1
|
Does environmental pollution affect male reproductive system in naturally exposed vertebrates? A systematic review. Theriogenology 2023; 198:305-316. [PMID: 36634444 DOI: 10.1016/j.theriogenology.2023.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Due to environmental contamination, the environment constantly receives pollutants from various anthropic actions. These pollutants put ecological health at risk due to contamination and accumulation in living organisms, including wild animals and humans. Exposure can cause physiological, morphological, and behavioral changes in living beings. In this context, laboratory studies have frequently investigated how environmental contaminants affect the male reproductive system and gametes. However, few studies have examined how these contaminants affect male reproduction in naturally exposed animals. To better understand this topic, we conducted a systematic review of the effects of exposing male vertebrate animals to polluted environments on their reproductive functions. After an extensive search using the PubMed/MEDLINE, Scopus, and Web of Science databases, 39 studies met our inclusion criteria and were eligible for this review. This study showed that reproductive damages were frequent in fishes, amphibians, reptiles, birds, and mammals exposed to contaminated environments. Wild animals are exposed mainly to endocrine-disrupting compounds (EDCs), toxic metals, and radiation. Exposure to pollutants causes a reduction in androgen levels, impaired spermatogenesis, morphological damage to reproductive organs, and decreased sperm quality, leading to reduced fertility and population decline. Although several species have been studied, the number of studies is limited for some groups of vertebrates. Wildlife has proven valuable to our understanding of the potential effects of environmental contaminants on human and ecosystem health. Thus, some recommendations for future investigations are provided. This review also creates a baseline for the understanding state of the art in reproductive toxicology studies.
Collapse
|
2
|
Schuppe HC, Köhn FM. [Impact of lifestyle and environmental factors on male reproductive health]. UROLOGIE (HEIDELBERG, GERMANY) 2022; 61:1217-1228. [PMID: 36229540 DOI: 10.1007/s00120-022-01951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The identification of potential environmental hazards is of clinical relevance for the diagnosis of male infertility. Knowledge about these factors will improve prevention of fertility disorders. Apart from drugs or factors related to lifestyle such as alcohol and tobacco smoke, various environmental and occupational agents, both chemical and physical, may impair male reproduction. Reproductive toxicity may evolve at the hypothalamic-pituitary, testicular, or posttesticular level; endpoints comprise deterioration of spermatogenesis and sperm function as well as endocrine disorders and sexual dysfunction. However, due to the complex regulation of the male reproductive system, information regarding single exogenous factors and their mechanisms of action in humans is limited. This is also due to the fact that extrapolation of results obtained from experimental animal or in vitro studies remains difficult. Nevertheless, the assessment of relevant exposures to reproductive toxicants should be carefully evaluated during diagnostic procedures of andrological patients.
Collapse
Affiliation(s)
- Hans-Christian Schuppe
- Klinik und Poliklinik für Urologie, Kinderurologie und Andrologie, Sektion Konservative Andrologie, Universitätsklinikum Gießen und Marburg GmbH - Standort Gießen, Justus-Liebig-Universität Gießen, Gaffkystr. 14, 35385, Gießen, Deutschland.
| | | |
Collapse
|
3
|
Gallo A. Reprotoxic Impact of Environment, Diet, and Behavior. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1303. [PMID: 35162326 PMCID: PMC8834893 DOI: 10.3390/ijerph19031303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023]
Abstract
Reproductive health is progressively declining due to multiples endogenous and exogenous factors, such as environmental contaminants, diet and behavior. Accumulated evidences confirm that fertility and reproductive function have been adversely affected by exposure to chemical contaminants released in the environment. Today, the impact of diet and behavior on reproductive processes is also receiving special attention from the scientific community. Indeed, a close relationship between diet and fertility has been proven. Furthermore, a combination of unhealthy behavior, such as exposure to hazardous compounds and stress factors, poses living organisms at higher risk of reprotoxic effects. In particular, it has been described that poor life behaviors are associated with reduced male and female fertility due to decreased gamete quality and function. Most of the erroneous behaviors are, furthermore, a source of oxidative stress that, leading to epigenetic alterations, results in an impaired reproductive fitness. This review reports the detrimental impact of the most common environmental chemical stressors, diet, and behavior on reproductive functionality and success. Although clear evidences are still scarce, reassuring data are provided that a healthy diet and reverting unhealthy lifestyles may be of help to recover physiological reproductive conditions.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
4
|
Wu W, Chen Y, Cheng Y, Tang Q, Pan F, Tang N, Sun Z, Wang X, London SJ, Xia Y. Association between ambient particulate matter exposure and semen quality in fertile men. Environ Health 2022; 21:16. [PMID: 35034648 PMCID: PMC8762955 DOI: 10.1186/s12940-022-00831-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/07/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Several studies have suggested adverse effects of particulate matter (PM) exposure on male reproductive health; few have investigated the association between PM exposure and semen quality in a large population of fertile men. METHODS We evaluated 14 parameters of semen quality in 1554 fertile men in Nanjing from 2014 to 2016. Individual exposure to particular matter ≤10 μm in diameter (PM10) and ≤ 2.5 μm in diameter (PM2.5) during key periods of sperm development (0-90, 0-9, 10-14, 15-69, and 70-90 days before semen collection) were estimated by inverse distance weighting interpolation. Associations between PM exposure and semen quality were estimated using multivariable linear regression. RESULTS Higher 90-days average PM2.5 was in association with decreased sperm motility (2.21% for total motility, 1.93% for progressive motility per 10 μg/m3 increase, P < 0.001) and four quantitative aspects of sperm motion (curvilinear velocity (VCL), straight line velocity (VSL), average path velocity (VAP), and amplitude of lateral head displacement (ALH), P < 0.01). The association between PM2.5 exposure and semen quality were generally stronger for the earlier exposure window (70-90 days prior to ejaculation) than for recent exposure (0-9, 10-14, or 15-69 days). In the subgroup of men who had normal sperm parameters (n = 1019), similar results were obtained. Ninety-days PM10 exposure was associated only with decreased VCL and VAP and was not related to sperm concentration. CONCLUSIONS Exposure to PM2.5 adversely affects semen quality, specifically lower sperm motility, in fertile men.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, USA.
| | - Yiqiu Chen
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuting Cheng
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuqin Tang
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Feng Pan
- Department of Urology, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Stephanie J London
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, USA
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Maghsoumi-Norouzabad L, Zare Javid A, Mansoori A, Dadfar M, Serajian A. The effects of Vitamin D3 supplementation on Spermatogram and endocrine factors in asthenozoospermia infertile men: a randomized, triple blind, placebo-controlled clinical trial. Reprod Biol Endocrinol 2021; 19:102. [PMID: 34225767 PMCID: PMC8256550 DOI: 10.1186/s12958-021-00789-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Evaluate the effects of vitamin D3 (VD3) on sperm parameters and endocrine markers in infertile men with asthenozoospermia. MATERIALS AND METHODS This randomized, triple-masking, placebo-controlled clinical trial conducted on 86 asthenozoospermia infertile men with serum 25 hydroxy vitamin D3 (25(OH)VD3) < 30 ng/ml in the infertility clinic of Ahvaz Jahad daneshgahi, Iran. Patients were randomly allocated to groups A and B, who received daily 4000 IU VD3 and matching placebo respectively for 3 months. Demographic data, dietary intake, physical activity, sun exposure, anthropometric indices, serum 25(OH)VD3, luteinizing hormone (LH), follicle-stimulating hormone (FSH), total testosterone (T), estradiol (E2),, sex hormone-binding globulin (SHBG), free androgen index (FAI = T/SHBG. 100), T/LH and T/E2 ratios, prolactin (PRO), parathyroid hormone (PTH), osteocalcin (OCN), phosphorus and sperm parameters were assessed. RESULTS Three months VD3 supplementation with 4000 IU/day had no significant effects body weight, body mass index (BMI), waist circumference (WC), body fat (BF), serum, OCN, LH, FSH, T, E2, SHBG, PRO, T/E2 ratio, FAI, semen volume, sperm count and normal sperm morphology. It increases serum 25(OH)VD3, PTH and phosphorus and seminal and serum calcium, T/LH ratio and total and progressive sperm motility and decreased significantly compared to the baseline and placebo group. CONCLUSION VD3 supplementation may affect sperm motility in men with asthenozoospermia and serum 25(OH)VD3 < 30 ng/ml. TRIAL REGISTRATION Iran Clinical Trials Registry, ID: IRCT20151128025274N4, registered on 28 March 2018, URL of trial registry record: https://www.irct.ir/trial/29983.
Collapse
Affiliation(s)
- Leila Maghsoumi-Norouzabad
- Department of Nutrition, School of Allied Medical Sciences and Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Zare Javid
- Department of Nutrition, School of Allied Medical Sciences and Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Anahita Mansoori
- Department of Nutrition, School of Allied Medical Sciences and Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Dadfar
- Department of Urology, Imam Khomeini Hospital, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
6
|
Zhu C, Maharajan K, Liu K, Zhang Y. Role of atmospheric particulate matter exposure in COVID-19 and other health risks in human: A review. ENVIRONMENTAL RESEARCH 2021; 198:111281. [PMID: 33961825 PMCID: PMC8096764 DOI: 10.1016/j.envres.2021.111281] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 05/04/2023]
Abstract
Due to intense industrialization and urbanization, air pollution has become a serious global concern as a hazard to human health. Epidemiological studies found that exposure to atmospheric particulate matter (PM) causes severe health problems in human and significant damage to the physiological systems. In recent days, PM exposure could be related as a carrier for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus transmission and Coronavirus disease 2019 (COVID-19) infection. Hence, it is important to understand the adverse effects of PM in human health. This review aims to provide insights on the detrimental effects of PM in various human health problems including respiratory, circulatory, nervous, and immune system along with their possible toxicity mechanisms. Overall, this review highlights the potential relationship of PM with several life-limiting human diseases and their significance for better management strategies.
Collapse
Affiliation(s)
- Chengyue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Kannan Maharajan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China.
| |
Collapse
|
7
|
Lu C, Peng W, Kuang J, Wu M, Wu H, Murithi RG, Johnson MB, Zheng X. Preconceptional and prenatal exposure to air pollution increases incidence of childhood pneumonia: A hypothesis of the (pre-)fetal origin of childhood pneumonia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111860. [PMID: 33421724 DOI: 10.1016/j.ecoenv.2020.111860] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Increasing evidence has linked childhood pneumonia with early exposure to ambient air pollution. However, the impact of exposure to air pollutants before birth is unclear. OBJECTIVE To further clarify whether exposure to a particular pollutant during preconceptional and prenatal periods, may pose a higher risk of developing childhood pneumonia. METHODS This case-control cohort study consisted of 1510 children aged 0-14 years in Changsha, China between 2017 and 2019. Data of children's history of pneumonia and blood biomarkers were obtained from the XiangYa Hospital records. Each child's exposure to air pollutants, including nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter with an aerodynamic diameter ≤ 10 µm (PM10), was calculated using data from ten air pollution monitoring stations. A multivariate logistic regression model was used to quantify the relationship between childhood pneumonia and exposure to ambient air pollution during the preconceptional and prenatal periods. RESULTS Childhood pneumonia was significantly associated with preconceptional and prenatal exposure to the industrial-related air pollutant, SO2, for 1 year before conception, for 3 months before conception and for the entire pregnancy, with ORs(95% CI)= 4.01(3.17-5.07), 4.06(3.29-5.00) and 6.51(4.82-8.79). Also, children who were sick with pneumonia had higher white blood cell and neutrophil counts, and children with low eosinophil count or hemoglobin are likely to get pneumonia. Sensitivity analysis showed that boys, and children in high temperature area were susceptible to the effect of both preconceptional and prenatal exposure to industrial SO2. CONCLUSION Preconceptional and prenatal exposure to industrial-related air pollution plays a significant role in the incidence and progression of childhood pneumonia, supporting the hypothesis of "(pre-)fetal origin of childhood pneumonia".
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Wang Peng
- Department of Pediatrics, XiangYa Hospital, Central South University, Changsha, China
| | - Jian Kuang
- Department of Pediatrics, XiangYa Hospital, Central South University, Changsha, China
| | - Maolan Wu
- Department of Pediatrics, XiangYa Hospital, Central South University, Changsha, China
| | - Haiyu Wu
- XiangYa School of Medicine, Central South University, Changsha, China
| | | | - Mcsherry B Johnson
- XiangYa School of Public Health, Central South University, Changsha, China
| | - Xiangrong Zheng
- Department of Pediatrics, XiangYa Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Zhou S, Xi Y, Chen Y, Zhang Z, Wu C, Yan W, Luo A, Wu T, Zhang J, Wu M, Dai J, Shen W, Zhang F, Ding W, Wang S. Ovarian Dysfunction Induced by Chronic Whole-Body PM2.5 Exposure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000845. [PMID: 32686359 DOI: 10.1002/smll.202000845] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate matter (PM2.5) pollution arouses public health concerns over the world. Increasing epidemiologic evidence suggests that exposure to ambient airborne PM2.5 increases the risk of female infertility. However, relatively few studies have systematically explored the harmful effect of chronic PM2.5 exposure on ovarian function and the underlying mechanisms. In this study, female C57BL/6J mice are exposed to filtered air or urban airborne PM2.5 for 4 months through a whole-body exposure system. It is found that PM2.5 exposure significantly caused the alteration of estrus cycles, reproductivity, hormone levels, and ovarian reserve. The granulosa cell apoptosis via the mitochondria dependent pathway contributes to the follicle atresia. With RNA-sequencing technique, the differentially expressed genes induced by PM2.5 exposure are mainly enriched in ovarian steroidogenesis, reactive oxygen species and oxidative phosphorylation pathways. Furthermore, it is found that increased PM2.5 profoundly exacerbated ovarian oxidative stress and inflammation in mice through the NF-κB/IL-6 signaling pathway. Notably, dietary polydatin (PD) supplement has protective effect in mice against PM2.5-induced ovarian dysfunction.These striking findings demonstrate that PM2.5 and/or air pollution is a critical factor for ovarian dysfunction through mitochondria-dependent and NF-κB/IL-6-mediated pathway, and PD may serve as a pharmaceutic candidate for air pollution-associated ovarian dysfunction.
Collapse
Affiliation(s)
- Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yueyue Xi
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yingying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zezhong Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Chunyan Wu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Wei Yan
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Aiyue Luo
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Tong Wu
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Wei Shen
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| |
Collapse
|
9
|
Gallo A, Boni R, Tosti E. Gamete quality in a multistressor environment. ENVIRONMENT INTERNATIONAL 2020; 138:105627. [PMID: 32151884 DOI: 10.1016/j.envint.2020.105627] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 05/25/2023]
Abstract
Over the past few decades, accumulated evidence confirms that the global environment conditions are changing rapidly. Urban industrialization, agriculture and globalization have generated water, air and soil pollution, giving rise to an environment with a growing number of stress factors, which has a serious impact on the fitness, reproduction and survival of living organisms. The issue raises considerable concern on biodiversity conservation, which is now at risk: it is estimated that a number of species will be extinct in the near future. Sexual reproduction is the process that allows the formation of a new individual and is underpinned by gamete quality defined as the ability of spermatozoa and oocytes to interact during fertilization leading to the creation and development of a normal embryo. This review aimed to provide the current state of knowledge regarding the impact of a broad spectrum of environmental stressors on diverse parameters used to estimate and evaluate gamete quality in humans and in canonical animal models used for experimental research. Effects of metals, biocides, herbicides, nanoparticles, plastics, temperature rise, ocean acidification, air pollution and lifestyle on the physiological parameters that underlie gamete fertilization competence are described supporting the concept that environmental stressors represent a serious hazard to gamete quality with reproductive disorders and living organism failure. Although clear evidence is still limited, gamete capacity to maintain and/or recover physiological conditions is recently demonstrated providing further clues about the plasticity of organisms and their tolerance to the pressures of pollution that may facilitate the reproduction and the persistence of species within the scenario of global change. Changes in the global environment must be urgently placed at the forefront of public attention, with a massive effort invested in further studies aimed towards implementing current knowledge and identifying new methodologies and markers to predict impairment of gamete quality.
Collapse
Affiliation(s)
- Alessandra Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121 Napoli, Italy
| | - Raffaele Boni
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Elisabetta Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, 80121 Napoli, Italy.
| |
Collapse
|
10
|
Giorgis-Allemand L, Thalabard JC, Rosetta L, Siroux V, Bouyer J, Slama R. Can atmospheric pollutants influence menstrual cycle function? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113605. [PMID: 31806466 DOI: 10.1016/j.envpol.2019.113605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
A few experimental studies suggest that atmospheric pollutants could affect the endocrine system, and in particular stress hormones and the hypothalamic-hypophyseal-ovarian axis, which could in turn influence menstrual cycle function. We aimed to study the possible short-term effects of atmospheric pollutants on the length of the follicular and luteal phases and on the duration of the menstrual cycle in humans. To do so, from a nation-wide study on couples' fecundity, we recruited 184 women not using contraception who collected urine samples at least every other day during one menstrual cycle, from which a progesterone metabolite was assayed, allowing estimation of the duration of the follicular and luteal phases of the cycle. Atmospheric pollution (nitrogen dioxide and particulate matter with an aerodynamical diameter below 10 μm, PM10) levels were estimated from a dispersion model with a 1-km resolution combined with permanent monitoring stations measurements, allowing to estimate exposures in the 30-day, 1-10 and 11-30-day periods before the start of the menstrual cycle. Regression models allowed to quantify the change in cycle duration associated with atmospheric pollutants and adjusted for potential confounders. Follicular phase duration increased on average by 0.7 day (95% confidence interval, CI, 0.2; 1.3) for each increase by 10 μg/m3 in NO2 concentration averaged over the 30 days before the cycle and by 1.6 day (95% CI, 0.3; 2.9) for each increase by 10 μg/m3 in PM10. There was no strong evidence of associations of exposures in this time window with luteal phase or with total menstrual cycle durations (p > 0.2). Exposures in the 1-10 day period before the cycle start were also associated with increased follicular phase duration. This study is one of the first prospective studies to suggest short-term alterations in follicular phase duration following atmospheric pollutants exposure.
Collapse
Affiliation(s)
- L Giorgis-Allemand
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Inserm, CNRS, University Grenoble Alpes, Institute of Advanced Biosciences, Joint Research Center (U1209), Grenoble (La Tronche), France; Université Lyon, Université Claude Bernard Lyon 1, Ifsttar, UMRESTTE, UMR T_9405, Bron, France
| | - J C Thalabard
- Endocrinological Gynaecology - Unit, PR1- Hôpital Cochin, APHP, 75014, Paris, France; MAP5 UMR CNRS 8145, Université de Paris, Paris, 75006, France
| | - L Rosetta
- UPR 2147, CNRS, Paris, 75014, France
| | - V Siroux
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Inserm, CNRS, University Grenoble Alpes, Institute of Advanced Biosciences, Joint Research Center (U1209), Grenoble (La Tronche), France
| | - J Bouyer
- Université Paris-Saclay, Univ. Paris-Sud, UVSQ, CESP, INSERM, Villejuif, 94807, France
| | - R Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Inserm, CNRS, University Grenoble Alpes, Institute of Advanced Biosciences, Joint Research Center (U1209), Grenoble (La Tronche), France.
| |
Collapse
|
11
|
DeMarini DM. The mutagenesis moonshot: The propitious beginnings of the environmental mutagenesis and genomics society. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:8-24. [PMID: 31294870 PMCID: PMC6949362 DOI: 10.1002/em.22313] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 05/05/2023]
Abstract
A mutagenesis moonshot addressing the influence of the environment on our genetic wellbeing was launched just 2 months before astronauts landed on the moon. Its impetus included the discovery that X-rays (Muller HJ. [1927]: Science 64:84-87) and chemicals (Auerbach and Robson. [1946]: Nature 157:302) were germ-cell mutagens, the introduction of a growing number of untested chemicals into the environment after World War II, and an increasing awareness of the role of environmental pollution on human health. Due to mounting concern from influential scientists that germ-cell mutagens might be ubiquitous in the environment, Alexander Hollaender and colleagues founded in 1969 the Environmental Mutagen Society (EMS), now the Environmental Mutagenesis and Genomics Society (EMGS); Frits Sobels founded the European EMS in 1970. As Fred de Serres noted, such societies were necessary because protecting populations from environmental mutagens could not be addressed by existing scientific societies, and new multidisciplinary alliances were required to spearhead this movement. The nascent EMS gathered policy makers and scientists from government, industry, and academia who became advocates for laws requiring genetic toxicity testing of pesticides and drugs and helped implement those laws. They created an electronic database of the mutagenesis literature; established a peer-reviewed journal; promoted basic and applied research in DNA repair and mutagenesis; and established training programs that expanded the science worldwide. Despite these successes, one objective remains unfulfilled: identification of human germ-cell mutagens. After 50 years, the voyage continues, and a vibrant EMGS is needed to bring the mission to its intended target of protecting populations from genetic hazards. Environ. Mol. Mutagen. 61:8-24, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David M. DeMarini
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| |
Collapse
|
12
|
Shahrokhi SZ, Salehi P, Alyasin A, Taghiyar S, Deemeh MR. Asthenozoospermia: Cellular and molecular contributing factors and treatment strategies. Andrologia 2019; 52:e13463. [DOI: 10.1111/and.13463] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/13/2019] [Accepted: 09/22/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Seyedeh Zahra Shahrokhi
- Department of Laboratory Medicine School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Peyman Salehi
- Infertility Center Shahid Beheshti Hospital Isfahan Iran
| | | | | | - Mohammad Reza Deemeh
- Andrology Department Nobel Laboratory Isfahan Iran
- Department of Clinical Biochemistry Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| |
Collapse
|
13
|
Losacco C, Perillo A. Particulate matter air pollution and respiratory impact on humans and animals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33901-33910. [PMID: 30284710 DOI: 10.1007/s11356-018-3344-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Air pollution is now fully acknowledged to be a public health problem and a social issue. Particulate matter (PM) concentration has been linked with several clinical manifestations of pulmonary and cardiovascular diseases and is associated with morbidity and mortality induced by respiratory diseases both in human and animals. Current research on airborne particle-induced health effects investigates the critical characteristics of particulate matter that determine their biological effects. Scientific evidence assessed that the size of the airborne particles and their surface area determine the potential to elicit inflammatory injury, oxidative damage, and other biological effects. Thus, the present review paper aims to summarize the current evidences and findings on the effect of air pollution on lung function in both humans and animals.
Collapse
Affiliation(s)
- Caterina Losacco
- Department of Veterinary Medicine, University of Bari 'Aldo Moro', 70010, Valenzano, Bari, Italy.
| | - Antonella Perillo
- Department of Veterinary Medicine, University of Bari 'Aldo Moro', 70010, Valenzano, Bari, Italy
| |
Collapse
|
14
|
Webster RJ, Williams A, Marchetti F, Yauk CL. Discovering human germ cell mutagens with whole genome sequencing: Insights from power calculations reveal the importance of controlling for between-family variability. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 831:24-32. [PMID: 29875074 DOI: 10.1016/j.mrgentox.2018.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022]
Abstract
Mutations in germ cells pose potential genetic risks to offspring. However, de novo mutations are rare events that are spread across the genome and are difficult to detect. Thus, studies in this area have generally been under-powered, and no human germ cell mutagen has been identified. Whole Genome Sequencing (WGS) of human pedigrees has been proposed as an approach to overcome these technical and statistical challenges. WGS enables analysis of a much wider breadth of the genome than traditional approaches. Here, we performed power analyses to determine the feasibility of using WGS in human families to identify germ cell mutagens. Different statistical models were compared in the power analyses (ANOVA and multiple regression for one-child families, and mixed effect model sampling between two to four siblings per family). Assumptions were made based on parameters from the existing literature, such as the mutation-by-paternal age effect. We explored two scenarios: a constant effect due to an exposure that occurred in the past, and an accumulating effect where the exposure is continuing. Our analysis revealed the importance of modeling inter-family variability of the mutation-by-paternal age effect. Statistical power was improved by models accounting for the family-to-family variability. Our power analyses suggest that sufficient statistical power can be attained with 4-28 four-sibling families per treatment group, when the increase in mutations ranges from 40 to 10% respectively. Modeling family variability using mixed effect models provided a reduction in sample size compared to a multiple regression approach. Much larger sample sizes were required to detect an interaction effect between environmental exposures and paternal age. These findings inform study design and statistical modeling approaches to improve power and reduce sequencing costs for future studies in this area.
Collapse
Affiliation(s)
- R J Webster
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - A Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - F Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - C L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
15
|
Nassan FL, Chavarro JE, Mínguez-Alarcón L, Williams PL, Tanrikut C, Ford JB, Dadd R, Perry MJ, Hauser R, Gaskins AJ. Residential distance to major roadways and semen quality, sperm DNA integrity, chromosomal disomy, and serum reproductive hormones among men attending a fertility clinic. Int J Hyg Environ Health 2018; 221:830-837. [PMID: 29801984 PMCID: PMC5997566 DOI: 10.1016/j.ijheh.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We examined associations of residential distance to major roadways, as a proxy for traffic-related air pollution exposures, with sperm characteristics and male reproductive hormones. DESIGN The cohort included 797 men recruited from Massachusetts General Hospital Fertility Center between 2000 and 2015 to participate in fertility research studies. MATERIALS AND METHODS Men reported their residential addresses at enrollment and provided 1-6 semen samples and a blood sample during follow-up. We estimated the Euclidean distance to major roadways (e.g. interstates and highways: limited access highways, multi-lane highways (not limited access), other numbered routes, and major roads) using information from the Massachusetts Department of Geographic Information Systems. Semen parameters (1238 semen samples), sperm DNA integrity (389 semen samples), chromosomal disomy (101 semen samples), and serum reproductive hormones (405 serum samples) were assessed following standard procedures. RESULTS Men in this cohort were primarily Caucasian (86%), not current smokers (92%), with a college or higher education (88%), and had an average age of 36 years and BMI of 27.7 kg/m2. The median (interquartile range) residential distance to a major roadway was 111 (37, 248) meters. Residential proximity to major roadways was not associated with semen parameters, sperm DNA integrity, chromosomal disomy, or serum reproductive hormone concentrations. The adjusted percent change (95% CI) in semen quality parameters associated with a 500 m increase in residential distance to a major roadway was -1.0% (-6.3, 4.5) for semen volume, 4.3% (-5.8, 15.7) for sperm concentration, 3.1% (-7.2, 14.5) for sperm count, 1.1% (-1.2, 3.4) for % total motile sperm, and 0.1% (-0.3, 0.5) for % morphologically normal sperm. Results were consistent when we modeled the semen parameters dichotomized according to WHO 2010 reference values. CONCLUSION Residential distance to major roadways, as a proxy for traffic-related air pollution exposure, was not related to sperm characteristics or serum reproductive hormones among men attending a fertility clinic in Massachusetts.
Collapse
Affiliation(s)
- Feiby L Nassan
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Departments of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States.
| | - Jorge E Chavarro
- Departments of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Departments of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Lidia Mínguez-Alarcón
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Paige L Williams
- Departments of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Departments of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Cigdem Tanrikut
- Department of Urology, Massachusetts General Hospital, Boston, MA, United States
| | - Jennifer B Ford
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Ramace Dadd
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Melissa J Perry
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Russ Hauser
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Departments of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Audrey J Gaskins
- Departments of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
16
|
Carré J, Gatimel N, Moreau J, Parinaud J, Léandri R. Does air pollution play a role in infertility?: a systematic review. Environ Health 2017; 16:82. [PMID: 28754128 PMCID: PMC5534122 DOI: 10.1186/s12940-017-0291-8] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/20/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Air pollution is involved in many pathologies. These pollutants act through several mechanisms that can affect numerous physiological functions, including reproduction: as endocrine disruptors or reactive oxygen species inducers, and through the formation of DNA adducts and/or epigenetic modifications. We conducted a systematic review of the published literature on the impact of air pollution on reproductive function. Eligible studies were selected from an electronic literature search from the PUBMED database from January 2000 to February 2016 and associated references in published studies. Search terms included (1) ovary or follicle or oocyte or testis or testicular or sperm or spermatozoa or fertility or infertility and (2) air quality or O3 or NO2 or PM2.5 or diesel or SO2 or traffic or PM10 or air pollution or air pollutants. The literature search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We have included the human and animal studies corresponding to the search terms and published in English. We have excluded articles whose results did not concern fertility or gamete function and those focused on cancer or allergy. We have also excluded genetic, auto-immune or iatrogenic causes of reduced reproduction function from our analysis. Finally, we have excluded animal data that does not concern mammals and studies based on results from in vitro culture. Data have been grouped according to the studied pollutants in order to synthetize their impact on fertility and the molecular pathways involved. CONCLUSION Both animal and human epidemiological studies support the idea that air pollutants cause defects during gametogenesis leading to a drop in reproductive capacities in exposed populations. Air quality has an impact on overall health as well as on the reproductive function, so increased awareness of environmental protection issues is needed among the general public and the authorities.
Collapse
Affiliation(s)
- Julie Carré
- Médecine de la Reproduction, CHU Toulouse, 31059 Toulouse, France
| | - Nicolas Gatimel
- Médecine de la Reproduction, CHU Toulouse, 31059 Toulouse, France
- Groupe de Recherche en Fertilité Humaine EA 3694, Université Paul Sabatier, 31059 Toulouse, France
| | - Jessika Moreau
- Médecine de la Reproduction, CHU Toulouse, 31059 Toulouse, France
- Groupe de Recherche en Fertilité Humaine EA 3694, Université Paul Sabatier, 31059 Toulouse, France
| | - Jean Parinaud
- Médecine de la Reproduction, CHU Toulouse, 31059 Toulouse, France
- Groupe de Recherche en Fertilité Humaine EA 3694, Université Paul Sabatier, 31059 Toulouse, France
- Médecine de la Reproduction, CHU Paule de Viguier, 330 avenue de Grande Bretagne, 31059 Toulouse, France
| | - Roger Léandri
- Médecine de la Reproduction, CHU Toulouse, 31059 Toulouse, France
- Groupe de Recherche en Fertilité Humaine EA 3694, Université Paul Sabatier, 31059 Toulouse, France
| |
Collapse
|
17
|
Fuchs LFP, Veras MM, Saldiva PHN, Sasso GRDS, Carvalho KC, Simões MDJ, Soares JM, Baracat EC. Ambient levels of concentrated PM2.5 affects cell kinetics in adrenal glands: an experimental study in mice. Gynecol Endocrinol 2017; 33:490-495. [PMID: 28277123 DOI: 10.1080/09513590.2017.1291617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We evaluated the effects of air pollution on the adrenal cortex using 30 female mice divided into two groups of fifteen animals each. One group was conditioned daily in a chamber with exposure to particulate matter (PM) 2.5 μm (GExp). Animals were exposed on daily basis in an ambient particles concentrator during the period of time enough to reach an accumulated dose of 600 μg/m3, which corresponds to a 24-h exposure of 25 μg/m3 that approximates to the annual mean of PM2.5 in São Paulo. The other group was allocated to another chamber with filtered air (GCrt). After euthanasia, the adrenals underwent histological processing and immunohistochemistry staining for Ki-67 and cleaved caspase-3. Histomorphometry of the adrenal glands in GExp showed increased thickness of the zona glomerulosa, while in GCrt; the adrenal glands from GExp had higher Ki-67 immunostaining scores in the zona reticularis than those from GCrt. The adrenal from GExp showed higher cleaved caspase-3 immunoreactivity in the zona fasciculata than the unexposed group (GCrt). The homeostasis index indicated higher cell proliferation in the zona glomerulosa and zona reticularis in GExp than in GCrt. Our data indicate that PM2.5 air pollution induces alterations on cell kinetics in mouse adrenal glands.
Collapse
Affiliation(s)
- Luiz Fernando Portugal Fuchs
- a Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Laboratório de Investigação Médica (LIM 58) , São Paulo , Brazil
| | - Mariana Matera Veras
- b Departamento de Patologia , Faculdade de Medicina da Universidade de São Paulo (FMUSP), Laboratório de Investigação Médica (LIM-05) , São Paulo , Brazil , and
| | - Paulo Hilário Nascimento Saldiva
- b Departamento de Patologia , Faculdade de Medicina da Universidade de São Paulo (FMUSP), Laboratório de Investigação Médica (LIM-05) , São Paulo , Brazil , and
| | - Gisela Rodrigues da Silva Sasso
- c Disciplina de Histologia e Biologia Estrutural, Departamento de Morfologia e Genética, Universidade Federal de São Paulo - Escola Paulista de Medicina , São Paulo , Brazil
| | - Kátia Cândido Carvalho
- a Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Laboratório de Investigação Médica (LIM 58) , São Paulo , Brazil
| | - Manuel de Jesus Simões
- c Disciplina de Histologia e Biologia Estrutural, Departamento de Morfologia e Genética, Universidade Federal de São Paulo - Escola Paulista de Medicina , São Paulo , Brazil
| | - José Maria Soares
- a Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Laboratório de Investigação Médica (LIM 58) , São Paulo , Brazil
| | - Edmund Chada Baracat
- a Disciplina de Ginecologia, Departamento de Obstetrícia e Ginecologia, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), Laboratório de Investigação Médica (LIM 58) , São Paulo , Brazil
| |
Collapse
|
18
|
Study on Reproductive Toxicity of Fine Particulate Matter by Metabolomics. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61011-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Ferguson A, Penney R, Solo-Gabriele H. A Review of the Field on Children's Exposure to Environmental Contaminants: A Risk Assessment Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E265. [PMID: 28273865 PMCID: PMC5369101 DOI: 10.3390/ijerph14030265] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 01/21/2023]
Abstract
Background: Children must be recognized as a sensitive population based on having biological systems and organs in various stages of development. The processes of absorption, distribution, metabolism and elimination of environmental contaminants within a child's body are considered less advanced than those of adults, making them more susceptible to disease outcomes following even small doses. Children's unique activities of crawling and practicing increased hand-to-mouth ingestion also make them vulnerable to greater exposures by certain contaminants within specific environments. Approach: There is a need to review the field of children's environmental exposures in order to understand trends and identify gaps in research, which may lead to better protection of this vulnerable and sensitive population. Therefore, explored here are previously published contemporary works in the broad area of children's environmental exposures and potential impact on health from around the world. A discussion of children's exposure to environmental contaminants is best organized under the last four steps of a risk assessment approach: hazard identification, dose-response assessment, exposure assessment (including children's activity patterns) and risk characterization. We first consider the many exposure hazards that exist in the indoor and outdoor environments, and emerging contaminants of concern that may help guide the risk assessment process in identifying focus areas for children. A section on special diseases of concern is also included. Conclusions: The field of children's exposures to environmental contaminants is broad. Although there are some well-studied areas offering much insight into children exposures, research is still needed to further our understanding of exposures to newer compounds, growing disease trends and the role of gene-environment interactions that modify adverse health outcomes. It is clear that behaviors of adults and children play a role in reducing or increasing a child's exposure, where strategies to better communicate and implement risk modifying behaviors are needed, and can be more effective than implementing changes in the physical environment.
Collapse
Affiliation(s)
- Alesia Ferguson
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 820, Little Rock, AR 72205, USA.
| | - Rosalind Penney
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 820, Little Rock, AR 72205, USA.
| | - Helena Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Florida, 1251 Memorial Drive, Coral Gables, FL 33146, USA.
| |
Collapse
|
20
|
Hariz R, del Rio Sanz J, Mercier C, Valentin R, Dietrich N, Mouloungui Z, Hébrard G. Absorption of toluene by vegetable oil–water emulsion in scrubbing tower: Experiments and modeling. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2016.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Physical absorption of volatile organic compounds by spraying emulsion in a spray tower: Experiments and modelling. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Loomis D, Huang W, Chen G. The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. CHINESE JOURNAL OF CANCER 2014; 33:189-96. [PMID: 24694836 PMCID: PMC3975184 DOI: 10.5732/cjc.014.10028] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/06/2014] [Indexed: 12/02/2022]
Abstract
The International Agency for Research on Cancer (IARC) has classified outdoor air pollution and the particulate matter (PM) in outdoor air pollution as carcinogenic to humans, as based on sufficient evidence of carcinogenicity in humans and experimental animals and strong support by mechanistic studies. The data with important contributions to the evaluation are reviewed, highlighting the data with particular relevance to China, and implications of the evaluation with respect to China are discussed. The air pollution levels in Chinese cities are among the highest observed in the world today and frequently exceed health-based national and international guidelines. Data from high-quality epidemiologic studies in Asia, Europe, and North America consistently show positive associations between lung cancer and PM exposure and other indicators of air pollution, which persist after adjustment for important lung cancer risk factors, such as tobacco smoking. Epidemiologic data from China are limited but nevertheless indicate an increased risk of lung cancer associated with several air pollutants. Excess cancer risk is also observed in experimental animals exposed to polluted outdoor air or extracted PM. The exposure of several species to outdoor air pollution is associated with markers of genetic damage that have been linked to increased cancer risk in humans. Numerous studies from China, especially genetic biomarker studies in exposed populations, support that the polluted air in China is genotoxic and carcinogenic to humans. The evaluation by IARC indicates both the need for further research into the cancer risks associated with exposure to air pollution in China and the urgent need to act to reduce exposure to the population.
Collapse
Affiliation(s)
- Dana Loomis
- International Agency for Research on Cancer, Cours Albert Thomas, Lyon 69008, France.
| | | | | |
Collapse
|
23
|
Abstract
BACKGROUND Epidemiologic studies have reported associations between air pollution levels and semen characteristics, which might in turn affect a couple's ability to achieve a live birth. Our aim was to characterize short-term effects of atmospheric pollutants on fecundability (the month-specific probability of pregnancy among noncontracepting couples). METHODS For a cohort of births between 1994 and 1999 in Teplice (Czech Republic), we averaged fine particulate matter (PM2.5), carcinogenic polycyclic aromatic hydrocarbons, ozone, nitrogen dioxide (NO2), and sulfur dioxide levels estimated from a central measurement site over the 60-day period before the end of the first month of unprotected intercourse. We estimated changes in the probability of occurrence of a pregnancy during the first month of unprotected intercourse associated with exposure, using binomial regression and adjusting for maternal behaviors and time trends. RESULTS Among the 1,916 recruited couples, 486 (25%) conceived during the first month of unprotected intercourse. Each increase of 10 µg/m in PM2.5 levels was associated with an adjusted decrease in fecundability of 22% (95% confidence interval = 6%-35%). NO2 levels were also associated with decreased fecundability. There was no evidence of adverse effects with the other pollutants considered. Biases related to pregnancy planning or temporal trends in air pollution were unlikely to explain the observed associations. CONCLUSIONS In this polluted area, we highlighted short-term decreases in a couple's ability to conceive in association with PM2.5 and NO2 levels assessed in a central monitoring station.
Collapse
|
24
|
Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K. The carcinogenicity of outdoor air pollution. Lancet Oncol 2013; 14:1262-3. [PMID: 25035875 DOI: 10.1016/s1470-2045(13)70487-x] [Citation(s) in RCA: 728] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Rodríguez-Lara V, Morales-Rivero A, Rivera-Cambas AM, Fortoul TI. Vanadium inhalation induces actin changes in mice testicular cells. Toxicol Ind Health 2013; 32:367-74. [PMID: 24097359 DOI: 10.1177/0748233713501364] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Infertility is becoming a health problem, which has increased mainly in megacities, and several studies have shown its association with environmental pollution. Air pollution has been linked to alterations in sperm parameters, both in humans and animal models. In male humans, it has been associated with reduced semen quality and DNA alterations. Vanadium is a transition element that has increased in recent decades as a component of air suspended matter and has been associated with reprotoxic effects in animal models. Few are the mechanisms described by which the vanadium produces these effects, and cytoskeleton interaction is a possibility. We reported immunohistochemical changes in actin testicular cytoskeleton in a vanadium inhalation experimental mice model. Our findings show that exposure to vanadium pentoxide (0.02 M) results in actin decrease in testicular cells from 3-12 weeks exposure time; this effect was statistically significant and exposure time dependent. Actin cytoskeleton damage is a mechanism that could explain vanadium reprotoxic effects and its association with impaired fertility.
Collapse
Affiliation(s)
- Vianey Rodríguez-Lara
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Alonso Morales-Rivero
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Angelica Muñiz Rivera-Cambas
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| | - Teresa I Fortoul
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México
| |
Collapse
|
26
|
Axelsson J, Rylander L, Rignell-Hydbom A, Silfver KÅ, Stenqvist A, Giwercman A. The Impact of Paternal and Maternal Smoking on Semen Quality of Adolescent Men. PLoS One 2013; 8:e66766. [PMID: 23840528 PMCID: PMC3694111 DOI: 10.1371/journal.pone.0066766] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/15/2013] [Indexed: 01/22/2023] Open
Abstract
Background Maternal smoking during pregnancy has been reported to negatively impact sperm counts of the sons. Sufficient data on the effect of paternal smoking is lacking. Objectives We wished to elucidate the impact of maternal and paternal smoking during pregnancy and current own smoking on reproductive function of the male offspring. Methods Semen parameters including sperm DNA integrity were analyzed in 295 adolescents from the general population close to Malmö, Sweden, recruited for the study during 2008–2010. Information on maternal smoking was obtained from the Swedish Medical Birth Register, and regarding own and paternal smoking from questionnaires. The impacts of maternal, paternal and own smoking were evaluated in a multivariate regression model and by use of models including interaction terms. Totally, three exposures and five outcomes were evaluated. Results In maternally unexposed men, paternal smoking was associated with 46% lower total sperm count (95%CI: 21%, 64%) in maternally unexposed men. Both paternal and maternal smoking were associated with a lower sperm concentration (mean differences: 35%; 95%CI: 8.1%, 55% and 36%; 95%CI: 3.9%, 57%, respectively) if the other parent was a non-smoker. No statistically significant impact of own smoking on semen parameters was seen. Conclusions Prenatal both maternal and paternal smoking were separately associated with some decrease in sperm count in men of whom the other parent was not reported to smoke.
Collapse
Affiliation(s)
- Jonatan Axelsson
- Reproductive Medicine Centre, Skåne University Hospital, Malmö, Sweden
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
- * E-mail:
| | - Lars Rylander
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Anna Rignell-Hydbom
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Amelie Stenqvist
- Reproductive Medicine Centre, Skåne University Hospital, Malmö, Sweden
| | | |
Collapse
|
27
|
The European Hot Spot of B[a]P and PM2.5 Exposure—The Ostrava Region, Czech Republic: Health Research Results. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/416701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Ostrava Region in the Czech Republic is a heavily polluted industrial area. Concentrations of PM10, PM2.5, and benzo[a]pyrene (B[a]P) significantly exceed limit values. To investigate the impact of these levels on human health, epidemiological, molecular epidemiology, and in vitro studies were done in 2008–2011. Morbidity of children was followed in 10 pediatric districts. In the most polluted district, children suffered higher incidence of acute respiratory diseases in the first year of life, and higher prevalence of asthma bronchiale. Gene expression was studied in children from Ostrava and from a control rural area. Genes specific to asthma bronchiale differed, suggesting a different molecular phenotype in children in the polluted region compared to children in the control area. A molecular epidemiology study showed adverse effect of the Ostrava exposures, but also an increased expression of XRCC5, which probably protects these exposed subjects against the degree of genetic damage that would otherwise be expected. In vitro studies clearly related concentration of B[a]P from PM2.5 extracts to induced PAH-DNA adducts. These studies clearly demonstrate that under the present local environmental conditions, the health of the population is severely impaired and will likely remain so for a significant period of time.
Collapse
|
28
|
Intrauterine exposure to diesel exhaust diminishes adult ovarian reserve. Fertil Steril 2013; 99:1681-8. [PMID: 23419929 DOI: 10.1016/j.fertnstert.2013.01.103] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 12/20/2012] [Accepted: 01/14/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To analyze ovarian and uterine morphologic changes resulting from intrauterine and postnatal exposure to diesel exhaust. DESIGN Crossover study. Experimental groups: intrauterine and postnatal clean air exposure; intrauterine exposure to diesel only; postnatal exposure to diesel only; and intrauterine and postnatal exposure to diesel. SETTING Laboratory of Experimental Air Pollution. ANIMAL(S) Swiss mice. INTERVENTION(S) Mice exposed to diesel exhaust with doses that correspond to the daily average PM₂.₅ levels (fine particles in the ambient air 2.5 μm or less in size) reported by the World Health Organization. MAIN OUTCOME MEASURE(S) Morphometric analyses of the ovaries and uterus were performed to define the relative area occupied by follicles, corpus luteum, and stroma and the proportionate area of glands, epithelial layer, and stroma within the uterine endometrium. RESULT(S) A significant reduction in the proportion of primordial follicles was observed in intrauterine-exposed animals, those exposed during the postnatal period, and in animals exposed during both phases. Primary follicle proportion was reduced in animals exposed during pregnancy. No significant changes were detected in uterine morphology. CONCLUSION(S) Intrauterine exposure to acceptable levels of diesel exhaust compromises the reproductive potential of female mice, diminishing ovarian reserve when sexual maturity is achieved. This effect could increase the risk of premature menopause. The findings raise concern about current environmental guidelines for diesel exposure, warranting more careful examination of this issue in humans by regulatory authorities.
Collapse
|
29
|
Wang T, Garcia JG, Zhang W. Epigenetic Regulation in Particulate Matter-Mediated Cardiopulmonary Toxicities: A Systems Biology Perspective. ACTA ACUST UNITED AC 2012. [PMID: 23185213 DOI: 10.2174/187569212803901792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Particulate matter (PM) air pollution exerts significant adverse health effects in global populations, particularly in developing countries with extensive air pollution. Understanding of the mechanisms of PM-induced health effects including the risk for cardiovascular diseases remains limited. In addition to the direct cellular physiological responses such as mitochondrial dysfunction and oxidative stress, PM mediates remarkable dysregulation of gene expression, especially in cardiovascular tissues. The PM-mediated gene dysregulation is likely to be a complex mechanism affected by various genetic and non-genetic factors. Notably, PM is known to alter epigenetic markers (e.g., DNA methylation and histone modifications), which may contribute to air pollution-mediated health consequences including the risk for cardiovascular diseases. Notably, epigenetic changes induced by ambient PM exposure have emerged to play a critical role in gene regulation. Though the underlying mechanism(s) are not completely clear, the available evidence suggests that the modulated activities of DNA methyltransferase (DNMT), histone acetylase (HAT) and histone deacetylase (HDAC) may contribute to the epigenetic changes induced by PM or PM-related chemicals. By employing genome-wide epigenomic and systems biology approaches, PM toxicogenomics could conceivably progress greatly with the potential identification of individual epigenetic loci associated with dysregulated gene expression after PM exposure, as well the interactions between epigenetic pathways and PM. Furthermore, novel therapeutic targets based on epigenetic markers could be identified through future epigenomic studies on PM-mediated cardiopulmonary toxicities. These considerations collectively inform the future population health applications of genomics in developing countries while benefiting global personalized medicine at the same time.
Collapse
Affiliation(s)
- Ting Wang
- Section of Pulmonary, Critical Care, Allergy & Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA ; Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
30
|
Reid BC, Ghazarian AA, DeMarini DM, Sapkota A, Jack D, Lan Q, Winn DM, Birnbaum LS. Research opportunities for cancer associated with indoor air pollution from solid-fuel combustion. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1495-8. [PMID: 22846419 PMCID: PMC3556624 DOI: 10.1289/ehp.1204962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 07/30/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Indoor air pollution (IAP) derived largely from the use of solid fuels for cooking and heating affects about 3 billion people worldwide, resulting in substantial adverse health outcomes, including cancer. Women and children from developing countries are the most exposed populations. A workshop was held in Arlington, Virginia, 9-11 May 2011, to better understand women's and children's potential health effects from IAP in developing countries. Workshop participants included international scientists, manufacturers, policy and regulatory officials, community leaders, and advocates who held extensive discussions to help identify future research needs. OBJECTIVES Our objective was to identify research opportunities regarding IAP and cancer, including research questions that could be incorporated into studies of interventions to reduce IAP exposure. In this commentary, we describe the state of the science in understanding IAP and its associations with cancer and suggest research opportunities for improving our understanding of the issues. DISCUSSION Opportunities for research on IAP and cancer include studies of the effect of IAP on cancers other than lung cancer; studies of genetic factors that modify susceptibility; studies to determine whether the effects of IAP are mediated via germline, somatic, and/or epigenetic changes; and studies of the effects of IAP exposure via dermal and/or oral routes. CONCLUSIONS IAP from indoor coal use increases the risk of lung cancer. Installing chimneys can reduce risk, and some genotypes, including GSTM1-null, can increase risk. Additional research is needed regarding the effects of IAP on other cancers and the effects of different types of solid fuels, oral and dermal routes of IAP exposure, genetic and epigenetic mechanisms, and genetic susceptibility.
Collapse
Affiliation(s)
- Britt C Reid
- Modifiable Risk Factors Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yauk CL, Lucas Argueso J, Auerbach SS, Awadalla P, Davis SR, DeMarini DM, Douglas GR, Dubrova YE, Elespuru RK, Glover TW, Hales BF, Hurles ME, Klein CB, Lupski JR, Manchester DK, Marchetti F, Montpetit A, Mulvihill JJ, Robaire B, Robbins WA, Rouleau GA, Shaughnessy DT, Somers CM, Taylor JG, Trasler J, Waters MD, Wilson TE, Witt KL, Bishop JB. Harnessing genomics to identify environmental determinants of heritable disease. Mutat Res 2012; 752:6-9. [PMID: 22935230 DOI: 10.1016/j.mrrev.2012.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/17/2012] [Accepted: 08/19/2012] [Indexed: 12/27/2022]
Abstract
Next-generation sequencing technologies can now be used to directly measure heritable de novo DNA sequence mutations in humans. However, these techniques have not been used to examine environmental factors that induce such mutations and their associated diseases. To address this issue, a working group on environmentally induced germline mutation analysis (ENIGMA) met in October 2011 to propose the necessary foundational studies, which include sequencing of parent-offspring trios from highly exposed human populations, and controlled dose-response experiments in animals. These studies will establish background levels of variability in germline mutation rates and identify environmental agents that influence these rates and heritable disease. Guidance for the types of exposures to examine come from rodent studies that have identified agents such as cancer chemotherapeutic drugs, ionizing radiation, cigarette smoke, and air pollution as germ-cell mutagens. Research is urgently needed to establish the health consequences of parental exposures on subsequent generations.
Collapse
Affiliation(s)
| | | | - Scott S Auerbach
- National Institute of Environmental Health Sciences, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kristine L Witt
- National Institute of Environmental Health Sciences, United States
| | - Jack B Bishop
- National Institute of Environmental Health Sciences, United States
| |
Collapse
|
32
|
Swayne BG, Kawata A, Behan NA, Williams A, Wade MG, Macfarlane AJ, Yauk CL. Investigating the effects of dietary folic acid on sperm count, DNA damage and mutation in Balb/c mice. Mutat Res 2012; 737:1-7. [PMID: 22824165 DOI: 10.1016/j.mrfmmm.2012.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 12/26/2022]
Abstract
To date, fewer than 50 mutagens have been studied for their ability to cause heritable mutations. The majority of those studied are classical mutagens like radiation and anti-cancer drugs. Very little is known about the dietary variables influencing germline mutation rates. Folate is essential for DNA synthesis and methylation and can impact chromatin structure. We therefore determined the effects of folic acid-deficient (0mg/kg), control (2mg/kg) and supplemented (6mg/kg) diets in early development and during lactation or post-weaning on mutation rates and chromatin quality in sperm of adult male Balb/c mice. The sperm chromatin structure assay and mutation frequencies at expanded simple tandem repeats (ESTRs) were used to evaluate germline DNA integrity. Treatment of a subset of mice fed the control diet with the mutagen ethylnitrosourea (ENU) at 8 weeks of age was included as a positive control. ENU treated mice exhibited decreased cauda sperm counts, increased DNA fragmentation and increased ESTR mutation frequencies relative to non-ENU treated mice fed the control diet. Male mice weaned to the folic acid deficient diet had decreased cauda sperm numbers, increased DNA fragmentation index, and increased ESTR mutation frequency. Folic acid deficiency in early development did not lead to changes in sperm counts or chromatin integrity in adult mice. Folic acid supplementation in early development or post-weaning did not affect germ cell measures. Therefore, adequate folic acid intake in adulthood is important for preventing chromatin damage and mutation in the male germline. Folic acid supplementation at the level achieved in this study does not improve nor is it detrimental to male germline chromatin integrity.
Collapse
Affiliation(s)
- Breanne G Swayne
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Paternal Benzo[a]pyrene Exposure Modulates MicroRNA Expression Patterns in the Developing Mouse Embryo. Int J Cell Biol 2012; 2012:407431. [PMID: 22548065 PMCID: PMC3324892 DOI: 10.1155/2012/407431] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/19/2012] [Indexed: 12/02/2022] Open
Abstract
Little attention has been given to how microRNA expression is affected by environmental contaminants exposure. We investigate the effects of paternal exposure to benzo[a]pyrene (B[a]P) on miRNA expression in the developing mouse embryo. Male mice were exposed to B[a]P (150 mg/kg i.p.), and their sperm was used four days later in in-vitro fertilization experiments. Twenty embryos each from 2-, 8-cell and the blastocyst stage were used for genome-wide miRNA expression profiling. Paternal exposure to B[a]P affected the expression of several miRNAs, and the target genes for some of the dysregulated miRNAs were enriched in many different pathways that are likely to be relevant for the developing mouse embryo. By linking the miRNA target genes to publicly available databases, we identified some miRNA target genes that may serve as global markers of B[a]P-mediated genotoxic stress. The dysregulated miRNAs may provide valuable knowledge about potential transgenerational effects of sublethal exposure to chemicals.
Collapse
|
34
|
Demarini DM. Declaring the existence of human germ-cell mutagens. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:166-172. [PMID: 22351488 DOI: 10.1002/em.21685] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 01/20/2011] [Accepted: 01/23/2011] [Indexed: 05/31/2023]
Abstract
After more than 80 years of searching for human germ-cell mutagens, I think that sufficient evidence already exists for a number of agents to be so considered, and definitive confirmation seems imminent due to the application of recently developed genomic techniques. In preparation for this, an assessment panel of internationally recognized experts in germ-cell biology and genomics is required to consider either the current evidence now, or impending genomic evidence later, to declare whether an agent is a human germ-cell mutagen. I propose that such a panel be organized under the aegis of the World Health Organization and constructed similarly to the working groups assembled by the International Agency for Research on Cancer for the evaluation of human carcinogens. Support from prominent national and international organizations would be important. Many regulatory agencies already have procedures in place for assessing potential human germ-cell mutagens, and the time is approaching when definitive genomic data in humans will obligate such evaluations. In my view, application of an IARC-type of assessment using available evidence leads to the conclusion that ionizing radiation, cancer chemotherapy, cigarette smoking, and air pollution are "Group 1" human germ-cell mutagens. Consideration of the potential adverse health effects to the unexposed offspring of an exposed parent will usher in an entirely new realm of environmental health assessment. I suggest that the long search for human germ-cell mutagens is about to end, and a demonstration of the much-anticipated linkage between heritable disease and environmental factors is poised to begin.
Collapse
Affiliation(s)
- David M Demarini
- Integrated Systems Toxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
35
|
Anton E, Krawetz SA. Spermatozoa as biomarkers for the assessment of human male infertility and genotoxicity. Syst Biol Reprod Med 2012; 58:41-50. [DOI: 10.3109/19396368.2011.637152] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|