1
|
Mencio CP, Hussein RK, Yu P, Geller HM. The Role of Chondroitin Sulfate Proteoglycans in Nervous System Development. J Histochem Cytochem 2021; 69:61-80. [PMID: 32936033 PMCID: PMC7780190 DOI: 10.1369/0022155420959147] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
The orderly development of the nervous system is characterized by phases of cell proliferation and differentiation, neural migration, axonal outgrowth and synapse formation, and stabilization. Each of these processes is a result of the modulation of genetic programs by extracellular cues. In particular, chondroitin sulfate proteoglycans (CSPGs) have been found to be involved in almost every aspect of this well-orchestrated yet delicate process. The evidence of their involvement is complex, often contradictory, and lacking in mechanistic clarity; however, it remains obvious that CSPGs are key cogs in building a functional brain. This review focuses on current knowledge of the role of CSPGs in each of the major stages of neural development with emphasis on areas requiring further investigation.
Collapse
Affiliation(s)
- Caitlin P Mencio
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Rowan K Hussein
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education Joint International Research Laboratory of CNS Regeneration, Jinan University, Guangzhou, China
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| |
Collapse
|
2
|
Minegishi T, Uesugi Y, Kaneko N, Yoshida W, Sawamoto K, Inagaki N. Shootin1b Mediates a Mechanical Clutch to Produce Force for Neuronal Migration. Cell Rep 2018; 25:624-639.e6. [DOI: 10.1016/j.celrep.2018.09.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/31/2018] [Accepted: 09/21/2018] [Indexed: 11/26/2022] Open
|
3
|
Niezgoda A, Michalak S, Losy J, Kalinowska-Łyszczarz A, Kozubski W. sNCAM as a specific marker of peripheral demyelination. Immunol Lett 2017; 185:93-97. [PMID: 28336415 DOI: 10.1016/j.imlet.2017.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/15/2017] [Indexed: 11/30/2022]
Abstract
Adhesion molecules are involved in nerve growth, synaptic plasticity and myelin formation and maintenance process. Neural cell adhesion molecule (CD56 or NCAM) seems to play a crucial role in all the above-mentioned events. Having found poly-sialylated NCAM increased re-expression on demyelinated axons within multiple sclerosis plaques we assessed soluble NCAM (sNCAM) in sera of patients with various types of peripheral nerve affections - demyelinating, axonal "inflammatory", axonal metabolic polyneuropathies and healthy controls. These data were compared with the clinical state using Overall Neuropathy Limitations Scale (ONLS) and nerve conduction studies. We found significantly increased sNCAM concentration in demyelinating polyneuropathies in comparison to axonal group and healthy controls as well as significantly increased sNCAM level in axonal group in comparison to healthy subjects. We also found high positive correlation between sNCAM and ONLS and strong negative correlation between sNCAM level and the lowest conduction velocity (Vmin) found in a patient. We conclude that sNCAM might be thought as a specific marker of peripheral nerve demyelination and as a sensitive marker of peripheral nerve injuries.
Collapse
Affiliation(s)
- Adam Niezgoda
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznań, ul. Przybyszewskiego 49 Poznań, 60-355, Poland.
| | - Sławomir Michalak
- Department of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, Poznań, ul. Przybyszewskiego 49, Poznań, 60-355, Poland; Neuroimmunological Unit, Miroslaw Mossakowski Medical Research Center of the Polish Academy of Sciences, Poznań, ul. Przybyszewskiego 49, Poznań, 60-355, Poland
| | - Jacek Losy
- Neuroimmunological Unit, Miroslaw Mossakowski Medical Research Center of the Polish Academy of Sciences, Poznań, ul. Przybyszewskiego 49, Poznań, 60-355, Poland; Department of Neuroimmunology, Chair of Neurology Poznan University of Medical Sciences, Poznań, ul. Przybyszewskiego 49, Poznań, 60-355, Poland
| | - Alicja Kalinowska-Łyszczarz
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznań, ul. Przybyszewskiego 49 Poznań, 60-355, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznań, ul. Przybyszewskiego 49 Poznań, 60-355, Poland
| |
Collapse
|
4
|
Emond MR, Jontes JD. Bead aggregation assays for the characterization of putative cell adhesion molecules. J Vis Exp 2014:e51762. [PMID: 25350770 DOI: 10.3791/51762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cell-cell adhesion is fundamental to multicellular life and is mediated by a diverse array of cell surface proteins. However, the adhesive interactions for many of these proteins are poorly understood. Here we present a simple, rapid method for characterizing the adhesive properties of putative homophilic cell adhesion molecules. Cultured HEK293 cells are transfected with DNA plasmid encoding a secreted, epitope-tagged ectodomain of a cell surface protein. Using functionalized beads specific for the epitope tag, the soluble, secreted fusion protein is captured from the culture medium. The coated beads can then be used directly in bead aggregation assays or in fluorescent bead sorting assays to test for homophilic adhesion. If desired, mutagenesis can then be used to elucidate the specific amino acids or domains required for adhesion. This assay requires only small amounts of expressed protein, does not require the production of stable cell lines, and can be accomplished in 4 days.
Collapse
|
5
|
Poplawski GHD, Tranziska AK, Leshchyns'ka I, Meier ID, Streichert T, Sytnyk V, Schachner M. L1CAM increases MAP2 expression via the MAPK pathway to promote neurite outgrowth. Mol Cell Neurosci 2012; 50:169-78. [PMID: 22503709 DOI: 10.1016/j.mcn.2012.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 02/21/2012] [Accepted: 03/29/2012] [Indexed: 11/30/2022] Open
Abstract
The neural cell adhesion molecule L1 (L1CAM) promotes neurite outgrowth via mechanisms that are not completely understood, but are known to involve the cytoskeleton. Here, we show that L1 binds directly to the microtubule associated protein 2c (MAP2c). This isoform of MAP2 is predominantly expressed in developing neurons. We found that the mRNA and protein levels of MAP2c, but not of MAP2a/b, are reduced in brains of young adult L1-deficient transgenic mice. We show via ELISA, that MAP2c, but not MAP2a/b, binds directly to the intracellular domain of L1. Remarkably, all these MAP2 isoforms co-immunoprecipitate with L1, suggesting that MAP2a/b associates with L1 via intermediate binding partners. The expression levels of MAP2a/b/c correlate with those of L1 in different brain regions of early postnatal mice, while expression levels of heat shock cognate protein 70 (Hsc70) or actin do not. L1 enhances the expression of MAP2a/b/c in cultured hippocampal neurons depending on activation of the mitogen-activated protein kinase (MAPK) pathway. Deficiency in both L1 and MAP2a/b/c expression results in reduced neurite outgrowth in vitro. We propose that the L1-triggered increase in MAP2a/b/c expression is required to promote neurite outgrowth.
Collapse
Affiliation(s)
- Gunnar Heiko Dirk Poplawski
- Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Nakamura Y, Lee S, Haddox CL, Weaver EJ, Lemmon VP. Role of the cytoplasmic domain of the L1 cell adhesion molecule in brain development. J Comp Neurol 2010; 518:1113-32. [PMID: 20127821 DOI: 10.1002/cne.22267] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mutations in the human L1CAM gene cause X-linked hydrocephalus and MASA (Mental retardation, Aphasia, Shuffling gait, Adducted thumbs) syndrome. In vitro studies have shown that the L1 cytoplasmic domain (L1CD) is involved in L1 trafficking, neurite branching, signaling, and interactions with the cytoskeleton. L1cam knockout (L1(KO)) mice have hydrocephalus, a small cerebellum, hyperfasciculation of corticothalamic tracts, and abnormal peripheral nerves. To explore the function of the L1CD, we made three new mice lines in which different parts of the L1CD have been altered. In all mutant lines L1 protein is expressed and transported into the axon. Interestingly, these new L1CD mutant lines display normal brain morphology. However, the expression of L1 protein in the adult is dramatically reduced in the two L1CD mutant lines that lack the ankyrin-binding region and they show defects in motor function. Therefore, the L1CD is not responsible for the major defects observed in L1(KO) mice, yet it is required for continued L1 protein expression and motor function in the adult.
Collapse
Affiliation(s)
- Yukiko Nakamura
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
7
|
Shimada T, Toriyama M, Uemura K, Kamiguchi H, Sugiura T, Watanabe N, Inagaki N. Shootin1 interacts with actin retrograde flow and L1-CAM to promote axon outgrowth. ACTA ACUST UNITED AC 2008; 181:817-29. [PMID: 18519736 PMCID: PMC2396814 DOI: 10.1083/jcb.200712138] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Actin polymerizes near the leading edge of nerve growth cones, and actin filaments show retrograde movement in filopodia and lamellipodia. Linkage between actin filament retrograde flow and cell adhesion molecules (CAMs) in growth cones is thought to be one of the mechanisms for axon outgrowth and guidance. However, the molecular basis for this linkage remains elusive. Here, we show that shootin1 interacts with both actin filament retrograde flow and L1-CAM in axonal growth cones of cultured rat hippocampal neurons, thereby mediating the linkage between them. Impairing this linkage, either by shootin1 RNA interference or disturbing the interaction between shootin1 and actin filament flow, inhibited L1-dependent axon outgrowth, whereas enhancing the linkage by shootin1 overexpression promoted neurite outgrowth. These results strengthen the actin flow–CAM linkage model (“clutch” model) for axon outgrowth and suggest that shootin1 is a key molecule involved in this mechanism.
Collapse
Affiliation(s)
- Tadayuki Shimada
- Division of Signal Transduction, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Frappé I, Wang C, Caines G, Rideout-Gros S, Aubert I. Cell adhesion molecule L1 promotes neurite outgrowth of septal neurons. J Neurosci Res 2004; 75:667-77. [PMID: 14991842 DOI: 10.1002/jnr.20026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To establish if the cell adhesion molecule L1 could promote neurite outgrowth of septal neurons, L1-positive substrates were prepared by genetically modifying 3T3 fibroblasts with a retroviral vector encoding human L1 under the control of a negative tetracycline-regulatory system. In several clones of L1-transfected fibroblasts, L1 expression at the cell surface was prominent and efficiently regulated by doxycycline, a tetracycline analogue. In co-culture of septal neurons and fibroblasts, a two-dimensional fractionator probe provided systematic random sampling of the neurites to be measured. Septal neurons, isolated at embryonic Day 17, were found to express L1 in vitro and to extend significantly longer neurites when plated on L1-expressing fibroblasts compared to control fibroblasts. The neurite outgrowth-promoting effect of L1 was inhibited after a doxycycline treatment, which specifically suppressed L1 expression from the modified fibroblasts. The findings that septal neurons at embryonic Day 17 in vitro express L1 and respond to L1-modulation suggest that this molecule is involved in development of the septohippocampal pathway.
Collapse
Affiliation(s)
- Isabelle Frappé
- Neuroscience Research, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
9
|
Chappuis-Flament S, Wong E, Hicks LD, Kay CM, Gumbiner BM. Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. J Cell Biol 2001; 154:231-43. [PMID: 11449003 PMCID: PMC2196848 DOI: 10.1083/jcb.200103143] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The extracellular homophilic-binding domain of the cadherins consists of 5 cadherin repeats (EC1-EC5). Studies on cadherin specificity have implicated the NH(2)-terminal EC1 domain in the homophilic binding interaction, but the roles of the other extracellular cadherin (EC) domains have not been evaluated. We have undertaken a systematic analysis of the binding properties of the entire cadherin extracellular domain and the contributions of the other EC domains to homophilic binding. Lateral (cis) dimerization of the extracellular domain is thought to be required for adhesive function. Sedimentation analysis of the soluble extracellular segment of C-cadherin revealed that it exists in a monomer-dimer equilibrium with an affinity constant of approximately 64 microm. No higher order oligomers were detected, indicating that homophilic binding between cis-dimers is of significantly lower affinity. The homophilic binding properties of a series of deletion constructs, lacking successive or individual EC domains fused at the COOH terminus to an Fc domain, were analyzed using a bead aggregation assay and a cell attachment-based adhesion assay. A protein with only the first two NH(2)-terminal EC domains (CEC1-2Fc) exhibited very low activity compared with the entire extracellular domain (CEC1-5Fc), demonstrating that EC1 alone is not sufficient for effective homophilic binding. CEC1-3Fc exhibited high activity, but not as much as CEC1-4Fc or CEC1-5Fc. EC3 is not required for homophilic binding, however, since CEC1-2-4Fc and CEC1-2-4-5Fc exhibited high activity in both assays. These and experiments using additional EC combinations show that many, if not all, the EC domains contribute to the formation of the cadherin homophilic bond, and specific one-to-one interaction between particular EC domains may not be required. These conclusions are consistent with a previous study on direct molecular force measurements between cadherin ectodomains demonstrating multiple adhesive interactions (Sivasankar, S., W. Brieher, N. Lavrik, B. Gumbiner, and D. Leckband. 1999. PROC: Natl. Acad. Sci. USA. 96:11820-11824; Sivasankar, S., B. Gumbiner, and D. Leckband. 2001. Biophys J. 80:1758-68). We propose new models for how the cadherin extracellular repeats may contribute to adhesive specificity and function.
Collapse
Affiliation(s)
- S Chappuis-Flament
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
10
|
Meiners S, Mercado ML, Geller HM. The multi-domain structure of extracellular matrix molecules: implications for nervous system regeneration. PROGRESS IN BRAIN RESEARCH 2001; 128:23-31. [PMID: 11105666 DOI: 10.1016/s0079-6123(00)28004-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- S Meiners
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | |
Collapse
|
11
|
Alvarez-Dolado M, Cuadrado A, Navarro-Yubero C, Sonderegger P, Furley AJ, Bernal J, Muñoz A. Regulation of the L1 cell adhesion molecule by thyroid hormone in the developing brain. Mol Cell Neurosci 2000; 16:499-514. [PMID: 11085884 DOI: 10.1006/mcne.2000.0879] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone is essential for brain maturation, regulating neuronal differentiation and migration, myelination, and synaptogenesis. Mutations in the cell adhesion molecule L1 cause severe neurological abnormalities in humans. We studied the effect of thyroid hormone deprivation and administration on L1 expression. Northern and in situ hybridization studies showed that hypothyroidism induces a marked increase in L1 mRNA levels in the caudate putamen, cerebral cortex, amygdala, and some thalamic nuclei. L1 protein was overexpressed in embryonic and newborn hypothyroid rats in the caudate putamen, internal capsule, habenula, and neocortex. Later in development, an abnormally high L1 expression was found in the cortical and cerebellar white matter, corpus callosum, anterior commissure, thalamocortical projections, and striatal fiber tracts of hypothyroid animals. Thyroid hormone administration reversed the upregulation of L1 expression in vivo and in cultured cells. Thus, alterations of L1 expression may contribute to the profound abnormalities caused by hypothyroidism in the developing brain.
Collapse
Affiliation(s)
- M Alvarez-Dolado
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The formation of neurocircuitry depends on the control of neurite outgrowth that, in turn, can be divided into two processes: nerve growth cone protrusion and neurite extension. It has long been known that the neural cell adhesion molecules L1 and NCAM-180 promote neurite outgrowth, but how they function in growth cones is unclear. We addressed the roles of L1 and NCAM-180 in neurite outgrowth by using microscale chromophore-assisted laser inactivation (micro-CALI) of these proteins to perturb their functions at precise times in single growth cones of embryonic chick dorsal root ganglion neurons grown in culture. Micro-CALI of L1 causes neurite retraction after a 10 min lag period but does not affect growth cone protrusion. In contrast, micro-CALI of NCAM-180 causes rapid growth cone retraction but does not affect neurite extension. The simultaneous inactivation of both these molecules resulted in both distinct effects that were segregated in time. The behavior of growth cones after these micro-CALI treatments resemble the drug-induced perturbation of microtubules for L1 and F-actin for NCAM-180. These findings suggest distinct roles in the growth cone for L1 and NCAM-180 in different steps of neurite outgrowth: L1 functions in neurite extension,whereas NCAM-180 functions in growth cone protrusion.
Collapse
|
13
|
Mendoza HL, Faye I. Physiological aspects of the immunoglobulin superfamily in invertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1999; 23:359-74. [PMID: 10426428 DOI: 10.1016/s0145-305x(99)00017-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- H L Mendoza
- Instituto Nacional de Salud Publica, Centro De Investigacion sobre Enfermedades Infecciosas, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
14
|
Berardi M, Hindelang C, Félix JM, Stoeckel ME. L1 and laminin: their expression during rat hypophysis ontogenesis and in adult neurohemal areas. Int J Dev Neurosci 1999; 17:121-30. [PMID: 10221671 DOI: 10.1016/s0736-5748(98)00067-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
L1 is a murine multidomain glycoprotein implicated in cell aggregation, fasciculation. neurite outgrowth and synaptogenesis. Laminin, a trimeric polypeptide, is implicated in neuronal survival, growth cone guidance, neurite outgrowth and cell differentiation. Laminin can also interact with the cell adhesion molecule L1. Their expressions were investigated from embryonic day 15 (E15) to adult in the rat hypophysis, and in adult neurohemal zones. Detected in the neural lobe from E17, the L1 immunoreactivity increased during prenatal development and persisted in adulthood mainly related to the neuropeptidergic fibers. Pituicytes were only labelled on the plasmalemma apposed to axons. In the intermediate lobe, L1 appeared at birth on folliculo-stellate cells extensions, constituting a network which densified during postnatal development. L1 is also expressed in all neurohemal areas on neuronal profiles. Laminin was clearly detectable in the hypophysis at E15 before the first blood vessels penetrate the Rathke pouch. At E20, all the basal membranes of the blood vessels were stained. In the intermediate lobe, a spotted laminin immunoreactivity was detected at E21. At this stage, we observed the staining of intercellular spaces and the intracellular labelling of melanotrophs, concerning reticulum or vesicles. The staining of melanotrophs seemed to maintain during adulthood. In contrast with blood vessels of the adult cerebral tissue, adult capillaries of the neural lobe and the others neuro-hemal zones were intensely labelled with the anti-laminin antibody. These results suggest that neurite outgrowth and neurite guidance could be promoted by L1 and laminin in the neurointermediate lobe. The "intercellular tunnels" could also be an important guidance cue for migrating cells in the intermediate lobe. These data also demonstrate that melanotrophic cells. secreting the laminin, have a role in the ontogenesis of the gland. Finally, we suggest that L1 and laminin can collaborate to reinforce "neurons-capillaries" interactions in neurohemal zones.
Collapse
Affiliation(s)
- M Berardi
- Laboratoire des Mécanismes Moléculaires de la Différenciation Cellulaire et de la Division-UPR 9005, Strasbourg, France
| | | | | | | |
Collapse
|
15
|
Sonderegger P, Kunz S, Rader C, Buchstaller A, Berger P, Vogt L, Kozlov SV, Ziegler U, Kunz B, Fitzli D, Stoeckli ET. Discrete clusters of axonin-1 and NgCAM at neuronal contact sites: facts and speculations on the regulation of axonal fasciculation. PROGRESS IN BRAIN RESEARCH 1999; 117:93-104. [PMID: 9932403 DOI: 10.1016/s0079-6123(08)64010-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- P Sonderegger
- Institute of Biochemistry, University of Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kunz S, Spirig M, Ginsburg C, Buchstaller A, Berger P, Lanz R, Rader C, Vogt L, Kunz B, Sonderegger P. Neurite fasciculation mediated by complexes of axonin-1 and Ng cell adhesion molecule. J Cell Biol 1998; 143:1673-90. [PMID: 9852159 PMCID: PMC2132982 DOI: 10.1083/jcb.143.6.1673] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural cell adhesion molecules composed of immunoglobulin and fibronectin type III-like domains have been implicated in cell adhesion, neurite outgrowth, and fasciculation. Axonin-1 and Ng cell adhesion molecule (NgCAM), two molecules with predominantly axonal expression exhibit homophilic interactions across the extracellular space (axonin- 1/axonin-1 and NgCAM/NgCAM) and a heterophilic interaction (axonin-1-NgCAM) that occurs exclusively in the plane of the same membrane (cis-interaction). Using domain deletion mutants we localized the NgCAM homophilic binding in the Ig domains 1-4 whereas heterophilic binding to axonin-1 was localized in the Ig domains 2-4 and the third FnIII domain. The NgCAM-NgCAM interaction could be established simultaneously with the axonin-1-NgCAM interaction. In contrast, the axonin-1-NgCAM interaction excluded axonin-1/axonin-1 binding. These results and the examination of the coclustering of axonin-1 and NgCAM at cell contacts, suggest that intercellular contact is mediated by a symmetric axonin-12/NgCAM2 tetramer, in which homophilic NgCAM binding across the extracellular space occurs simultaneously with a cis-heterophilic interaction of axonin-1 and NgCAM. The enhanced neurite fasciculation after overexpression of NgCAM by adenoviral vectors indicates that NgCAM is the limiting component for the formation of the axonin-12/NgCAM2 complexes and, thus, neurite fasciculation in DRG neurons.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Binding Sites
- Cell Adhesion Molecules, Neuron-Glia/chemistry
- Cell Adhesion Molecules, Neuron-Glia/genetics
- Cell Adhesion Molecules, Neuron-Glia/physiology
- Cell Adhesion Molecules, Neuronal/chemistry
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/physiology
- Chickens
- Contactin 2
- Extracellular Space/physiology
- Ganglia, Spinal/physiology
- Mice
- Mice, Inbred ICR
- Models, Molecular
- Mutagenesis
- Neurites/physiology
- Neurons/cytology
- Neurons/physiology
- Organ Culture Techniques
- Point Mutation
- Polymerase Chain Reaction
- Protein Conformation
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Deletion
- Transfection
Collapse
Affiliation(s)
- S Kunz
- Institute of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
O'Grady P, Thai TC, Saito H. The laminin-nidogen complex is a ligand for a specific splice isoform of the transmembrane protein tyrosine phosphatase LAR. J Cell Biol 1998; 141:1675-84. [PMID: 9647658 PMCID: PMC2133008 DOI: 10.1083/jcb.141.7.1675] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Leukocyte antigen-related protein (LAR) is a prototype for a family of transmembrane protein tyrosine phosphatases whose extracellular domain is composed of three Ig and several fibronectin type III (FnIII) domains. Complex alternative splicing of the LAR-FnIII domains 4-8 has been observed. The extracellular matrix laminin-nidogen complex was identified as a ligand for the LAR-FnIII domain 5 (Fn5) using a series of GST-LAR-FnIII domain fusion proteins and testing them in in vitro ligand-binding assays. LAR- laminin-nidogen binding was regulated by alternative splicing of a small exon within the LAR-Fn5 so that inclusion of this exon sequence resulted in disruption of the laminin-nidogen-binding activity. Long cellular processes were observed when HeLa cells were plated on laminin-nidogen, but not when plated on a fibronectin surface. Indirect immunofluorescent antibody staining revealed high expression of LAR in a punctate pattern, throughout the length of these cellular processes observed on laminin-nidogen. Antibody-induced cross-linking of LAR inhibited formation of these cellular processes, and inhibition was correlated with changes in cellular actin cytoskeletal structure. Thus, LAR-laminin-nidogen binding may play a role in regulating cell signaling induced by laminin-nidogen, resulting in cell morphological changes.
Collapse
Affiliation(s)
- P O'Grady
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
18
|
Heiland PC, Griffith LS, Lange R, Schachner M, Hertlein B, Traub O, Schmitz B. Tyrosine and serine phosphorylation of the neural cell adhesion molecule L1 is implicated in its oligomannosidic glycan dependent association with NCAM and neurite outgrowth. Eur J Cell Biol 1998; 75:97-106. [PMID: 9548367 DOI: 10.1016/s0171-9335(98)80052-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have previously shown that a cis interaction between the cell adhesion molecules L1 and NCAM is mediated by N-linked oligomannosidic glycans carried by L1 and that this L1/NCAM association is involved in basal neurite outgrowth from early postnatal cerebellar neurons of mouse brain [R. Horstkorte et al., J. Cell Biol. 121, 1409-1421 (1993)]. Extending these earlier studies we investigated signal transduction mechanisms elicited by this molecular interaction. We show here that phosphorylation of L1 is reduced concomitant with reduced neurite outgrowth when the L1/NCAM interaction is inhibited by oligomannosidic glycopeptides. Similarly, when a peptide of the 4th immunoglobulin (Ig)-like domain of NCAM - representing part of NCAM's carbohydrate-binding site - was added to the culture medium of the cells, neurite outgrowth and phosphorylation of L1 was strongly reduced. No effect on neurite outgrowth and phosphorylation of L1 was observed when cells were maintained in the presence of a peptide comprising part of the 1st Ig-like domain of NCAM or in the presence of the peptide encoded by the variable alternative spliced exon (VASE), which is also located in the 4th Ig-like domain of NCAM. Furthermore, phosphorylation of tyrosine and serine residues of L1 is reduced when the L1/NCAM interaction at the cell surface of cerebellar neurons is perturbed. Our observations suggest that a signal transduction mechanism is implicated in basal neurite outgrowth in which both tyrosine and serine phosphorylation of L1 represent a possible proximal step. Some of these results were presented at the International Glycoconjugate Symposium in Seattle, USA [P. C. Heiland et al., Glycoconj. J. 12, 521(1995)].
Collapse
Affiliation(s)
- P C Heiland
- Department of Biochemistry, Institute of Animal Anatomy and Physiology, University of Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
19
|
Yip PM, Zhao X, Montgomery AM, Siu CH. The Arg-Gly-Asp motif in the cell adhesion molecule L1 promotes neurite outgrowth via interaction with the alphavbeta3 integrin. Mol Biol Cell 1998; 9:277-90. [PMID: 9450954 PMCID: PMC25251 DOI: 10.1091/mbc.9.2.277] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cell adhesion molecule L1 is a potent inducer of neurite outgrowth and it has been implicated in X-linked hydrocephalus and related neurological disorders. To investigate the mechanisms of neurite outgrowth stimulated by L1, attempts were made to identify the neuritogenic sites in L1. Fusion proteins containing different segments of the extracellular region of L1 were prepared and different neuronal cells were assayed on substrate-coated fusion proteins. Interestingly, both immunoglobulin (Ig)-like domains 2 and 6 (Ig2, Ig6) promoted neurite outgrowth from dorsal root ganglion cells, whereas neural retinal cells responded only to Ig2. L1 Ig2 contains a previously identified homophilic binding site, whereas L1 Ig6 contains an Arg-Gly-Asp (RGD) sequence. The neuritogenic activity of Ig6 was abrogated by mutations in the RGD site. The addition of RGD-containing peptides also inhibited the promotion of neurite outgrowth from dorsal root ganglion cells by glutathione S-transferase-Ig6, implicating the involvement of an integrin. The monoclonal antibody LM609 against alphavbeta3 integrin, but not an anti-beta1 antibody, inhibited the neuritogenic effects of Ig6. These data thus provide the first evidence that the RGD motif in L1 Ig6 is capable of promoting neurite outgrowth via interaction with the alphavbeta3 integrin on neuronal cells.
Collapse
Affiliation(s)
- P M Yip
- Banting and Best Department of Medical Research and Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | |
Collapse
|
20
|
Abstract
The nature of neural plasticity and the factors that influence it vary throughout life. Adult neurons undergo extensive and continual adaptation in response to demands that are quite different from those of early development. We review the main influences on the survival, growth and neurotransmitter expression in adult and ageing sympathetic neurons, comparing these influences to those at work in early development. This "developmental" approach is proposed because, despite the contrasting needs of different phases of development, each phase has a profound influence on the mechanisms of plasticity available to its successors. Interactions between neurons and their targets, whether effector cells or other neurons, are vital to all of these aspects of neural plasticity. Sympathetic neurons require access to target-derived diffusible neurotrophic factors such as NGF, NT3 and GDNF, as well as to bound elements of the extracellular matrix such as laminin. These factors probably influence plasticity throughout life. In adult life, and even in old age, sympathetic neurons are relatively resistant to cell death. However, they continue to require target-derived diffusible and bound factors for their maintenance, growth and neurotransmitter expression. Failure to maintain appropriate neuronal function in old age, for example in the breakdown of homeostasis, may result partly from a disturbance of the dynamic, trophic relationship between neurons and their targets. However, there is no clear evidence that this is due to a failure of targets to synthesize neurotrophic factors. On the neural side of the equation, altered responsiveness of sympathetic neurons to neurotrophic factors suggests that expression of the trk and p75 neurotrophin receptors contributes to neuronal survival, maintenance and growth in adulthood and old age. Altered receptor expression may therefore underlie the selective vulnerability of some sympathetic neurons in old age. The role of neural connectivity and activity in the regulation of synthesis of target-derived factors, as well as in neurotransmitter dynamics, is reviewed.
Collapse
Affiliation(s)
- T Cowen
- Department of Anatomy and Developmental Biology, Royal Free Hospital School of Medicine, London, U.K
| | | |
Collapse
|
21
|
Shiga T, Lustig M, Grumet M, Shirai T. Cell adhesion molecules regulate guidance of dorsal root ganglion axons in the marginal zone and their invasion into the mantle layer of embryonic spinal cord. Dev Biol 1997; 192:136-48. [PMID: 9405103 DOI: 10.1006/dbio.1997.8742] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to elucidate the mechanisms regulating the projections of dorsal root ganglion (DRG) axons in the dorsal funiculus and invasion into target regions in the mantle layer (prospective gray matter) of the spinal cord, we examined the interactions between DRG axons and spinal cord. DRG neurons were dissociated from chick embryos and cultured for 1-2 days on cryostat sections of the spinal cord at embryonic day 5 (E5) or at E9. E5 and E9 DRG neurons extended neurites onto both marginal zone (prospective white matter) and mantle layer (prospective gray matter) of the spinal cord, suggesting that both of these regions are permissive for neurite growth. When E5 DRG neurites approached cryosections of E5 spinal cord from outside, most of them ran in the marginal zone without invading the mantle layer. In contrast, about half of E9 DRG neurites entered the mantle layer after crossing the marginal zone of E9 spinal cord. These growth patterns of DRG neurites on spinal marginal zone and mantle layer are similar to the pathway formation of DRG axons at comparable stages in vivo; DRG axons run exclusively in the prospective dorsal funiculus before E6, and enter the mantle layer (prospective dorsal horn) to reach the target regions by E9. Perturbation of functions of Ng-CAM, Nr-CAM, and axonin-1/SC2 by adding the specific antibodies in the culture medium increased the ratio of DRG neurites entering the mantle layer of E5 spinal cord, suggesting that these cell adhesion molecules are involved in keeping DRG neurites in the marginal zone. Taken together with the expression of Ng-CAM, Nr-CAM, and axonin-1/SC2, these CAMs on DRG axons may regulate the guidance of these axons in the marginal zone before E6, and the subsequent decrease in the relative levels of these CAMs might allow DRG axons to invade the target mantle layer.
Collapse
Affiliation(s)
- T Shiga
- Department of Anatomy, Yamagata University School of Medicine, Yamagata, 990-23, Japan
| | | | | | | |
Collapse
|
22
|
Reese B, Johnson P, Hocking D, Bolles A. Chronotopic fiber reordering and the distribution of cell adhesion and extracellular matrix molecules in the optic pathway of fetal ferrets. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970414)380:3<355::aid-cne5>3.0.co;2-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Buchstaller A, Kunz S, Berger P, Kunz B, Ziegler U, Rader C, Sonderegger P. Cell adhesion molecules NgCAM and axonin-1 form heterodimers in the neuronal membrane and cooperate in neurite outgrowth promotion. J Cell Biol 1996; 135:1593-607. [PMID: 8978825 PMCID: PMC2133975 DOI: 10.1083/jcb.135.6.1593] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The axonal surface glycoproteins neuronglia cell adhesion molecule (NgCAM) and axonin-1 promote cell-cell adhesion, neurite outgrowth and fasciculation, and are involved in growth cone guidance. A direct binding between NgCAM and axonin-1 has been demonstrated using isolated molecules conjugated to the surface of fluorescent microspheres. By expressing NgCAM and axonin-1 in myeloma cells and performing cell aggregation assays, we found that NgCAM and axonin-1 cannot bind when present on the surface of different cells. In contrast, the cocapping of axonin-1 upon antibody-induced capping of NgCAM on the surface of CV-1 cells coexpressing NgCAM and axonin-1 and the selective chemical cross-linking of the two molecules in low density cultures of dorsal root ganglia neurons indicated a specific and direct binding of axonin-1 and Ng-CAM in the plane of the same membrane. Suppression of the axonin-1 translation by antisense oligonucleotides prevented neurite outgrowth in dissociated dorsal root ganglia neurons cultured on an NgCAM substratum, indicating that neurite outgrowth on NgCAM substratum requires axonin-1. Based on these and previous results, which implicated NgCAM as the neuronal receptor involved in neurite outgrowth on NgCAM substratum, we concluded that neurite outgrowth on an NgCAM substratum depends on two essential interactions of growth cone NgCAM: a trans-interaction with substratum NgCAM and a cis-interaction with axonin-1 residing in the same growth cone membrane.
Collapse
Affiliation(s)
- A Buchstaller
- Institute of Biochemistry, University of Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Neuronal growth cones navigate over long distances along specific pathways to find their correct targets. The mechanisms and molecules that direct this pathfinding are the topics of this review. Growth cones appear to be guided by at least four different mechanisms: contact attraction, chemoattraction, contact repulsion, and chemorepulsion. Evidence is accumulating that these mechanisms act simultaneously and in a coordinated manner to direct pathfinding and that they are mediated by mechanistically and evolutionarily conserved ligand-receptor systems.
Collapse
Affiliation(s)
- M Tessier-Lavigne
- Department of Anatomy, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
25
|
Keino-Masu K, Masu M, Hinck L, Leonardo ED, Chan SS, Culotti JG, Tessier-Lavigne M. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 1996; 87:175-85. [PMID: 8861902 DOI: 10.1016/s0092-8674(00)81336-7] [Citation(s) in RCA: 808] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The guidance of developing axons in the nervous system is mediated partly by diffusible chemoattractants secreted by axonal target cells. Netrins are chemoattractants for commissural axons in the vertebrate spinal cord, but the mechanisms through which they produce their effects are unknown. We show that Deleted in Colorectal Cancer (DCC), a transmembrane protein of the immunoglobulin superfamily, is expressed on spinal commissural axons and possesses netrin-1-binding activity. Moreover, an antibody to DCC selectively blocks the netrin-1-dependent outgrowth of commissural axons in vitro. These results indicate that DCC is a receptor or a component of a receptor that mediates the effects of netrin-1 on commissural axons, and they complement genetic evidence for interactions between DCC and netrin homologs in C. elegans and Drosophila.
Collapse
Affiliation(s)
- K Keino-Masu
- Howard Hughes Medical Institute, Department of Anatomy, University of California, San Francisco 94143-0452, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Brieher WM, Yap AS, Gumbiner BM. Lateral dimerization is required for the homophilic binding activity of C-cadherin. J Biophys Biochem Cytol 1996; 135:487-96. [PMID: 8896604 PMCID: PMC2121050 DOI: 10.1083/jcb.135.2.487] [Citation(s) in RCA: 255] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Regulation of cadherin-mediated adhesion can occur rapidly at the cell surface. To understand the mechanism underlying cadherin regulation, it is essential to elucidate the homophilic binding mechanism that underlies all cadherin-mediated functions. Therefore, we have investigated the structural and functional properties of the extracellular segment of Xenopus C-cadherin using a purified, recombinant protein (CEC 1-5). CEC 1-5 supported adhesion of CHO cells expressing C-cadherin. The extracellular segment was also capable of mediating aggregation of microspheres. Chemical cross-linking and gel filtration revealed that CEC 1-5 formed dimers in the presence as well as absence of calcium. Analysis of the functional activity of purified dimers and monomers demonstrated that dimers retained substantially greater homophilic binding activity than monomers. These results demonstrate that lateral dimerization is necessary for homophilic binding between cadherin extracellular segments and suggest multiple potential mechanisms for the regulation of cadherin activity. Since the extracellular segment alone possessed significant homophilic binding activity, the adhesive activity of the extracellular segment in a cellular context was analyzed. The adhesion of CHO cells expressing a truncated version of C-cadherin lacking the cytoplasmic tail was compared to cells expressing the wild-type C-cadherin using a laminar flow assay on substrates coated with CEC 1-5. CHO cells expressing the truncated C-cadherin were able to attach to CEC 1-5 and to resist detachment by low shear forces, demonstrating that tailless C-cadherin can mediate basic, weak adhesion of CHO cells. However, cells expressing the truncated C-cadherin did not exhibit the complete adhesive activity of cells expressing wild-type C-cadherin. Cells expressing wild-type C-cadherin remained attached to CEC 1-5 at high shear forces, while cells expressing the tailless C-cadherin did not adhere well at high shear forces. These results suggest that there may be two states of cadherin-mediated adhesion. The first, relatively weak state can be mediated through interactions between the extracellular segments alone. The second strong adhesive state is critically dependent on the cytoplasmic tail.
Collapse
Affiliation(s)
- W M Brieher
- Cellular Biochemistry and Biophysics Program, Memorial Sloan Kettering Cancer Center, New York 10021, USA
| | | | | |
Collapse
|
27
|
Affiliation(s)
- M Hortsch
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109-0616, USA
| |
Collapse
|
28
|
Kunz S, Ziegler U, Kunz B, Sonderegger P. Intracellular signaling is changed after clustering of the neural cell adhesion molecules axonin-1 and NgCAM during neurite fasciculation. J Cell Biol 1996; 135:253-67. [PMID: 8858178 PMCID: PMC2121033 DOI: 10.1083/jcb.135.1.253] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Neural cell adhesion molecules of the immunoglobulin/fibronectin type III family on axons have been implicated in promotion of neurite outgrowth, fasciculation, and the mediation of specific cell adhesion. The present study demonstrates that two of these molecules on dorsal root ganglion neurons are associated with distinct protein kinases, axonin-1 with the src-related nonreceptor tyrosine kinase fyn and NgCAM with a casein kinase II-related activity and a serine/ threonine kinase related to S6 kinase. When neurites grew without contacts involving axonin-1 and NgCAM, strong fyn kinase activity was associated with axonin-1, whereas the NgCAM-associated kinase activities were low. Clustering of axonin-1 with NgCAM induced by the formation of cell-cell contacts correlated with a reduction of the axonin-1-associated fyn activity and an increased phosphorylation of NgCAM by the associated casein kinase II-related activity. Thus, axonin-1 and NgCAM trigger distinctive intracellular signals during in vitro differentiation depending on their state of association.
Collapse
Affiliation(s)
- S Kunz
- Institute of Biochemistry, University of Zurich, Switzerland
| | | | | | | |
Collapse
|
29
|
Abstract
During the initial assembly of the olfactory pathway, the behavior of olfactory axons changes as they grow from the olfactory epithelium toward the telencephalic vesicle. The axons exit the epithelium singly or in small fascicles, and their growth cones are simple and bullet-shaped. Outside the epithelium, they make a sharp dorsal turn and fasciculate into a single nerve; the growth cones remain simple. Upon entering the ventromedial telencephalon, the axons defasciculate, branch extensively, and end in complex, lamellate growth cones which extend toward the ventrolateral aspect of the telencephalic vesicle. The distribution of laminin, collagen-IV, and fibronectin varies in register with these changes in olfactory axon and growth cone behavior. Each of these extracellular matrix molecules influences olfactory neurite outgrowth and growth cone morphology in vitro consistent with its distribution in vivo. The distribution of E-cadherin, L1, neural cell adhesion molecule (NCAM) and the polysialated form of NCAM also varies in register with changes in olfactory axon behavior. In vitro, L1 modulates embryonic olfactory neurite outgrowth and growth cone morphology consistent with its distribution in vivo. Thus, olfactory axon trajectory, fasciculation, and growth cone morphology change within distinct adhesive environments in the nascent olfactory pathway, and some of the molecules that characterize these environments have differential effects upon olfactory neurite growth and growth cone morphology. Consequently, the patterned expression and activity of extracellular matrix and cell surface adhesion molecules may contribute to the initial assembly of the olfactory pathway.
Collapse
Affiliation(s)
- J G Whitesides
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27712, USA
| | | |
Collapse
|
30
|
Nörenberg U, Hubert M, Rathjen FG. Structural and functional characterization of tenascin-R (restrictin), an extracellular matrix glycoprotein of glial cells and neurons. Int J Dev Neurosci 1996; 14:217-31. [PMID: 8842800 DOI: 10.1016/0736-5748(96)00009-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tenascin-R (TN-R) is an extracellular matrix protein associated with the surface of neurons and glial cells. Immunohistological studies reveal that TN-R shows a restricted expression pattern in the developing nervous system. TN-R is the smallest member of the tenascin family and is composed of four structural motifs: a cysteine-rich segment at the N-terminus is followed by 4.5 EGF-like repeats. This region is followed by 9 consecutive fibronectin type III (FNIII)-like domains and at the C-terminus TN-R is related to the beta- and gamma- chains of fibrinogen. TN-R forms oligomeric structures as revealed by rotary shadowing electron microscopy of immunoaffinity-purified TN-R. TN-R interacts with the axon-associated F11 protein which results in an enhancement of F11 mediated neurite extension in in vitro assays. In short-term adhesion assays it was found that neural but not fibroblastic cells attach effectively on immobilized TN-R. The cell attachment site within TN-R was allocated to FNIII domain 8 while the site interacting with the F11 protein could be mapped to FNIII domain 2-3.
Collapse
Affiliation(s)
- U Nörenberg
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | | | |
Collapse
|
31
|
Matsuzawa M, Weight FF, Potember RS, Liesi P. Directional neurite outgrowth and axonal differentiation of embryonic hippocampal neurons are promoted by a neurite outgrowth domain of the B2-chain of laminin. Int J Dev Neurosci 1996; 14:283-95. [PMID: 8842805 DOI: 10.1016/0736-5748(96)00014-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Molecular cues involved in directional neurite outgrowth and axonal differentiation of embryonic hippocampal neurons were studied on substrates coated in a striped 5 microns pattern with synthetic peptides from a neurite outgrowth (RDIAEIIKDI, P1543) and cell attachment (CDPGYIGSR, P364) domain of the B2- and B1-chains of laminin, respectively. Both peptides supported neuronal attachment, but only the B2-chain-derived P1543 promoted expression of a mature neuronal phenotype. Directional neurite outgrowth and axonal differentiation of embryonic hippocampal neurons were selectively induced by striped substrates of the B2-chain-derived P1543. Axonal differentiation was determined by expression of a phosphorylated epitope of the 200 kDa neurofilament protein in the longer "axonal" neurite of the bipolar embryonic hippocampal neurons. Ethanol (100 mM), a neuroactive compound known to delay neuronal development, impaired both directional neurite outgrowth and expression of a phosphorylated epitope of the 200 kDa neurofilament protein on a patterned P1543 substratum. The present results provide direct evidence that a 10 amino acid peptide (P1543), derived from a neurite outgrowth domain of the B2-chain of laminin, may be an axonal guidance and differentiation factor for embryonic hippocampal neurons in vitro.
Collapse
Affiliation(s)
- M Matsuzawa
- Frontier Research Program, RIKEN, Saitama, Japan
| | | | | | | |
Collapse
|
32
|
Zhao X, Siu CH. Differential effects of two hydrocephalus/MASA syndrome-related mutations on the homophilic binding and neuritogenic activities of the cell adhesion molecule L1. J Biol Chem 1996; 271:6563-6. [PMID: 8636066 DOI: 10.1074/jbc.271.12.6563] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cell adhesion molecule L1 plays an important role in neural development. We have previously demonstrated that the second immunoglobulin-like domain (Ig2) of L1 contains both homophilic binding and neuritogenic activities (Zhao, X., and Siu, C.-H. (1995) J. Biol. Chem. 270, 29413-29421). Recently, two mutations (R184Q and H210Q) within the Ig2 region of the human L1 gene have been shown to be responsible for X-linked hydrocephalus and the related MASA (mental retardation, aphasia, shuffling gait, and adducted thumbs) syndrome. Glutathione S-transferase-Ig2 fusion proteins containing these mutations were used to evaluate their effects on L1. The homophilic binding activity of fusion proteins and their ability to promote neurite outgrowth from retinal cells were examined. The R184Q mutation led to a complete loss of both homophilic binding and neuritogenic activities, while the H210Q mutation resulted only in a partial loss. These results provide, for the first time, direct demonstration of the deleterious effects of hydrocephalus/MASA mutations on two intrinsic properties of L1.
Collapse
Affiliation(s)
- X Zhao
- Banting and Best Department of Medical Research, University of Toronto, Ontario M5G 1L6, Canada
| | | |
Collapse
|
33
|
Montgomery AM, Becker JC, Siu CH, Lemmon VP, Cheresh DA, Pancook JD, Zhao X, Reisfeld RA. Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrin alpha v beta 3. J Cell Biol 1996; 132:475-85. [PMID: 8636223 PMCID: PMC2120722 DOI: 10.1083/jcb.132.3.475] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Integrin alpha v beta 3 is distinct in its capacity to recognize the sequence Arg-Gly-Asp (RGD) in many extra-cellular matrix (ECM) components. Here, we demonstrate that in addition to the recognition of ECM components, alpha v beta 3 can interact with the neural cell adhesion molecule L1-CAM; a member of the immunoglobulin superfamily (IgSF). M21 melanoma cells displayed significant Ca(++)-dependent adhesion and spreading on immunopurified rat L1 (NILE). This adhesion was found to be dependent on the expression of the alpha v-integrin subunit and could be significantly inhibited by an antibody to the alpha v beta 3 heterodimer. M21 cells also displayed some alpha v beta 3-dependent adhesion and spreading on immunopurified human L1. Ligation between this ligand and alpha v beta 3 was also observed to promote significant haptotactic cell migration. To map the site of alpha v beta 3 ligation we used recombinant L1 fragments comprising the entire extracellular domain of human L1. Significant alpha v beta 3-dependent adhesion and spreading was evident on a L1 fragment containing Ig-like domains 4, 5, and 6. Importantly, mutation of an RGD sequence present in the sixth Ig-like domain of L1 abrogated M21 cell adhesion. We conclude that alpha v beta 3-dependent recognition of human L1 is dependent on ligation of this RGD site. Despite high levels of L1 expression the M21 melanoma cells did not display significant adhesion via a homophilic L1-L1 interaction. These data suggest that M21 melanoma cells recognize and adhere to L1 through a mechanism that is primarily heterophilic and integrin dependent. Finally, we present evidence that melanoma cells can shed and deposit L1 in occluding ECM. In this regard, alpha v beta 3 may recognize L1 in a cell-cell or cell-substrate interaction.
Collapse
Affiliation(s)
- A M Montgomery
- Department of Immunology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
X linked hydrocephalus and MASA syndrome are clinically related, neurological disorders with an X linked recessive mode of inheritance. Although originally described as distinct entities, their similarity has become apparent as the number of reported families has increased and a high degree of intra- and interfamilial variation in clinical signs noted for both disorders. Consideration of this clinical overlap together with finding that genes for both diseases map to the same chromosomal band (Xq28) led to the hypothesis that they were caused by mutation at the same locus. This was confirmed by identification of mutations in patients with X linked hydrocephalus and MASA syndrome within the gene for neural cell adhesion molecule L1. Here we review the clinical and genetic characteristics of these disorders and the underlying molecular defects in the L1 gene.
Collapse
Affiliation(s)
- S Kenwrick
- University of Cambridge Department of Medicine, Addenbrooke's Hospital, UK
| | | | | |
Collapse
|
35
|
Zhao X, Siu CH. Colocalization of the homophilic binding site and the neuritogenic activity of the cell adhesion molecule L1 to its second Ig-like domain. J Biol Chem 1995; 270:29413-21. [PMID: 7493978 DOI: 10.1074/jbc.270.49.29413] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The cell adhesion molecule L1 has been implicated in mediating cell-cell adhesion and in promoting neurite outgrowth. The extracellular region of L1 contains six immunoglobulin (Ig)-like domains in the amino-terminal region, followed by five fibronectin type III-like repeats. L1 is capable of undergoing homophilic binding as well as heterophilic interactions. To map the homophilic binding domain in L1, three glutathione S-transferase (GST) fusion proteins (GST-Ig1-2-3, GST-Ig4-5-6, and GST-Fn) were prepared and coupled to Covaspheres and their homophilic binding activity was determined using the Covasphere-to-substratum binding assay. Only GST-Ig1-2-3 was capable of homophilic binding. Next, His-tagged recombinant Ig-domain proteins (His-Ig1-2, His-Ig1, and His-Ig2) were expressed and subjected to similar assays. Only His-Ig1-2 and His-Ig2 were capable of homophilic interactions. Binding of His-Ig2-conjugated Covaspheres to substrate-coated His-Ig2 was inhibited by anti-Ig1-2-3 Fab and soluble His-Ig2. These results indicate that the L1 homophilic binding site resides within Ig2. To examine effects of these L1 recombinant proteins on neurite outgrowth, neural retinal cells were cultured on different substrate-coated fusion proteins. Both GST-Ig1-2-3 and His-Ig2 were potent inducers of neurite extension. These results thus indicate that the L1 Ig-like domain 2 alone is sufficient to mediate L1-L1 interaction and promote neurite outgrowth from retinal cells.
Collapse
Affiliation(s)
- X Zhao
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | |
Collapse
|
36
|
Suter DM, Pollerberg GE, Buchstaller A, Giger RJ, Dreyer WJ, Sonderegger P. Binding between the neural cell adhesion molecules axonin-1 and Nr-CAM/Bravo is involved in neuron-glia interaction. J Cell Biol 1995; 131:1067-81. [PMID: 7490283 PMCID: PMC2200008 DOI: 10.1083/jcb.131.4.1067] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neural cell adhesion molecules of the immunoglobulin superfamily mediate cellular interactions via homophilic binding to identical molecules and heterophilic binding to other family members or structurally unrelated cell-surface glycoproteins. Here we report on an interaction between axonin-1 and Nr-CAM/Bravo. In search for novel ligands of axonin-1, fluorescent polystyrene microspheres conjugated with axonin-1 were found to bind to peripheral glial cells from dorsal root ganglia. By antibody blockage experiments an axonin-1 receptor on the glial cells was identified as Nr-CAM. The specificity of the interaction was confirmed with binding studies using purified axonin-1 and Nr-CAM. In cultures of dissociated dorsal root ganglia antibodies against axonin-1 and Nr-CAM perturbed the formation of contacts between neurites and peripheral glial cells. Together, these results implicate a binding between axonin-1 of the neuritic and Nr-CAM of the glial cell membrane in the early phase of axon ensheathment in the peripheral nervous system.
Collapse
Affiliation(s)
- D M Suter
- Institute of Biochemistry, University of Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
Liao F, Huynh HK, Eiroa A, Greene T, Polizzi E, Muller WA. Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1. J Exp Med 1995; 182:1337-43. [PMID: 7595204 PMCID: PMC2192210 DOI: 10.1084/jem.182.5.1337] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
During the inflammatory response, the adhesion molecule PECAM plays a crucial role in transendothelial migration, the passage of leukocytes across endothelium. We report here an additional role for PECAM in the subsequent migration of monocytes through the subendothelial extracellular matrix. PECAM has six immunoglobulin (Ig) superfamily domains. Monoclonal antibodies whose epitopes map to domains 1 and/or 2 selectively block monocyte migration through the endothelial junction, whereas those that map to domain 6 block only the migration through the extracellular matrix, trapping the monocyte between the endothelium and its basal lamina. Therefore, transendothelial migration (diapedesis) and passage through extracellular matrix (interstitial migration) are distinct and separable phases of monocyte emigration. Furthermore, distinct and separate Ig domains of PECAM are involved in mediating these two steps.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, Differentiation, Myelomonocytic/chemistry
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/physiology
- Base Sequence
- Cell Adhesion
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/physiology
- Cell Movement
- Cells, Cultured
- Chlorocebus aethiops
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Extracellular Matrix/metabolism
- Humans
- Immunoglobulin G/genetics
- Inflammation
- Molecular Sequence Data
- Monocytes/physiology
- Platelet Endothelial Cell Adhesion Molecule-1
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/pharmacology
- Umbilical Veins
Collapse
Affiliation(s)
- F Liao
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York 10021-6399, USA
| | | | | | | | | | | |
Collapse
|
38
|
Tongiorgi E, Bernhardt RR, Schachner M. Zebrafish neurons express two L1-related molecules during early axonogenesis. J Neurosci Res 1995; 42:547-61. [PMID: 8568941 DOI: 10.1002/jnr.490420413] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Partial clones coding for two L1-related genes, zebrafish L1.1 and L1.2, were isolated from a zebrafish embryonic cDNA library. The homology analysis, based on the deduced amino acid sequences of L1.1 and L1.2, revealed that the two molecules are most closely related to each other and to mouse L1. Analysis by in situ hybridization revealed that during embryonic development of the nervous system the L1.1 and L1.2 messages are restricted to postmitotic neurons and that the onset of expression correlates with the initiation of axonogenesis. L1.1 is expressed by all known classes of neurons, consistent with an important general function during axonal outgrowth. Most of the neurons also express L1.2. However, L1.2 either is undetectable or is expressed at very low levels in the neurons of the olfactory placodes, anterior lateral line/acoustic ganglia complex, posterior lateral line ganglion, and in late developing hindbrain neurons. In the spinal cord, L1.2 message is detected only in a subpopulation of Rohon-Beard cells. This suggests the possibility that different levels of L1.2 expression may serve to distinguish different populations of neurons and their axons.
Collapse
Affiliation(s)
- E Tongiorgi
- Department of Neurobiology, Swiss Federal Institute of Technology, Hönggerberg, Zürich, Switzerland
| | | | | |
Collapse
|
39
|
Burgoon MP, Hazan RB, Phillips GR, Crossin KL, Edelman GM, Cunningham BA. Functional analysis of posttranslational cleavage products of the neuron-glia cell adhesion molecule, Ng-CAM. J Cell Biol 1995; 130:733-44. [PMID: 7542658 PMCID: PMC2120543 DOI: 10.1083/jcb.130.3.733] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neuron-glia cell adhesion molecule (Ng-CAM) mediates cell adhesion between neurons homophilically and between neurons and glia heterophilically; it also promotes neurite outgrowth. In the chick brain, Ng-CAM is detected as glycoproteins of 190 and 210 kD (Ng-CAM200) with posttranslational cleavage products of 135 kD (F135, which contains most of the extracellular region) and 80 kD (F80, which includes the transmembrane and the cytoplasmic domains). To examine the functions of each of these components, we have expressed Ng-CAM200, F135, and F80 in murine L cells, and F135 and F80 as GST fusion proteins in the pGEX vector in bacteria. Appropriately transfected L cells expressed each of these proteins on their surfaces; F135 was also found in the media of cells transfected with Ng-CAM200 and F135. In addition to binding homophilically, cells transfected with Ng-CAM200 and F135 bound heterophilically to untransfected L cells, suggesting that there is a ligand for Ng-CAM on fibroblasts that may be related to the glial ligand. Detailed studies using the transfected cells and the fusion proteins indicated that both the homophilic and the heterophilic binding activities of Ng-CAM are localized in the F135 fragment of the molecule. The results also indicated that proteolytic cleavage of Ng-CAM200 is not required either for its expression on the cell surface or for cell adhesion and that there is an "anchor" for F135 on L cells (and presumably on neurons). In contrast to the cell binding results, the F80 but not the F135 fusion protein enhanced the outgrowth of neurites from dorsal root ganglion cells; this activity was associated with the FnIII repeats of F80. The observations that a protein corresponding to F135 contains the cell aggregation sites whereas one corresponding to the F80 has the ability to promote neurite outgrowth suggest that proteolytic cleavage may be an important event in regulating these Ng-CAM activities during embryonic development and neural regeneration.
Collapse
Affiliation(s)
- M P Burgoon
- Department of Neurobiology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
40
|
Wong EV, Kenwrick S, Willems P, Lemmon V. Mutations in the cell adhesion molecule L1 cause mental retardation. Trends Neurosci 1995; 18:168-72. [PMID: 7778187 DOI: 10.1016/0166-2236(95)93896-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recently, studies in the usually disparate fields of human genetics and developmental neurobiology have converged to reveal that some types of human mental retardation and brain malformations are due to mutations that affect the neural cell adhesion molecule L1. L1 has a very complex biology, interacting with a variety of ligands, and functioning in migration of neurons and growth of axons. Over the past few years, it has also become clear that L1 is able to influence intracellular second messengers. The identification of a number of different mutations in L1, some of which alter the extracellular portion of the molecule, and others that change only the cytoplasmic tail, confirm that L1 is a crucial player in normal brain development. The information gained from genetic analysis of human L1 is giving new insights into how L1 functions in the formation of major axon pathways, but it also raises unanticipated questions about how L1 participates in the development of cortical and ventricular systems.
Collapse
Affiliation(s)
- E V Wong
- Dept of Neurosciences, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | | | | | | |
Collapse
|
41
|
Burden-Gulley SM, Lemmon V. Ig superfamily adhesion molecules in the vertebrate nervous system: binding partners and signal transduction during axon growth. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1044-5781(06)80017-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Abstract
Cerebellar neurons, cultured on monolayers of 3T3 fibroblasts or on a polylysine/extracellular matrix-coated substratum, responded to a soluble recombinant L1-Fc chimera by extending longer neurites than controls. The response was inhibited by pretreating neurons with antibodies to L1 or antibodies to the fibroblast growth factor (FGF) receptor. The response could also be inhibited by a range of pharmacological reagents that inhibit various steps in the signal transduction cascade which underlie a neurite outgrowth response to basic FGF. The response was of a similar magnitude and not additive with that induced by L1 expressed in a cellular substrate. These data show that L1 in neurons is capable of directing a neurite outgrowth response to a soluble L1-Fc chimera, and that neuronal FGF receptor function is required for this response. The data also show that the ability of cell adhesion molecules (CAMs) to stimulate neurite outgrowth can be dissociated from their ability to function as substrate-associated adhesion molecules and point to the potential of using CAM-Fc chimeras to promote nerve regeneration.
Collapse
Affiliation(s)
- P Doherty
- Department of Experimental Pathology, UMDS, Guy's Hospital, London Bridge, England
| | | | | |
Collapse
|
43
|
|
44
|
Sakurai T, Shiga T, Shirai T, Tanaka H, Grumet M. Biochemical characterization and immunolocalization of SC2 protein: SC2 protein is indistinguishable from the cell adhesion molecule axonin-1. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 83:99-108. [PMID: 7697875 DOI: 10.1016/0165-3806(94)90183-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
SC2 is a monoclonal antibody that was previously shown to recognize a subset of neurons in the developing nervous system of the chick. We have now used the SC2 monoclonal antibody to purify from chick embryo brain membranes a glycoprotein that migrates at approximately 125 kDa on SDS/PAGE. The size of this protein and its distribution pattern in the spinal cord are similar to that observed for axonin-1. A polyclonal anti-axonin-1 antibody R26 specifically reacted with the SC2 protein from brain. This antibody, as well as polyclonal antibody (369) against purified SC2 protein, reacted with 115-130 kDa proteins in vitreous humor, a rich source of axonin-1, and with similar sized proteins precipitated from vitreous humor by the 369, and SC2 antibodies. Treatment of SC2 protein isolated from chick brain membranes with PI-PLC indicated that it contains a glycophosphatidylinositol (GPI) moiety. Co-aggregation experiments using Covaspheres with covalently bound proteins indicated that SC2 protein binds heterophilically to Ng-CAM. Immunohistochemical analysis of chick embryos showed that SC2 protein is abundant in the sensory nerve bundles of both the central and peripheral nervous systems during development. Its expression was restricted and it was specifically localized in the dorsal funiculus of the spinal cord, as well as in olfactory, retinal, trigeminal, vestibulocochlear, glossopharyngeal and vagal nerve fibers. The biochemical and immunohistochemical data show that SC2 protein is axonin-1, and the immunolocalization studies support the hypothesis that SC2 protein may play a role during development of particular fiber systems by interacting with other cell adhesion molecules such as Ng-CAM.
Collapse
Affiliation(s)
- T Sakurai
- Department of Pharmacology, New York University Medical Center, NY 10016
| | | | | | | | | |
Collapse
|