1
|
Suwimonteerabutr J, Yamsrikaew U, Damthongsen K, Suksirisamphan T, Leeniwa P, Lawanyakul P, Nuntapaitoon M. Improving the quality of chilled semen from Thai native chicken using phosphorus and vitamin B12 supplementation in semen extender. Poult Sci 2024; 103:103262. [PMID: 38007902 PMCID: PMC10801650 DOI: 10.1016/j.psj.2023.103262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/28/2023] Open
Abstract
This study aimed to determine phosphorus and vitamin B12 supplementation effect in semen extender on the quality and fertility ability of chilled Thai native rooster semen. Eighty-four ejaculates of semen from 26 Thai native roosters (Burmese × Vietnam crossbreed) were included. Semen was collected by applying dorsal-abdominal massage once a week, pooled, diluted to 500 million sperms per dose, and divided into 6 groups. The semen samples used for control group were diluted with modified Beltsville poultry semen extender (BPSE). For the treatment groups 2 to 6: semen samples were diluted with modified BPSE and enriched with phosphorus and vitamin B12 (Octafos Octa Memorial Co., Ltd., Bangkok, Thailand) at concentrations 0.02, 0.04, 0.06, 0.08, and 0.10%. Semen fertility ability was tested in 6 replications by inseminating layer hens. Thirty-six Thai native hens were randomly assigned to 3 groups (control, 0.04, and 0.08%) of 12 hens and were inseminated with a dose of 0.2 mL on collecting day. Sperm motion characteristics (i.e., sperm motility, sperm progressive motility, and sperm kinetic parameters) were measured using a computer-assisted sperm analysis system (SCA, Proiser S.L., Valencia, Spain). Sperm viability, mitochondrial activity, acrosome integrity, plasma membrane integrity, and malondialdehyde (MDA) concentration were also evaluated. The sperm motion characteristics were the highest in the 0.04% supplementation group on all days of collection, especially the VCL and VAP (P < 0.05). The viability, mitochondrial activity, plasma membrane and acrosome integrity of spermatozoa were greater in the 0.04% supplementation group than in the control groups (P < 0.05). The 0.04% supplementation group had the lowest MDA concentration in all days of collection. The 0.04% supplementation group were higher both fertility (66.59 vs. 48.50%: P < 0.05) and hatching rates (58.80 vs. 43.18%: P < 0.05) than in the control group. In conclusion, 0.04% phosphorus and vitamin B12 concentrations supplementation in semen extender improved rooster semen quality and fertility in chilled rooster semen.
Collapse
Affiliation(s)
- Junpen Suwimonteerabutr
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Unchean Yamsrikaew
- 6th Year Veterinary Student, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khemiga Damthongsen
- 6th Year Veterinary Student, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thornjutha Suksirisamphan
- 6th Year Veterinary Student, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paniga Leeniwa
- 6th Year Veterinary Student, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pawita Lawanyakul
- 6th Year Veterinary Student, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Morakot Nuntapaitoon
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Rivera-Concha R, Moya C, León M, Uribe P, Schulz M, Prado A, Taubert A, Hermosilla C, Sánchez R, Zambrano F. Effect of different sperm populations on neutrophils extracellular traps (NETs) formation in cattle. Res Vet Sci 2023; 164:105028. [PMID: 37804665 DOI: 10.1016/j.rvsc.2023.105028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
In cattle, clinical and subclinical inflammation in the bovine female reproductive tract (FRT) significantly reduces fertility. PMN participate in this FRT-associated inflammation by eliminating pathogens by eliciting various defense mechanisms, with the release of neutrophil extracellular traps NETs) being the latest process discovered. Consistently, human-, bovine- and porcine-derived spermatozoa induce release of NETs in exposed PMN of the same species origin, and thereby decreasing sperm motility through NETs-mediated entrapment. The release of NETs in the presence of different sperm sub-populations is evaluated in this work. Cryopreserved bovine sperm were selected and different sperm populations were used: viable sperm, sperm with oxidative stress, capacitated sperm, and sperm with loss of viability. Isolated PMN of dairy cows were co-incubated with these sperm populations for 4 h. Neutrophil elastase (NE) and DNA were detected by fluorescence microscopy analysis. It was noted that exposed bovine PMN released NETs in the presence of sperm. Moreover, sperm-triggered NETosis resulted different phenotypes of NETs, i. e. spread NETs (sprNETs), diffused NETs (diffNETs) and aggregated NETs (aggNETs). Viable/motile spermatozoa induced a higher proportion of NETotic cells at 15, 60 and 120 min in comparison to controls. In conclusion, all bovine sperm populations in co-culture with PMN generated NETs extrusion while viable sperm activated NETotic cells to a greater extent. With this being an early event in the activation of bovine PMN.
Collapse
Affiliation(s)
- Rodrigo Rivera-Concha
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Ph.D. Program in Medical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Claudia Moya
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Marion León
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Pamela Uribe
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Mabel Schulz
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Aurora Prado
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Raúl Sánchez
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Fabiola Zambrano
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile.
| |
Collapse
|
3
|
Bollwein H, Malama E. Review: Evaluation of bull fertility. Functional and molecular approaches. Animal 2023; 17 Suppl 1:100795. [PMID: 37567681 DOI: 10.1016/j.animal.2023.100795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 08/13/2023] Open
Abstract
With the term "assisted reproduction technologies" in modern cattle farming, one could imply the collection of techniques that aim at the optimal use of bovine gametes to produce animals of high genetic value in a time- and cost-efficient manner. The accurate characterisation of sperm quality plays a critical role for the efficiency of several assisted reproduction-related procedures, such as sperm processing, in vitro embryo production and artificial insemination. Bull fertility is ultimately a collective projection of the ability of a series of ejaculates to endure sperm processing stress, and achieve fertilisation of the oocyte and production of a viable and well-developing embryo. In this concept, the assessment of sperm functional and molecular characteristics is key to bull fertility diagnostics and prognostics. Among others, functional features linked to sperm plasma membrane, acrosome and DNA integrity are usually assessed as a measure of the ability of sperm to express the phenotypes that will allow them to maintain their homeostasis and orchestrate-in a strict temporal manner-the course of events that will enable the delivery of their genetic content to the oocyte upon fertilisation. Nevertheless, measures of sperm functionality are not always adequate indicators of bull fertility. Nowadays, advancements in the field of molecular biology have facilitated the profiling of several biomolecules in male gametes. The molecular profiling of bovine sperm offers a deeper insight into the mechanisms underlying sperm physiology and, thus, can reveal novel candidate markers for bull fertility prognosis. In this review, the importance of three organelles (the nucleus, the plasma membrane and the acrosome) for the characterisation of sperm fertilising capacity and bull fertility is discussed at functional and molecular levels. In particular, information about sperm head morphometry, chromatin structure, viability as well as the ability of sperm to capacitate and undergo the acrosome reaction are presented in relation to the cryotolerance of male gametes and bull fertility. Finally, major spermatozoal coding and non-coding RNAs, and proteins that are involved in the above-mentioned aspects of sperm functionality are also summarised.
Collapse
Affiliation(s)
- H Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - E Malama
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Allaeian Jahromi Z, Meshkibaf MH, Naghdi M, Vahdati A, Makoolati Z. Methamphetamine Downregulates the Sperm-Specific Calcium Channels Involved in Sperm Motility in Rats. ACS OMEGA 2022; 7:5190-5196. [PMID: 35187334 PMCID: PMC8851642 DOI: 10.1021/acsomega.1c06242] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Calcium channels play essential roles in sperm motility. A family of sperm-specific cation channels including CatSper1-4 has been identified as voltage-dependent ion channels that act as sperm motility regulators. Methamphetamine is known to cause apoptosis in seminiferous tubules and affect sperm quality. This research was conducted to investigate the effects of methamphetamine on expression of the CatSper family and Mvh genes. Thirty-six adult Wistar rats were divided into four groups of nine rats each: the control and experimental groups 1, 2, and 3. The control group received no solvents or drugs, but experimental groups 1, 2, and 3 were daily given 0.2 mL of a solution by gavage that contained 0.5, 1, and 2 mg of methamphetamine, respectively, for 45 days. The rats were then anesthetized, and one testis removed from each rat was used in a reverse transcription-polymerase chain reaction (RT-PCR). Analysis of variance (ANOVA) and Tukey's posthoc test were used to analyze the data at the P < 0.05 significance level. Treatment with methamphetamine resulted in decreased testis and epididymis weights compared to the control rats. The results showed that the mRNA fold expression level of the CatSper family and Mvh genes decreased significantly in experimental groups compared to that in the control (P < 0.05). Methamphetamine decreased the expression levels of the CatSper and Mvh genes, and thus, it seemed that it can increase the probability of infertility through sperm motility reduction by lowering the expression levels of these genes.
Collapse
Affiliation(s)
- Zahra Allaeian Jahromi
- Department
of Biology, Science and Research Branch, Islamic Azad University, Fars 11341-73631, Iran
| | - Mohammad Hassan Meshkibaf
- Department
of Clinical Biochemistry, Faculty of Medicine, Fasa University of Medical Sciences, Fasa 74616-86688, Iran
| | - Majid Naghdi
- Department
of Anatomical Sciences, Faculty of Medicine, Fasa University of Medical Sciences, Fasa 74616-86688, Iran
| | - Akbar Vahdati
- Department
of Biology, Shiraz Branch, Islamic Azad
University, Shiraz 71937-1135, Iran
| | - Zohreh Makoolati
- Department
of Anatomical Sciences, Faculty of Medicine, Fasa University of Medical Sciences, Fasa 74616-86688, Iran
| |
Collapse
|
5
|
Serra L, Estienne A, Bourdon G, Ramé C, Chevaleyre C, Didier P, Chahnamian M, El Balkhi S, Froment P, Dupont J. Chronic Dietary Exposure of Roosters to a Glyphosate-Based Herbicide Increases Seminal Plasma Glyphosate and AMPA Concentrations, Alters Sperm Parameters, and Induces Metabolic Disorders in the Progeny. TOXICS 2021; 9:toxics9120318. [PMID: 34941753 PMCID: PMC8704617 DOI: 10.3390/toxics9120318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023]
Abstract
The effects of chronic dietary Roundup (RU) exposure on rooster sperm parameters, fertility, and offspring are unknown. We investigated the effects of chronic RU dietary exposure (46.8 mg kg−1 day−1 glyphosate) for 5 weeks in 32-week-old roosters (n = 5 RU-exposed and n = 5 control (CT)). Although the concentrations of glyphosate and its main metabolite AMPA (aminomethylphosphonic acid) increased in blood plasma and seminal fluid during exposure, no significant differences in testis weight and sperm concentrations were observed between RU and CT roosters. However, sperm motility was significantly reduced, associated with decreased calcium and ATP concentrations in RU spermatozoa. Plasma testosterone and oestradiol concentrations increased in RU roosters. These negative effects ceased 14 days after RU removal from the diet. Epigenetic analysis showed a global DNA hypomethylation in RU roosters. After artificial insemination of hens (n = 40) with sperm from CT or RU roosters, eggs were collected and artificially incubated. Embryo viability did not differ, but chicks from RU roosters (n = 118) had a higher food consumption, body weight and subcutaneous adipose tissue content. Chronic dietary RU exposure in roosters reduces sperm motility and increases plasma testosterone levels, growth performance, and fattening in offspring.
Collapse
Affiliation(s)
- Loïse Serra
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Anthony Estienne
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Guillaume Bourdon
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Christelle Ramé
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Claire Chevaleyre
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Philippe Didier
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement—Unité Expérimentale du Pôle d’Expérimentation Avicole de Tours UEPEAT 1295, F-37380 Nouzilly, France; (P.D.); (M.C.)
| | - Marine Chahnamian
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement—Unité Expérimentale du Pôle d’Expérimentation Avicole de Tours UEPEAT 1295, F-37380 Nouzilly, France; (P.D.); (M.C.)
| | - Souleiman El Balkhi
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, CHU, F-87042 Limoges, France;
| | - Pascal Froment
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
| | - Joëlle Dupont
- Centre National de la Recherche Scientifique, Institut Français du Cheval et de l’Equitation, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Université de Tours, PRC, F-37380 Nouzilly, France; (L.S.); (A.E.); (G.B.); (C.R.); (C.C.); (P.F.)
- Correspondence:
| |
Collapse
|
6
|
Khalil Z, Alam B, Akbari AR, Sharma H. The Medical Benefits of Vitamin K 2 on Calcium-Related Disorders. Nutrients 2021; 13:691. [PMID: 33670005 PMCID: PMC7926526 DOI: 10.3390/nu13020691] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Due to the potentially crucial role of vitamin K2 in calcium metabolism, a deficit can disrupt many mechanisms, resulting in an array of different issues, such as broken bones, stiff arteries and poor fertility. Although there has been existing research, the potential of vitamin K2 as a treatment for conditions including cerebral palsy, parathyroid disease, heart disease and gastrointestinal disease is unknown. This review discusses the biochemistry of vitamin K and the metabolism of calcium, followed by an analysis of the current literature available on vitamin K2 and its prospects. METHODS Using public libraries including PubMed and Wiley, we searched for existing research on the metabolism and use of vitamin K2 that has been conducted in the preceding two decades. RESULTS Data indicated that vitamin K2 had a positive impact on osteoporosis, cardiovascular disease, parathyroid disorders, cerebral palsy and sperm motility. CONCLUSION Due to the existence of confounding variables and limitations in the quality and volume of research conducted, further investigation must be done to see whether the beneficial effects seen are reproducible and must assess the viability of vitamin K2 as treatment in isolation for these conditions.
Collapse
Affiliation(s)
- Zeyad Khalil
- Medical School, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; (B.A.); (A.R.A.); (H.S.)
| | | | | | | |
Collapse
|
7
|
Johnson SL, Borziak K, Kleffmann T, Rosengrave P, Dorus S, Gemmell NJ. Ovarian fluid proteome variation associates with sperm swimming speed in an externally fertilizing fish. J Evol Biol 2020; 33:1783-1794. [PMID: 33034086 PMCID: PMC7719593 DOI: 10.1111/jeb.13717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
Abstract
Sperm velocity is a key trait that predicts the outcome of sperm competition. By promoting or impeding sperm velocity, females can control fertilization via postcopulatory cryptic female choice. In Chinook salmon, ovarian fluid (OF), which surrounds the ova, mediates sperm velocity according to male and female identity, biasing the outcome of sperm competition towards males with faster sperm. Past investigations have revealed proteome variation in OF, but the specific components of OF that differentially mediate sperm velocity have yet to be characterized. Here we use quantitative proteomics to investigate whether OF protein composition explains variation in sperm velocity and fertilization success. We found that OF proteomes from six females robustly clustered into two groups and that these groups are distinguished by the abundance of a restricted set of proteins significantly associated with sperm velocity. Exposure of sperm to OF from females in group I had faster sperm compared to sperm exposed to the OF of group II females. Overall, OF proteins that distinguished between these groups were enriched for vitellogenin and calcium ion interactions. Our findings suggest that these proteins may form the functional basis for cryptic female choice via the biochemical and physiological mediation of sperm velocity.
Collapse
Affiliation(s)
- Sheri L. Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Kirill Borziak
- Biology Department, Center for Reproductive Evolution, Syracuse University, Syracuse, NY, USA
| | - Torsten Kleffmann
- Department of Biochemistry, Centre for Protein Research, University of Otago, Dunedin, New Zealand
| | - Patrice Rosengrave
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- AgResearch, Biocontrol and Biosecurity, Christchurch, New Zealand
| | - Steve Dorus
- Biology Department, Center for Reproductive Evolution, Syracuse University, Syracuse, NY, USA
| | - Neil J. Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Dalal J, Chandolia RK, Jan MH, Pawaria S, Verma N, Jerome A, Kumar D, Kumar P. Escherichia coli membrane-derived oxygen-reducing enzyme system (Oxyrase) protects bubaline spermatozoa during cryopreservation. Mol Reprod Dev 2020; 87:1048-1058. [PMID: 32780495 DOI: 10.1002/mrd.23411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/07/2020] [Accepted: 07/23/2020] [Indexed: 11/08/2022]
Abstract
The objective of this study was to determine the effectiveness of deoxygenation of semen extender using Escherichia coli membrane-derived oxygen scavenger (Oxyrase) on post-thaw quality of buffalo (Bubalus bubalis) spermatozoa. Sixteen semen ejaculates, four each from four bulls, were each divided into five equal fractions, diluted using Tris-egg yolk extender supplemented with different concentrations of Oxyrase (0, 0.3, 0.6, 0.9, and 1.2 U/ml), designated as treatments T1, T2, T3, T4, and T5, respectively, and cryopreserved. Immediately after thawing, Oxyrase did not improve sperm kinetics and motility; however, it improved the keeping quality (significantly lower deterioration of post-thaw sperm motility after incubation for 120 min) in T3. Further, T3 reduced (p < .05) cholesterol efflux and protected the intactness of the sperm plasma membrane. Flow cytometry with Fluo-3 AM/propidium iodide (PI) dual staining revealed the highest (p < .05) proportion of live spermatozoa with low intracellular calcium in T3. Oxyrase supplementation protected spermatozoa from premature capacitation which was confirmed by low expression of tyrosine-phosphorylated proteins (32, 75, and 80 kDa) and a relatively lower percentage of F-pattern (uncapacitated spermatozoa) in chlortetracycline assay. Importantly, the Oxyrase fortification decreased superoxide anion in a dose-dependent manner indicating reduced availability of oxygen at sperm mitochondrial level. Similarly, in Oxyrase-fortified sperm, malondialdehyde concentration, an index of lipid peroxidation, is also reduced in a dose-dependent manner. In conclusion, we demonstrate that deoxygenation of buffalo semen by Oxyrase has the potential of improving post-thaw sperm quality by overcoming the problem of cryocapacitation and oxidative damage during cryopreservation process.
Collapse
Affiliation(s)
- Jasmer Dalal
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India.,Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Ramesh Kumar Chandolia
- Department of Veterinary Gynaecology and Obstetrics, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - Mustafa Hassan Jan
- ICAR-Central Institute for Research on Buffaloes, Subcampus Nabha, Nabha, Punjab, India
| | - Shikha Pawaria
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Nisha Verma
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Andonissamy Jerome
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Dharmendra Kumar
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Pradeep Kumar
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| |
Collapse
|
9
|
Shahreza FD, Hajian M, Gharagozloo P, Drevet JR, Nasr-Esfahani MH. Impact of vitamin D deficiency on mouse sperm structure and function. Andrology 2020; 8:1442-1455. [PMID: 32421931 DOI: 10.1111/andr.12820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/11/2020] [Accepted: 05/13/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND In rodents and humans, vitamin D deficiency (VDD) is associated with altered sperm structure and function (primarily decreased motility and morphological abnormalities) that are primarily attributed to VDD-induced hypocalcemia. However, it is suspected that VDD has much more drastic effects on mammalian spermatozoa. OBJECTIVES The purpose of this study was to illustrate that VDD, depending on its severity and duration, can alter sperm nuclear integrity and can also lead to the loss of spermatozoa's ability to support embryonic development. MATERIALS AND METHODS A mouse model of induced VDD combining the action of a vitamin D-deficient diet, UV exposure limitation, and paricalcitol injections; a vitamin D2 analog that catabolizes endogenous vitamin D by increasing the expression of CYP24A, a member of the cytochrome P450 family, has been used to create different grades of VDD. RESULTS We show that the most significant sperm defect recorded concerns the integrity of the paternal nucleus, which is both decondensed and fragmented in moderate-to-severe VDD situations. Consistent with the known consequences of fertilization with DNA-damaged spermatozoa, we show that paternal VDD decreases the ability of spermatozoa to optimally support fertilization and embryonic development. DISCUSSION AND CONCLUSION Given the worldwide high prevalence of VDD in humans, and although obtained in an animal model, the data presented here suggest that subfertile/infertile males may benefit from VDD testing and that attempts to correct serum vitamin D levels could be considered prior to conception, either naturally or through ART.
Collapse
Affiliation(s)
- Fatemeh Dehghan Shahreza
- Department of Clinical Science, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Hajian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Joël R Drevet
- GReD Laboratory, Faculty of Medicine, CNRS UMR6293-INSERM U1103-Univesité Clermont Auvergne, Clermont-Ferrand, France
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
10
|
Guan X, Tang Y, Zha S, Han Y, Shi W, Ren P, Yan M, Pan Q, Hu Y, Fang J, Zhang J, Liu G. Exogenous Ca 2+ mitigates the toxic effects of TiO 2 nanoparticles on phagocytosis, cell viability, and apoptosis in haemocytes of a marine bivalve mollusk, Tegillarca granosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1764-1771. [PMID: 31295695 DOI: 10.1016/j.envpol.2019.06.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/23/2019] [Accepted: 06/11/2019] [Indexed: 06/09/2023]
Abstract
Phagocytosis suppression induced by nanoparticles (NPs) exposure is increasingly reported in marine species. However, the mechanisms underlying this impact remain poorly understood. In order to improve our present understanding of the immunotoxicity of NPs, acute (96 h) TiO2 NP exposure and rescue trials via exogenous supply of Ca2+ were performed in the blood clam, Tegillarca granosa. The results show that the phagocytosis rate, cell viability, and intracellular Ca2+ concentration of haemocytes were significantly suppressed, whereas the intracellular ROS concentration of haemocytes significantly increased upon nTiO2 exposure. Exposure to nTiO2 also led to the significant downregulation of Caspase-3, Caspase-6, apoptosis regulator Bcl-2, Bcl-2-associated X, calmodulin kinase II, and calmodulin kinase kinase II. Furthermore, the toxic impacts of nTiO2 were partially mitigated by the addition of exogenous Ca2+, as indicated by the recovery tendency in almost all the measured parameters. The present study indicates that Ca2+ signaling could be one of the key pathways through which nTiO2 attacks phagocytosis.
Collapse
Affiliation(s)
- Xiaofan Guan
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Yu Tang
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Shanjie Zha
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Yu Han
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Wei Shi
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Peng Ren
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Maocang Yan
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Qicun Pan
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Yuan Hu
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Jun Fang
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Jiongming Zhang
- Mariculture Research Institute of Zhejiang Province, Wenzhou, 325005, China
| | - Guangxu Liu
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Kheradmand N, Kamkar R, Moshajjari M, Baazm M. Effect of selenium and pentoxifylline on expression of CATSPER1 and 2 genes and FSH/LH levels in treated mice by dexamethasone. Andrologia 2019; 51:e13279. [PMID: 30983026 DOI: 10.1111/and.13279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 02/05/2023] Open
Abstract
Dexamethasone has deleterious effects on male fertility and sperm parameters. In this study, the effect of dexamethasone on expression of CATSPER1 and 2 genes was investigated. These two genes play an important role in sperm motility. Selenium and pentoxifylline were subsequently used to protect testis tissue against the destructive effects of dexamethasone. Each group received one of the following treatments for 7 days: dexamethasone (7 mg/kg), pentoxifylline (200 mg/kg), selenium (0.3 mg/kg), dexamethasone + pentoxifylline or selenium + dexamethasone. Animals in the control group received a normal saline injection. The expression of CATSPER1 and 2 genes was analysed by real-time PCR and serum levels of FSH and LH were determined with the enzyme-linked immunosorbent assay method. Based on the results, dexamethasone decreases not only CATSPER1 and 2 gene expression but also serum levels of LH (p ≤ 0.05); however, it has no effect on FSH (p > 0.05). Treating with selenium significantly increased the gene expression of both CATSPER1 and 2 (p ≤ 0.05), while pentoxifylline enhanced only CATSPER2 gene expression (p ≤ 0.05). These two antioxidants were shown to increase serum levels of LH (p ≤ 0.05). Our data suggest that selenium is more effective than pentoxifylline in overcoming adverse effects of dexamethasone on male fertility.
Collapse
Affiliation(s)
| | - Razieh Kamkar
- Department of Basic Sciences, Arak University, Arak, Iran
| | - Minoo Moshajjari
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
12
|
Sun H, Wu W, Guo J, Xiao R, Jiang F, Zheng L, Zhang G. Effects of nickel exposure on testicular function, oxidative stress, and male reproductive dysfunction in Spodoptera litura Fabricius. CHEMOSPHERE 2016; 148:178-187. [PMID: 26807937 DOI: 10.1016/j.chemosphere.2015.10.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Nickel is an environmental pollutant that adversely affects the male reproductive system. In the present study, the effects of nickel exposure on Spodoptera litura Fabricius were investigated by feeding larvae artificial diets containing different doses of nickel for three generations. Damage to testes and effects on male reproduction were examined. The amount of nickel that accumulated in the testes of newly emerged males increased as the nickel dose in the diet increased during a single generation. Nickel exposure increased the amount of thiobarbituric acid reactive substances and decreased the amount of glutathione in treatment groups compared with the control. The activity levels of the antioxidant response indices superoxide dismutases, catalase, and glutathione peroxidase in the testes showed variable dose-dependent relationships with nickel doses and duration of exposure. Nickel doses also disrupted the development of the testes by decreasing the weight and volume of testes and the number of eupyrene and apyrene sperm bundles in treatment groups compared with the control. When the nickel-treated males mated with normal females, fecundity was inhibited by the higher nickel doses in all three generations, but fecundity significantly increased during the second generation, which received 5 mg kg(-1) nickel. Hatching rates in all treatments significantly decreased in a dose-dependent manner in the three successive generations. The effects of nickel on these parameters correlated with the duration of nickel exposure. Results indicate assays of testes may be a novel and efficient means of evaluating the effects of heavy metals on phytophagous insects in an agricultural environment.
Collapse
Affiliation(s)
- Hongxia Sun
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China; Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40504, USA
| | - Wenjing Wu
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Entomological Institute, Guangzhou 510260, China
| | - Jixing Guo
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | - Rong Xiao
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengze Jiang
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | - Lingyan Zheng
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | - Guren Zhang
- State Key Laboratory for Biocontrol & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
13
|
De Loof A, Schoofs L, Huybrechts R. The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system? Gen Comp Endocrinol 2016; 226:56-71. [PMID: 26707056 DOI: 10.1016/j.ygcen.2015.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022]
Abstract
Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| | - Roger Huybrechts
- Insect Physiology and Molecular Ethology Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| |
Collapse
|
14
|
Chen J, Xiao Y, Gai Z, Li R, Zhu Z, Bai C, Tanguay RL, Xu X, Huang C, Dong Q. Reproductive toxicity of low level bisphenol A exposures in a two-generation zebrafish assay: Evidence of male-specific effects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:204-14. [PMID: 26562050 PMCID: PMC6689195 DOI: 10.1016/j.aquatox.2015.10.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 05/03/2023]
Abstract
Bisphenol A (BPA), a high-volume chemical used to make polycarbonate plastic and epoxy resins, is a ubiquitous contaminant in environment and human body. To investigate the reproductive effects of long-term exposure to low concentrations of BPA, a two-generation study was conducted using the aquatic model species of zebrafish. Our findings revealed that exposure to 1nM (0.228μg/L) BPA for continuous two generations resulted in female-biased sex ratio in both F1 and F2 adult population, decreased sperm density, and decreased sperm quality as measured by motility, velocity, ATP content and lipid peroxidation in F1 and F2 males. Females were less sensitive to BPA exposures than males as no adverse effects were found in female gonads or gametes. Delayed hatching at 48hpf and increased malformation and mortality were found in the offspring from BPA exposed F2, but not F1 parents. Most importantly, the adverse effect on larval development and survival from BPA exposed F2 parents was paternal-specific, resulting mainly from BPA exposed males. Subsequent transcription analysis of F2 male gonads revealed dysregulated mitochondrial biogenesis and significant activation of non-canonical Wnt/planar cell polarity and Wnt/Calcium signaling pathways. Gene expression analysis of larvae from BPA exposed F2 parents showed significant reduced expression of DNA methyltransferases such as dnmt1, dnmt3, and dnmt5. In conclusion, low level BPA exposures for continuous two generations not only affects sex ratio and sperm quantity/quality in F1 and F2 adults, reproductive success in offspring from F2 parents, but also perturbs various molecular pathways potentially contributing to these BPA induced male-specific reproductive defects.
Collapse
Affiliation(s)
- Jiangfei Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanyan Xiao
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Zengxin Gai
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Rong Li
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Zixu Zhu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Chenglian Bai
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Robert L Tanguay
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center, Oregon State, University, Corvallis, OR 97333, USA
| | - Xiaojiang Xu
- Integrated Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Qiaoxiang Dong
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
15
|
Águila L, Arias ME, Vargas T, Zambrano F, Felmer R. Methyl-β-Cyclodextrin Improves Sperm Capacitation Status Assessed by Flow Cytometry Analysis and Zona Pellucida-Binding Ability of Frozen/Thawed Bovine Spermatozoa. Reprod Domest Anim 2015; 50:931-8. [DOI: 10.1111/rda.12611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/20/2015] [Indexed: 11/28/2022]
Affiliation(s)
- L Águila
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - ME Arias
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - T Vargas
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - F Zambrano
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - R Felmer
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
- Department of Agricultural Sciences and Natural Resources; Faculty of Agriculture and Forestry; Universidad de La Frontera; Temuco Chile
| |
Collapse
|
16
|
Olivares P, Orellana P, Guerra G, Peredo-Parada M, Chavez V, Ramirez A, Parodi J. Water contaminated with Didymosphenia geminata generates changes in Salmo salar spermatozoa activation times. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 163:102-108. [PMID: 25885475 DOI: 10.1016/j.aquatox.2015.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/26/2015] [Accepted: 03/28/2015] [Indexed: 06/04/2023]
Abstract
Didimosphenia geminata ("didymo"), has become a powerful and devastating river plague in Chile. A system was developed in D. geminata channels with the purpose evaluating the effects of water polluted with didymo on the activation of Atlantic salmon (Salmo salar) spermatozoa. Results indicate that semen, when activated with uncontaminated river water had an average time of 60±21s. When using Powermilt, (a commercial activator), times of 240±21s are achieved, while rivers contaminated with D. geminata achieve a motility time of 30±12s. Interestingly enough, the kinetic parameters of VSL, VCL and VAP showed no significant changes under all of the conditions. Furthermore, the presence of D. geminata reduces activation time of the samples as the cells age, indicating increased effects in spermatozoa that are conserved for more than 5 days. D. geminata has antioxidant content, represented by polyphenols; 200ppm of polyphenol were obtained in this study per 10g of microalgae. Spermatozoa exposed to these extracts showed a reduction in mobility time in a dose dependent manner, showing an IC50 of 15ppm. The results suggest an effect on spermatozoa activation, possibly due to the release of polyphenols present in contaminated rivers, facilitating the alteration of sperm motility times, without affecting the viability or kinetics of the cells. These findings have important implications for current policy regarding the control of the algae. Current control measures focus on the number of visible species, and not on the compounds that they release, which this study shows, also have a problematic effect on salmon production.
Collapse
Affiliation(s)
- Pamela Olivares
- Laboratorio Fisiología de la Reproducción, Escuela de Medicina Veterinaria, Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Chile
| | - Paola Orellana
- Laboratorio Fisiología de la Reproducción, Escuela de Medicina Veterinaria, Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Chile
| | - Guillermo Guerra
- Laboratorio Fisiología de la Reproducción, Escuela de Medicina Veterinaria, Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Chile
| | - Matías Peredo-Parada
- Departamento de Ingeniería en Obras Civiles, Universidad de Santiago de Chile, Chile; Plataforma de Investigación en Ecohidrología y Ecohidráulica, EcoHyd Ltda, Chile
| | - Viviana Chavez
- Laboratorio de Investigación y Educación, Tonalli Ltda, Chile
| | - Alfredo Ramirez
- Laboratorio de Criobiología y Análisis de Funcionalidad Espermática. Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Jorge Parodi
- Laboratorio Fisiología de la Reproducción, Escuela de Medicina Veterinaria, Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Chile.
| |
Collapse
|
17
|
García-Díaz EC, Gómez-Quiroz LE, Arenas-Ríos E, Aragón-Martínez A, Ibarra-Arias JA, del Socorro I Retana-Márquez M. Oxidative status in testis and epididymal sperm parameters after acute and chronic stress by cold-water immersion in the adult rat. Syst Biol Reprod Med 2015; 61:150-60. [PMID: 25640572 DOI: 10.3109/19396368.2015.1008071] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stress is associated with detrimental effects on male reproductive function. It is known that stress increases reactive oxygen species (ROS) generation in the male reproductive tract. High ROS levels may be linked to low sperm quality and male infertility. However, it is still not clear if ROS are generated by stress in the testis. The objective of this study was to characterize the role of oxidative stress induced by cold-water immersion stress in the testis of adult male rats and its relation with alterations in cauda epididymal sperm. Adult male rats were exposed to acute stress or chronic stress by cold-water immersion. Rats were sacrificed at 0, 6, 12, and 24 hours immediately following acute stress exposure, and after 20, 40, and 50 days of chronic stress. ROS production increased only at 6 hours post-stress, while the activity and expression of antioxidant enzymes, lipid peroxidation (LPO), and sperm parameters were not modified in the testis. Corticosterone increased immediately after acute stress, whereas testosterone was not modified. After chronic stress, testicular absolute weight decreased; in addition, ROS production and LPO increased at 20, 40, and 50 days. The activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx) decreased throughout the duration of chronic stress and the activity of catalase (CAT) decreased at 40 and 50 days, and increased at 20 days. The expression of copper/zinc superoxide dismutase (SOD1) and CAT were not modified, but the expression of phospholipid hydroperoxide glutathione peroxidase (GPx-4) decreased at 20 days. Motility, viability, and sperm count decreased, while abnormal sperm increased with chronic stress. These results suggest that during acute stress there is a redox state regulation in the testis since no deleterious effect was observed. In contrast, equilibrium redox is lost during chronic stress, with low enzyme activity but without modifying their expression. In addition, corticosterone increased while testosterone decreased, this decrease is related to the negative effects seen in sperm.
Collapse
|