1
|
Thakur A, Mei S, Zhang N, Zhang K, Taslakjian B, Lian J, Wu S, Chen B, Solway J, Chen HJ. Pulmonary neuroendocrine cells: crucial players in respiratory function and airway-nerve communication. Front Neurosci 2024; 18:1438188. [PMID: 39176384 PMCID: PMC11340541 DOI: 10.3389/fnins.2024.1438188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/04/2024] [Indexed: 08/24/2024] Open
Abstract
Pulmonary neuroendocrine cells (PNECs) are unique airway epithelial cells that blend neuronal and endocrine functions, acting as key sensors in the lung. They respond to environmental stimuli like allergens by releasing neuropeptides and neurotransmitters. PNECs stand out as the only lung epithelial cells innervated by neurons, suggesting a significant role in airway-nerve communication via direct neural pathways and hormone release. Pathological conditions such as asthma are linked to increased PNECs counts and elevated calcitonin gene-related peptide (CGRP) production, which may affect neuroprotection and brain function. CGRP is also associated with neurodegenerative diseases, including Parkinson's and Alzheimer's, potentially due to its influence on inflammation and cholinergic activity. Despite their low numbers, PNECs are crucial for a wide range of functions, highlighting the importance of further research. Advances in technology for producing and culturing human PNECs enable the exploration of new mechanisms and cell-specific responses to targeted therapies for PNEC-focused treatments.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Shuya Mei
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Noel Zhang
- Canyon Crest Academy, San Diego, CA, United States
| | - Kui Zhang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Boghos Taslakjian
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| | - Jiacee Lian
- School of Health Sciences, Ngee Ann Polytechnic, Singapore, Singapore
| | - Shuang Wu
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Bohao Chen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, United States
| | - Julian Solway
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, United States
| | - Huanhuan Joyce Chen
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Kuo CS, Darmanis S, Diaz de Arce A, Liu Y, Almanzar N, Wu TTH, Quake SR, Krasnow MA. Neuroendocrinology of the lung revealed by single-cell RNA sequencing. eLife 2022; 11:e78216. [PMID: 36469459 PMCID: PMC9721618 DOI: 10.7554/elife.78216] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary neuroendocrine cells (PNECs) are sensory epithelial cells that transmit airway status to the brain via sensory neurons and locally via calcitonin gene-related peptide (CGRP) and γ- aminobutyric acid (GABA). Several other neuropeptides and neurotransmitters have been detected in various species, but the number, targets, functions, and conservation of PNEC signals are largely unknown. We used scRNAseq to profile hundreds of the rare mouse and human PNECs. This revealed over 40 PNEC neuropeptide and peptide hormone genes, most cells expressing unique combinations of 5-18 genes. Peptides are packaged in separate vesicles, their release presumably regulated by the distinct, multimodal combinations of sensors we show are expressed by each PNEC. Expression of the peptide receptors predicts an array of local cell targets, and we show the new PNEC signal angiotensin directly activates one subtype of innervating sensory neuron. Many signals lack lung targets so may have endocrine activity like those of PNEC-derived carcinoid tumors. PNECs are an extraordinarily rich and diverse signaling hub rivaling the enteroendocrine system.
Collapse
Affiliation(s)
- Christin S Kuo
- Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Spyros Darmanis
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Alex Diaz de Arce
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Yin Liu
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Nicole Almanzar
- Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Timothy Ting-Hsuan Wu
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Stephen R Quake
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Chan-Zuckerburg BiohubSan FranciscoUnited States
| | - Mark A Krasnow
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
3
|
Wang B, Cardenas M, Bedoya M, Colin AA, Rossi GA. Upregulation of neuropeptides and obstructive airway disorder in infancy: A review with focus on post-RSV wheezing and NEHI. Pediatr Pulmonol 2021; 56:1297-1306. [PMID: 33524244 DOI: 10.1002/ppul.25292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/31/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
Abstract
Obstructive airway disorders, common in infancy and early childhood, include some entities that are recognized to have neuro immune mediators as their underlying pathogenetic mechanisms. The best characterized example amongst post-viral wheezing phenotypes is the disorder that follows respiratory syncytial virus (RSV) infection and leads to intermittent, long-term wheezing. The underlying mechanisms of the airway reactivity related to RSV infection have been extensively studies and are associated with dysregulation of the nonadrenergic-noncholinergic (NANC) system, via upregulation of neurotransmitters, typically Substance P. Neuroendocrine hyperplasia of infancy (NEHI), while a less common entity, is a disorder characterized by more severe and long-term obstructive airway disease. NEHI is pathophysiologically characterized by abundance of neuroendocrine cells in the airways containing the neuroimmune mediator bombesin, the release of which is presumed to be the driver of the persistent small airway obstruction and functional air-trapping. Here we review the NANC and neuroendocrine cells, the neurotransmitter systems and their studied roles in pulmonary diseases with a focus on their role in lung development, and subsequent various pediatric lung diseases. We focus on the juxtaposition of the separate neuroimmune mechanisms underlying the pathogenesis of post-RSV recurrent wheezing and NEHI's persistent small airway obstruction. We finally propose a unifying concept of neuropeptides in obstructive disorders that may encompass these two entities and possibly others.
Collapse
Affiliation(s)
- Bin Wang
- Division of Critical Care Medicine, Jackson Memorial Hospital and Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Monica Cardenas
- Division of Pediatric Pulmonology, Jackson Memorial Hospital and Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Mariana Bedoya
- Division of Pediatric Pulmonology, Jackson Memorial Hospital and Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Andrew A Colin
- Division of Pediatric Pulmonology, Jackson Memorial Hospital and Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Giovanni A Rossi
- Pulmonary and Allergy Disease Unit, Department of Pediatrics, G. Gaslini University Hospital, Genoa, Italy
| |
Collapse
|
4
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
5
|
Garg A, Sui P, Verheyden JM, Young LR, Sun X. Consider the lung as a sensory organ: A tip from pulmonary neuroendocrine cells. Curr Top Dev Biol 2019; 132:67-89. [PMID: 30797518 DOI: 10.1016/bs.ctdb.2018.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While the lung is commonly known for its gas exchange function, it is exposed to signals in the inhaled air and responds to them by collaborating with other systems including immune cells and the neural circuit. This important aspect of lung physiology led us to consider the lung as a sensory organ. Among different cell types within the lung that mediate this role, several recent studies have renewed attention on pulmonary neuroendocrine cells (PNECs). PNECs are a rare, innervated airway epithelial cell type that accounts for <1% of the lung epithelium population. They are enriched at airway branch points. Classical in vitro studies have shown that PNECs can respond to an array of aerosol stimuli such as hypoxia, hypercapnia and nicotine. Recent in vivo evidence suggests an essential role of PNECs at neuroimmunomodulatory sites of action, releasing neuropeptides, neurotransmitters and facilitating asthmatic responses to allergen. In addition, evidence supports that PNECs can function both as progenitor cells and progenitor niches following airway epithelial injury. Increases in PNECs have been documented in a large array of chronic lung diseases. They are also the cells-of-origin for small cell lung cancer. A better understanding of the specificity of their responses to distinct insults, their impact on normal lung function and their roles in the pathogenesis of pulmonary ailments will be the next challenge toward designing therapeutics targeting the neuroendocrine system in lung.
Collapse
Affiliation(s)
- Ankur Garg
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Pengfei Sui
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Jamie M Verheyden
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Lisa R Young
- Division of Pulmonary Medicine, Center for Childhood Lung Research, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States; Department of Biological Sciences, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
6
|
Sui P, Wiesner DL, Xu J, Zhang Y, Lee J, Van Dyken S, Lashua A, Yu C, Klein BS, Locksley RM, Deutsch G, Sun X. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science 2018; 360:eaan8546. [PMID: 29599193 PMCID: PMC6387886 DOI: 10.1126/science.aan8546] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 02/11/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
Abstract
Pulmonary neuroendocrine cells (PNECs) are rare airway epithelial cells whose function is poorly understood. Here we show that Ascl1-mutant mice that have no PNECs exhibit severely blunted mucosal type 2 response in models of allergic asthma. PNECs reside in close proximity to group 2 innate lymphoid cells (ILC2s) near airway branch points. PNECs act through calcitonin gene-related peptide (CGRP) to stimulate ILC2s and elicit downstream immune responses. In addition, PNECs act through the neurotransmitter γ-aminobutyric acid (GABA) to induce goblet cell hyperplasia. The instillation of a mixture of CGRP and GABA in Ascl1-mutant airways restores both immune and goblet cell responses. In accordance, lungs from human asthmatics show increased PNECs. These findings demonstrate that the PNEC-ILC2 neuroimmunological modules function at airway branch points to amplify allergic asthma responses.
Collapse
Affiliation(s)
- Pengfei Sui
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Darin L Wiesner
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jinhao Xu
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yan Zhang
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jinwoo Lee
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Steven Van Dyken
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amber Lashua
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chuyue Yu
- Zhiyuan College, Shanghai JiaoTong University, Shanghai, China
| | - Bruce S Klein
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Richard M Locksley
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gail Deutsch
- Department of Laboratories, Seattle Children's Hospital, University of Washington, Seattle, WA 98105, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA.
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Taweevisit M, Theerasantipong B, Taothong K, Thorner PS. Pulmonary Neuroendocrine Cell Hyperplasia in Hemoglobin Bart-induced Hydrops Fetalis: A model for Chronic Intrauterine Hypoxia. Pediatr Dev Pathol 2017; 20:298-307. [PMID: 28727978 DOI: 10.1177/1093526617693121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pulmonary neuroendocrine system includes pulmonary neuroendocrine cells (PNECs) and neuroepithelial bodies (NEBs) that are distributed throughout respiratory epithelium and regulate lung growth and maturation antenatally. Abnormalities in this system have been linked to many hypoxia-associated pediatric pulmonary disorders. Hemoglobin (Hb) Bart disease is a severe form of α-thalassemia resulting in marked intrauterine hypoxia with hydrops fetalis (HF) and usually death in utero. Affected fetuses can serve as a naturally occurring human model for the effects of intrauterine hypoxia, and we postulated that these effects should include changes in the pulmonary neuroendocrine system. Bombesin immunostaining was used to assess PNECs and NEBs in stillborn fetuses with Hb Bart HF ( n = 16) and with HF from other causes ( n = 14) in comparison to non-HF controls. Hb Bart HF showed a significant increase in the proportion of PNECs in respiratory epithelium ( P = .002), mean number of NEB nuclei ( P = .03), and mean size of NEBs ( P = .002), compared to normal non-HF controls. Significant differences were not observed between HF due to other causes and non-HF controls with normal lungs. Non-HF controls with pulmonary hypoplasia showed significant increases in PNECs compared to HF cases not due to Hb Bart HF, implying HF alone does not cause such increases. In contrast, no significant differences were noted between non-HF controls with pulmonary hypoplasia and Hb Bart cases. Hb Bart HF may provide a useful model for studying the pulmonary neuroendocrine system under chronic intrauterine hypoxia.
Collapse
Affiliation(s)
- Mana Taweevisit
- 1 Department of Pathology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Boochit Theerasantipong
- 1 Department of Pathology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Kanlaya Taothong
- 1 Department of Pathology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Paul Scott Thorner
- 1 Department of Pathology, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand.,2 Department of Pathology and Laboratory Medicine, Hospital for Sick Children and University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Abstract
The pathogenesis of Bronchopulmonary Dysplasia (BPD) is multifactorial and the clinical phenotype of BPD is extremely variable. Predicting BPD is difficult, as it is a disease with a clinical operational definition but many clinical phenotypes and endotypes. Most biomarkers studied over the years have low predictive accuracy, and none are currently used in routine clinical care or shown to be useful for predicting longer-term respiratory outcome. Targeted cellular and humoral biomarkers and novel systems biology 'omic' based approaches including genomic and microbiomic analyses are described in this review.
Collapse
|
9
|
Abstract
From birth, animals should possess functional machinery to appropriately regulate its respiration. This machinery has to detect the available oxygen quantity in order to efficiently modulate breathing movements in accordance with body requirements. The chemosensitivity process responsible for this detection is known to be mainly performed by carotid bodies. However, pulmonary neuroendocrine cells, which are mainly gathered in neuroepithelial bodies, also present the capability to exert chemosensitivity. The goal of this article is to put in perspective the potential complementarity in the activity of these two peripheral chemosensors in the context of neonatal oxygen chemosensitivity.
Collapse
Affiliation(s)
- Céline Caravagna
- Institut de Neurosciences de la Timone-Equipe IMAPATH, CERIMED, UMR 7289 CNRS & Aix-Marseille Université, 27 Boulevard Jean Moulin,13385, Marseille Cedex 05, France.
| | - Tommy Seaborn
- Faculté de Médecine, Université Laval, Pavillon Ferdinand-Vandry, Room 4645-A,1050, Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
10
|
Pan J, Thoeni C, Muise A, Yeger H, Cutz E. Multilabel immunofluorescence and antigen reprobing on formalin-fixed paraffin-embedded sections: novel applications for precision pathology diagnosis. Mod Pathol 2016; 29:557-69. [PMID: 26939874 DOI: 10.1038/modpathol.2016.52] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 01/02/2023]
Abstract
We report new methods for multilabel immunofluorescence (MIF) and reprobing of antigen epitopes on the same formalin-fixed paraffin-embedded (FFPE) sections. The MIF method includes an antigen-retrieval step followed by multilabel immunostaining and examination by confocal microscopy. As examples, we illustrate epitopes localized to the apical and basolateral membranes, and the cytoplasm of enterocytes of normal small intestine and in cases of congenital enteropathies (microvillous inclusion disease and congenital tufting enteropathy). We also demonstrate localization of the bile salt excretion pump protein (BSEP) in bile canalicular membrane of normal hepatocytes and in cases of primary sclerosing cholangitis. To demonstrate colocalization of cytoplasmic and nuclear epitopes we analyzed normal control and hyperplastic pulmonary neuroendocrine cells (PNEC) and neuroepithelial bodies (NEBs), presumed airway sensors in the lungs of infants with bronchopulmonary dysplasia (BPD). As cytoplasmic markers we used anti-bombesin or anti-synaptic vesicle protein 2 (SV2) antibody, respectively, and for nuclear localization, antibodies against neurogenic genes mammalian achaete-scute homolog (Mash1) and prospero homeobox 1 (Prox1), essential for NEB cells differentiation and maturation, hypoxia-inducible factor 1α (HIF1α) a downstream modulator of hypoxia response and a proliferation marker Ki67. The reprobing method consisted of removal of the previously immunolabeled target and immunostaining with different antibodies, facilitating colocalization of enterocyte brush border epitopes as well as HIF1α, Mash1 and Prox1 in PNEC/NEB PNEC and NEBs. As these methods are suitable for routine FFPE pathology samples from various tissues, allowing visualization of multiple epitopes in the same cells/sections with superior contrast and resolution, they are suitable for a wide range of applications in diagnostic pathology and may be particularly well suited for precision medicine diagnostics.
Collapse
Affiliation(s)
- Jie Pan
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Cornelia Thoeni
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Aleixo Muise
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Herman Yeger
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ernest Cutz
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
11
|
Kuo CS, Krasnow MA. Formation of a Neurosensory Organ by Epithelial Cell Slithering. Cell 2015; 163:394-405. [PMID: 26435104 DOI: 10.1016/j.cell.2015.09.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/08/2015] [Accepted: 08/11/2015] [Indexed: 11/25/2022]
Abstract
Epithelial cells are normally stably anchored, maintaining their relative positions and association with the basement membrane. Developmental rearrangements occur through cell intercalation, and cells can delaminate during epithelial-mesenchymal transitions and metastasis. We mapped the formation of lung neuroepithelial bodies (NEBs), innervated clusters of neuroendocrine/neurosensory cells within the bronchial epithelium, revealing a targeted mode of cell migration that we named "slithering," in which cells transiently lose epithelial character but remain associated with the membrane while traversing neighboring epithelial cells to reach cluster sites. Immunostaining, lineage tracing, clonal analysis, and live imaging showed that NEB progenitors, initially distributed randomly, downregulate adhesion and polarity proteins, crawling over and between neighboring cells to converge at diametrically opposed positions at bronchial branchpoints, where they reestablish epithelial structure and express neuroendocrine genes. There is little accompanying progenitor proliferation or apoptosis. Activation of the slithering program may explain why lung cancers arising from neuroendocrine cells are highly metastatic.
Collapse
Affiliation(s)
- Christin S Kuo
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5307, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Mark A Krasnow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5307, USA.
| |
Collapse
|
12
|
Abstract
Pulmonary neuroendocrine cells (PNEC) are widely distributed throughout the airway mucosa of mammalian lung as solitary cells and as distinctive innervated clusters, neuroepithelial bodies (NEB). These cells differentiate early during lung development and are more prominent in fetal/neonatal lungs compared to adults. PNEC/NEB cells produce biogenic amine (serotonin) and a variety of peptides (i.e., bombesin) involved in regulation of lung function. During the perinatal period, NEB are thought to function as airway O(2)/CO(2) sensors. Increased numbers of PNEC/NEBs have been observed in a variety of perinatal and postnatal lung disorders. Recent advances in cellular and molecular biology of these cells, as they relate to perinatal and postnatal lung disorders associated with PNEC/NEB cell hyperplasia are reviewed and their possible role in pulmonary pathobiology discussed (WC 125).
Collapse
Affiliation(s)
- Ernest Cutz
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Ave, Toronto, Ontario, Canada M5G1x8; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Abstract
The differential diagnosis of diffuse lung disease in children differs considerably from adults, and analysis of pediatric lung biopsies may prove challenging for pathologists with more extensive exposure to adult lung biopsies. Biopsy diagnosis of pediatric lung disease continues to evolve as new pathologic entities are recognized and new genetic determinants of disease are discovered. This article describes the clinical characteristics, pathologic features, and differential diagnosis of challenging and recently described entities in pediatric lung disease. The specific entities discussed include alveolar capillary dysplasia, genetic disorders of surfactant metabolism, pulmonary interstitial glycogenosis, and neuroendocrine cell hyperplasia of infancy.
Collapse
Affiliation(s)
- Megan K Dishop
- Department of Pathology, B120, The Children's Hospital, University of Colorado-Denver School of Medicine, 13123 East 16th Avenue, Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Dishop MK. Diagnostic Pathology of Diffuse Lung Disease in Children. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2010; 23:69-85. [PMID: 22332032 PMCID: PMC3269262 DOI: 10.1089/ped.2010.0007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 03/20/2010] [Indexed: 11/13/2022]
Abstract
The pathologic classification of diffuse lung disease in children and adolescents has undergone revision in recent years in response to rapid developments and new discoveries in the field. A number of important advancements have been made in the last 10 years including the description of new genetic mutations causing severe lung disease in infants and children, as well as the description of new pathologic entities in infants. These recently described entities, including ABCA3 surfactant disorders, pulmonary interstitial glycogenosis, and neuroendocrine cell hyperplasia of infancy, are being recognized with increasing frequency. This review will include brief discussion of the etiology and pathogenesis of the major groups of diffuse lung disease in children. Histopathologic features are discussed for each of the major categories of diffuse lung disease in children, beginning with the genetic, developmental, and alveolar growth disorders common in infancy, followed by brief discussion of airway diseases, immunologic diseases, and pulmonary vascular diseases seen more commonly in older children. A protocol for handling pediatric wedge lung biopsies is also discussed, which optimizes the diagnostic yield of lung biopsies in this population.
Collapse
Affiliation(s)
- Megan K Dishop
- Department of Pathology, The Children's Hospital and University of Colorado-Denver , Aurora, Colorado
| |
Collapse
|
15
|
Righi L, Volante M, Rapa I, Scagliotti GV, Papotti M. Neuro-endocrine tumours of the lung. A review of relevant pathological and molecular data. Virchows Arch 2007; 451 Suppl 1:S51-9. [PMID: 17684766 DOI: 10.1007/s00428-007-0445-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 06/06/2007] [Indexed: 10/23/2022]
Abstract
Neuroendocrine (NE) tumours of the lung include pure and mixed forms. In the former group, a continuum of lesions is recognised ranging from benign typical carcinoids to atypical carcinoids (having a low-grade behaviour, although often associated with regional and distant metastases), to the highly aggressive poorly differentiated carcinomas of the small and large cell types. In the mixed tumour group, the NE component is extensively represented in association with any of the non-small cell carcinoma subtypes (so-called combined carcinomas), or the NE component is restricted to a cell population scattered among adenocarcinoma cells (or more rarely within squamous or large cell carcinomas). The molecular profile of NE tumours has been widely investigated to identify features helpful for the diagnosis, prognosis and even therapy for this special lung tumour category. Specific chromosomal alterations, oncogene mutations and cell cycle molecule disregulation has been documented in NE tumours of the lung, as well as the expression of specific receptors or enzymes implicated in the response to biotherapies or to chemotherapeutic agents. The "molecular classification" of NE tumours should be integrated to morphology, for a better definition of the different histological types and a more appropriate selection of the therapeutic strategy.
Collapse
Affiliation(s)
- Luisella Righi
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy
| | | | | | | | | |
Collapse
|
16
|
Cutz E, Perrin DG, Pan J, Haas EA, Krous HF. Pulmonary neuroendocrine cells and neuroepithelial bodies in sudden infant death syndrome: potential markers of airway chemoreceptor dysfunction. Pediatr Dev Pathol 2007; 10:106-16. [PMID: 17378691 DOI: 10.2350/06-06-0113.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 08/17/2006] [Indexed: 11/20/2022]
Abstract
Pulmonary neuroendocrine cells (PNEC), including neuroepithelial bodies (NEB), are amine- and peptide (for example, bombesin)-producing cells that function as hypoxia/hypercapnia-sensitive chemoreceptors that could be involved in the pathophysiology of sudden infant death syndrome (SIDS). We assessed morphometrically the frequency and size of PNEC/NEB in lungs of infants who died of SIDS (n = 21) and compared them to an equal number PNEC/NEB in lungs of age-matched control infants who died of accidental death or homicide, with all cases obtained from the San Diego SIDS/SUDC Research Project database. As a marker for PNEC/NEB we used an antibody against chromogranin A (CGA), and computer-assisted morphometric analysis was employed to determine the relative frequency of PNEC per airway epithelial area (% immunostained area, %IMS), the size of NEB, the number of nuclei/NEB, and the size of the NEB cells. The lungs of SIDS infants showed significantly greater %IMS of airway epithelium (2.72 +/- 0.28 [standard error of the mean, SEM] versus 1.88 +/- 0.24; P < 0.05) and larger NEB (1557 +/- 153 microm(2) versus 1151 +/- 106 microm(2); P < 0.05) compared to control infants. The size of NEB cells was also significantly increased in SIDS cases compared to the controls (180 +/- 6.39 microm(2) versus 157 +/- 8.0 microm(2); P < 0.05), indicating the presence of hypertrophy in addition to hyperplasia. Our findings support previous studies demonstrating hyperplasia of PNEC/NEB in lungs of infants who died of SIDS. These changes could be secondary to chronic hypoxia and/or could be attributable to maturational delay. Morphometric assessment and/or measurement of the secretory products of these cells (for example, CGA, bombesin) could provide a potential biological marker for SIDS.
Collapse
Affiliation(s)
- Ernest Cutz
- Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, M5G1X8, Canada.
| | | | | | | | | |
Collapse
|
17
|
Pan J, Copland I, Post M, Yeger H, Cutz E. Mechanical stretch-induced serotonin release from pulmonary neuroendocrine cells: implications for lung development. Am J Physiol Lung Cell Mol Physiol 2005; 290:L185-93. [PMID: 16100287 DOI: 10.1152/ajplung.00167.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary neuroendocrine cells (PNEC) produce amine (serotonin, 5-HT) and peptides (e.g., bombesin, calcitonin) with growth factor-like properties and are thought to play an important role in lung development. Because physical forces are essential for lung growth and development, we investigated the effects of mechanical strain on 5-HT release in PNEC freshly isolated from rabbit fetal lung and in the PNEC-related tumor H727 cell line. Cultures exposed to sinusoidal cyclic stretch showed a significant 5-HT release inhibitable with gadolinium chloride (10 nM), a blocker of mechanosensitive channels. In contrast to hypoxia (Po2 approximately 20 mmHg), stretch-induced 5-HT release was not affected by Ca2+-free medium or nifedipine (50 microM), excluding the exocytic pathway. In H727 cells, stretch failed to release calcitonin, a peptide stored within dense core vesicles (DCV), whereas hypoxia caused massive calcitonin release. 5-HT released by mechanical stretch is derived predominantly from the cytoplasmic pool, because it is rapid ( approximately 5 min) and is releasable from early (20 days of gestation) fetal PNEC containing few DCV. Both mechanical stretch and hypoxia upregulated expression of tryptophan hydroxylase, the rate-limiting enzyme of 5-HT synthesis. We conclude that mechanical strain is an important physiological stimulus for the release of 5-HT from PNEC via mechanosensitive channels with potential effects on lung development and resorption of lung fluid at the time of birth.
Collapse
Affiliation(s)
- Jie Pan
- Division of Pathology, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada M5G1X8
| | | | | | | | | |
Collapse
|
18
|
Deterding RR, Pye C, Fan LL, Langston C. Persistent tachypnea of infancy is associated with neuroendocrine cell hyperplasia. Pediatr Pulmonol 2005; 40:157-65. [PMID: 15965897 DOI: 10.1002/ppul.20243] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We sought to determine the clinical course and histologic findings in lung biopsies from a group of children who presented with signs and symptoms of interstitial lung disease (ILD) without identified etiology. Patients were identified from the pathology files at the Texas Children's Hospital who presented below age 2 years with persistent tachypnea, hypoxia, retractions, or respiratory crackles, and with nonspecific and nondiagnostic lung biopsy findings. Age-matched lung biopsy controls were also identified. Their clinical courses were retrospectively reviewed. Biopsies were reviewed, and immunostaining with antibodies to neuroendocrine cells was done. Fifteen pediatric ILD patients and four control patients were identified for inclusion in the study. Clinically, the mean onset of symptoms was 3.8 months (range, 0-11 months). Radiographs demonstrated hyperinflation, interstitial markings, and ground-glass densities. Oxygen was initially required for prolonged periods, and medication trials did not eliminate symptoms. After a mean of 5 years, no deaths had occurred, and patients had improved. On review of the lung biopsies, all had a similar appearance, with few abnormalities noted. Immunostaining with antibodies to neuroendocrine cell products showed consistently increased bombesin staining. Subsequent morphometric analysis showed that immunoreactivity for bombesin and serotonin was significantly increased over age-matched controls. In conclusion, we believe this may represent a distinct group of pediatric patients defined by the absence of known lung diseases, clinical signs and symptoms of ILD, and idiopathic neuroendocrine cell hyperplasia of infancy. These findings may be important for the evaluation of ILD in young children.
Collapse
Affiliation(s)
- Robin R Deterding
- Pediatric Pulmonary Section, Department of Pediatrics, University of Colorado Health Science Center, Children's Hospital, Denver, Colorado 80218, USA.
| | | | | | | |
Collapse
|
19
|
Saad AG, Heffelfinger S, Stanek J. Amniotic sac infection syndrome features fetal lung neuroendocrine cell hyperfunction. Pediatr Dev Pathol 2003; 6:484-94. [PMID: 15018448 DOI: 10.1007/s10024-003-1115-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neuroendocrine cells (NEC) are abundant in fetal and neonatal lungs, but reduced in infants with hyaline membrane disease. Perinatal neuroendocrine cell hyperplasia (NCH) has been reported in the hypoplastic lung in diaphragmatic hernia, bronchopulmonary dysplasia, and Wilson-Mikity syndrome. Since we are unaware of any reports on NCH in fetal inflammatory conditions, this report addresses the NEC in fetuses with congenital pneumonia. Twenty-one fetuses/neonates with congenital pneumonia, autopsied between 1995 and 2001, were compared to 21 fetuses without a congenital infection matched for gestational age. Lung sections were immunostained for chromogranin, bombesin, calcitonin, and synaptophysin. Proportions of immunopositive cells lining 20 consecutive bronchioles calculated from digital images were significantly higher in the study than the control group for chromogranin (1.8 vs. 0.8%, P = 2.4 E-06), calcitonin (1.2 vs. 0.7%, P = 0.005), and bombesin (1.1 vs. 0.7%, P = 0.005). There was no difference in synaptophysin (11.7% vs. 12.6%, P = 0.07). The absence of significant differences in the synaptophysin ratio excludes simple NCH in the study group. The synchronous increase in three neurohormones is indicative of NEC hyperfunction, due to either altered enzymatic inactivation by neutral endopeptidase, known to be reduced in adult lung inflammation, or by an increase in expression of the neurohormone genes. These data indicate that NEC hyperfunction may be responsible for the deranged fetal/neonatal lung function and circulatory adaptation, and contribute to the lethality of the amniotic sac infection syndrome.
Collapse
Affiliation(s)
- Aly G Saad
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, P.O. Box 670529, Cincinnati, OH 45267-0529, USA
| | | | | |
Collapse
|
20
|
Erkrankungen im Kindesalter. Thorax 2003. [DOI: 10.1007/978-3-642-55830-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Aita K, Doi M, Tanno K, Oikawa H, Ohashi N, Misawa S. Pulmonary neuroendocrine cell distribution in sudden infant death syndrome. Leg Med (Tokyo) 2000; 2:134-42. [PMID: 12935715 DOI: 10.1016/s1344-6223(00)80013-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The density of pulmonary neuroendocrine cells (PNECs) in 21 sudden infant death syndrome (SIDS) cases, 19 controls, and 25 fetuses was studied morphometrically. Formalin-fixed, paraffin-embedded lung samples were immunostained with antibody against chromogranin A (CGA). The percentage of PNEC-positive airways and the density of PNECs in each airway were calculated in all cases. The density of PNECs was expressed as the number of cells per millimeter of basement membrane. The percentage of PNEC-positive airways reached nearly 100% by term and did not change significantly until 12 months of age in both the SIDS cases and the controls. The density of PNECs also showed a rapid increase in the saccular stage fetus and had its peak of about 4 cells/mm around birth. The density of PNECs, including the standard deviation, was higher in SIDS cases than in controls. The uneven distribution of PNECs may affect respiratory control in SIDS victims.
Collapse
Affiliation(s)
- K Aita
- Department of Legal Medicine, Institute of Community Medicine, University of Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Aita K, Doi M, Tanno K, Oikawa H, Ohashi N, Misawa S. Quantitative analysis of pulmonary neuroendocrine cell distribution of the fetal small airways using double-labeled immunohistochemistry. Forensic Sci Int 2000; 113:183-7. [PMID: 10978622 DOI: 10.1016/s0379-0738(00)00260-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pulmonary neuroendocrine cells (PNECs) are supposed to play an essential role in development of fetal lung and neonatal respiratory adaptation. Some previous studies have suggested the close relation between PNECs and sudden infant death syndrome (SIDS). To investigate how PNECs distribute to the thermal bronchioli of fetal lung may be a clue to clarify this relation. Since it is difficult to distinguish bronchiole from alveolus in fetal lung, we performed double immunostaining with antibody against chromogranin A (CGA) and alpha-smooth muscle actin (SMA) which can make clear distinction between them. In this study, formalin-fixed, paraffin-embedded lung tissues from 18 autopsy cases from 16 to 28 weeks of gestation were assessed. CGA immunopositive cells were counted and the length of basement membranes of terminal bronchioli was measured with computed image analyzer. Density of PNECs was expressed as the number of immunopositive cells per millimeter of basement membrane. Terminal bronchiole stained with SMA was clearly distinguished from alveolus at 16 weeks. With gestational age, CGA immunopositive PNECs were gradually increased in 2 folds by the 25th week. After that, their density wasn't changed significantly until termination. It is suggested that PNECs in terminal bronchiole was playing an important role in morphogenesis of alveolar ducts and alveolar sacks.
Collapse
Affiliation(s)
- K Aita
- Department of Legal Medicine, Institute of Community Medicine, University of Tsukuba, Tsukuba, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Ito T. Differentiation and proliferation of pulmonary neuroendocrine cells. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 2000; 34:247-322. [PMID: 10689732 DOI: 10.1016/s0079-6336(99)80001-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this review article the morphological profiles of pulmonary neuroendocrine cells (PNEC) in experimental animals and humans are described. Although the mechanisms of differentiation and proliferation of neuroendocrine cells in the airway epithelium remain to be solved, several experimental studies using explant culture and cell culture systems of fetal animal lungs have been performed to clarify fundamental phenomena associated with neuroendocrine differentiation and proliferation. Experimental animal studies using chronic hypoxia, toxic substances and carcinogens have succeeded in inducing alterations in PNEC systems, and these studies have elucidated the reactions of PNEC in cell injury and inflammation, and functional aspects of PNEC in disease conditions. Human pulmonary neuroendocrine tumors include various histological subtypes, and show divergent morphological and biological varieties. Molecular abnormalities of small cell carcinoma, the most aggressive subtype of pulmonary neuroendocrine tumors, have been extensively studied, but the mechanism of neuroendocrine differentiation of this tumor is still largely unknown. PNEC share common phenotypes with neuronal cells, and developmental studies have begun contributed evidence that similar transcriptional networks, including active and repressive basic helix-loop-helix (bHLH) factors, function in the differentiation of both PNEC and neuronal cells. Such a bHLH network may also play a central role in determining cell differentiation in lung carcinomas. Further studies of the neuronal bHLH network, its regulatory system and related signal transduction pathways, will be required for understanding the mechanisms of neuroendocrine differentiation and proliferation in normal and pathological lung conditions.
Collapse
Affiliation(s)
- T Ito
- Department of Pathology, Yokohama City University School of Medicine, Kanazawa-ku, Japan.
| |
Collapse
|
24
|
Reynolds SD, Giangreco A, Power JH, Stripp BR. Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:269-78. [PMID: 10623675 PMCID: PMC1868636 DOI: 10.1016/s0002-9440(10)64727-x] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Remodeling of the conducting airway epithelium is a common finding in the chronically injured lung and has been associated with increased risk for developing lung cancer. Pulmonary neuroendocrine cells and clusters of these cells termed neuroepithelial bodies (NEBs) play a central role in each of these processes. We previously developed an adult mouse model of airway injury and repair in which epithelial regeneration after naphthalene-induced Clara cell ablation occurred preferentially at airway branch points and gave rise to nascent Clara cells. Continued repair was accompanied by NEB hyperplasia. We now provide the following evidence that the NEB microenvironment serves as a source of airway progenitor cells that contribute to focal regeneration of the airway epithelium: 1) nascent Clara cells and NEBs localize to the same spatial domain; 2) within NEB, both Clara cell secretory protein- and calcitonin gene-related peptide-immunopositive cells are proliferative; 3) the NEB microenvironment of both the steady-state and repairing lung includes cells that are dually immunopositive for Clara cell secretory protein and calcitonin gene-related peptide, which were previously identified only within the embryonic lung; and 4) NEBs harbor variant Clara cells deficient in cytochrome P450 2F2-immunoreactive protein. These data suggest that the NEB microenvironment is a reservoir of pollutant-resistant progenitor cells responsive to depletion of an abundant airway progenitor such as the Clara cell.
Collapse
Affiliation(s)
- S D Reynolds
- Department of Environmental Medicine, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
25
|
Asabe K, Tsuji K, Handa N, Kajiwara M, Suita S. Immunohistochemical distribution of bombesin-positive pulmonary neuroendocrine cells in a congenital diaphragmatic hernia. Surg Today 1999; 29:407-12. [PMID: 10333410 DOI: 10.1007/bf02483031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Morphometrical analyses of the immunohistochemical expression of bombesin, which is one of the peptides produced by pulmonary neuroendocrine (PNE) cells, were carried out on the bronchioles of human congenital diaphragmatic hernia (CDH) neonates, and the findings were then compared with those in a gestational and postnatal age-matched control group. As a result, no difference was found in the number of bombesin-positive cells between the lungs of the control group and the unaffected side lungs in the CDH group except for the ratio of the bombesin-positive cells per unit of the bronchiolar surface area (P < 0.05). However, compared with the lungs in the control group, the affected side of the lungs in the CDH group showed a significant increase in the expression of bombesin, namely, the ratio of the bombesin-positive cells per bronchiole (P < 0.05), the ratio of the bombesin-positive cells per unit perimeter of the bronchioles (P < 0.05), and the ratio of the bombesin-positive cells per unit of the bronchiolar surface area (P < 0.01). These results thus suggest that hyperplasia of the PNE-cell system in the lungs of the CDH cases, especially on the affected side, exists in human fetuses. We also further speculate that PNE cells may thus play a role in the problems associated with CDH during intrauterine life in human beings.
Collapse
Affiliation(s)
- K Asabe
- Department of Pediatric Surgery, Oita Prefectural Hospital, Japan
| | | | | | | | | |
Collapse
|
26
|
Van Lommel A, Bollé T, Fannes W, Lauweryns JM. The pulmonary neuroendocrine system: the past decade. ARCHIVES OF HISTOLOGY AND CYTOLOGY 1999; 62:1-16. [PMID: 10223738 DOI: 10.1679/aohc.62.1] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The pulmonary neuroendocrine system consists of specialized airway endocrine epithelial cells, associated with nerve fibres. The epithelial cells, the pulmonary neuroendocrine cells (PNEC), can be solitary or clustered to form neuroepithelial bodies (NEB). During the last thirty years, the pulmonary neuroendocrine system has been intensively investigated and much knowledge of its function has been obtained. This text reviews work which dates from the last ten years. In this period, the picture of the pulmonary neuroendocrine system we previously had, has not fundamentally changed. The pulmonary neuroendocrine system is still regarded as an oxygen sensitive chemoreceptor with local and reflex-mediated regulatory functions, and as a regulator of airway growth and development. Continuing research has much more refined this picture. This text reviews several aspects of the pulmonary neuroendocrine system: phylogeny, the amine and peptide content of its epithelial cells, ontogeny and influence on lung development, the influence of hypoxia and nonhypoxic stimuli, immunomodulatory function, innervation and pathology. Among the discoveries of the past decade, three stand out prominently because of their great significance: additional proof that the neural component of the pulmonary neuroendocrine system is sensory, sound experimental evidence that PNEC stimulate airway epithelial cell differentiation and the discovery of a specific membrane oxygen receptor in the PNEC.
Collapse
Affiliation(s)
- A Van Lommel
- Laboratory of Pathological Anatomy, Medical Faculty, Katholieke Universiteit te Leuven, Belgium.
| | | | | | | |
Collapse
|
27
|
IJsselstijn H, Hung N, de Jongste JC, Tibboel D, Cutz E. Calcitonin gene-related peptide expression is altered in pulmonary neuroendocrine cells in developing lungs of rats with congenital diaphragmatic hernia. Am J Respir Cell Mol Biol 1998; 19:278-85. [PMID: 9698600 DOI: 10.1165/ajrcmb.19.2.2853] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is associated with high neonatal mortality from lung hypoplasia and persistent pulmonary hypertension. Pulmonary neuroendocrine cells (PNEC) produce calcitonin gene-related peptide (CGRP), a potent vasodilator. We previously reported altered distribution of CGRP-positive PNEC in full-term rats with CDH, that may lead to an imbalance in vasoactive mediators. In the present study we examined the expression of CGRP-positive PNEC during lung development in rats with CDH induced by 2,4-dichlorophenyl-p-nitrophenylether (Nitrofen). Cesarean sections were performed on Days 16, 18, 20, or 22, and the lungs were immunostained for CGRP and immunoreactive cells were quantitated through image analysis. On Day 16, CGRP-immunoreactive staining was negative; on Day 18, CGRP-immunoreactive cells were found in all controls (not exposed to Nitrofen), whereas in CDH pups, CGRP-positive cells were present in only four of six cases. On Day 20, CGRP immunoreactivity was similar in CDH pups, Nitrofen-exposed pups without CDH, and controls. On Day 22 (term), significantly more CGRP-positive cells (i.e., number of positive cells per surface area [mm2] or lung volume [mm3]) were found in ipsilateral lungs of CDH pups than in controls (P < 0.05). The difference was even more striking in contralateral lungs of CDH pups (P < 0.001), ruling out nonspecific effects of Nitrofen. In CDH lungs, the proportion of immunostained epithelium and the size of the neuroendocrine cell clusters (neuroepithelial bodies [NEB]) were not significantly different from those of controls. On Day 22, supraoptimal dilution immunocytochemistry yielded similar results in CDH pups and controls. We conclude that in CDH, CGRP expression in PNEC and NEB is delayed during early stages of lung development. Because CGRP also exhibits growth factor-like properties for endothelium and epithelial cells, the lack of this factor during a crucial developmental stage (canalicular period) may be causally related to lung hypoplasia.
Collapse
Affiliation(s)
- H IJsselstijn
- Departments of Pediatric Surgery and Pediatrics, Erasmus University and University Hospital/Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Ijsselstijn H, Gaillard JL, de Jongste JC, Tibboel D, Cutz E. Abnormal expression of pulmonary bombesin-like peptide immunostaining cells in infants with congenital diaphragmatic hernia. Pediatr Res 1997; 42:715-20. [PMID: 9357948 DOI: 10.1203/00006450-199711000-00026] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Infants with congenital diaphragmatic hernia (CDH) have a high neonatal mortality and morbidity owing to lung hypoplasia and persistent pulmonary hypertension. Pulmonary neuroendocrine cells produce bombesin-like peptide (BLP), a peptide with growth factor-like properties involved in lung development. We examined the expression of BLP immunostaining in pulmonary neuroendocrine cells (PNEC), and in clusters of these cells called neuroepithelial bodies (NEB), in the lungs of three groups of infants: patients with CDH, newborns with lung hypoplasia due to other causes, and control subjects without lung abnormalities. Morphometric analysis included: 1) percent immunostained airways; 2) percent immunostained epithelium (i.e. frequency of PNEC and NEB); and 3) NEB size. Controls and infants with lung hypoplasia did not differ with respect to BLP immunostaining. The ipsilateral and the contralateral lungs in CDH had a similar BLP immunostaining pattern of PNEC and NEB. The BLP immunostaining varied between CDH cases, possibly due to the differences in clinical presentation. The mean NEB size was significantly increased in infants with CDH compared with the other two groups (p = 0.02). Some CDH cases with large NEBs also showed a high percentage of immunostained epithelium. Lung-body weight ratio correlated positively with percent immunostained airways, and negatively with the NEB size. We conclude that in lungs of CDH patients BLP immunostaining in PNEC and NEB differs from that of infants with lung hypoplasia due to other causes and controls. The increased BLP immunostaining observed in some cases of CDH might reflect a compensatory mechanism related to impaired lung development and/or failure of neuropeptide secretion during neonatal adaptation.
Collapse
Affiliation(s)
- H Ijsselstijn
- Department of Pediatric Surgery, Erasmus University and University Hospital/Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Springall DR, Polak JM. Quantitative microscopical methods for the identification and localisation of nerves and neuroendocrine cell markers in mammalian lung. Microsc Res Tech 1997; 37:92-100. [PMID: 9144625 DOI: 10.1002/(sici)1097-0029(19970401)37:1<92::aid-jemt9>3.0.co;2-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The lung contains a dense innervation and a population of endocrinelike cells both of which are believed to have a role in pulmonary function and to be involved in disease processes. They contain a number of regulatory peptides that affect vascular and bronchial tone, growth and repair. They can be detected and localised by immunocytochemistry, thereby allowing investigation of the normal distribution and changes in disease processes. The application of image analysis has added greatly to the amount of information that can be obtained from such morphological studies. Data can be obtained on either the overall distribution and amount of the antigen in a tissue, thereby allowing comparisons between normal and disease states, or following experimental manipulation. Furthermore, the actual intracellular level can be assessed, which adds the previously unattained dimension of comparisons between cells. Thus the density of innervation in the specific regions of the lung tissue, either total nerves or specific peptide-containing cells, may be estimated and used to show release of a peptide or to determine changes in the nerve density in disease. Image processing and image analysis have reduced the labour-intensive manual input required to perform such studies. The continuing development of digital image processing and computer technology will increase the application of these methods in lung research of normal and pathological material.
Collapse
Affiliation(s)
- D R Springall
- Department of Histochemistry, Royal Postgraduate Medical School, London, United Kingdom
| | | |
Collapse
|
30
|
Abstract
Pulmonary neuroendocrine cells produce bioactive peptides such as gastrin-releasing peptide (GRP) at high levels in developing fetal lung. The role of GRP and other peptides in promoting branching morphogenesis, cell proliferation, and cell differentiation during lung organogenesis is reviewed. Possible roles for bioactive peptides derived from these cells in the pathophysiology of perinatal lung disorders are discussed.
Collapse
|
31
|
Jaramillo MA, Gutiérrez JA, Margraf LR. Pulmonary gastrin-releasing peptide expression in anencephaly. PEDIATRIC PATHOLOGY & LABORATORY MEDICINE : JOURNAL OF THE SOCIETY FOR PEDIATRIC PATHOLOGY, AFFILIATED WITH THE INTERNATIONAL PAEDIATRIC PATHOLOGY ASSOCIATION 1995; 15:377-87. [PMID: 8597825 DOI: 10.3109/15513819509026974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrin-releasing peptide (GRP) is a developmentally regulated bioactive peptide believed to function as a pulmonary growth factor. It is produced by pulmonary neuroendocrine cells, found within the conducting and respiratory epithelium, as isolated cells and in clusters known as neuroepithelial bodies (NEBs). Deficient GRP expression has been reported in pulmonary hypoplasia (PH) associated with oligohydramnios and diaphragmatic hernia. To assess further the role of GRP in maldeveloped lung we reviewed the postmortem records and histologic lung sections, stained with H&E and anti-GRP antiserum, from 11 infants with anencephaly and 11 age-matched controls. Cells immunoreactive for GRP were quantified (isolated versus NEBs) in airways and airspaces per mm2 for a standard area. PH was present in five anencephalic infants. There was no difference in the total number of GRP-positive cells, number of NEBs, size of NEBs, or number of GRP-positive cells in airways or alveoli in either group regardless of lung development. A greater proportion of the GRP-positive cells was present in the airways in anencephalic infants with PH (58%) compared with anencephalic infants without PH (40%) (P = .018). There were no differences when comparing these groups with control infants and no differences in the density of airways in each of these groups. We conclude that deficient GRP expression is not a feature of lung hypoplasia in anencephalic infants. The altered distribution of GRP-positive cells in anencephalic infants with PH may be a reflection of the structural abnormalities or accompanying altered cellular maturity.
Collapse
Affiliation(s)
- M A Jaramillo
- Department of Pathology, Children's Medical Center, Dallas, TX 75235, USA
| | | | | |
Collapse
|