Sciences: Physiology, Universidade Federal do Rio Grande do Sul, Sarmento Leite Av., 500, 90050-170 Porto Alegre, RS, Brazil.,Stem Cell Research Institute (Instituto de Pesquisa com Células-tronco), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Ucar A, Ozgeris FB, Parlak V, Yeltekin AC, Turkez H, Alak G, Atamanalp M. Ulexite modulates the neurotoxicological outcomes of acetylferrocene-exposed rainbow trout. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:286-295. [PMID: 36053843 DOI: 10.1002/em.22498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
In this study, the neuroprotective action potential by ulexite (UX) (18.75 mg/L) against acetylferrocene (AFC) (3.82 mg/L) induced neurotoxicity was aimed to investigate in brain tissues of Oncorhynchus mykiss. For this purpose, the effects on neurotoxicity markers, proinflammatory cytokines, antioxidant immune system, DNA, and apoptosis mechanisms were assessed on brain tissues in the 48-96 h of the 96- trial period. In this research, it was determined that brain-derived nerve cell growth factor (BDNF) level and acetylcholinesterase (AChE) activity were inhibited in the brain tissue compared to the control group by AFC. In addition, inhibition in glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH) values (which are antioxidant system biomarkers), and inductions in malondialdehyde (MDA) and myeloperoxidase (MPO) amounts (which are indicators of lipid peroxidation) were determined (p < 0.05) after exposure to AFC. And, while tumor necrosis factor-α (TNF-α) and IL-6 levels were increased in the AFC-exposed group, Nrf-2 levels were found to be remarkably decreased. Upregulation was also detected in 8-hydroxydeoxyguanosine (8-OHdG) and caspase-3 levels, which are related to DNA damage and apoptosis mechanism. On the contrary, UX (single/with AFC) suppressed the AChE and BDNF inhibition by AFC. Moreover, UX mitigated AFC-induced oxidative, inflammatory, and DNA damage and attenuated AFC-mediated neurotoxicity via activating Nrf2 signaling in fish. Collectively, our findings revealed that UX supplementation might exert beneficial effects and may be considered as a natural and promising neuroprotective agent against AFC-induced toxicity.
Collapse
Affiliation(s)
- Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Fatma Betul Ozgeris
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum, Turkey
| | - Veysel Parlak
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | | | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Gonca Alak
- Department of Sea Food Processing, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| |
Collapse
|
6
|
Song P, Jiang N, Zhang K, Li X, Li N, Zhang Y, Wang Q, Wang J. Ecotoxicological evaluation of zebrafish liver (Danio rerio) induced by dibutyl phthalate. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128027. [PMID: 34906872 DOI: 10.1016/j.jhazmat.2021.128027] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Dibutyl phthalate (DBP), one of the most commonly applied plasticizers, has been frequently detected in the aquatic environment, posing potential risks to aquatic organisms. Currently, reports about the toxicity of zebrafish liver with DBP exposure are rare, and the toxic mechanism is still not clear. In this study, zebrafish (Danio rerio) were used to explore the ecotoxicological effects of DBP from the physiological, biochemical, genetic, and molecular levels. The results showed oxidative stress, lipid peroxidation, and DNA damage occurred in zebrafish liver according to changes in antioxidant enzymes, MDA and 8-OHdG content. AchE activity was always active, and negatively correlated with the DBP concentration. The expression of Cu/Zn-sod and gpx genes were similar to that of antioxidant enzymes from 7 to 21 days, while in the end, the inconsistent result appeared due to the time lag effect in protein modification, gene transcription and translation. Besides, the mRNA abundance of Caspase-3 and p53 were upregulated, showing a "dose-response" relationship. The integrated biomarker reaction indicated that the effects of exposure time on zebrafish liver was 14th day> 28th day> 7th day> 21th day. These results are of great significance to evaluate the toxicological effects and explore the toxic mechanism of DBP on aquatic organisms.
Collapse
Affiliation(s)
- Peipei Song
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Kaiqu Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Na Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Youai Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
7
|
Taha MAI, Badawy MEI, Abdel-Razik RK, Younis HM, Abo-El-Saad MM. Mitochondrial dysfunction and oxidative stress in liver of male albino rats after exposing to sub-chronic intoxication of chlorpyrifos, cypermethrin, and imidacloprid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104938. [PMID: 34446205 DOI: 10.1016/j.pestbp.2021.104938] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 05/27/2023]
Abstract
The adverse effects of chlorpyrifos, cypermethrin, and imidacloprid on mitochondrial dysfunction and oxidative stress biomarkers were studied in rat liver. The liver deficiency was also confirmed by histological analysis and gel electrophoresis. Each insecticide was administered orally with five doses per week for 28 days to male albino rats at 1/50 of the LD50 per insecticide. The results demonstrated that the mitochondrial dysfunction was confirmed by a significant decrease in NADH dehydrogenase and ATPase activities. Oxidative stress biomarkers include malondialdehyde (MDA), and protein carbonyl content (PCC) were significantly increased. However, superoxide dismutase (SOD) and glutathione S-transferase (GST) as antioxidant enzymes were significantly decreased in the mitochondria of the rat liver. HPLC analysis showed a significant increase of the 8-hydroxy-2'-deoxyguanosine (8-OH-2DG) as a biomarker of the DNA damage in rat liver. In addition, the residue levels of 0.96 and 0.29 μg/mL serum were found for cypermethrin and imidacloprid, respectively. However, chlorpyrifos not detected using the HPLC analysis. Blue native polyacrylamide gel electrophoresis (BN-PAGE) analysis showed a change in the pattern and sequence of complexions of the electron transport chain in liver mitochondria with treatment by such insecticides. The hepatic histological examination also showed symptoms of abnormalities after exposure to these insecticides.
Collapse
Affiliation(s)
- Mostafa A I Taha
- Department of Pesticide Chemistry and Technology, Laboratory of Bioenergetics and Membrane Toxicology, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria, Egypt
| | - Mohamed E I Badawy
- Department of Pesticide Chemistry and Technology, Laboratory of Pesticide Residues Analysis, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria, Egypt.
| | - Reda K Abdel-Razik
- Mammalian Toxicology Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 21616-El-Sabahia, Alexandria, Egypt
| | - Hassan M Younis
- Department of Pesticide Chemistry and Technology, Laboratory of Bioenergetics and Membrane Toxicology, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria, Egypt
| | - Mahmoud M Abo-El-Saad
- Department of Pesticide Chemistry and Technology, Laboratory of Bioenergetics and Membrane Toxicology, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Karatas T, Onalan S, Yildirim S. Effects of prolonged fasting on levels of metabolites, oxidative stress, immune-related gene expression, histopathology, and DNA damage in the liver and muscle tissues of rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1119-1132. [PMID: 34057672 DOI: 10.1007/s10695-021-00949-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
This study was conducted to assess the impacts of prolonged fasting (70 and 120 days) on the morphological, biochemical, oxidative stress responses, immune-related gene expression, histopathology, and DNA damage in rainbow trout. Final weight (FW), hepatosomatic index (HSI), and condition factor (CF) significantly decreased in both 70 and 120 days of fasting compared to the pre-fasting group (p < 0.05). Fasting led to a significant reduction in serum blood metabolites (glucose, total protein, triglyceride, T. cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein (LDL)) and endogenous reserves (protein and lipid). However, plasma acetylcholinesterase (AChE) activity, aspartate aminotransferase (AST), alanine aminotransferase (ALT), interleukin (IL1), tumor necrosis factor (TNF1α), and transferrin (TF) increased significantly (p < 0.05). While malondialdehyde (MDA) levels compared to the pre-fasting group increased in the liver and muscle tissues (70 and 120 days), glutathione (GSH) enzyme activities decreased significantly in both tissues (p < 0.05). Histopathologically, both fasting groups (70 and 120 days) when compared to the pre-fasting group led to steatosis, necrosis and degeneration in hepatocytes, inflammation and hyperemia in the liver tissue and hyaline degeneration, atrophy, and inflammation in muscle tissue. Additionally, 8-OHdG levels of the liver and muscle tissues at 120 days' fasting were more severe according to 70 days' fasting. Finally, blood, the liver, and muscle tissues may be helpful to assess the impacts of fasting and fasting stress in rainbow trout.
Collapse
Affiliation(s)
- Tayfun Karatas
- Health Services Vocational School, Agri Ibrahim Cecen University, TR-04100, Agri, Turkey.
| | - Sukru Onalan
- Department of Fish Disease, Faculty of Fisheries, Van Yüzüncü Yıl University, 65080, Van, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
9
|
Köktürk M, Altindağ F, Ozhan G, Çalimli MH, Nas MS. Textile dyes Maxilon blue 5G and Reactive blue 203 induce acute toxicity and DNA damage during embryonic development of Danio rerio. Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108947. [PMID: 33285322 DOI: 10.1016/j.cbpc.2020.108947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
Common textile dyes used in various industrial sectors are organic compounds and considered for the aquatic environment as pollutants. The textile dye industry is one of the main sectors that have serious impacts on the environment due to a large amount of wastewater released into the ecosystem. Maxilon blue 5G (MB-5G) and Reactive Blue 203 (RB-203) are widely used textile dyes. However, their potential toxicity on living organisms remains to be elucidated. Here, we investigate the acute toxicity and genotoxicity of MB-5G and RB-203 dyes using the zebrafish embryos/larvae. Embryos treated with each dye for 96 h revealed LC50 values of acute toxicity as 166.04 mg L-1 and 278.32 mg L-1 for MB-5G and RB 203, respectively. When exposed to MB-5G and RB-203 at different concentrations (1, 10, and 100 mg L-1) for 96 h, the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage, significantly increased in brain tissues as compared to control. MB-5G and RB-203 resulted in common developmental abnormalities including tail malformation, microphthalmia, pericardial edema, curved body axis, and yolk sac/pericardial edemas. Moreover, at its highest dose (100 mg L-1), RB-203 caused premature hatching after 48 h, while MG-5G did not. Our results collectively reveal that the textile dyes MB-5G and RB-203 cause genotoxicity and teratogenicity during embryonic and larval development of zebrafish. Thus, it is necessary to eliminate these compounds from wastewater or reduce their concentrations to safe levels before discharging the textile industry wastewater into the environment.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Farming, College of Applied Sciences, Igdir University, Igdir, Turkey
| | - Fikret Altindağ
- Department of Histology and Embryology, Medical School, Van Yüzüncü Yıl University, Van, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Mehmet Harbi Çalimli
- Department of Medical Services and Techniques, Tuzluca Vocational School, Igdır University, Igdir, Turkey.
| | - Mehmet Salih Nas
- Department of Environmental Engineering, Faculty of Engineering, Igdır University, Igdir, Turkey
| |
Collapse
|
10
|
Topal A, Gergit A, Özkaraca M. Assessment of oxidative DNA damage, oxidative stress responses and histopathological alterations in gill and liver tissues of Oncorhynchus mykiss treated with linuron. Hum Exp Toxicol 2020; 40:1112-1121. [PMID: 33380213 DOI: 10.1177/0960327120984202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated changes in 8-hydroxy-2-deoxyguanosine (8-OHdG) activity which is a product of oxidative DNA damage, histopathological changes and antioxidant responses in liver and gill tissues of rainbow trout, following a 21-day exposure to three different concentrations of linuron (30 µg/L, 120 µg/L and 240 µg/L). Our results indicated that linuron concentrations caused an increase in LPO levels of liver and gill tissues (p < 0.05). While linuron induced both increases and decreases in GSH levels and SOD activity, CAT activity was decreased by all concentrations of linuron (p < 0.05). The immunopositivity of 8-OHdG was detected in the hepatocytes of liver and in the epithelial and chloride cells of the secondary lamellae of the gill tissues. Our results suggested that linuron could cause oxidative DNA damage by causing an increase in 8-OHdG activity in tissues, and it induces histopathological damage and alterations in the antioxidant parameters of the tissues.
Collapse
Affiliation(s)
- Ahmet Topal
- Department of Basic Sciences, Faculty of Fisheries, 37503Atatürk University, Erzurum, Turkey
| | - Arzu Gergit
- Department of Basic Sciences, Faculty of Fisheries, 37503Atatürk University, Erzurum, Turkey
| | - Mustafa Özkaraca
- Department of Pathology, Faculty of Veterinary, 52954Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
11
|
Karatas T, Yildirim S, Arslan H, Aggul AG. The effects on brown trout (Salmo trutta fario) of different concentrations of deltamethrin. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108606. [PMID: 31422162 DOI: 10.1016/j.cbpc.2019.108606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/21/2019] [Accepted: 08/14/2019] [Indexed: 12/29/2022]
Abstract
Deltamethrin (DMN) exposure causes severe damage to the gill and liver tissues of aquatic organisms, as well as neurotoxic effects and metabolic disorders. The goal of the present study was to assess the impacts of DMN toxicity on blood biochemistry, malondialdehyde (MDA) levels, catalase (CAT) levels, behavior disorder, acetylcholinesterase (AChE) activity, histopathology and 8-hydroxy-2-deoxyguanosine (8 OHdG) of brown trout (Salmo trutta fario). Acute concentrations (1.0 and 2.0μg/L) of DMN caused behavioral disorder such as rapid swimming, loss of balance, aggressiveness and increasing in the surface activity and inactivity in brown trout. A significant increase in malondialdehyde (MDA), aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels, and a significant decrease in CAT, AChE, blood albumin, and blood total protein content were observed. Histopathologically, both doses of DMN have caused steatosis, necrosis, and degeneration in hepatocytes and hyperemia in the liver. Also, they led to inflammation, adhesion and fusion depending on severe hyperplasia in secondary lamellae, hyperemia and lamellar edema in gill tissues when compared to control group. Additionally, 8-hydroxy-2-deoxyguanosine (8 OHdG) levels at 2.0 μg/L dose of DMN in liver tissues were more severe according to 1.0 μg/L dose of DMN. Finally, different concentrations of DMN led to changes of the histopathology, 8OHdG, the CAT levels, plasma AChE activity, and the serum metabolites, as well as behavioral disorder in brown trout.
Collapse
Affiliation(s)
- Tayfun Karatas
- Agri Ibrahim Cecen University, Health Services Vocational School, 04100 Agri, Turkey.
| | - Serkan Yildirim
- Ataturk University, Faculty of Veterinary Medicine, Department of Pathology, 25240 Erzurum, Turkey
| | - Harun Arslan
- Atatürk University Faculty of Fisheries, Department of Basic Sciences, Yakutiye 25240, Erzurum, Turkey
| | - Ahmet Gökhan Aggul
- Agri Ibrahim Cecen University, Faculty of Pharmacy, Department of Biochemistry, 04100 Agri, Turkey
| |
Collapse
|
12
|
Jameel M, Alam MF, Younus H, Jamal K, Siddique HR. Hazardous sub-cellular effects of Fipronil directly influence the organismal parameters of Spodoptera litura. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:216-224. [PMID: 30710772 DOI: 10.1016/j.ecoenv.2019.01.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Indiscriminate use of insecticides/pesticides affects the structure and function of the ecosystems. The present study was aimed to investigate the toxic potential of Fipronil (a second generation phenylpyrazole) using Spodoptera litura larvae (Lepidoptera: Noctuidae) as an experimental model. Commercial grade of Fipronil, an insecticide was fed (20-80 mg/L) to the 4th instar larvae of S. litura for 12-72 h and examined different molecular, biochemical and organismal parameters. We observed a significant dose- and time-dependent changes in the biochemical parameters such as Superoxide dismutase (SOD), Glutathione-S-transferase (GST), Catalase (CAT), level of 8-hydroxy 2'-deoxyguanosine (8-OHdG) and Thiobarbituric Acid Reactive Substances (TBARS) [Malondialdehyde (MDA) equivalent] in the exposed larvae. We also observed that Fipronil interacts with DNA. Next, we examined the influence of sub-cellular damages at the organismal level. The alterations in the parameter such as the delayed emergence of larvae, reduced fecundity, fertility and increased rate of malformation in pupae and adults indicate the sub-organismal damages influence at the organismal level. The findings of the present study suggest that discriminatory non-scientific use of insecticide/pesticide might influence the population dynamics of insects and in large ecosystem too and needs further thorough investigations.
Collapse
Affiliation(s)
- Mohd Jameel
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Md Fazle Alam
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Khowaja Jamal
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| | - Hifzur R Siddique
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
13
|
Alak G, Parlak V, Aslan ME, Ucar A, Atamanalp M, Turkez H. Borax Supplementation Alleviates Hematotoxicity and DNA Damage in Rainbow Trout (Oncorhynchus mykiss) Exposed to Copper. Biol Trace Elem Res 2019; 187:536-542. [PMID: 29926392 DOI: 10.1007/s12011-018-1399-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/25/2018] [Indexed: 11/25/2022]
Abstract
Heavy metals have harmful effects on health of both ecosystems and organisms to their accumulation ability. Copper (Cu) is an essential element for organism survival, but EPA considers Cu as a priority pollutant. On the other hand, boron has well-defined biological effects in living organisms including cytoprotection and genoprotection, although borax (BX) metabolism is poorly described in fish. Moreover, the effects of boron supplementation against Cu-induced hematotoxicity and DNA damage in aquatic organisms are still undetermined. Therefore, the main aim of this study was to provide an overview of the strategy for therapeutic potential of BX against Cu exposure in rainbow trout, Oncorhynchus mykiss. For this aim, fish were fed with different doses of BX and/or copper (1.25, 2.5, and 5 mg/kg of BX; 500 and 1000 mg/kg of Cu) for 21 days in pretreatment and combined treatment options. At the end of the treatments (pre and combined), the hematological index (total erythrocytes count (RBC), total leucocytes count (WBC), hemoglobin (Hb), hematocrit (Hct), total platelet count (PLT), mean cell hemoglobin concentration (MCHC), mean cell hemoglobin (MCH), mean cell volume (MCV)), oxidative DNA damage (8-hydroxy-2-deoxyguanosine (8-OHdG)), and nuclear abnormalities in blood samples of treated and untreated fish were investigated. The statistically significant (p < 0.05) and dose-dependent increases in hematological indices, 8-OH-dG level, and rates of nuclear abnormalities were observed after exposure to Cu in both treatment group fish as compared to untreated group. On the contrary, treatments with BX doses alone did not alter these hematological and DNA damage endpoints. Moreover, both pretreatment and combined treatments with BX significantly alleviated Cu-induced hematotoxicity and genotoxicity. In a conclusion, the obtained data firstly revealed that borax exhibited hematoprotective and genoprotective effects against copper-induced toxicity in fish.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030, Erzurum, Turkey.
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030, Erzurum, Turkey
| | - Mehmet Enes Aslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, TR-25030, Erzurum, Turkey
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030, Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030, Erzurum, Turkey
| | - Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, TR-25030, Erzurum, Turkey
| |
Collapse
|
14
|
Alak G, Ucar A, Çilingir Yeltekin A, Parlak V, Nardemir G, Kızılkaya M, Hakkı Taş İ, Yılgın M, Atamanalp M, Topal A, Mahmut Kocaman E, Yanık T. Neurophysiological responses in the brain tissues of rainbow trout (Oncorhynchus mykiss) treated with bio-pesticide. Drug Chem Toxicol 2018; 42:203-209. [PMID: 30449198 DOI: 10.1080/01480545.2018.1526180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of this study was to investigate neurophysiological responses in rainbow trout brain tissue exposed to natural/botanical pesticides. Fish were exposed to botanical and synthetic pesticides over a 21-day period. At the end of the treatment period, oxidative DNA damage (indicated by 8-OHdG (8-hydroxy-2'-deoxyguanosine), AChE activity (acetylcholinesterase) and transcriptional parameters (gpx (glutathione peroxidase), sod (superoxide dismutase), cat (catalase), HSP70 (heat shock protein 70) and CYP1A (cytochromes P450)) was investigated in control and application groups. Our results indicated that brain AChE activities decreased very significantly in fish treated with both insecticide types when compared with control (p < 0.05). 8-OHdG activity increased in a dose/time-dependent situation in the brain tissues of Oncorhynchus mykiss (p < 0.05). In addition, with regards to gene expression, gpx sod and, cat expressions were down-regulated, whereas CYP1A and HSP70 gene expression were up-regulated in fish treated with both insecticides when compared to the control group (p < 0.05). The data for this study suggests that bio-pesticides can cause neurophysiological changes in fish brain tissue.
Collapse
Affiliation(s)
- Gonca Alak
- a Department of Aquaculture , Faculty of Fisheries, Ataturk University , Erzurum , Turkey
| | - Arzu Ucar
- a Department of Aquaculture , Faculty of Fisheries, Ataturk University , Erzurum , Turkey
| | - Aslı Çilingir Yeltekin
- b Department of Chemistry , Faculty of Science, University of Yuzuncu Yıl , Van , Turkey
| | - Veysel Parlak
- a Department of Aquaculture , Faculty of Fisheries, Ataturk University , Erzurum , Turkey
| | - Gizem Nardemir
- c Graduate School of Natural and Applied Sciences, Ataturk University , Erzurum , Turkey
| | - Merve Kızılkaya
- c Graduate School of Natural and Applied Sciences, Ataturk University , Erzurum , Turkey
| | - İsmail Hakkı Taş
- d Department of Parasitology , Faculty of Veterinary, Ataturk University , Erzurum , Turkey
| | - Mustafa Yılgın
- e Graduate School of Natural and Applied Sciences, Ataturk University , Antalya , Turkey
| | - Muhammed Atamanalp
- a Department of Aquaculture , Faculty of Fisheries, Ataturk University , Erzurum , Turkey
| | - Ahmet Topal
- f Department of Basic Science , Faculty of Fisheries, AtaturkUniversity , Erzurum , Turkey
| | - Esat Mahmut Kocaman
- a Department of Aquaculture , Faculty of Fisheries, Ataturk University , Erzurum , Turkey
| | - Telat Yanık
- a Department of Aquaculture , Faculty of Fisheries, Ataturk University , Erzurum , Turkey
| |
Collapse
|
15
|
Tian X, Yang W, Wang D, Zhao Y, Yao R, Ma L, Ge C, Li X, Huang Z, He L, Jiao W, Lin A. Chronic brain toxicity response of juvenile Chinese rare minnows (Gobiocypris rarus) to the neonicotinoid insecticides imidacloprid and nitenpyram. CHEMOSPHERE 2018; 210:1006-1012. [PMID: 30208524 DOI: 10.1016/j.chemosphere.2018.06.083] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Imidacloprid and nitenpyram are widely used neonicotinoid pesticides worldwide and were observed to adversely affect non-target aquatic organisms. In this study, the toxic effect of imidacloprid and nitenpyram on the brain of juvenile Chinese rare minnows (Gobiocypris rarus) was investigated by determining the oxidative stress, 8-hydroxy-2-deoxyguanosine (8-OHdG) content and acetylcholinesterase (AChE) activity. The superoxide dismutase (SOD) activities did not significantly change after long-term exposure to imidacloprid and nitenpyram. A noticeable increase of catalase (CAT) activities was observed on the brain tissues under 0.1 mg/L imidacloprid and under all nitenpyram treatments (p < 0.05). The malondialdehyde (MDA) content increased markedly under 2.0 mg/L imidacloprid and 0.1 mg/L nitenpyram treatments (p < 0.05). The glutathione (GSH) content in the brain significantly increased under 0.5 and 2.0 mg/L imidacloprid (p < 0.05). A significant decrease was observed in the mRNA levels of Cu/Zn-sod under 2.0 mg/L imidacloprid and those of cat under 0.1 and 0.5 mg/L nitenpyram (p < 0.05). The mRNA levels of gpx1 clearly decreased under 2.0 mg/L imidacloprid and under 0.1 mg/L nitenpyram (p < 0.05). The treatments of 0.1 and 0.5 mg/L nitenpyram decreased cat expression levels markedly (p < 0.05). 2.0 mg/L imidacloprid raised the 8-OHdG content. The AChE activities increased markedly under 0.5 and 2.0 mg/L imidacloprid while clearly decreasing under 2.0 mg/L nitenpyram (p < 0.05). Therefore, our results indicate that imidacloprid and nitenpyram might cause adverse effects on juvenile Chinese rare minnows brain. Notably, imidacloprid had greater impacts on juvenile rare minnows compared to nitenpyram.
Collapse
Affiliation(s)
- Xue Tian
- Beijing City Environment Pollution Control and Resource Reuse Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Wenjie Yang
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Dong Wang
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Yue Zhao
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Ruihua Yao
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Lekuan Ma
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Chazhong Ge
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Xiaoliang Li
- Chinese Academy for Environmental Planning, Beijing, 100012, PR China
| | - Zeyu Huang
- School of International Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li He
- College of Renewable Energy, North China Electric Power University, Beijing 102206, China
| | - Wentao Jiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Aijun Lin
- Beijing City Environment Pollution Control and Resource Reuse Engineering Research Center, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
16
|
Molecular hydrogen alleviates asphyxia-induced neuronal cyclooxygenase-2 expression in newborn pigs. Acta Pharmacol Sin 2018; 39:1273-1283. [PMID: 29565041 DOI: 10.1038/aps.2017.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/08/2017] [Indexed: 12/24/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) has an established role in the pathogenesis of hypoxic-ischemic encephalopathy (HIE). In this study we sought to determine whether COX-2 was induced by asphyxia in newborn pigs, and whether neuronal COX-2 levels were affected by H2 treatment. Piglets were subjected to either 8 min of asphyxia or a more severe 20 min of asphyxia followed by H2 treatment (inhaling room air containing 2.1% H2 for 4 h). COX-2 immunohistochemistry was performed on brain samples from surviving piglets 24 h after asphyxia. The percentages of COX-2-immunopositive neurons were determined in cortical and subcortical areas. Only in piglets with more severe HIE, we observed significant, region-specific increases in neuronal COX-2 expression within the parietal and occipital cortices and in the CA3 hippocampal subfield. H2 treatment essentially prevented the increases in COX-2-immunopositive neurons. In the parietal cortex, the attenuation of COX-2 induction was associated with reduced 8'-hydroxy-2'-deoxyguanozine immunoreactivity and retained microglial ramifcation index, which are markers of oxidative stress and neuroinfiammation, respectively. This study demonstrates for the first time that asphyxia elevates neuronal COX-2 expression in a piglet HIE model. Neuronal COX-2 induction may play region-specific roles in brain lesion progression during HIE development, and inhibition of this response may contribute to the antioxidant/anti-infiammatory neuroprotective effects of H2 treatment.
Collapse
|
17
|
Zou YL, Luo WB, Xie L, Mao XB, Wu C, You ZP. Targeting human 8-oxoguanine DNA glycosylase to mitochondria protects cells from high glucose-induced apoptosis. Endocrine 2018; 60:445-457. [PMID: 29564753 DOI: 10.1007/s12020-018-1575-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/04/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Diabetic retinopathy (DR) is a major vision threatening disease mainly induced by high glucose. Despite great efforts were made to explore the etiology of DR, the exact mechanism responsible for its pathogenesis remains elusive. METHODS In our study, we constructed diabetic rats via Streptozotocin (STZ) injection. TUNEL assay was employed to examine retinal cell apoptosis. The levels of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were analyzed via flow cytometry. The mRNA and protein levels of mitochondrial respiratory chain were investigated by RT-qPCR and western blot. RESULTS Compared with normal rats, the retinal cell apoptosis rate in diabetic rats was significantly upregulated. What's more, the signals of 8-OHdG and the levels of Cytochrome C in diabetic rats were enhanced; however, the MnSOD signals and NADPH-1 levels were reduced. We investigated the effect of mitochondrialy targeted hOGG1 (MTS-hOGG1) on the primary rRECs under high glucose. Compared with vector-transfected cells, MTS-hOGG1-expressing cells blocked high glucose-induced cell apoptosis, the loss of MMP and the overproduction of ROS. In addition, under high glucose, MTS-hOGG1 transfection blocked the expression of Cytochrome C, but enhanced the expression of cytochrome c oxidase subunit 1 and NADPH-1. CONCLUSIONS These findings indicated that high glucose induced cell apoptosis by causing the loss of MMP, the overproduction of ROS and mtDNA damage. Targeting DNA repair enzymes hOGG1 in mitochondria partly mitigated the high glucose-induced consequences, which shed new light for DR therapy.
Collapse
Affiliation(s)
- Yu-Ling Zou
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Wen-Bin Luo
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Lin Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Xin-Bang Mao
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Chao Wu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China
| | - Zhi-Peng You
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
18
|
Alak G, Ucar A, Parlak V, Yeltekin AÇ, Taş IH, Ölmez D, Kocaman EM, Yılgın M, Atamanalp M, Yanık T. Assessment of 8-hydroxy-2-deoxyguanosine activity, gene expression and antioxidant enzyme activity on rainbow trout (Oncorhynchus mykiss) tissues exposed to biopesticide. Comp Biochem Physiol C Toxicol Pharmacol 2017; 203:51-58. [PMID: 29111472 DOI: 10.1016/j.cbpc.2017.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/15/2023]
Abstract
The goal of this study was to determinate toxicity mechanism of biopesticide with antioxidant enzymes parameters such as superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) and malondialdehyde (MDA) levels, oxidative DNA damage (8-hydroxy-2-deoxyguanosine (8-OHdG)), transcriptional changes of heat shock protein 70 (HSP70), and cytochromes P4501A (CYP1A), sod, cat, and gpx in liver and gill tissues of Oncorhynchus mykiss. For this aim, plant-based (natural pesticides, azadirachtin (AZA)) and synthetic pesticides (deltamethrin (DLM)) were exposed on the fish at different concentrations (0.0005 and 0.00025ppm of DLM; 0.24 and 0.12ppm of AZA) for 21 days. According to the results of the study, the activity of SOD, CAT and GPx decreased, but malondialdehyde (MDA) level and activity of 8-OHdG increased in the gill and liver of rainbow trout (p<0.05). Additionally sod, cat and gpx were down regulated; HSP70 and CYP1A were up regulated for transcriptional observation. The downwards regulation of antioxidant (sod, cat and gpx) and the upregulation of HSP70 and CYP1A was obvious with doses of AZA or DLM (p<0.05). The findings of this study suggest that biopesticide can cause biochemical and physiological effects in the fish gill and liver by causing enzyme inhibition, an increase in 8-OHdG levels and changes in both transcriptional parameters (sod, cat, gpx, HSP70 and CYP1A). We found that excessive doses of plant-based pesticide are nearly as toxic as chemical ones for aquatic organisms. Moreover, 8-OHdG, HSP70 and CYP1A used as a biomarker to determinate toxicity mechanism of biopesticide in aquatic environment.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey.
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey.
| | - Aslı Çilingir Yeltekin
- Department of Chemistry, Faculty of Science, University of Yuzuncu Yıl, TR-65080 Van, Turkey
| | | | - Doğukan Ölmez
- Graduate School of Natural and Applied Sciences, TR-25030 Erzurum, Turkey
| | - Esat Mahmut Kocaman
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Mustafa Yılgın
- Graduate School of Natural and Applied Sciences, TR-07070 Antalya, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Telat Yanık
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| |
Collapse
|
19
|
Arslan H, Özdemir S, Altun S. Cypermethrin toxication leads to histopathological lesions and induces inflammation and apoptosis in common carp (Cyprinus carpio L.). CHEMOSPHERE 2017; 180:491-499. [PMID: 28431387 DOI: 10.1016/j.chemosphere.2017.04.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Cypermethrin (Cyp), a known neurotoxic pesticide, is widely used in agricultural applications. In the present study, the aim was to determine the histopathological effects of Cyp toxication and evaluate the activation of inducible nitric oxide synthetase (iNOS) and 8-hydroxy-2-deoxyguanosine (8-OHdG) using an immunofluorescence assay. Thereafter, we identified the expressions of caspase 3, capsase 8, iNOS, and metallothionein 1 (MT1) genes in common carp using quantitative reverse transcription polymerase chain reaction (qRT-PCR). High and low doses of Cyp were administered to experimental groups for 24, 48, 72, and 96 h. As a result, necrotic neurons in different stages and desquamation of ependymal cells due to necrosis were detected in the brain. Histopathological changes, including hyperplasia of lamellar cells, telangiectasia of lamellae and thickening due to cellular infiltration in gills, hemorrhage, diffuse hydropic degeneration, and focal necrosis in the liver were observed in the experimental groups. Immunopositive reactions of 8-OHdG were clearly observed in the nuclei and cytoplasm of neurons, and positive reactions for iNOS were detected in the cytoplasm of neurons and in the glial cells of the experimental groups. Furthermore, we found that caspase 3, capsase 8, iNOS, and MT1 genes were up-regulated in the brain when exposed to both high and low doses of Cyp. In conclusion, our findings revealed that Cyp toxication harms the organs of common carp, particularly the brain, and also gives rise to inflammation, DNA damage, and apoptosis. Therefore, the use of Cyp should be restricted to protect the health of aquatic animals.
Collapse
Affiliation(s)
- Harun Arslan
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, Yakutiye, 25240, Erzurum, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, 25240, Erzurum, Turkey
| | - Serdar Altun
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, 25240, Erzurum, Turkey
| |
Collapse
|
20
|
Alak G, Yeltekin AÇ, Tas IH, Ucar A, Parlak V, Topal A, Kocaman EM, Atamanalp M. Investigation of 8-OHdG, CYP1A, HSP70 and transcriptional analyses of antioxidant defence system in liver tissues of rainbow trout exposed to eprinomectin. FISH & SHELLFISH IMMUNOLOGY 2017; 65:136-144. [PMID: 28400213 DOI: 10.1016/j.fsi.2017.04.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/31/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Eprinomectin (EPM), a member of avermectin family, is a semi-synthetic antibiotic. It has been known that avermectin family enters the aquatic environments and adversely affects the aquatic organisms. Effects of EPM is fully unknown in aquatic organisms especially fish, thus the aim of the present study was to investigate transcriptional changes (sod, cat, gpx) and activities of some antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) and malondialdehyde (MDA) levels, oxidative DNA damage (8-hydroxy-2-deoxyguanosine (8-OHdG)) and transcriptional changes of heat shock protein 70 (HSP70), and cytochromes P4501A (CYP1A) in liver tissues of rainbow trout exposed to sublethal EPM concentration (0.001 μg/L, 0.002 μg/L, 0.01 μg/L, 0.05 μg/L) for 24 h, 48 h, 72 h and 96 h. The decrease in antioxidant enzyme (SOD, CAT and GPx) activity, transcriptional changes (sod, cat, gpx, HSP70 and CYP1A genes) and increase in MDA level and activity of 8-OHdG in a dose-time-dependent manner in the liver of rainbow trout were observed. The down-regulated of antioxidant (sod, cat and gpx), HSP70 and CYP1A obviously, the severity of which increased with the concentration of EPM and exposure time. The results imply that EPM could induce oxidative damage to the liver tissue of rainbow trout. The information presented in this study is helpful to understand the mechanism of veterinary pharmaceuticals-induced oxidative stress in fishes.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey.
| | - Aslı Çilingir Yeltekin
- Department of Chemistry, Faculty of Science, University of Yuzuncu Yıl, TR-65080, Van, Turkey
| | - Ismail Hakkı Tas
- Department of Parasitology, Faculty of Veterinary, Ataturk University, TR-25030 Erzurum, Turkey
| | - Arzu Ucar
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Veysel Parlak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Ahmet Topal
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Esat Mahmut Kocaman
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| |
Collapse
|
21
|
Topal A, Alak G, Ozkaraca M, Yeltekin AC, Comaklı S, Acıl G, Kokturk M, Atamanalp M. Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: Assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity. CHEMOSPHERE 2017; 175:186-191. [PMID: 28219821 DOI: 10.1016/j.chemosphere.2017.02.047] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
The extensive use of imidacloprid, a neonicotinoid insecticide, causes undesirable toxicity in non-targeted organisms including fish in aquatic environments. We investigated neurotoxic responses by observing 8-hydroxy-2-deoxyguanosine (8-OHdG) activity, oxidative stress and acetylcholinesterase (AChE) activity in rainbow trout brain tissue after 21 days of imidacloprid exposure at levels of (5 mg/L, 10 mg/L, 20 mg/L). The obtained results indicated that 8-OHdG activity did not change in fish exposed to 5 mg/L of imidacloprid, but 10 mg/L and 20 mg/L of imidacloprid significantly increased 8-OHdG activity compared to the control (p < 0.05). An immunopositiv reaction to 8-OHdG was detected in brain tissues. The brain tissues indicated a significant increase in antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)) compared to the control and there was a significant increase in malondialdehyde (MDA) levels (p < 0.05). High concentrations of imidacloprid caused a significant decrease in AChE enzyme activity (p < 0.05). These results suggested that imidacloprid can be neurotoxic to fish by promoting AChE inhibition, an increase in 8-OHdG activity and changes in oxidative stress parameters. Therefore, these data may reflect one of the molecular pathways that play a role in imidacloprid toxicity.
Collapse
Affiliation(s)
- Ahmet Topal
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey.
| | - Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Mustafa Ozkaraca
- Department of Pathology, Faculty of Veterinary, Ataturk University, TR-25030 Erzurum, Turkey
| | - Aslı Cilingir Yeltekin
- Department of Chemistry, Faculty of Science, Yuzuncu Yıl University, TR-65080 Van, Turkey
| | - Selim Comaklı
- Department of Pathology, Faculty of Veterinary, Ataturk University, TR-25030 Erzurum, Turkey
| | - Gurdal Acıl
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Mine Kokturk
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| |
Collapse
|
22
|
Topal A, Alak G, Altun S, Erol HS, Atamanalp M. Evaluation of 8-hydroxy-2-deoxyguanosine and NFkB activation, oxidative stress response, acetylcholinesterase activity, and histopathological changes in rainbow trout brain exposed to linuron. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:14-20. [PMID: 27886567 DOI: 10.1016/j.etap.2016.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Linuron is a widely used herbicide to control grasses and annual broad leaf weeds. It is known that linuron has toxic effects on different organisms. However, the toxic effects of linuron on aquatic organisms, especially fish, is completely unknown. Thus, we aimed to investigate changes in 8-hydroxy-2-deoxyguanosine (8-OHdG) and nuclear factor kappa B (NFkB) activity, histopathological changes, antioxidant responses and acetylcholinesterase (AChE) activity in rainbow trout brain after exposure to linuron. Fish were exposed to 30μg/L, 120μg/L and 240μg/L concentrations of linuron for twenty-one days. Brain tissues were taken from fish for 8-OHdG and NFkB activity, histopathological examination and determination of superoxide dismutase (SOD), catalase (CAT) enzyme activity, lipid peroxidation (LPO), and reduced glutathione (GSH) levels. Our data indicated that high linuron concentrations caused a decrease in GSH levels, SOD and CAT activities in brain tissues (p<0.05). LPO levels were significantly increased by 240μg/L linuron. All concentrations caused a significant inhibition in brain AChE enzyme activity (p<0.05). Immunopositivity was detected for 8-OHdG and NFkB, and linuron exposure caused histopathological damage to the brain tissues. The results of this study can provide useful information for understanding of linuron-induced toxicity.
Collapse
Affiliation(s)
- Ahmet Topal
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey.
| | - Gonca Alak
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| | - Serdar Altun
- Department of Pathology, Faculty of Veterinary, Ataturk University, TR-25030 Erzurum, Turkey
| | - Hüseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary, Ataturk University, TR-25030 Erzurum, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030 Erzurum, Turkey
| |
Collapse
|
23
|
Topal A, Atamanalp M, Oruç E, Erol HS. Physiological and biochemical effects of nickel on rainbow trout (Oncorhynchus mykiss) tissues: Assessment of nuclear factor kappa B activation, oxidative stress and histopathological changes. CHEMOSPHERE 2017; 166:445-452. [PMID: 27705832 DOI: 10.1016/j.chemosphere.2016.09.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
We investigated changes in nuclear factor kappa B (NFkB) activity, antioxidant responses and histopathological effects in the liver, gill and kidney tissues of rainbow trout exposed to nickel chloride (Ni). Two different concentrations (1 mg/L and 2 mg/L) were administrated to fish for 21 days. Tissues were taken from all fish for NFkB activity, histopathological examination and determination of superoxide dismutase (SOD), catalase (CAT) enzyme activity and of lipid peroxidation (LPO), and glutathione (GSH) levels. The findings of this study indicated that Ni exposure led to a significant increase in LPO indicating peroxidative damage and antioxidant enzymes SOD and CAT activity in tissues (p < 0.05), but 2 mg/Ni concentration caused a significant decrease in CAT activity in kidney tissues (p < 0.05). One of mechanism in the antioxidant defense system seems to be GSH, which increased in gill and kidney tissues of fish exposed to Ni (p < 0.05). NFkB immunopositivity was detected in all tissues. Ni exposure caused lamellar thickening, cellular infiltration in gill tissues, hydropic degeneration of hepatocytes in liver tissues, hyalinous accumulation within the glomeruli and tubular degeneration in kidney tissues. Our results suggested that Ni toxicity may disturb the biochemical and physiological functions of fish by causing changes in NFkB activity and oxidative and histopathological damage in the tissues of rainbow trout. This study can provide useful information for understanding of Ni-induced toxicity.
Collapse
Affiliation(s)
- Ahmet Topal
- Department of Basic Sciences, Faculty of Fisheries, Ataturk University, TR-25240, Erzurum, Turkey.
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25240, Erzurum, Turkey
| | - Ertan Oruç
- Department of Pathology, Faculty of Veterinary, Ataturk University, TR-25240, Erzurum, Turkey; Department of Pathology, Faculty of Veterinary, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Hüseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary, Ataturk University, TR-25240, Erzurum, Turkey
| |
Collapse
|