1
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
2
|
Maleki F, Chang C, Purohit VS, Nicholas T. Pharmacokinetic Profile of Brepocitinib with Topical Administration in Atopic Dermatitis and Psoriasis Populations: Strategy to Inform Clinical Trial Design in Adult and Pediatric Populations. Pharm Res 2024; 41:623-636. [PMID: 38519816 PMCID: PMC11024034 DOI: 10.1007/s11095-024-03654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/02/2024] [Indexed: 03/25/2024]
Abstract
INTRODUCTION Topical brepocitinib, a tyrosine kinase (TYK)2/Janus kinase (JAK)1 inhibitor, is in development for psoriasis (PsO) and atopic dermatitis (AD). Quantitative analyses of prior clinical trial data were used to inform future clinical trial designs. METHODS Two phase 2b studies in patients with AD and PsO were used to characterize the amount of topical brepocitinib and the resultant systemic trough concentration (CTrough) using a linear mixed-effects regression (LMER). This model was used to predict brepocitinib systemic CTrough for higher treated body surface areas (BSAs) in adults and children. Information from non-clinical and clinical trials with oral brepocitinib was leveraged to set safety thresholds. This combined approach was used to inform future dose-strength selection and treated BSA limits. RESULTS Data from 256 patients were analyzed. Patient type, dose strength, and frequency had significant impacts on the dose-exposure relationship. Systemic concentration in patients with PsO was predicted to be 45% lower than in patients with AD from the same dose. When topically applied to the same percentage BSA, brepocitinib systemic exposures are expected to be comparable between adults and children. The systemic steady-state exposure after 3% once daily and twice daily (2 mg/cm2) cream applied to less than 50% BSA in patients with AD and PsO, respectively, maintains at least a threefold margin to non-clinical safety findings and clinical hematologic markers. CONCLUSION The relationship between the amount of active drug applied and brepocitinib systemic CTrough, described by LMER, may inform the development strategy for dose optimization in the brepocitinib topical program.
Collapse
Affiliation(s)
- Farzaneh Maleki
- Clinical Pharmacology & Pharmacometrics, Global Product Development, Pfizer, Cambridge, MA, 02139, USA.
| | - Cheng Chang
- Clinical Pharmacology & Pharmacometrics, Global Product Development, Pfizer, Cambridge, MA, 02139, USA
| | - Vivek S Purohit
- Clinical Pharmacology & Pharmacometrics, Global Product Development, Pfizer, Cambridge, MA, 02139, USA
| | - Timothy Nicholas
- Clinical Pharmacology & Pharmacometrics, Global Product Development, Pfizer, Cambridge, MA, 02139, USA
| |
Collapse
|
3
|
Santoro D, Saridomichelakis M, Eisenschenk M, Tamamoto-Mochizuki C, Hensel P, Pucheu-Haston C. Update on the skin barrier, cutaneous microbiome and host defence peptides in canine atopic dermatitis. Vet Dermatol 2024; 35:5-14. [PMID: 37990608 DOI: 10.1111/vde.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Canine atopic dermatitis (AD) is a complex inflammatory skin disease associated with cutaneous microbiome, immunological and skin barrier alterations. This review summarises the current evidence on skin barrier defects and on cutaneous microbiome dysfunction in canine AD. OBJECTIVE To this aim, online citation databases, abstracts and proceedings from international meetings on skin barrier and cutaneous microbiome published between 2015 and 2023 were reviewed. RESULTS Since the last update on the pathogenesis of canine AD, published by the International Committee on Allergic Diseases of Animals in 2015, 49 articles have been published on skin barrier function, cutaneous/aural innate immunity and the cutaneous/aural microbiome in atopic dogs. Skin barrier dysfunction and cutaneous microbial dysbiosis are essential players in the pathogenesis of canine AD. It is still unclear if such alterations are primary or secondary to cutaneous inflammation, although some evidence supports their primary involvement in the pathogenesis of canine AD. CONCLUSION AND CLINICAL RELEVANCE Although many studies have been published since 2015, the understanding of the cutaneous host-microbe interaction is still unclear, as is the role that cutaneous dysbiosis plays in the development and/or worsening of canine AD. More studies are needed aiming to design new therapeutic approaches to restore the skin barrier, to increase and optimise the cutaneous natural defences, and to rebalance the cutaneous microbiome.
Collapse
Affiliation(s)
- Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | - Chie Tamamoto-Mochizuki
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Cherie Pucheu-Haston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
4
|
Shutova MS, Borowczyk J, Russo B, Sellami S, Drukala J, Wolnicki M, Brembilla NC, Kaya G, Ivanov AI, Boehncke WH. Inflammation modulates intercellular adhesion and mechanotransduction in human epidermis via ROCK2. iScience 2023; 26:106195. [PMID: 36890793 PMCID: PMC9986521 DOI: 10.1016/j.isci.2023.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Aberrant mechanotransduction and compromised epithelial barrier function are associated with numerous human pathologies including inflammatory skin disorders. However, the cytoskeletal mechanisms regulating inflammatory responses in the epidermis are not well understood. Here we addressed this question by inducing a psoriatic phenotype in human keratinocytes and reconstructed human epidermis using a cytokine stimulation model. We show that the inflammation upregulates the Rho-myosin II pathway and destabilizes adherens junctions (AJs) promoting YAP nuclear entry. The integrity of cell-cell adhesion but not the myosin II contractility per se is the determinative factor for the YAP regulation in epidermal keratinocytes. The inflammation-induced disruption of AJs, increased paracellular permeability, and YAP nuclear translocation are regulated by ROCK2, independently from myosin II activation. Using a specific inhibitor KD025, we show that ROCK2 executes its effects via cytoskeletal and transcription-dependent mechanisms to shape the inflammatory response in the epidermis.
Collapse
Affiliation(s)
- Maria S. Shutova
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julia Borowczyk
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Barbara Russo
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sihem Sellami
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Justyna Drukala
- Jagiellonian University, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Cracow, Poland
| | - Michal Wolnicki
- Department of Pediatric Urology, Jagiellonian University Medical College, Cracow, Poland
| | - Nicolo C. Brembilla
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gurkan Kaya
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Wolf-Henning Boehncke
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
- University Hospitals of Geneva, Division of Dermatology and Venereology, Geneva, Switzerland
- Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Effects of Air Pollution on Cellular Senescence and Skin Aging. Cells 2022; 11:cells11142220. [PMID: 35883663 PMCID: PMC9320051 DOI: 10.3390/cells11142220] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
The human skin is exposed daily to different environmental factors such as air pollutants and ultraviolet (UV) light. Air pollution is considered a harmful environmental risk to human skin and is known to promote aging and inflammation of this tissue, leading to the onset of skin disorders and to the appearance of wrinkles and pigmentation issues. Besides this, components of air pollution can interact synergistically with ultraviolet light and increase the impact of damage to the skin. However, little is known about the modulation of air pollution on cellular senescence in skin cells and how this can contribute to skin aging. In this review, we are summarizing the current state of knowledge about air pollution components, their involvement in the processes of cellular senescence and skin aging, as well as the current therapeutic and cosmetic interventions proposed to prevent or mitigate the effects of air pollution in the skin.
Collapse
|
6
|
Shutova MS, Boehncke WH. Mechanotransduction in Skin Inflammation. Cells 2022; 11:2026. [PMID: 35805110 PMCID: PMC9265324 DOI: 10.3390/cells11132026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In the process of mechanotransduction, the cells in the body perceive and interpret mechanical stimuli to maintain tissue homeostasis and respond to the environmental changes. Increasing evidence points towards dysregulated mechanotransduction as a pathologically relevant factor in human diseases, including inflammatory conditions. Skin is the organ that constantly undergoes considerable mechanical stresses, and the ability of mechanical factors to provoke inflammatory processes in the skin has long been known, with the Koebner phenomenon being an example. However, the molecular mechanisms and key factors linking mechanotransduction and cutaneous inflammation remain understudied. In this review, we outline the key players in the tissue's mechanical homeostasis, the available data, and the gaps in our current understanding of their aberrant regulation in chronic cutaneous inflammation. We mainly focus on psoriasis as one of the most studied skin inflammatory diseases; we also discuss mechanotransduction in the context of skin fibrosis as a result of chronic inflammation. Even though the role of mechanotransduction in inflammation of the simple epithelia of internal organs is being actively studied, we conclude that the mechanoregulation in the stratified epidermis of the skin requires more attention in future translational research.
Collapse
Affiliation(s)
- Maria S. Shutova
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland;
- Department of Dermatology, Geneva University Hospitals, 1211 Geneva, Switzerland
| |
Collapse
|
7
|
Zijl S, Salameti V, Louis B, Negri VA, Watt FM. Dynamic regulation of human epidermal differentiation by adhesive and mechanical forces. Curr Top Dev Biol 2022; 150:129-148. [DOI: 10.1016/bs.ctdb.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Purohit V, Riley S, Tan H, Ports WC. Predictors of Systemic Exposure to Topical Crisaborole: A Nonlinear Regression Analysis. J Clin Pharmacol 2020; 60:1344-1354. [PMID: 32433779 PMCID: PMC7540423 DOI: 10.1002/jcph.1624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Crisaborole ointment, 2%, is a nonsteroidal phosphodiesterase 4 inhibitor for the treatment of mild to moderate atopic dermatitis. Results from 2 randomized, double-blind, vehicle-controlled phase 3 studies showed that twice-daily crisaborole in children and adults with mild to moderate atopic dermatitis was efficacious and well tolerated. Initial pharmacokinetics (PK) studies of crisaborole indicated absorption with measurable systemic levels of crisaborole. The current analysis was conducted to correlate steady-state systemic exposure parameters with ointment dose and identify covariates impacting PK parameters in healthy participants and patients with atopic dermatitis or psoriasis. A nonlinear regression analysis was conducted using ointment dose and noncompartmental PK parameters at steady state (area under the curve [AUCss ] and maximum concentration [Cmax,ss ]). PK data were available from 244 participants across 6 clinical studies (AUCss , N = 239; Cmax,ss , N = 241). Disease condition had the greatest impact on slope in both models, corresponding to 2.5-fold higher AUCss and Cmax,ss values at a given ointment dose in patients with atopic dermatitis or psoriasis relative to healthy participants. Disease severity, race/ethnicity, and sex had marginal effects on AUCss and Cmax,ss . Systemic exposures were similar across age groups ≥2 years of age when the same percentage of body surface area (%BSA) was treated. Predictive performance plots for AUCss and Cmax,ss for different age groups demonstrated that the models adequately describe the observed data. Model predictions indicated that systemic exposure to crisaborole in pediatric patients (2-17 years) is unlikely to exceed systemic exposure in adults (≥18 years), even at the highest possible ointment dose corresponding to a %BSA of 90.
Collapse
|
9
|
Jedrusik N, Steinberg T, Husari A, Volk L, Wang X, Finkenzeller G, Strassburg S, Tomakidi P. Gelatin nonwovens-based epithelial morphogenesis involves a signaling axis comprising EGF-receptor, MAP kinases ERK 1/2, and β1 integrin. J Biomed Mater Res A 2018; 107:663-677. [PMID: 30474276 DOI: 10.1002/jbm.a.36585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 12/27/2022]
Abstract
In biomaterials research, biomechanics which support tissue regeneration steadily gains of importance. Hence, we have previously shown that gelatin-based electrospun nonwoven mats (NWMs) with a distinct modulus of elasticity (3.2 kPa) promotes epithelial morphogenesis. Since molecular mechanisms of this morphogenesis are still unknown, the present study aims at identifying molecules, involved herein. Epithelia established on the NMWs showed persistence of the activated state of the epidermal growth factor receptor (EGF-R), phosphorylated at the src-specific tyrosine 845 (EGF-RT845 ) throughout the observation period of 10 days. To elucidate whether the observed morphogenesis mechanistically involves EGF-R signaling, we inhibited EGF-R, by employing the EGF-RT845 specific inhibitor Gefitinib (IRESSA®). Gefitinib administration yielded a reduced expression of the β1 integrin subunit, a well-known cell-matrix interaction receptor, concomitant with downregulation of p42/44 ERK1/2 MAP-kinase activity. To elucidate whether the observed downregulation of β1 is EGF-RT845 -dependent or emerging from ERK1/2 signaling, we exposed epithelia, grown on the NWMs, with the ERK1/2-directed inhibitor U0126. In the absence of Gefitinib, inhibition of p42/44 MAP-kinase activity resulted in decreased β1 integrin protein levels, thus indicating that β1 expression is dependent on ERK1/2 and not EGF-RT845 . Our results showed the first time that an EGF-R-β1 integrin-signaling axis, including ERK1/2, promotes NWM-elasticity-based epithelial morphogenesis. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 663-677, 2019.
Collapse
Affiliation(s)
- Nicole Jedrusik
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany.,Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110, Freiburg, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany.,Faculty of Engineering, University of Freiburg, Georges-Köhler-Allee 101, 79110, Freiburg, Germany
| | - Lukas Volk
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Xiaoling Wang
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
| | - Günter Finkenzeller
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
| | - Sandra Strassburg
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
| |
Collapse
|
10
|
Fish Scale Collagen Peptides Protect against CoCl 2/TNF- α-Induced Cytotoxicity and Inflammation via Inhibition of ROS, MAPK, and NF- κB Pathways in HaCaT Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9703609. [PMID: 28717410 PMCID: PMC5498912 DOI: 10.1155/2017/9703609] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/20/2017] [Accepted: 04/26/2017] [Indexed: 12/25/2022]
Abstract
Skin diseases associated with inflammation or oxidative stress represent the most common problem in dermatology. The present study demonstrates that fish scale collagen peptides (FSCP) protect against CoCl2-induced cytotoxicity and TNF-α-induced inflammatory responses in human HaCaT keratinocyte cells. Our study is the first to report that FSCP increase cell viability and ameliorate oxidative injury in HaCaT cells through mechanisms mediated by the downregulation of key proinflammatory cytokines, namely, TNF-α, IL-1β, IL-8, and iNOS. FSCP also prevent cell apoptosis by repressing Bax expression, caspase-3 activity, and cytochrome c release and by upregulating Bcl-2 protein levels in CoCl2- or TNF-α-stimulated HaCaT cells. In addition, the inhibitory effects of FSCP on cytotoxicity and the induction of proinflammatory cytokine expression were found to be associated with suppression of the ROS, MAPK (p38/MAPK, ERK, and JNK), and NF-κB signaling pathways. Taken together, our data suggest that FSCP are useful as immunomodulatory agents in inflammatory or immune-mediated skin diseases. Furthermore, our results provide new insights into the potential therapeutic use of FSCP in the prevention and treatment of various oxidative- or inflammatory stress-related inflammation and injuries.
Collapse
|
11
|
Wang R, Chen YS, Dashwood WM, Li Q, Löhr CV, Fischer K, Ho E, Williams DE, Dashwood RH. Divergent roles of p120-catenin isoforms linked to altered cell viability, proliferation, and invasiveness in carcinogen-induced rat skin tumors. Mol Carcinog 2017; 56:1733-1742. [PMID: 28218467 DOI: 10.1002/mc.22630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/02/2017] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
Abstract
The heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) targets multiple organs for tumorigenesis in the rat, including the colon and the skin. PhIP-induced skin tumors were subjected to mutation screening, which identified genetic changes in Hras (7/40, 17.5%) and Tp53 (2/40, 5%), but not in Ctnnb1, a commonly mutated gene in PhIP-induced colon tumors. Despite the absence of Ctnnb1 mutations, β-catenin was overexpressed in nuclear and plasma membrane fractions from PhIP-induced skin tumors, coinciding with loss of p120-catenin from the plasma membrane, and the appearance of multiple p120-catenin-associated bands in the nuclear extracts. Real-time RT-PCR revealed that p120-catenin isoforms 1 and 4 were upregulated in PhIP-induced skin tumors, whereas p120-catenin isoform 3 was expressed uniformly, compared with adjacent normal-looking tissue. In human epidermoid carcinoma and colon cancer cells, transient transfection of p120-catenin isoform 1A enhanced the viability and cell invasion index, whereas transient transfection of p120-catenin isoform 4A increased cell viability and cell proliferation. Knockdown of p120-catenin revealed a corresponding reduction in the expression of β-catenin and a transcriptionally regulated target, Ccnd1/Cyclin D1. Co-immunoprecipitation experiments identified associations of β-catenin with p120-catenin isoforms in PhIP-induced skin tumors and human cancer cell lines. The results are discussed in the context of therapeutic strategies that might target different p120-catenin isoforms, providing an avenue to circumvent constitutively active β-catenin arising via distinct mechanisms in skin and colon cancer.
Collapse
Affiliation(s)
- Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Ying-Shiuan Chen
- Center for Epigenetics and Disease Prevention, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas
| | - Wan-Mohaiza Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas
| | - Qingjie Li
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Christiane V Löhr
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Kay Fischer
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,School of Biological and Population Health Sciences, Oregon State University, Corvallis, Oregon
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston, Texas.,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas.,Department of Molecular and Cellular Medicine, Texas A&M College of Medicine, College Station, Texas.,Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
12
|
Influence of Th2 Cytokines on the Cornified Envelope, Tight Junction Proteins, and β-Defensins in Filaggrin-Deficient Skin Equivalents. J Invest Dermatol 2016; 136:631-639. [DOI: 10.1016/j.jid.2015.11.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/25/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022]
|
13
|
Epigenetic Regulation of Epidermal Stem Cell Biomarkers and Their Role in Wound Healing. Int J Mol Sci 2015; 17:ijms17010016. [PMID: 26712738 PMCID: PMC4730263 DOI: 10.3390/ijms17010016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/11/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022] Open
Abstract
As an actively renewable tissue, changes in skin architecture are subjected to the regulation of stem cells that maintain the population of cells responsible for the formation of epidermal layers. Stems cells retain their self-renewal property and express biomarkers that are unique to this population. However, differential regulation of the biomarkers can initiate the pathway of terminal cell differentiation. Although, pockets of non-clarity in stem cell maintenance and differentiation in skin still exist, the influence of epigenetics in epidermal stem cell functions and differentiation in skin homeostasis and wound healing is clearly evident. The focus of this review is to discuss the epigenetic regulation of confirmed and probable epidermal stem cell biomarkers in epidermal stratification of normal skin and in diseased states. The role of epigenetics in wound healing, especially in diseased states of diabetes and cancer, will also be conveyed.
Collapse
|
14
|
Integrin-Linked Kinase Is Indispensable for Keratinocyte Differentiation and Epidermal Barrier Function. J Invest Dermatol 2015; 136:425-435. [PMID: 26967476 DOI: 10.1016/j.jid.2015.10.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/16/2015] [Accepted: 10/01/2015] [Indexed: 11/23/2022]
Abstract
A functional permeability barrier is essential to prevent the passage of water and electrolytes, macromolecules, and pathogens through the epidermis. This is accomplished in terminally differentiated keratinocytes through formation of a cornified envelope and the assembly of tight intercellular junctions. Integrin-linked kinase (ILK) is a scaffold protein essential for hair follicle morphogenesis and epidermal attachment to the basement membrane. However, the biological functions of ILK in differentiated keratinocytes remain poorly understood. Furthermore, whether ILK is implicated in keratinocyte differentiation and intercellular junction formation has remained an unresolved issue. Here we describe a pivotal role for ILK in keratinocyte differentiation responses to increased extracellular Ca(2+), regulation of adherens and tight junction assembly, and the formation of an outside-in permeability barrier toward macromolecules. In the absence of ILK, the calcium sensing receptor, E-cadherin, and ZO-1 fail to translocate to the cell membrane, through mechanisms that involve abnormalities in microtubules and in RhoA activation. In situ, ILK-deficient epidermis exhibits reduced tight junction formation and increased outside-in permeability to a dextran tracer, indicating reduced barrier properties toward macromolecules. Therefore, ILK is an essential component of keratinocyte differentiation programs that contribute to epidermal integrity and the establishment of its barrier properties.
Collapse
|
15
|
Tan J, He W, Luo G, Wu J. iTRAQ-based proteomic profiling reveals different protein expression between normal skin and hypertrophic scar tissue. BURNS & TRAUMA 2015; 3:13. [PMID: 27574659 PMCID: PMC4964291 DOI: 10.1186/s41038-015-0016-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND A hypertrophic scar is a unique fibrotic disease that only exists in humans. Despite advances in burn care and rehabilitation, as well as progress in the management during these decades, the hypertrophic scar remains hard to cure following surgical methods and drugs for treatment. In this study, we are looking forward to finding the multitude of possible traumatic mechanisms and the underlying molecular signal ways in the formation of the hypertrophic scar. METHODS We used isobaric tags for relative and absolute quantitation (iTRAQ) labeling technology, followed by high-throughput 2D LC-MS/MS, to determine relative quantitative differential proteins between the hypertrophic scar and normal skin tissue. RESULTS A total of 3166 proteins were identified with a high confidence (≥95 % confidence). And, a total of 89 proteins were identified as the differential proteins between the hypertrophic scar and normal skin, among which 41 proteins were up-regulated and 48 proteins were down-regulated in the hypertrophic scar. GO-Analysis indicated the up-regulated proteins were involved in extracellular matrix, whereas the down-regulated proteins were involved in dynamic junction and structural molecule activity. CONCLUSIONS In our study, we demonstrate 89 proteins present differently in the hypertrophic scar compared to normal skin by iTRAQ technology, which might indicate the pathologic process of hypertrophic scar formation and guide us to propose new strategies against the hypertrophic scar.
Collapse
Affiliation(s)
- Jianglin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injuries, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injuries, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injuries, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injuries, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| |
Collapse
|
16
|
Wang M, Ning X, Chen A, Huang H, Ni C, Zhou C, Yu K, Lan S, Wang Q, Li S, Liu H, Wang X, Chen Z, Ma L, Sun Q. Impaired formation of homotypic cell-in-cell structures in human tumor cells lacking alpha-catenin expression. Sci Rep 2015; 5:12223. [PMID: 26192076 PMCID: PMC4648412 DOI: 10.1038/srep12223] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/22/2015] [Indexed: 02/06/2023] Open
Abstract
Although cell-in-cell structures (CICs) could be detected in a wide range of human tumors, homotypic CICs formed between tumor cells occur at low rate for most of them. We recently reported that tumor cells lacking expression of E- and P-cadherin were incapable of forming homotypic CICs by entosis, and re-expression of E- or P-cadherin was sufficient to induce CICs formation in these tumor cells. In this work, we found that homotypic CICs formation was impaired in some tumor cells expressing high level of E-cadherin due to loss expression of alpha-catenin (α-catenin), a molecular linker between cadherin-mediated adherens junctions and F-actin. Expression of α-catenin in these tumor cells restored cell-cell adhesion and promoted CICs formation in a ROCK kinase-dependent way. Thus, our work identified α-catenin as another molecule in addition to E- and P-cadherin that were targeted to inactivate homotypic CICs formation in human tumor cells.
Collapse
Affiliation(s)
- Manna Wang
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Xiangkai Ning
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Ang Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Hongyan Huang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing 100038, P. R. China
| | - Chao Ni
- The Institute of Life Sciences, the State Key Laboratory of Kidney; the Key Laboratory of Normal Aging & Geriatric, the Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Changxi Zhou
- The Institute of Life Sciences, the State Key Laboratory of Kidney; the Key Laboratory of Normal Aging & Geriatric, the Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Kaitao Yu
- Department of Stomatology, Affiliated Hospital of Academy of Military Medical Science, 8 Dongda Street, Beijing 100071, P. R. China
| | - Sanchun Lan
- Department of Stomatology, Affiliated Hospital of Academy of Military Medical Science, 8 Dongda Street, Beijing 100071, P. R. China
| | - Qiwei Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Shichong Li
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Hong Liu
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Xiaoning Wang
- The Institute of Life Sciences, the State Key Laboratory of Kidney; the Key Laboratory of Normal Aging & Geriatric, the Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Zhaolie Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, P. R. China
| |
Collapse
|
17
|
Tan J, He W, Luo G, Wu J. Involvement of impaired desmosome-related proteins in hypertrophic scar intraepidermal blister formation. Burns 2015; 41:1517-23. [PMID: 25922301 DOI: 10.1016/j.burns.2015.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/28/2015] [Accepted: 03/27/2015] [Indexed: 01/07/2023]
Abstract
Hypertrophic scar is one of the unique fibrotic diseases in human. Intraepidermal blister is a common clinical symptom following the hypertrophic scar formation. However, little is known about the reason of blister creation. In this study, we selected three patients with hypertrophic scar as manifested by raised, erythematous, pruritic, blister and thickened appearance undergoing scar resection. The first scar sample was 6 months after burn from the neck of a 3 years old male patient with 10 score by Vancouver Scar Scale (VSS). The second scar sample was 12 months after burn from the dorsal foot of a 16 years old female patient with 13 score by VSS. The third one was 9 months after burn from the elbow of a 34 years old male patients with 13 score by VSS. In order to understand the molecular mechanism of blister formation, we screened the different protein expression between hypertrophic scar and normal skin tissue by means of isobaric tags for relative and absolute quantitation (iTRAQ) labeling technology and high throughput 2D LC-MS/MS. There were 48 proteins found to be downregulated in hypertrophic scar. Among the downregulated ones, plakophilin1 (PKP1), plakophilin3 (PKP3) and desmoplakin (DSP) were the desmosome-related proteins which were validated by immunohistochemistry and western blotting assay. Transmission electron microscopy further showed the considerably reduced size and intensity of hemidesmosome and desmosome in hypertrophic scar tissue, compared to control normal skin. Our data indicted for the first time that downregulation of DSP, PKP1 and PKP3 in hypertrophic scar might be responsible for intraepidermal blister formation.
Collapse
Affiliation(s)
- Jianglin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injuries, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injuries, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injuries, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injuries, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|