1
|
Mohd-Ridwan AR, Md-Zain BM, Najmuddin MF, Othman N, Haris H, Sariyati NH, Matsuda I, Yee BS, Lee Y, Lye SF, Abdul-Latiff MAB. Unveiling the Gut Microbiome of Malaysia's Colobine Monkeys : Insights into Health and Evolution. J Med Primatol 2024; 53:e12742. [PMID: 39462819 DOI: 10.1111/jmp.12742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Colobines are primarily leaf-eating primates, depend on microbiota of gastrointestinal tracts for food digestion. However, the gut microbiota of Malaysia's colobines specifically langurs remains unstudied. AIMS Hence, we aim to analyze the fecal microbiomes of Malaysia's langurs using Presbytis femoralis, Presbytis robinsoni, Trachypithecus obscurus, and Trachypithecus cristatus from various landscapes as models. MATERIAL AND METHODS We collected samples from all four species across several areas in Peninsular Malaysia and performed 16S ribosomal RNA gene amplicon sequencing using the Illumina sequencing platform. RESULTS Presbytis femoralis exhibited the highest bacterial diversity, followed by T. obscurus, T. cristatus, P. robinsoni and the lowest, P. siamensis. Over 11 million operational taxonomic units (OTUs) were identified across Malaysia's langurs spanning 26 phyla, 180 families, and 329 genera of microbes. The OTUs were dominated by Firmicutes, Proteobacteria, and Bacteroidetes. There are 11 genera of pathogenic bacteria were identified across all host species. Nine pathogenic bacterial genera inhabit both T. obscurus, indicating poor health due to low bacterial diversity and heightened pathogenicity. In contrast, P. robinsoni with the fewest pathogenic species is deemed the healthiest among Malaysia's langurs. DISCUSSION This study demonstrates that alterations in diet, behavior, and habitat affect bacterial diversity in Malaysia's langurs' gut microbiota. Even though this is the first comprehensive analysis of langur microbiomes in Malaysia, it is important to note the limitations regarding the number of samples, populations sampled, and the geographical origins and landscapes of these populations. Our results suggest that Malaysia's langurs may harbor pathogenic bacteria, potentially posing a risk of transmission to humans. CONCLUSION This highlights the critical need for the conservation and management of Malaysia's langurs, particularly considering their interactions with humans. This data can serve as a foundation for authorities to inform the public about the origins and significance of animal health and the management of zoonotic diseases.
Collapse
Affiliation(s)
- Abd Rahman Mohd-Ridwan
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Faudzir Najmuddin
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nursyuhada Othman
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Hidayah Haris
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Nur Hartini Sariyati
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| | - Ikki Matsuda
- Wildlife Research Center of Kyoto University, Kyoto, Japan
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, Japan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | | | | | | | - Muhammad Abu Bakar Abdul-Latiff
- Environmental Management and Conservation Research Unit (eNCORe), Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (Pagoh Campus), Muar, Johor, Malaysia
| |
Collapse
|
2
|
Osman NA, Gani M, Tingga RCT, Abdul-Latiff MAB, Mohd-Ridwan AR, Chan E, Md-Zain BM. Unveiling the Gut Microbiota of Pig-Tailed Macaque (Macaca nemestrina) in Selected Habitats in Malaysia. J Med Primatol 2024; 53:e12737. [PMID: 39323065 DOI: 10.1111/jmp.12737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND The gut microbiota plays an important role in primates, which may be associated with their habitat. In Malaysia, pig-tailed macaques (Macaca nemestrina) live in different habitat environments and have traditionally been used for coconut plucking for more than a century. There is currently no information regarding the gut microbiota of this macaque in Malaysia. To address this oversight, this study employed a fecal metabarcoding approach to determine the gut microbiota composition of pig-tailed macaques and establish how these microbial communities correspond with the macaque external environments of residential area, forest edge, and fragmented forest. METHODS To determine this connection, 300 paired-end sequences of 16S rRNA were amplified and sequenced using the MiSeq platform. RESULTS In the pig-tailed macaque fecal samples, we identified 17 phyla, 40 orders, 52 families, 101 genera, and 139 species of bacteria. The most prevalent bacterial families in the gut of pig-tailed macaques were Firmicutes (6.31%) and Proteobacteria (0.69%). Our analysis did not identify a significant difference between the type of environmental habitat and the gut microbiota composition of these macaques. CONCLUSIONS There was great variation in the population richness and bacterial community structure. The abundance of Firmicutes and Proteobacteria helps this macaque digest food more easily while maintaining a healthy gut microbiota diversity. Exploring the gut microbiota provides an initial effort to support pig-tailed macaque conservation in the future.
Collapse
Affiliation(s)
- Nur Azimah Osman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan, Kampus Kuala Pilah, Kuala Pilah, Negeri Sembilan, Malaysia
| | - Millawati Gani
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- National Wildlife Forensic Laboratory (NWFL), Department of Wildlife and National Parks (PERHILITAN) Peninsular Malaysia, Kuala Lumpur, Malaysia
| | - Roberta Chaya Tawie Tingga
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | | | - Abd Rahman Mohd-Ridwan
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Eddie Chan
- Genting Nature Adventure, Resorts World Awana Hotel, Pahang, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Powell CJ, Kapeghian JC, Bernal JC, Foster JR. Hepatitis A Virus Infection in Cynomolgus Monkeys Confounds the Safety Evaluation of a Drug Candidate. Int J Toxicol 2024; 43:368-376. [PMID: 38501993 PMCID: PMC11155213 DOI: 10.1177/10915818241237992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In a 3-month toxicity study in cynomolgus monkeys at a European contract laboratory, animals were infected with HAV, initially resulting in hepatic injury being incorrectly attributed to the test compound. Elevated serum ALT/AST/GLDH (5- to 10-fold) were noted in individual animals from all groups including controls, with no apparent dose, exposure, or time-related relationship. Liver histopathology revealed minimal to slight inflammatory cell accumulation in periportal zones of most animals, and minimal to slight hepatocyte degeneration/necrosis in 10/42 animals from all groups. As these findings were more pronounced in 6 drug-treated animals, including 2/6 in the low dose group, the draft report concluded: "treatment-related hepatotoxicity at all dose levels precluded determination of a NOAEL." However, the unusual pattern of hepatotoxicity suggested a factor other than drug exposure might have caused the hepatic effects. Therefore, snap-frozen liver samples were tested for hepatitis viruses using a PCR method. Tests for hepatitis B, C, and E virus were negative; however, 20/42 samples were positive for hepatitis A virus (HAV). Infection was strongly associated with increased serum ALT/GLDH, and/or hepatocyte degeneration/necrosis. Re-evaluation of the study in light of these data concluded that the hepatic injury was not drug-related. A subsequent 6-month toxicology study in HAV-vaccinated cynomolgus monkeys confirmed the absence of hepatotoxicity. Identification of HAV infection supported progression of the drug candidate into later clinical trials. Although rarely investigated, subclinical HAV infection has occasionally been reported in laboratory primates, including those used for toxicology studies and it may be more prevalent than the literature indicates.
Collapse
|
4
|
Palazzi X, Anger LT, Boulineau T, Grevot A, Guffroy M, Henson K, Hoepp N, Jacobsen M, Kale VP, Kreeger J, Lane JH, Li D, Muster W, Paisley B, Ramaiah L, Robertson N, Shultz V, Steger Hartmann T, Westhouse R. Points to consider regarding the use and implementation of virtual controls in nonclinical general toxicology studies. Regul Toxicol Pharmacol 2024; 150:105632. [PMID: 38679316 DOI: 10.1016/j.yrtph.2024.105632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The replacement of a proportion of concurrent controls by virtual controls in nonclinical safety studies has gained traction over the last few years. This is supported by foundational work, encouraged by regulators, and aligned with societal expectations regarding the use of animals in research. This paper provides an overview of the points to consider for any institution on the verge of implementing this concept, with emphasis given on database creation, risks, and discipline-specific perspectives.
Collapse
Affiliation(s)
- Xavier Palazzi
- Drug Safety Research and Development, Pfizer Inc, 445, Eastern Point Road, Groton CT, USA.
| | - Lennart T Anger
- Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Theresa Boulineau
- Nonclinical Drug Safety, Boehringer Ingelheim, 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Armelle Grevot
- Preclinical Safety, Novartis AG, Fabrikstrasse, Basel, Switzerland
| | - Magali Guffroy
- Preclinical Safety, AbbVie, 1 North Waukegan Road, R46G/AP13A-3, North Chicago, IL, 60064, USA
| | - Kristin Henson
- Preclinical Safety, Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, 07936, USA
| | - Natalie Hoepp
- Nonclinical Drug Safety, Merck and Co., Inc., Rahway, NJ, USA
| | - Matt Jacobsen
- Clinical Pharmacology and Safety Sciences, AstraZeneca, Biomedical Campus, 1 Francis Crick Ave, Cambridge, UK
| | - Vijay P Kale
- Nonclinical Safety, Bristol Myers Squibb, 1 Squibb Dr, New Brunswick, NJ, 08901, USA
| | - John Kreeger
- Non-Clinical Safety, GSK, 1250 S. Collegeville Rd, Collegeville, PA, USA
| | - Joan H Lane
- Translational Safety & Bioanalytical Sciences, Amgen, Inc., 1 Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Dingzhou Li
- Global Biometrics & Data Management, Pfizer Inc, 445, Eastern Point Road, Groton CT, USA
| | - Wolfgang Muster
- Pharmaceutical Sciences, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Brianna Paisley
- iBAR ADMET, Eli Lilly and Company, 893 Delaware St, Indianapolis, IN, USA
| | - Lila Ramaiah
- Preclinical Sciences and Translational Safety, Johnson & Johnson, 1400 McKean Road, PO Box 776, Spring House, PA, 19477, USA
| | - Nicola Robertson
- Non-Clinical Safety, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Valerie Shultz
- Nonclinical Development, Organon, 4000 Chemical Rd, Suite 500, Plymouth Meeting, PA, 19462, USA
| | - Thomas Steger Hartmann
- Investigational Toxicology, BAYER AG, Pharmaceuticals, Muellerstrasse 178, 13342, Berlin, Germany
| | - Richard Westhouse
- Toxicology and Pathology, Agios Pharmaceuticals, 88 Sidney Street, Cambridge, MA, USA
| |
Collapse
|
5
|
Mecklenburg L, Ducore R, Boyle M, Newell A, Boone L, Luft J, Romeike A, Haverkamp AK, Mansfield K, Penraat KA, Baczenas JJ, Minor N, O'Connor SL, O'Connor DH. A new genotype of hepatitis A virus causing transient liver enzyme elevations in Mauritius-origin laboratory-housed Macaca fascicularis. Vet Pathol 2024; 61:488-496. [PMID: 37953600 DOI: 10.1177/03009858231209691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Hepatitis A virus (HAV) infects humans and nonhuman primates, typically causing an acute self-limited illness. Three HAV genotypes have been described so far for humans, and three genotypes have been described for nonhuman primates. We observed transiently elevated liver enzymes in Mauritius-origin laboratory-housed macaques in Germany and were not able to demonstrate an etiology including HAV by serology and polymerase chain reaction (PCR). HAV is a rare pathogen in cynomolgus macaques, and since all employees were routinely vaccinated against HAV, it was not a part of the routine vaccination and screening program. A deep sequencing approach identified a new HAV genotype (referred to as Simian_HAV_Macaca/Germany/Mue-1/2022) in blood samples from affected animals. This HAV was demonstrated by reverse transcription PCR in blood and liver and by in situ hybridization in liver, gall bladder, and septal ducts. A commercial vaccine was used to protect animals from liver enzyme elevation. The newly identified simian HAV genotype demonstrates 80% nucleotide sequence identity to other simian and human HAV genotypes. There was deeper divergence between Simian_HAV_Macaca/Germany/Mue-1/2022 and other previously described HAVs, including both human and simian viruses. In situ hybridization indicated persistence in the biliary epithelium up to 3 months after liver enzymes were elevated. Vaccination using a commercial vaccine against human HAV prevented reoccurrence of liver enzyme elevations. Because available assays for HAV did not detect this new HAV genotype, knowledge of its existence may ameliorate potential significant epidemiological and research implications in laboratories globally.
Collapse
Affiliation(s)
| | - Rebecca Ducore
- Labcorp Early Development Laboratories Inc., Chantilly, VA
| | - Molly Boyle
- Labcorp Early Development Laboratories Inc., Somerset, NJ
| | - Andrew Newell
- Labcorp Early Development Laboratories Ltd., Harrogate, UK
| | - Laura Boone
- Labcorp Early Development Laboratories Inc., Greenfield, IN
| | - Joerg Luft
- Labcorp Early Development Services GmbH, Muenster, Germany
| | | | | | | | | | | | - Nick Minor
- University of Wisconsin-Madison, Madison, WI
| | | | | |
Collapse
|
6
|
Hensel ME, Rodrigues-Hoffmann A, Dray BK, Wilkerson GK, Baze WB, Sulkosky S, Hodo CL. Gastrointestinal tract pathology of the owl monkey ( Aotus spp.). Vet Pathol 2024; 61:316-323. [PMID: 37830482 PMCID: PMC10804813 DOI: 10.1177/03009858231204260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Owl monkeys are small nocturnal new world primates in the genus Aotus that are most used in biomedical research for malaria. Cardiomyopathy and nephropathy are well-described common diseases contributing to their morbidity and mortality; less is known about lesions affecting the gastrointestinal tract. Records from a 14-year period (2008-2022) at the Keeling Center for Comparative Medicine and Research were queried to identify instances of spontaneous gastrointestinal disease that directly contributed to the cause of death from the 235 adult owl monkeys submitted for necropsy. Of the 235, 10.6% (25/235) had gastrointestinal disease listed as a significant factor that contributed to morbidity and mortality. Diagnoses included candidiasis (3/25), gastric bloat (4/25), and intestinal incarceration and ischemia secondary (11/25), which included intussusception (4/25), mesenteric rent (3/25), strangulating lipoma (2/25), intestinal torsion (1/25), and an inguinal hernia (1/25). Intestinal adenocarcinomas affecting the jejunum (4/25) were the most common neoplasia diagnosis. Oral squamous cell carcinoma (1/25) and intestinal lymphoma (2/25) were also diagnosed. This report provides evidence of spontaneous lesions in the species that contribute to morbidity and mortality.
Collapse
Affiliation(s)
| | | | | | | | - Wally B. Baze
- The University of Texas MD Anderson Cancer Center, Bastrop, TX
| | | | - Carolyn L. Hodo
- The University of Texas MD Anderson Cancer Center, Bastrop, TX
| |
Collapse
|
7
|
Ohta E. Pathologic characteristics of infectious diseases in macaque monkeys used in biomedical and toxicologic studies. J Toxicol Pathol 2023; 36:95-122. [PMID: 37101957 PMCID: PMC10123295 DOI: 10.1293/tox.2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/16/2023] [Indexed: 04/28/2023] Open
Abstract
Nonhuman primates (NHPs), which have many advantages in scientific research and are often the only relevant animals to use in assessing the safety profiles and biological or pharmacological effects of drug candidates, including biologics. In scientific or developmental experiments, the immune systems of animals can be spontaneously compromised possibly due to background infection, experimental procedure-associated stress, poor physical condition, or intended or unintended mechanisms of action of test articles. Under these circumstances, background, incidental, or opportunistic infections can seriously can significantly complicate the interpretation of research results and findings and consequently affect experimental conclusions. Pathologists and toxicologists must understand the clinical manifestations and pathologic features of infectious diseases and the effects of these diseases on animal physiology and experimental results in addition to the spectrum of infectious diseases in healthy NHP colonies. This review provides an overview of the clinical and pathologic characteristics of common viral, bacterial, fungal, and parasitic infectious diseases in NHPs, especially macaque monkeys, as well as methods for definitive diagnosis of these diseases. Opportunistic infections that can occur in the laboratory setting have also been addressed in this review with examples of cases of infection disease manifestation that was observed or influenced during safety assessment studies or under experimental conditions.
Collapse
Affiliation(s)
- Etsuko Ohta
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai,
Tsukuba-shi, Ibaraki 300-2635, Japan
- *Corresponding author: E Ohta (e-mail: )
| |
Collapse
|
8
|
Powers SJ, Castell N, Vistein R, Kalloo AN, Izzi JM, Gabrielson KL. Bacterial Cholecystitis and Cholangiohepatitis in Common Marmosets ( Callithrix Jacchus). Comp Med 2023; 73:173-180. [PMID: 36944497 PMCID: PMC10162377 DOI: 10.30802/aalas-cm-22-000075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 11/23/2022] [Indexed: 03/23/2023]
Abstract
The common marmoset (Callithrix jacchus), a New World NHP, has emerged as important animal model in multiple areas of translational biomedical research. The quality of translational research in marmosets depends on early diagnosis, treatment, and prevention of their spontaneous diseases. Here, we characterize an outbreak of infectious cholangiohepatitis that affected 7 adult common marmosets in a single building over a 10-mo period. Marmosets presented for acute onset of lethargy, dull mentation, weight loss, dehydration, hyporexia, and hypothermia. Blood chemistries at presentation revealed markedly elevated hepatic and biliary enzymes, but mild neutrophilia was detected in only 1 of the 7. Affected marmosets were unresponsive to rigorous treatment and died or were euthanized within 48 h of presentation. Gross and histopathologic examinations revealed severe, necrosuppurative cholangiohepatitis and proliferative cholecystitis with bacterial colonies and an absence of gallstones. Perimortem and postmortem cultures revealed single or dual isolates of Escherichia coli and Pseudomonas aeruginosa. Other postmortem findings included bile duct hyperplasia, periportal hepatitis, bile peritonitis, ulcerative gastroenteritis, and typhlitis. Environmental contamination of water supply equipment with Pseudomonas spp. was identified as the source of infection, but pathogenesis remains unclear. This type of severe, infectious cholangiohepatitis with proliferative cholecystitis with Pseudomonas spp. had not been reported previously in marmosets, and we identified and here describe several contributing factors in addition to contaminated drinking water.
Collapse
Affiliation(s)
- Sarah J Powers
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland;,
| | - Natalie Castell
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rachel Vistein
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anthony N Kalloo
- Department of Medicine, Maimonides Medical Center, Brooklyn, New York; Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica M Izzi
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland;,
| |
Collapse
|
9
|
Salian-Mehta S, Poling J, Birkebak J, Rensing S, Carosino C, Santos R, West W, Adams K, Orsted K, Fillman-Holliday D, Burns M. Non-Human Primate Husbandry and Impact on Non-Human Primates Health: Outcomes From an IQ DruSafe/3RS Industrial Benchmark Survey. Int J Toxicol 2023; 42:111-121. [PMID: 36543758 DOI: 10.1177/10915818221146523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The presence of health issues (diarrhea, poor body condition) in non-human primates can impact animal welfare, confound toxicity study data, and lead to animal exclusion from studies. A working group cosponsored by DruSafe and 3Rs Translational and Predictive Sciences Leadership Groups of the IQ Consortium conducted a survey to benchmark quarantine, pre-study screening, husbandry, and veterinary care practices and their impact on NHP health. Nineteen companies participated in the survey providing separate responses for studies conducted in-house and at Contract Research Organizations from 3 regions (North America (NA), Europe and Asia) for an aggregate of 33 responses. A majority of responding companies conducted studies at North America CROs (39%) or in-house (36%) using primarily Chinese (33%) or Cambodian (27%) and to a lesser extent Vietnam (18%) or Mauritian (15%) origin NHPs. Forty-Five percent of responses had pre-study health issues (fecal abnormalities, etc.) on ≥ 1 studies with the highest incidence observed in Vietnam origin NHPs (80%). The survey suggested variable pre-screening and quarantine practices across facilities. Husbandry practices including behavioral assessments, environmental enrichment and consistent diets were associated with a lower incidence of health issues. The survey also benchmarked approaches used to diagnose and manage abnormal feces in NHPs and has provided strategies to minimize impact on NHP health. The survey highlighted opportunities for harmonizing screening criteria across industry and for improving tracking and sharing of health screening results, leading to further refinement of NHP veterinary care practices, higher quality studies, and reduced NHP use.
Collapse
Affiliation(s)
| | - Jerry Poling
- 1539Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Susanne Rensing
- 385232AbbVie Deutschland GmbH and Co KG, Ludwigshafen, Germany
| | | | | | - Wanda West
- 6893Boehringer Ingelheim, Ridgefield, CT, USA
| | - Khary Adams
- Incyte Research Institute, Wilmington, DE, USA
| | | | | | - Monika Burns
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| |
Collapse
|
10
|
Cai L, Xu H, Cui Z. Factors Limiting the Translatability of Rodent Model-Based Intranasal Vaccine Research to Humans. AAPS PharmSciTech 2022; 23:191. [PMID: 35819736 PMCID: PMC9274968 DOI: 10.1208/s12249-022-02330-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
The intranasal route of vaccination presents an attractive alternative to parenteral routes and offers numerous advantages, such as the induction of both mucosal and systemic immunity, needle-free delivery, and increased patient compliance. Despite demonstrating promising results in preclinical studies, however, few intranasal vaccine candidates progress beyond early clinical trials. This discrepancy likely stems in part from the limited predictive value of rodent models, which are used frequently in intranasal vaccine research. In this review, we explored the factors that limit the translatability of rodent-based intranasal vaccine research to humans, focusing on the differences in anatomy, immunology, and disease pathology between rodents and humans. We also discussed approaches that minimize these differences and examined alternative animal models that would produce more clinically relevant research.
Collapse
Affiliation(s)
- Lucy Cai
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, USA
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA.
| |
Collapse
|
11
|
Johnson AL, Keesler RI, Lewis AD, Reader JR, Laing ST. Common and Not-So-Common Pathologic Findings of the Gastrointestinal Tract of Rhesus and Cynomolgus Macaques. Toxicol Pathol 2022; 50:638-659. [PMID: 35363082 PMCID: PMC9308647 DOI: 10.1177/01926233221084634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rhesus and cynomolgus macaques are the most frequently used nonhuman primate (NHP) species for biomedical research and toxicology studies of novel therapeutics. In recent years, there has been a shortage of laboratory macaques due to a variety of competing factors. This was most recently exacerbated by the surge in NHP research required to address the severe acute respiratory syndrome (SARS)-coronavirus 2 pandemic. Continued support of these important studies has required the use of more varied cohorts of macaques, including animals with different origins, increased exposure to naturally occurring pathogens, and a wider age range. Diarrhea and diseases of the gastrointestinal tract are the most frequently occurring spontaneous findings in macaques of all origins and ages. The purpose of this review is to alert pathologists and scientists involved in NHP research to these findings and their impact on animal health and study endpoints, which may otherwise confound the interpretation of data generated using macaques.
Collapse
Affiliation(s)
| | | | - Anne D Lewis
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - J Rachel Reader
- California National Primate Research Center, Davis, California, USA
| | | |
Collapse
|
12
|
Han HJ, Powers SJ, Gabrielson KL. The Common Marmoset-Biomedical Research Animal Model Applications and Common Spontaneous Diseases. Toxicol Pathol 2022; 50:628-637. [PMID: 35535728 PMCID: PMC9310150 DOI: 10.1177/01926233221095449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Marmosets are becoming more utilized in biomedical research due to multiple advantages including (1) a nonhuman primate of a smaller size with less cost for housing, (2) physiologic similarities to humans, (3) translatable hepatic metabolism, (4) higher numbers of litters per year, (5) genome is sequenced, molecular reagents are available, (6) immunologically similar to humans, (7) transgenic marmosets with germline transmission have been produced, and (8) are naturally occurring hematopoietic chimeras. With more use of marmosets, disease surveillance over a wide range of ages of marmosets has been performed. This has led to a better understanding of the disease management of spontaneous diseases that can occur in colonies. Knowledge of clinical signs and histologic lesions can assist in maximizing the colony's health, allowing for improved outcomes in translational studies within biomedical research. Here, we describe some basic husbandry, biology, common spontaneous diseases, and animal model applications for the common marmoset in biomedical research.
Collapse
Affiliation(s)
- Hyo-Jeong Han
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- University of Ulsan, College of Medicine, Seoul, Korea
| | - Sarah J Powers
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Flandre TD, Mansfield KG, Espié PJ, Rubic-Schneider T, Ulrich P. Immunosuppression Profile of CFZ533 (Iscalimab), a Non-Depleting Anti-CD40 Antibody, and the Presence of Opportunistic Infections in a Rhesus Monkey Toxicology Study. Toxicol Pathol 2022; 50:712-724. [PMID: 35730205 DOI: 10.1177/01926233221100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CFZ533 (iscalimab) is a nondepleting anti-CD40 antibody intended for inhibition of transplant organ rejection and treatment of autoimmune diseases. In a safety assessment in rhesus monkeys, CFZ533 was administered for 13 weeks up to 150 mg/kg/week subcutaneously. CFZ533 was shown previously to completely inhibit primary and secondary T-cell-dependent antibody responses. CD40 is expressed on B cells, antigen-presenting cells, and endothelial and epithelial cells, but is not expressed on T cells. Here, we demonstrate the complete suppression of germinal center formation in lymphoid organs. CFZ533 was well tolerated and did not cause any dose-limiting toxicity. However, the histological evaluation revealed increased numbers of CD4+ and CD8+ T cells in the T-cell-rich areas of lymph nodes enlarged in response to observed adenovirus and Cryptosporidium infections which suggest that T-cell immune function was unaffected. Background infections appear as the condition leading to unraveling the differential immunosuppressive effects by CFZ533. The presence of T cells at lymph nodes draining sites of infections corroborates the immunosuppressive mechanism, which is different from calcineurin-inhibiting drugs. Furthermore, CFZ533 did not show any hematological or microscopic evidence of thromboembolic events in rhesus monkeys, which were previously shown to respond with thromboembolism to treatment with anti-CD154 antibodies.
Collapse
Affiliation(s)
| | - Keith G Mansfield
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Pascal J Espié
- Novartis Institutes for Biomedical Research, Basel, Switzerland.,Roche, Basel, Switzerland
| | | | - Peter Ulrich
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
14
|
Bolon B, Everitt JI. Selected Resources for Pathology Evaluation of Nonhuman Primates in Nonclinical Safety Assessment. Toxicol Pathol 2022; 50:725-732. [PMID: 35481786 DOI: 10.1177/01926233221091763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Humans and nonhuman primates (NHPs) share numerous anatomical and physiological characteristics, thereby explaining the importance of NHPs as essential animal models for translational medicine and nonclinical toxicity testing. Researchers, toxicologic pathologists, toxicologists, and regulatory reviewers must be familiar with normal and abnormal NHP biological traits when designing, performing, and interpreting data sets from NHP studies. The current compilation presents a list of essential books, journal articles, and websites that provide context to safety assessment and research scientists working with NHP models. The resources used most frequently by the authors have been briefly annotated to permit readers to rapidly ascertain their applicability to particular research endeavors. The references are aimed primarily for toxicologic pathologists working with cynomolgus and rhesus macaques and common marmosets in efficacy and safety assessment studies.
Collapse
Affiliation(s)
| | - Jeffrey I Everitt
- Duke University, Department of Pathology, Durham, North Carolina, USA
| |
Collapse
|
15
|
Gupta A, Galinski MR, Voit EO. Dynamic Control Balancing Cell Proliferation and Inflammation is Crucial for an Effective Immune Response to Malaria. Front Mol Biosci 2022; 8:800721. [PMID: 35242812 PMCID: PMC8886244 DOI: 10.3389/fmolb.2021.800721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria has a complex pathology with varying manifestations and symptoms, effects on host tissues, and different degrees of severity and ultimate outcome, depending on the causative Plasmodium pathogen and host species. Previously, we compared the peripheral blood transcriptomes of two macaque species (Macaca mulatta and Macaca fascicularis) in response to acute primary infection by Plasmodium knowlesi. Although these two species are very closely related, the infection in M. mulatta is fatal, unless aggressively treated, whereas M. fascicularis develops a chronic, but tolerable infection in the blood. As a reason for this stark difference, our analysis suggests delayed pathogen detection in M. mulatta followed by extended inflammation that eventually overwhelms this monkey’s immune response. By contrast, the natural host M. fascicularis detects the pathogen earlier and controls the inflammation. Additionally, M. fascicularis limits cell proliferation pathways during the log phase of infection, presumably in an attempt to control inflammation. Subsequent cell proliferation suggests a cell-mediated adaptive immune response. Here, we focus on molecular mechanisms underlying the key differences in the host and parasite responses and their coordination. SICAvar Type 1 surface antigens are highly correlated with pattern recognition receptor signaling and important inflammatory genes for both hosts. Analysis of pathogen detection pathways reveals a similar signaling mechanism, but with important differences in the glutamate G-protein coupled receptor (GPCR) signaling pathway. Furthermore, differences in inflammasome assembly processes suggests an important role of S100 proteins in balancing inflammation and cell proliferation. Both differences point to the importance of Ca2+ homeostasis in inflammation. Additionally, the kynurenine-to-tryptophan ratio, a known inflammatory biomarker, emphasizes higher inflammation in M. mulatta during log phase. Transcriptomics-aided metabolic modeling provides a functional method for evaluating these changes and understanding downstream changes in NAD metabolism and aryl hydrocarbon receptor (AhR) signaling, with enhanced NAD metabolism in M. fascicularis and stronger AhR signaling in M. mulatta. AhR signaling controls important immune genes like IL6, IFNγ and IDO1. However, direct changes due to AhR signaling could not be established due to complicated regulatory feedback mechanisms associated with the AhR repressor (AhRR). A complete understanding of the exact dynamics of the immune response is difficult to achieve. Nonetheless, our comparative analysis provides clear suggestions of processes that underlie an effective immune response. Thus, our study identifies multiple points of intervention that are apparently responsible for a balanced and effective immune response and thereby paves the way toward future immune strategies for treating malaria.
Collapse
Affiliation(s)
- Anuj Gupta
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Mary R. Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, United States
| | - Eberhard O. Voit
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- *Correspondence: Eberhard O. Voit,
| |
Collapse
|
16
|
Colman K, Andrews RN, Atkins H, Boulineau T, Bradley A, Braendli-Baiocco A, Capobianco R, Caudell D, Cline M, Doi T, Ernst R, van Esch E, Everitt J, Fant P, Gruebbel MM, Mecklenburg L, Miller AD, Nikula KJ, Satake S, Schwartz J, Sharma A, Shimoi A, Sobry C, Taylor I, Vemireddi V, Vidal J, Wood C, Vahle JL. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Non-proliferative and Proliferative Lesions of the Non-human Primate ( M. fascicularis). J Toxicol Pathol 2021; 34:1S-182S. [PMID: 34712008 PMCID: PMC8544165 DOI: 10.1293/tox.34.1s] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in most tissues and organs from the nonhuman primate used in nonclinical safety studies. Some of the lesions are illustrated by color photomicrographs. The standardized nomenclature presented in this document is also available electronically on the internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature for lesions in laboratory animals will provide a common language among regulatory and scientific research organizations in different countries and increase and enrich international exchanges of information among toxicologists and pathologists.
Collapse
Affiliation(s)
- Karyn Colman
- Novartis Institutes for BioMedical Research, Cambridge, MA,
USA
| | - Rachel N. Andrews
- Wake Forest School of Medicine, Department of Radiation
Oncology, Winston-Salem, NC, USA
| | - Hannah Atkins
- Penn State College of Medicine, Department of Comparative
Medicine, Hershey, PA, USA
| | | | - Alys Bradley
- Charles River Laboratories Edinburgh Ltd., Tranent,
Scotland, UK
| | - Annamaria Braendli-Baiocco
- Roche Pharma Research and Early Development, Pharmaceutical
Sciences, Roche Innovation Center Basel, Switzerland
| | - Raffaella Capobianco
- Janssen Research & Development, a Division of Janssen
Pharmaceutica NV, Beerse, Belgium
| | - David Caudell
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark Cline
- Department of Pathology, Section on Comparative Medicine,
Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Takuya Doi
- LSIM Safety Institute Corporation, Ibaraki, Japan
| | | | | | - Jeffrey Everitt
- Department of Pathology, Duke University School of
Medicine, Durham, NC, USA
| | | | | | | | - Andew D. Miller
- Cornell University College of Veterinary Medicine, Ithaca,
NY, USA
| | | | - Shigeru Satake
- Shin Nippon Biomedical Laboratories, Ltd., Kagoshima and
Tokyo, Japan
| | | | - Alok Sharma
- Covance Laboratories, Inc., Madison, WI, USA
| | | | | | | | | | | | - Charles Wood
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT,
USA
| | | |
Collapse
|
17
|
Saravanan C, Flandre T, Hodo CL, Lewis AD, Mecklenburg L, Romeike A, Turner OC, Yen HY. Research Relevant Conditions and Pathology in Nonhuman Primates. ILAR J 2021; 61:139-166. [PMID: 34129672 DOI: 10.1093/ilar/ilab017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/12/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Biomedical research involving animal models continues to provide important insights into disease pathogenesis and treatment of diseases that impact human health. In particular, nonhuman primates (NHPs) have been used extensively in translational research due to their phylogenetic proximity to humans and similarities to disease pathogenesis and treatment responses as assessed in clinical trials. Microscopic changes in tissues remain a significant endpoint in studies involving these models. Spontaneous, expected (ie, incidental or background) histopathologic changes are commonly encountered and influenced by species, genetic variations, age, and geographical origin of animals, including exposure to infectious or parasitic agents. Often, the background findings confound study-related changes, because numbers of NHPs used in research are limited by animal welfare and other considerations. Moreover, background findings in NHPs can be exacerbated by experimental conditions such as treatment with xenobiotics (eg, infectious morphological changes related to immunosuppressive therapy). This review and summary of research-relevant conditions and pathology in rhesus and cynomolgus macaques, baboons, African green monkeys, common marmosets, tamarins, and squirrel and owl monkeys aims to improve the interpretation and validity of NHP studies.
Collapse
Affiliation(s)
- Chandra Saravanan
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, Cambridge, Massachusetts 02139, USA
| | - Thierry Flandre
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, Basel, Switzerland
| | - Carolyn L Hodo
- The University of Texas MD Anderson Cancer Center, Michale E. Keeling Center for Comparative Medicine and Research, Bastrop, Texas, USA
| | - Anne D Lewis
- Oregon National Primate Research Center, Beaverton, Oregon, USA
| | | | | | - Oliver C Turner
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, East Hanover, New Jersey, USA
| | - Hsi-Yu Yen
- Covance Preclinical Services GmbH, Münster 48163, Germany
| |
Collapse
|
18
|
Bochart RM, Busman-Sahay K, Bondoc S, Morrow DW, Ortiz AM, Fennessey CM, Fischer MB, Shiel O, Swanson T, Shriver-Munsch CM, Crank HB, Armantrout KM, Barber-Axthelm AM, Langner C, Moats CR, Labriola CS, MacAllister R, Axthelm MK, Brenchley JM, Keele BF, Estes JD, Hansen SG, Smedley JV. Mitigation of endemic GI-tract pathogen-mediated inflammation through development of multimodal treatment regimen and its impact on SIV acquisition in rhesus macaques. PLoS Pathog 2021; 17:e1009565. [PMID: 33970966 PMCID: PMC8148316 DOI: 10.1371/journal.ppat.1009565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/25/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Here, we assessed the efficacy of a short-course multimodal therapy (enrofloxacin, azithromycin, fenbendazole, and paromomycin) to eliminate common macaque endemic pathogens (EPs) and evaluated its impact on gastrointestinal (GI) microbiota, mucosal integrity, and local and systemic inflammation in sixteen clinically healthy macaques. Treatment combined with expanded practices resulted in successful maintenance of rhesus macaques (RM) free of common EPs, with no evidence of overt microbiota diversity loss or dysbiosis and instead resulted in a more defined luminal microbiota across study subjects. Creation of a GI pathogen free (GPF) status resulted in improved colonic mucosal barrier function (histologically, reduced colonic MPO+, and reduced pan-bacterial 16s rRNA in the MLN), reduced local and systemic innate and adaptive inflammation with reduction of colonic Mx1 and pSTAT1, decreased intermediate (CD14+CD16+) and non-classical monocytes (CD14-CD16+), reduced populations of peripheral dendritic cells, Ki-67+ and CD38+ CD4+ T cells, Ki-67+IgG+, and Ki-67+IgD+ B cells indicating lower levels of background inflammation in the distal descending colon, draining mesenteric lymph nodes, and systemically in peripheral blood, spleen, and axillary lymph nodes. A more controlled rate of viral acquisition resulted when untreated and treated macaques were challenged by low dose intrarectal SIVmac239x, with an ~100 fold increase in dose required to infect 50% (AID50) of the animals receiving treatment compared to untreated controls. Reduction in and increased consistency of number of transmitted founder variants resulting from challenge seen in the proof of concept study directly correlated with post-treatment GPF animal's improved barrier function and reduction of key target cell populations (Ki-67+ CD4+T cells) at the site of viral acquisition in the follow up study. These data demonstrate that a therapeutic and operational strategy can successfully eliminate varying background levels of EPs and their associated aberrant immunomodulatory effects within a captive macaque cohort, leading to a more consistent, better defined and reproducible research model.
Collapse
Affiliation(s)
- Rachele M. Bochart
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Kathleen Busman-Sahay
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Stephen Bondoc
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - David W. Morrow
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Alexandra M. Ortiz
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United State of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Miranda B. Fischer
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Oriene Shiel
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Tonya Swanson
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Christine M. Shriver-Munsch
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Hugh B. Crank
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Kimberly M. Armantrout
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Aaron M. Barber-Axthelm
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Charlotte Langner
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United State of America
| | - Cassandra R. Moats
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Caralyn S. Labriola
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Rhonda MacAllister
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael K. Axthelm
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United State of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jacob D. Estes
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott G. Hansen
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jeremy V. Smedley
- Infectious Disease Resource, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, and Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
19
|
Werner JA, Ishida K, Wisler J, Karbowski C, Kalanzi J, Bussiere J, Monticello TM. Phosphatidylinositol 3-Kinase δ Inhibitor-Induced Immunomodulation and Secondary Opportunistic Infection in the Cynomolgus Monkey (Macaca fascicularis). Toxicol Pathol 2020; 48:949-964. [DOI: 10.1177/0192623320966238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) regulate intracellular signaling events for multiple cell surface receptors. Phosphatidylinositol 3-kinase δ, 1 of 4 class I PI3K isoforms, is primarily found in leukocytes and regulates immune cell functions. Here, we report changes in the immune and digestive systems that were associated with AMG2519493, a highly selective small-molecule PI3Kδ inhibitor. Following 1- or 3-month oral repeat dosing in the cynomolgus monkey, changes were observed in circulating B cells, lymphoid tissues (spleen, lymph nodes, gut-associated lymphoid tissue, tonsil), and the digestive tract. Decreased circulating B cells and lymphoid cellularity in B cell-rich zones in lymphoid tissues were attributed to the intended pharmacologic activity of AMG2519493. Dose- and duration-dependent digestive system toxicity was characterized by inflammation in the large intestine and secondary opportunistic infections restricted to the digestive tract. Digestive tract changes were associated with moribundity and mortality at high-dose levels, and the effect level decreased with increased duration of exposure. These observations demonstrate the role of PI3Kδ in regulation of the immune system and of host resistance to opportunistic infections of the digestive tract.
Collapse
Affiliation(s)
- Jonathan A. Werner
- Amgen Research, Translational Safety and Bioanalytical Sciences, Thousand Oaks, CA, USA
| | - Katsu Ishida
- Amgen Research, Translational Safety and Bioanalytical Sciences, Thousand Oaks, CA, USA
| | - John Wisler
- Amgen Research, Translational Safety and Bioanalytical Sciences, Thousand Oaks, CA, USA
- AnaptysBio, San Diego, CA, USA
| | - Christine Karbowski
- Amgen Research, Translational Safety and Bioanalytical Sciences, Thousand Oaks, CA, USA
| | - Jackson Kalanzi
- Amgen Research, Translational Safety and Bioanalytical Sciences, Thousand Oaks, CA, USA
| | - Jeanine Bussiere
- Amgen Research, Translational Safety and Bioanalytical Sciences, Thousand Oaks, CA, USA
| | - Thomas M. Monticello
- Amgen Research, Translational Safety and Bioanalytical Sciences, Thousand Oaks, CA, USA
| |
Collapse
|
20
|
Flandre TD, Piaia A, Cary MG. Biologic Immunomodulatory Drugs and Infection in the Respiratory Tract of Nonhuman Primates. Toxicol Pathol 2020; 49:397-407. [PMID: 32873219 DOI: 10.1177/0192623320946705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Though rare due to measures and practices to control the risk, infections can occur in research and toxicology studies, especially in nonhuman primates (NHPs) exposed to xenobiotics, particularly immunomodulatory drugs. With such xenobiotics, immunocompromised or immunosuppressed animals will not be able to mount a protective response to infection by an opportunistic pathogen (bacteria, virus, parasite, or fungus) that might otherwise be nonpathogenic and remain clinically asymptomatic in immunocompetent animals. The respiratory tract is one of the most commonly affected systems in clinic, but also in toxicology studies. Pulmonary inflammation will be the main finding associated with opportunistic infections and may cause overt clinical disease with even early sacrifice or death, and may compromise or complicate the pathology evaluation. It is important to properly differentiate the various features of infection, to be aware of the range of possible opportunistic pathogens and how they may impact the interpretation of pathology findings. This review will present the most common bacterial, viral, parasitic, and fungal infections observed in the respiratory tract in NHPs during research and/or toxicology studies.
Collapse
Affiliation(s)
- Thierry D Flandre
- 98560Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Alessandro Piaia
- 98560Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
21
|
Hale VL, Tan CL, Niu K, Yang Y, Zhang Q, Knight R, Amato KR. Gut microbiota in wild and captive Guizhou snub-nosed monkeys, Rhinopithecus brelichi. Am J Primatol 2019; 81:e22989. [PMID: 31106872 DOI: 10.1002/ajp.22989] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/14/2019] [Accepted: 04/21/2019] [Indexed: 12/30/2022]
Abstract
Many colobine species-including the endangered Guizhou snub-nosed monkey (Rhinopithecus brelichi) are difficult to maintain in captivity and frequently exhibit gastrointestinal (GI) problems. GI problems are commonly linked to alterations in the gut microbiota, which lead us to examine the gut microbial communities of wild and captive R. brelichi. We used high-throughput sequencing of the 16S rRNA gene to compare the gut microbiota of wild (N = 7) and captive (N = 8) R. brelichi. Wild monkeys exhibited increased gut microbial diversity based on the Chao1 but not Shannon diversity metric and greater relative abundances of bacteria in the Lachnospiraceae and Ruminococcaceae families. Microbes in these families digest complex plant materials and produce butyrate, a short chain fatty acid critical to colonocyte health. Captive monkeys had greater relative abundances of Prevotella and Bacteroides species, which degrade simple sugars and carbohydrates, like those present in fruits and cornmeal, two staples of the captive R. brelichi diet. Captive monkeys also had a greater abundance of Akkermansia species, a microbe that can thrive in the face of host malnutrition. Taken together, these findings suggest that poor health in captive R. brelichi may be linked to diet and an altered gut microbiota.
Collapse
Affiliation(s)
- Vanessa L Hale
- Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Chia L Tan
- LVDI International, San Marcos, California.,Nonhuman Primate Conservation and Research Institute, Tongren University, Tongren, Guizhou, China
| | - Kefeng Niu
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Yeqin Yang
- Nonhuman Primate Conservation and Research Institute, Tongren University, Tongren, Guizhou, China
| | - Qikun Zhang
- Hangzhou KaiTai Biotechnology Co., Ltd, Hangzhou, China
| | - Rob Knight
- Pediatrics, University of California San Diego, La Jolla, California.,Computer Science and Engineering, University of California San Diego, La Jolla, California
| | | |
Collapse
|
22
|
Iverson WO, Karanth S, Wilcox A, Pham CD, Lockhart SR, Nicholson SM. Talaromycosis (Penicilliosis) in a Cynomolgus Macaque. Vet Pathol 2018; 55:591-594. [PMID: 29444633 DOI: 10.1177/0300985818758468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A sexually mature Chinese-origin female Macaca fascicularis assigned to the high-dose group in a 26-week toxicology study with an experimental immunomodulatory therapeutic antibody (a CD40 L antagonist fusion protein) was euthanized at the scheduled terminal sacrifice on study day 192. The animal was healthy at study initiation and remained clinically normal throughout the study. On study day 141, abnormal clinical pathology changes were found during a scheduled evaluation; splenomegaly was detected on study day 149 and supported by ultrasound examination. At the scheduled necropsy, there was marked splenomegaly with a nodular and discolored appearance. Cytologic examination of a splenic impression smear revealed yeast-like organisms within macrophages. Histologically, there was disseminated systemic granulomatous inflammation with 2- to 3-μm oval, intracytoplasmic yeast-like organisms in multiple organs identified as Talaromyces (Penicillium) marneffei. This organism, not previously reported as a pathogen in macaques, causes an important opportunistic infection in immunosuppressed humans in specific global geographic locations.
Collapse
Affiliation(s)
| | | | - Angela Wilcox
- 2 Charles River Laboratories, Preclinical Services, Nevada, Reno, NV, USA
| | - Cau D Pham
- 3 Division of Foodborne, Waterborne and Environmental Disease, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Disease, Mycotic Diseases Branch, Fungal Reference Unit, Atlanta, GA, USA
| | - Shawn R Lockhart
- 3 Division of Foodborne, Waterborne and Environmental Disease, Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Disease, Mycotic Diseases Branch, Fungal Reference Unit, Atlanta, GA, USA
| | | |
Collapse
|
23
|
Brennan FR, Kiessling A. Translational immunotoxicology of immunomodulatory monoclonal antibodies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 21-22:85-93. [PMID: 27978992 DOI: 10.1016/j.ddtec.2016.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 12/28/2022]
Abstract
While immunomodulatory monoclonal antibodies (mAbs) have a wide therapeutic potential, exaggerated immunopharmacology may drive both acute and delayed immunotoxicity. The existing tools for immunotoxicity assessment do not accurately predict the full range of immunotoxicities observed in humans. New and optimized models, assays, endpoints and biomarkers in animals and humans are required to safeguard patients and allow them access to these often transformational therapies.
Collapse
|
24
|
Colman K. Impact of the Genetics and Source of Preclinical Safety Animal Models on Study Design, Results, and Interpretation. Toxicol Pathol 2016; 45:94-106. [DOI: 10.1177/0192623316672743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
It has been long established that not only the species but also the strain and supplier of rodents used in preclinical safety studies can have a significant impact on the outcome of studies due to variability in their genetic background and thus spontaneous pathologic findings. In addition, local husbandry, housing, and other environmental conditions may have effects on the development and expression of comorbidities, particularly in longer-term or chronic studies. More recently, similar effects related to the source, including genetic and environmental variability, have been recognized in cynomolgus macaques ( Macaca fascicularis). The increased use of cynomolgus macaques from various sources of captive-bred animals (including nonnative, U.S./European Union-based breeding facilities or colonies) can affect study design and study results and outcome. It is important to acknowledge and understand the impact of this variability on the results and interpretation of research studies. This review includes recent examples where variability of preclinical animal models (rats and monkeys) affected the postmortem observations highlighting its relevance to study design or interpretation in safety studies.
Collapse
Affiliation(s)
- Karyn Colman
- Novartis Pharmaceuticals Corp., East Hanover, New Jersey, USA
| |
Collapse
|
25
|
Lankau EW, Turner PV, Mullan RJ, Galland GG. Worker Health and Safety Practices in Research Facilities Using Nonhuman Primates, North America. Emerg Infect Dis 2014. [DOI: 10.3201/2009.140420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
26
|
Lankau EW, Turner PV, Mullan RJ, Galland GG. Worker health and safety practices in research facilities using nonhuman primates, North America. Emerg Infect Dis 2014; 20:1589-90. [PMID: 25153090 PMCID: PMC4178409 DOI: 10.3201/eid2009.140420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
Mansfield KG, Sasseville VG, Westmoreland SV. Molecular Localization Techniques in the Diagnosis and Characterization of Nonhuman Primate Infectious Diseases. Vet Pathol 2013; 51:110-26. [DOI: 10.1177/0300985813509386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Molecular localization techniques remain important diagnostic and research tools for the pathologist evaluating nonhuman primate tissues. In situ hybridization and immunohistochemistry protocols have been developed for many important pathogens of nonhuman primates, including RNA and DNA viruses, prions, and bacterial, protozoal, and fungal pathogens. Such techniques will remain critical in defining the impact and relevance of novel agents on animal health and disease. A comparative pathology perspective often provides valuable insight to the best strategy for reagent development and can also facilitate interpretation of molecular localization patterns. Such a perspective is grounded in a firm understanding of microbe-host pathobiology. This review summarizes current molecular localization protocols used in the diagnosis of selected primate infectious diseases.
Collapse
Affiliation(s)
- K. G. Mansfield
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - S. V. Westmoreland
- New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| |
Collapse
|
28
|
Monticello T, Bussiere J. Nonclinical Safety Evaluation of Drugs. Toxicol Pathol 2013. [DOI: 10.1201/b13783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Handley SA, Thackray LB, Zhao G, Presti R, Miller AD, Droit L, Abbink P, Maxfield LF, Kambal A, Duan E, Stanley K, Kramer J, Macri SC, Permar SR, Schmitz JE, Mansfield K, Brenchley JM, Veazey RS, Stappenbeck TS, Wang D, Barouch DH, Virgin HW. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. Cell 2012; 151:253-66. [PMID: 23063120 DOI: 10.1016/j.cell.2012.09.024] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 09/11/2012] [Accepted: 09/21/2012] [Indexed: 12/13/2022]
Abstract
Pathogenic simian immunodeficiency virus (SIV) infection is associated with enteropathy, which likely contributes to AIDS progression. To identify candidate etiologies for AIDS enteropathy, we used next-generation sequencing to define the enteric virome during SIV infection in nonhuman primates. Pathogenic, but not nonpathogenic, SIV infection was associated with significant expansion of the enteric virome. We identified at least 32 previously undescribed enteric viruses during pathogenic SIV infection and confirmed their presence by using viral culture and PCR testing. We detected unsuspected mucosal adenovirus infection associated with enteritis as well as parvovirus viremia in animals with advanced AIDS, indicating the pathogenic potential of SIV-associated expansion of the enteric virome. No association between pathogenic SIV infection and the family-level taxonomy of enteric bacteria was detected. Thus, enteric viral infections may contribute to AIDS enteropathy and disease progression. These findings underline the importance of metagenomic analysis of the virome for understanding AIDS pathogenesis.
Collapse
Affiliation(s)
- Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sasseville VG, Mansfield KG, Mankowski JL, Tremblay C, Terio KA, Mätz-Rensing K, Gruber-Dujardin E, Delaney MA, Schmidt LD, Liu D, Markovits JE, Owston M, Harbison C, Shanmukhappa S, Miller AD, Kaliyaperumal S, Assaf BT, Kattenhorn L, Macri SC, Simmons HA, Baldessari A, Sharma P, Courtney C, Bradley A, Cline JM, Reindel JF, Hutto DL, Montali RJ, Lowenstine LJ. Meeting report: Spontaneous lesions and diseases in wild, captive-bred, and zoo-housed nonhuman primates and in nonhuman primate species used in drug safety studies. Vet Pathol 2012; 49:1057-69. [PMID: 23135296 PMCID: PMC4034460 DOI: 10.1177/0300985812461655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The combination of loss of habitat, human population encroachment, and increased demand of select nonhuman primates for biomedical research has significantly affected populations. There remains a need for knowledge and expertise in understanding background findings as related to the age, source, strain, and disease status of nonhuman primates. In particular, for safety/biomedical studies, a broader understanding and documentation of lesions would help clarify background from drug-related findings. A workshop and a minisymposium on spontaneous lesions and diseases in nonhuman primates were sponsored by the concurrent Annual Meetings of the American College of Veterinary Pathologists and the American Society for Veterinary Clinical Pathology held December 3-4, 2011, in Nashville, Tennessee. The first session had presentations from Drs Lowenstine and Montali, pathologists with extensive experience in wild and zoo populations of nonhuman primates, which was followed by presentations of 20 unique case reports of rare or newly observed spontaneous lesions in nonhuman primates (see online files for access to digital whole-slide images corresponding to each case report at http://www.scanscope.com/ACVP%20Slide%20Seminars/2011/Primate%20Pathology/view.apml). The minisymposium was composed of 5 nonhuman-primate researchers (Drs Bradley, Cline, Sasseville, Miller, Hutto) who concentrated on background and spontaneous lesions in nonhuman primates used in drug safety studies. Cynomolgus and rhesus macaques were emphasized, with some material presented on common marmosets. Congenital, acquired, inflammatory, and neoplastic changes were highlighed with a focus on clinical, macroscopic, and histopathologic findings that could confound the interpretation of drug safety studies.
Collapse
Affiliation(s)
- V G Sasseville
- Novartis Institutes for Biomedical Research, 300 Technology Square, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vugmeyster Y, Xu X, Theil FP, Khawli LA, Leach MW. Pharmacokinetics and toxicology of therapeutic proteins: Advances and challenges. World J Biol Chem 2012; 3:73-92. [PMID: 22558487 PMCID: PMC3342576 DOI: 10.4331/wjbc.v3.i4.73] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 02/05/2023] Open
Abstract
Significant progress has been made in understanding pharmacokinetics (PK), pharmacodynamics (PD), as well as toxicity profiles of therapeutic proteins in animals and humans, which have been in commercial development for more than three decades. However, in the PK arena, many fundamental questions remain to be resolved. Investigative and bioanalytical tools need to be established to improve the translation of PK data from animals to humans, and from in vitro assays to in vivo readouts, which would ultimately lead to a higher success rate in drug development. In toxicology, it is known, in general, what studies are needed to safely develop therapeutic proteins, and what studies do not provide relevant information. One of the major complicating factors in nonclinical and clinical programs for therapeutic proteins is the impact of immunogenicity. In this review, we will highlight the emerging science and technology, as well as the challenges around the pharmacokinetic- and safety-related issues in drug development of mAbs and other therapeutic proteins.
Collapse
Affiliation(s)
- Yulia Vugmeyster
- Yulia Vugmeyster, Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc., Andover, MA 01810, United States
| | | | | | | | | |
Collapse
|