1
|
Minhas AP, Das S. ABPA and AFRS: addressing prevalence, early diagnosis, allergens, and occupational concerns. J Asthma 2024; 61:767-779. [PMID: 38214461 DOI: 10.1080/02770903.2024.2303766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024]
Abstract
OBJECTIVE This study aimed to comprehensively investigate the prevalence of ABPA and AFRS, scrutinize existing diagnostic criteria and immunoassays, pinpoint their limitations, highlight ABPA as an occupational health implication, and identify suggestive measures to improve ABPA diagnosis in the context of Occupational Health Nursing and primary healthcare. DATA SOURCES The data sources such as PubMed, Health and Safety Science Abstracts, OSH Update, Medline, and Google Scholar were searched. STUDY SELECTIONS All published studies in the English language from 1990 till Oct, 2023 using Mesh terms keywords "Allergic bronchopulmonary aspergillosis," "Allergic fungal rhinosinusitis," "Signs and Symptoms," "Rapid Diagnostic Tests," "Diagnosis," "Occupational Health," "Occupational Health Nursing," "Prevalence," "Allergens" following "Boolean operators" search strategy were selected. RESULTS This review succinctly covered signs, symptoms, and prevalence data concerning ABPA and AFRS. It briefly discussed existing diagnostic criteria and immunoassays, highlighted factors influencing the assay's variability, and underscored the role and scope of specific allergens toward improved, simple, and early ABPA diagnosis. ABPA as a neglected occupational health concern was emphasized, and the importance of RDTs in the context of healthcare professionals and OHNs was stated. Finally, this study suggested analyzing the impact of compromised post-pandemic immune status and the use of immunosuppressive drugs on ABPA prevalence among vulnerable communities and occupations. CONCLUSION To conclude, global and Indian ABPA and AFRS prevalence data, factors influencing existing assay variability, and the scope of improvement in RDTs for ABPA diagnosis in the background of primary healthcare professionals and OHNs were addressed.
Collapse
Affiliation(s)
- Anu Priya Minhas
- ICMR-National Institute of Occupational Health (ICMR-NIOH), Ahmedabad, India
| | - Santasabuj Das
- ICMR-National Institute of Occupational Health (ICMR-NIOH), Ahmedabad, India
| |
Collapse
|
2
|
Marchand G, Wingert L, Viegas C, Caetano L, Viegas S, Twaruzek M, Lacombe N, Lanoie D, Valois I, Gouin F, Soszczyńska E, Kosicki R, Dias M, Debia M. Assessment of waste workers occupational risk to microbial agents and cytotoxic effects of mixed contaminants present in the air of waste truck cabin and ventilation filters. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:145-162. [PMID: 38166349 DOI: 10.1080/10962247.2023.2299424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
Workers in the waste-processing industry are potentially exposed to high concentrations of biological contaminants, leading to respiratory and digestive problems and skin irritations. However, few data on the exposure of waste collection truck (WCT) drivers are available. The goal was to document the microbial risk of the waste collection truck (WCT) workers while in the vehicle cab. Long-period sampling using the truck air filters (CAF) and short time ambient air sampling in the cab were used. The potential release of microbial particles from CAFs was also investigated since it could contribute to the microbial load of the cabin air. A combination of analytical methods also helped assess the complex mixture of the biological agents. Aspergillus sections Fumigati and Flavi, E. coli, Enterobacter spp. and Legionella spp. were detected in the CAF of trucks collecting three types of waste. The highest levels of bacteria and fungi were found in the CAF from organic WCT. The highest endotoxin concentrations in CAF were 300 EU/cm2. Most of the CAF showed cytotoxic effects on both lung cells and hepatocytes. Only one mycotoxin was detected in a CAF. The maximal concentrations in the ambient WCT air varied according to the type of waste collected. The highest proportion (84%) of the air samples without cytotoxic effects on the lungs cells was for the recyclable material WCTs. The results revealed the potential microbial risk to workers from a complex mixture of bio-contaminants in the cabs of vehicles collecting all types of waste. The sustained cytotoxic effect indicates the potential adverse health-related impact of mixed contaminants (biological and non-biological) for the workers. Overall, this study highlights the benefits of using complementary sampling strategy and combined analytical methods for a the assessment of the microbial risk in work environments and the need to implement protective measures for the workers.Implications: Exposure to microbial agents is a well-known occupational hazard in the waste management sector. No previous study had evaluated the cytotoxicity of ambient air and ventilation filters to document worker exposure to a combination of contaminants during waste collection. This research confirms the usefulness of ventilation filters for long-term characterization of exposure to infectious agents, azole-resistant fungi, coliform bacteria and mycotoxin. Overall, this study highlights the importance of using several sampling and analysis methods for a comprehensive assessment of microbial risk in work environments, as well as the need to implement appropriate protective measures for collection workers.
Collapse
Affiliation(s)
- Genevieve Marchand
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Canada
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Canada
| | - Loïc Wingert
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Canada
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Canada
| | - Carla Viegas
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, In-stituto Politécnico de Lisboa, Lisboa, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Liliana Caetano
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, In-stituto Politécnico de Lisboa, Lisboa, Portugal
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Viegas
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Magdalena Twaruzek
- Faculty of Biological Sciences, Department of Physiology and Toxicology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Nancy Lacombe
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Canada
| | - Delphine Lanoie
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Canada
| | - Isabelle Valois
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Canada
| | - Francois Gouin
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail, Montreal, Canada
| | - Ewelina Soszczyńska
- Faculty of Biological Sciences, Department of Physiology and Toxicology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Robert Kosicki
- Faculty of Biological Sciences, Department of Physiology and Toxicology, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Marta Dias
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia e Saúde, In-stituto Politécnico de Lisboa, Lisboa, Portugal
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Maximilien Debia
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Canada
| |
Collapse
|
3
|
G S J S, Ramakodi MP, T V B P S R. Review of bioaerosols from different sources and their health impacts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1321. [PMID: 37840110 DOI: 10.1007/s10661-023-11935-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
The emission of bioaerosols in the ambient atmosphere from different sources is a cause of concern for human health and the environment. Bioaerosols are a combination of biotic matter like microbes and pollens. The present review emphasizes the understanding of various sources of bioaerosols (industries, municipal solid waste, and medical facilities), their components, and their impact on human health. The study of bioaerosols is of great importance as large numbers of people are estimated to be exposed on the global scale. Bioaerosols exposure in different work environments results in health issues such as infectious diseases, allergies, toxic effects, and respiratory problems. Hence, extensive research is urged to establish an effective assessment of bioaerosols exposure in the workplace, risks involved, distribution, and validation. The present review is intended to explore the relationship between bioaerosols exposure to the atmosphere and its impacts on human health. Some of the preliminary findings, based on our analysis of bioaerosols arising from municipal solid waste at a landfill site and a waste transfer station in Hyderabad, India, are also discussed herein.
Collapse
Affiliation(s)
- Shailaja G S J
- CSIR - National Environmental Engineering Research Institute (NEERI), Hyderabad Zonal Centre, IICT Campus, Uppal Road, Hyderabad, 500 007, India.
| | - Meganathan P Ramakodi
- CSIR - National Environmental Engineering Research Institute (NEERI), Hyderabad Zonal Centre, IICT Campus, Uppal Road, Hyderabad, 500 007, India
| | - Ramakrishna T V B P S
- CSIR - National Environmental Engineering Research Institute (NEERI), Hyderabad Zonal Centre, IICT Campus, Uppal Road, Hyderabad, 500 007, India
| |
Collapse
|
4
|
Hansen KK, Schlünssen V, Broberg K, Østergaard K, Frederiksen MW, Madsen AM, Kolstad HA. Exposure levels of dust, endotoxin, and microorganisms in the Danish recycling industry. Ann Work Expo Health 2023; 67:816-830. [PMID: 37191914 PMCID: PMC10410489 DOI: 10.1093/annweh/wxad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
INTRODUCTION Recycling of domestic waste and a number of employees in the recycling industry is expected to increase. This study aims to quantify current exposure levels of inhalable dust, endotoxin, and microorganisms and to identify determinants of exposure among recycling workers. METHODS This cross-sectional study included 170 full-shift measurements from 88 production workers and 14 administrative workers from 12 recycling companies in Denmark. The companies recycle domestic waste (sorting, shredding, and extracting materials from waste). We collected inhalable dust with personal samplers that were analysed for endotoxin (n = 170) and microorganisms (n = 101). Exposure levels of inhalable dust, endotoxin, and microorganisms and potential determinants of exposure were explored by mixed-effects models. RESULTS The production workers were 7-fold or higher exposed to inhalable dust, endotoxin, bacteria, and fungi than the administrative workers. Among production workers recycling domestic waste, the geometric mean exposure level was 0.6 mg/m3 for inhalable dust, 10.7 endotoxin unit (EU)/m3 for endotoxin, 1.6 × 104 colony forming units (CFU)/m³ of bacteria, 4.4 × 104 CFU/m³ of fungi (25 °C), and 1.0 × 103 CFU/m³ of fungi (37 °C). Workers handling paper or cardboard had higher exposure levels than workers handling other waste fractions. The temperature did not affect exposure levels, although there was a tendency toward increased exposure to bacteria and fungi with higher temperatures. For inhalable dust and endotoxin, exposure levels during outdoor work were low compared to indoor work. For bacteria and fungi, indoor ventilation decreased exposure. The work task, waste fraction, temperature, location, mechanical ventilation, and the company size explained around half of the variance of levels of inhalable dust, endotoxin, bacteria, and fungi. CONCLUSION The production workers of the Danish recycling industry participating in this study had higher exposure levels of inhalable dust, endotoxin, bacteria, and fungi than the administrative workers. Exposure levels of inhalable dust and endotoxin among recycling workers in Denmark were generally below established or suggested occupational exposure limits (OEL). However, 43% to 58% of the individual measurements of bacteria and fungi were above the suggested OEL. The waste fraction was the most influential determinant for exposure, and the highest exposure levels were seen during handling paper or cardboard. Future studies should examine the relationship between exposure levels and health effects among workers recycling domestic waste.
Collapse
Affiliation(s)
- Karoline Kærgaard Hansen
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
| | - Vivi Schlünssen
- Department of Public Health, Research Unit for Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, SE-221 85 Lund, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Kirsten Østergaard
- Department of Public Health, Research Unit for Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Margit W Frederiksen
- National Research Centre of the Working Environment, DK-2100 Copenhagen Ø, Denmark
| | - Anne Mette Madsen
- National Research Centre of the Working Environment, DK-2100 Copenhagen Ø, Denmark
| | - Henrik Albert Kolstad
- Department of Occupational Medicine, Danish Ramazzini Centre, Aarhus University Hospital, DK-8200 Aarhus N, Denmark
- Institute of Clinical Medicine, Occupational Medicine, Aarhus University, DK-8200 Aarhus N, Denmark
| |
Collapse
|
5
|
Rasmussen PU, Frederiksen MW, Carøe TK, Madsen AM. Health symptoms, inflammation, and bioaerosol exposure in workers at biowaste pretreatment plants. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 167:173-182. [PMID: 37269581 DOI: 10.1016/j.wasman.2023.05.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Biowaste pretreatment plants have been built within the last years in Denmark in order to recycle pre-sorted biowaste from houses, restaurants, and industry. We investigated the association between exposure and health at six biowaste pretreatment plants (visited twice) across Denmark. We measured the personal bioaerosol exposure, took blood samples, and administered a questionnaire. Thirty-one persons participated, 17 of them twice, resulting in 45 bioaerosol samples, 40 blood samples, and questionnaire answers from 21 persons. We measured exposure to bacteria, fungi, dust, and endotoxin, the total inflammatory potential of the exposures, and serum levels of the inflammatory markers serum amyloid A (SAA), high sensitivity C-reactive protein (hsCRP), and human club cell protein (CC16). Higher exposures to fungi and endotoxin were found for workers with tasks inside the production area compared to workers with main tasks in the office area. A positive association was found between the concentration of anaerobic bacteria and hsCRP and SAA, whereas bacteria and endotoxin were inversely associated with hsCRP and SAA. A positive association between hsCRP and the fungal species Penicillium digitatum and P. camemberti were found, whereas an inverse association between hsCRP and Aspergillus niger and P. italicum were found. Staff with tasks inside the production area reported more symptoms of the nose than those working in the office area. To conclude, our results indicate that workers with tasks inside the production area are exposed to elevated levels of bioaerosols, and that this may affect workers' health negatively.
Collapse
Affiliation(s)
- Pil Uthaug Rasmussen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Tanja K Carøe
- Department of Occupational and Social Medicine, Holbæk Hospital, Smedelundsgade 60, 4300 Holbæk, Denmark
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
6
|
Armoh SY, Aryeetey S, Kamasah JS, Boahen KG, Owusu M, Adjei-Boateng A, Agbenyega O, Kwarteng A, Hingley-Wilson S, Obiri-Danso K, Ansong D, Sylverken AA. Solid waste motor tricycle operators in Kumasi, Ghana, harbour respiratory pathogens; a public health threat. PLoS One 2023; 18:e0284985. [PMID: 37093881 PMCID: PMC10124853 DOI: 10.1371/journal.pone.0284985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND The use of motor tricycles in transporting municipal solid waste (MSW) within urban and peri-urban towns in Ghana is on the increase. This activity often leads to the introduction of pathogen-containing bioaerosols into the environment, as well as to the tricycle operators. We sought to investigate the prevalence and associated risk factors of respiratory pathogens among solid waste tricycle operators. METHODS A cross-sectional study was conducted among 155 solid waste transporters who use motor tricycles using semi-structured interviews. Nasopharyngeal swabs were obtained from participants and screened for respiratory pathogens using Polymerase Chain Reaction (PCR). RESULTS Pathogens detected in participants were SARS-CoV-2 (n = 10, 6.5%) and Streptococcus pneumoniae (n = 10, 6.5%), constituting an overall prevalence of 12.9% and co-infection rate of 1.3%. The most common self-reported symptoms were cough (n = 67, 43.2%), sore throat (n = 44, 28.4%) and difficulty in breathing (n = 22, 14.2%). Adherence to the use of gloves (n = 117, 75.5%) and nose mask (n = 110, 71.0%) was high. There was a significant association between the detection of respiratory pathogens and the use of gloves, use of more than one PPE and exposure to other pollutants (p < 0.05). Individuals who were exposed to "other pollutants" significantly had lower odds of becoming infected with respiratory pathogens (Adj. OR (95% CI): 0.119(0.015,0.938). CONCLUSION Although prevalence of respiratory pathogens is generally low, strict adherence to PPE use could further reduce its rates to even lower levels. Governmental health institutions and informal solid waste transporters should address challenges related to exposure to pollutants, use of gloves, and multiple PPE.
Collapse
Affiliation(s)
- Stephen Yaw Armoh
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sherihane Aryeetey
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Japhet Senyo Kamasah
- Department of Molecular Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kennedy Gyau Boahen
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Owusu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Augustina Adjei-Boateng
- Research and Development Unit, Waste Management Department, Kumasi Metropolitan Assembly, Kumasi, Ghana
| | - Olivia Agbenyega
- Department of Agroforestry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander Kwarteng
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Suzanne Hingley-Wilson
- Department of Microbial Sciences, Faculty of Health and Medical Science, University of Surrey, Guildford, United Kingdom
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Daniel Ansong
- Department of Child Health, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Augustina Angelina Sylverken
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
7
|
Divergent TLR2 and TLR4 Activation by Fungal Spores and Species Diversity in Dust from Waste Sorting Plants. Appl Environ Microbiol 2023; 89:e0173422. [PMID: 36856441 PMCID: PMC10056968 DOI: 10.1128/aem.01734-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
This manuscript presents the results of an exploratory study on the relationships between NF-κB response through Toll-like receptor (TLR) activation by dust characterized by fungal spore concentrations and species diversity. Personal total dust samples were collected from Norwegian waste sorting plants and then characterized for fungal spores and fungal species diversity, as well as for other bioaerosol components, including endotoxins and actinobacteria. The ability of the dust to induce an NF-κB response by activating TLR2 and TLR4 in vitro was evaluated, as well as the relationship between such responses and quantifiable bioaerosol components. The average concentrations of bioaerosols were 7.23 mg total dust m-3, 4.49 × 105 fungal spores m-3, 814 endotoxin units m-3, and 0.6 × 105 actinobacteria m-3. The mean diversity measurements were 326, 0.59, and 3.39 for fungal richness, evenness, and Shannon index, respectively. Overall, fungal operational taxonomic units (OTUs) belonging to the Ascomycota phylum were most abundant (55%), followed by Basidiomycota (33%) and Mucoromycota (3%). All samples induced significant NF-κB responses through TLR2 and TLR4 activation. While fungal spore levels were positively associated with TLR2 and TLR4 activation, there was a trend that fungal species richness was negatively associated with the activation of these receptors. This observation supports the existence of divergent immunological response relationships between TLR activation and fungal spore levels on one hand and between TLR activation and fungal species diversity on the other. Such relationships seem to be described for the first time for dust from waste facilities. IMPORTANCE This manuscript presents results on multifactorial characterization of bioaerosol exposure in Norwegian waste sorting plants and the potential of such airborne dust to induce NF-κB reactions through TLR2 and TLR4 activations in an in vitro reporter cell model system. Our data revealed that increasing fungal spore levels in the dust is associated with increased activation of TLR2 and TLR4, whereas increasing fungal OTU richness is associated with decreasing activation of these receptors. The NF-κB-induced responses by the collected dust represent, therefore, effective measures of potential key immunological effects induced by a complex mixture of hazardous components, including characterized factors such as endotoxins, fungal spores, bacteria, and many other uncharacterized components. The key immunological events reported here are suggested as holistic alternatives to today's bioaerosol exposure characterization approaches for epidemiological studies in the future.
Collapse
|
8
|
Eriksen E, Afanou AK, Madsen AM, Straumfors A, Graff P. An assessment of occupational exposure to bioaerosols in automated versus manual waste sorting plants. ENVIRONMENTAL RESEARCH 2023; 218:115040. [PMID: 36521541 DOI: 10.1016/j.envres.2022.115040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Occupational exposure during waste sorting is associated with several health outcomes. This study obtained knowledge about the impact of work in fully automated waste sorting plants (AWSP; n = 3) vs manual waste sorting plants (MWSP; n = 3) on personal exposure (n = 71) to bioaerosols and exposure-related health effects. Personal full-shift air samples were collected using various filter-based active sampling devices that were placed in the workers' breathing zone. Personal exposure to inhalable and thoracic dust, endotoxin and microorganisms varied considerably between and within types of waste sorting plants (WSP). Workers at AWSP were on average exposed to 0.34 mg/m3 inhalable dust, 0.15 mg/m3 thoracic dust, and 51 EU/m3 endotoxins (geometric mean (GM) levels), whereas GM exposure levels at MWSP were 0.66 mg/m3 for inhalable dust, 0.44 mg/m3 for thoracic dust, and 32 EU/m3 for endotoxins. Exposure to submicronic fungal fragments did not differ between types of plants and ranged from levels below the detection limit (limit of detection, LOD) to levels in the order of 106 fragments/m3. Higher levels of fungal fragments and fungal spores were found at AWSP compared to MWSP with a GM of 2.1 × 105 spores/m3and with a GM of 1.2 × 105 spores/m3, respectively. Actinobacterial spores were found in samples from AWSP only, with exposure levels ranging from 1.9 × 104 to 1.1 × 107 spores/m3. Exposure to microbial DNA varied within and between WSP and was on average in the order of 104 copies/m3 for fungi and 105 copies/m3 for bacteria. Health symptoms, such as sneezing, congested nose and runny nose were significantly more common among exposed workers compared to the unexposed control group.
Collapse
Affiliation(s)
- Elke Eriksen
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway.
| | - Anani Komlavi Afanou
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Anne Mette Madsen
- The National Research Center for Work Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Anne Straumfors
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| | - Pål Graff
- STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363, Oslo, Norway
| |
Collapse
|
9
|
Karamkhani M, Asilian-Mahabadi H, Daraei B, Seidkhani-Nahal A, Noori-Zadeh A. Route exposure and adverse effects monitoring of Aflatoxin B1 in the workers of wet waste management, the role of body redox system modulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114305. [PMID: 36403302 DOI: 10.1016/j.ecoenv.2022.114305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Exposure to dust, containing different fungi metabolites such as aflatoxins is a risk factor for developing liver and kidney health abnormalities. Occupational evaluation of the aflatoxin's exposure-induced health abnormalities should include the monitoring of bioaerosols in the workplace and personal air, and applying of appropriate blood biomarkers to assess Aflatoxin B1 (AFB1) detrimental effects on a worker's health. However, to the best of our knowledge, these appropriate methods, especially determining the associated-adverse effects on health, following exposure, haven't been well documented in the literature at the wet waste handling sites. In the current study, the AFB1 quantity in the area, personal, and settled dust in wet household waste handling samples and AFB1-Albumin levels in the serum of workers in comparison with the control group were determined using high-pressure liquid chromatography with a fluorescent detector (HPLC-FLD) methods. Moreover, the adverse effects of AFB1 on the liver and kidney biochemical profiles of the exposed workers and its relation to antioxidant capacity in the household wet waste sorting were recorded in a consolidated investigation. The results demonstrated that the average airborne dust concentration and its associated AFB1 content were significantly higher in wet waste management sections as compared to the control place, corresponding to the serum AFB1-Albumin levels of workers. Furthermore, AFB1-induced changes in the serum biochemicals evaluating liver and kidney function tests and antioxidant profiles of workers in wet waste handling sections were indicative of their function abnormalities. The results imply AFB1-induced adverse effects on the liver and kidney functions may be mediated through the body redox system modulation.
Collapse
Affiliation(s)
- Morvarid Karamkhani
- Department of Occupational Health, Faculty of Health, Ilam University of Medical Sciences, Ilam 693917714, Iran.
| | - Hassan Asilian-Mahabadi
- Department of Occupational Health, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box. 14115-331, Tehran, Iran.
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box. 6153-14155, Velenjak St., Shahid Chamran Highway, Tehran, Iran.
| | - Ali Seidkhani-Nahal
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Ilam University of Medical Sciences, Ilam 693917714, Iran.
| | - Ali Noori-Zadeh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Ilam University of Medical Sciences, Ilam 693917714, Iran.
| |
Collapse
|
10
|
Okidi L, Ongeng D, Muliro PS, Matofari JW. Agroecology influences Salmonella food contamination with high exposure risk among children in Karamoja sub-region: A high diarrhoea prevalent locality in Uganda. Heliyon 2022; 8:e11703. [DOI: 10.1016/j.heliyon.2022.e11703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
|
11
|
Salambanga FRD, Wingert L, Valois I, Lacombe N, Gouin F, Trépanier J, Debia M, Soszczyńska E, Twarużek M, Kosicki R, Dias M, Viegas S, Caetano L, Viegas C, Marchand G. Microbial contamination and metabolite exposure assessment during waste and recyclable material collection. ENVIRONMENTAL RESEARCH 2022; 212:113597. [PMID: 35660405 DOI: 10.1016/j.envres.2022.113597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Waste workers are exposed to bioaerosols when handling, lifting and dumping garbage. Bioaerosol exposure has been linked to health problems such as asthma, airway irritant symptoms, infectious, gastrointestinal and skin diseases, and cancer. Our objective was to characterize the exposure of urban collectors and drivers to inhalable bioaerosols and to measured the cytotoxic effect of air samples in order to evaluate their health risk. Personal and ambient air sampling were conducted during the summer of 2019. Workers from 12 waste trucks collecting recyclables, organic waste or compost were evaluated. Bacteria and fungi were cultured, molecular biology methods were used to detect microbial indicators, cytotoxic assays were performed and endotoxins and mycotoxins were quantified. Domestic waste collectors were exposed to concentrations of bacteria and endotoxins above the recommended limits, and Aspergillus section Fumigati was detected at critical concentrations in their breathing zones. Cytotoxic effects were observed in many samples, demonstrating the potential health risk for these workers. This study establishes evidence that waste workers are exposed to microbial health risks during collection. It also demonstrates the relevance of cytotoxic assays in documenting the general toxic risk found in air samples. Our results also suggest that exposures differ depending on the type of waste, job title and discharge/unloading locations.
Collapse
Affiliation(s)
- Fabiola R D Salambanga
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada; Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada
| | - Loïc Wingert
- Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada
| | - Isabelle Valois
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - Nancy Lacombe
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - François Gouin
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - Julien Trépanier
- Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada
| | - Maximilien Debia
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada
| | - Ewelina Soszczyńska
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Robert Kosicki
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Marta Dias
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Canada
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Canada; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal
| | - Liliana Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Canada; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal
| | - Geneviève Marchand
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Canada; Institut de Recherche Robert-Sauvé en Santé et Sécurité Du Travail, Canada.
| |
Collapse
|
12
|
Hung CS, Yiin LM, Yen CF, Hsieh CJ, Hsieh JG, Tseng CC. Status of resource recycling stations in Taiwan and recycling work-related health effects. Tzu Chi Med J 2022; 35:38-43. [PMID: 36866342 PMCID: PMC9972934 DOI: 10.4103/tcmj.tcmj_111_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/10/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022] Open
Abstract
Resource recycling has become an integral part of environmental protection efforts. At present, the development of Taiwan's resource recovery and related works are quite mature. However, laborers or volunteers working in resource recycling stations may be exposed to different types of hazards during the recycling process. These hazards can be divided into biological, chemical, and musculoskeletal problems. These hazards are usually related to the work environment and work habits; therefore, a related control strategy is needed. Tzu Chi's recycling business has been running for over 30 years. In addition to leading the trend of resource recycling in Taiwan, many elderly people have also participated in Tzu Chi recycling stations as volunteers. These older volunteers may be more sensitive to exposure to hazards, and thus the focus of this review is to illustrate the possible hazards and health impacts of resource recovery work and to recommend relevant interventions to improve occupational health during resource recovery work.
Collapse
Affiliation(s)
- Chung-Shan Hung
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan,Department of Aging and Community Health, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Lih-Ming Yiin
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Chia-Feng Yen
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Chia-Jung Hsieh
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Jyh-Gang Hsieh
- Department of Family Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chun-Chieh Tseng
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Prof. Chun-Chieh Tseng, Department and Graduate Institute of Public Health, Tzu Chi University, 701, Zhongyang Road, Section 3, Hualien, Taiwan. E-mail:
| |
Collapse
|
13
|
Manibusan S, Mainelis G. Passive Bioaerosol Samplers: A Complementary Tool for Bioaerosol Research. A Review. JOURNAL OF AEROSOL SCIENCE 2022; 163:105992. [PMID: 36386279 PMCID: PMC9648171 DOI: 10.1016/j.jaerosci.2022.105992] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bioaerosols consist of airborne particles of biological origin. They play an important role in our environment and may cause negative health effects. The presence of biological aerosol is typically determined using active samplers. While passive bioaerosol samplers are used much less frequently in bioaerosol investigations, they offer certain advantages, such as simple design, low cost, and long sampling duration. This review discusses different types of passive bioaerosol samplers, including their collection mechanisms, advantages and disadvantages, applicability in different sampling environments, and available sample elution and analysis methods. Most passive samplers are based on gravitational settling and electrostatic capture mechanism or their combination. We discuss the agar settle plate, dustfall collector, Personal Aeroallergen Sampler (PAAS), and settling filters among the gravity-based samplers. The described electrostatics-based samplers include electrostatic dust cloths (EDC) and Rutgers Electrostatic Passive Sampler (REPS). In addition, the review also discusses passive opportunity samplers using preexisting airflow, such as filters in HVAC systems. Overall, passive bioaerosol sampling technologies are inexpensive, easy to operate, and can continuously sample for days and even weeks which is not easily accomplished by active sampling devices. Although passive sampling devices are usually treated as qualitative tools, they still provide information about bioaerosol presence and diversity, especially over longer time scales. Overall, this review suggests that the use of passive bioaerosol samplers alongside active collection devices can aid researchers in developing a more comprehensive understanding of biological presence and dynamics, especially over extended time scales and multiple locations.
Collapse
Affiliation(s)
- Sydonia Manibusan
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, New Jersey 08901-8551, USA
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, New Jersey 08901-8551, USA
| |
Collapse
|
14
|
Rasuli L, Dehghani MH, Aghaei M, Mahvi AH, Mubarak NM, Karri RR. Occurrence and fate of bacterial endotoxins in the environment (air, water, wastewater) and remediation technologies: An overview. CHEMOSPHERE 2022; 303:135089. [PMID: 35623438 DOI: 10.1016/j.chemosphere.2022.135089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 12/07/2022]
Abstract
Endotoxins as the outer membrane of most Gram-Negative Bacteria (GNB) and typical toxic biochemical produced by microorganisms are identified as one of the emerging pollutants. These microbial by-products are harmful compounds that can be present in various environments including air, water, soil, and other ecosystems which was discussed in detail in this review. Environmental and occupational exposure caused by endotoxin occurs in water and wastewater treatment plants, industrial plants, farming, waste recovery, and composting facilities. Even though the health risk related to endotoxin injection in intravenous and dialysis are well identified, the harmful effects of ingestion, inhalation, and other way of exposure are not well quantified and there is insufficient information on the potential health risks of endotoxins exposure in water environments, and another exposures. Because of limited studies, the outbreaks of diseases related to endotoxins in the various source of exposure not been well documented. Endotoxin removal from different environments are investigated in this review. The results of various studies have shown that conventional treatment methods have been unable to remove endotoxins from water and wastewater, therefore, monitoring the effectiveness of these processes in controlling this contaminant and also using the appropriate removal method is essential. However, management of water and wastewater treatment processes and the use of advanced processes such as Advanced Oxidation Processes (AOPs) can be effective in monitoring and reducing endotoxin levels during water and wastewater treatment. One of the limitations of endotoxin monitoring is the lack of sufficient information to develop monitoring levels. In addition, the lack of guidelinesand methods of controlling them at high levels may cause irreparable disaster.
Collapse
Affiliation(s)
- Leila Rasuli
- Qazvin University of Medical Science, Qazvin, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mina Aghaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| |
Collapse
|
15
|
Møller SA, Rasmussen PU, Frederiksen MW, Madsen AM. Work clothes as a vector for microorganisms: Accumulation, transport, and resuspension of microorganisms as demonstrated for waste collection workers. ENVIRONMENT INTERNATIONAL 2022; 161:107112. [PMID: 35091375 DOI: 10.1016/j.envint.2022.107112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 05/04/2023]
Abstract
Work clothes may act as a vector for the transport of microorganisms leading to second-hand exposure; however, this has not been studied in work environments. We investigated whether microorganisms accumulate on workers' clothes in environments with elevated microbial exposures, and whether they are transported with the clothes and subsequently resuspended to the air. To study this, we selected waste collection workers and potential transport of bacteria and fungi to waste truck cabs via clothes, and compared the microbial communities within truck cabs, in waste collection workers' personal exposure, and on clean T-shirts worn by the workers. Microbial communities were also investigated for the presence of potentially harmful microorganisms. Results showed that microorganisms accumulated in large quantities (GM = 3.69 × 105 CFU/m2/h for bacteria, GM = 8.29 × 104 CFU/m2/h for fungi) on workers' clothes. The concentrations and species composition of airborne fungi in the truck cabs correlated significantly with the accumulation and composition of fungi on clothes and correlated to concentrations (a trend) and species composition of their personal exposures. The same patterns were not found for bacteria, indicating that work clothes to a lesser degree act as a vector for bacteria under waste collection workers' working conditions compared to fungi. Several pathogenic or allergenic microorganisms were present, e.g.: Klebsiella oxytoca, K. pneumoniae, Proteus mirabilis, Providencia rettgeri, Pseudomonas aeruginosa, and Aspergillus fumigatus, A. glaucus, A. nidulans, A. niger, and various Penicillium species. The potential 'take-home' exposure to these microorganisms are of most concern for immunocompromised or atopic individuals or people with open wounds or cuts. In conclusion, the large accumulation of microorganisms on workers' clothes combined with the overlap between fungal species for the different sample types, and the presence of pathogenic and allergenic microorganisms forms the basis for encouragement of good clothing hygiene during and post working hours.
Collapse
Affiliation(s)
- Signe Agnete Møller
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Pil Uthaug Rasmussen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Margit W Frederiksen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Anne Mette Madsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
16
|
Madsen AM, Rasmussen PU, Frederiksen MW. Accumulation of microorganisms on work clothes of workers collecting different types of waste - A feasibility study. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 139:250-257. [PMID: 34979353 DOI: 10.1016/j.wasman.2021.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Electrostatic dust cloths have previously been used to study microorganisms in settled dust by placing the cloths horizontally on surfaces (called Electrostatic Dust Collectors, EDC). In this study, we investigate whether the same cloths, henceforth called 'E-Cloths', can be used to study accumulation of microorganisms and endotoxin on workers' clothes. This was studied as current methods have limitations. It was examined for waste collection workers, as their work environment is associated with elevated exposure to microorganisms and endotoxin. Each worker received a kit with a T-shirt with an attached E-Cloth on the front, a instruction letter, and a questionnaire. Workers wore the T-shirts during the next two workdays. Unaffected by waste type collected, it was possible to measure the accumulation of bacteria, fungi, and endotoxin from the work environment on the E-Cloths. Geometric mean concentration of 9 × 106 CFU bacteria/m2, 1 × 107 CFU fungi/m2, and 4 × 104 endotoxin units/m2 were found. In total, 100 different bacterial and 25 fungal species were found. The genus Bacillus (with 18 species) and Brevibacterium aurantiacum were among the dominating bacteria. For fungi, Penicillium brevicompactum, P. commune, Penicillium italicum, and Aspergillus niger were most often found. Importantly, mainly environmental bacteria and fungi had accumulated on the E-Cloths and only few skin-related bacterial species were present, showing that accumulation had happened from the work exposure and not workers' skin. In conclusion, the T-shirts with an E-Cloth can be used as a self-administered method for measurement of accumulation of microorganisms and endotoxin from the work environment on waste collection workers' clothes.
Collapse
Affiliation(s)
- Anne Mette Madsen
- The National Research Centre for the Working Environment Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark.
| | - Pil Uthaug Rasmussen
- The National Research Centre for the Working Environment Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Margit W Frederiksen
- The National Research Centre for the Working Environment Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
17
|
Szulc J, Okrasa M, Majchrzycka K, Sulyok M, Nowak A, Szponar B, Górczyńska A, Ryngajłło M, Gutarowska B. Microbiological and toxicological hazard assessment in a waste sorting plant and proper respiratory protection. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114257. [PMID: 34920354 DOI: 10.1016/j.jenvman.2021.114257] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Even though biological hazards in the work environments related to waste management were the subject of many scientific works, the knowledge of the topic is not extensive. This study aimed to conduct a comprehensive assessment of microbiological and toxicological hazards at the workstations in a waste sorting plant and develop guidelines for selecting filtering respiratory protective devices that would consider specific workplace conditions. The research included the assessment of quantity (culture method), diversity (high-throughput sequencing), and metabolites (endotoxin - gas chromatography-mass spectrometry; secondary metabolites - liquid chromatography tandem-mass spectrometry) of microorganisms occurring in the air and settled dust. Moreover, cytotoxicity of settled dust against a human epithelial lung cell line was determined with an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The research was performed in a waste sorting plant (Poland; 240,000 tons waste/year) at six workstations: two feeders, two pre-sorting cabins, secondary raw material press and organic fraction waste feeder for composting. The total dust concentration at tested workstations varied from 0.128 mg m-3 to 5.443 mg m-3. The number of microorganisms was between 9.23 × 104 CFU m-3 and 1.38 × 105 CFU m-3 for bacteria and between 1.43 × 105 CFU m-3 and 1.65 × 105 CFU m-3 for fungi, which suggests high microbial contamination of the sorting facility. The numbers of microorganisms in the air correlated very strongly (R2 from 0.70 to 0.94) with those observed in settled dust. Microorganisms representing Group 2 biological agents (acc. to Directive, 2000/54/EC), including Corynebacterium spp., Pseudomonas aeruginosa, Staphylococcus aureus, and others potentially hazardous to human health, were identified. The endotoxins concentration in settled dust ranged from 0.013 nmol LPS mg-1 to 0.048 nmol LPS mg-1. Seventeen (air) and 91 (settled dust) secondary metabolites characteristic, e.g., for moulds, bacteria, lichens, and plants were identified. All dust samples were cytotoxic (IC50 values of 8.66 and 56.15 mg ml-1 after 72 h). A flowchart of respiratory protective devices selection for biological hazards at the workstations in the waste sorting plant was proposed based on the completed tests to help determine the right type and use duration of the equipment.
Collapse
Affiliation(s)
- Justyna Szulc
- Department of Environmental Biotechnology, Lodz University of Technology, Łódź, 90-530, Poland.
| | - Małgorzata Okrasa
- Department of Personal Protective Equipment, Central Institute for Labour Protection, National Research Institute, Łódź, 90-133, Poland.
| | - Katarzyna Majchrzycka
- Department of Personal Protective Equipment, Central Institute for Labour Protection, National Research Institute, Łódź, 90-133, Poland.
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology University of Natural Resources and Life Sciences, Tulln, A-3430, Austria.
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Łódź, 90-530, Poland.
| | - Bogumiła Szponar
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, 53-113, Poland.
| | - Anna Górczyńska
- Institute of Public Economic Law, Faculty of Law and Administration, University of Lodz, 90-232, Łódź, Poland.
| | - Małgorzata Ryngajłło
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Łódź, 90-573, Poland.
| | - Beata Gutarowska
- Department of Environmental Biotechnology, Lodz University of Technology, Łódź, 90-530, Poland.
| |
Collapse
|
18
|
Cytotoxicity of Aspergillus Section Fumigati Isolates Recovered from Protection Devices Used on Waste Sorting Industry. Toxins (Basel) 2022; 14:toxins14020070. [PMID: 35202098 PMCID: PMC8879639 DOI: 10.3390/toxins14020070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Safe working conditions must be guaranteed during waste sorting, which is crucial to maximizing recycling and reuse, in order to minimize workers’ exposure to chemical and biological hazards. This study determines the contribution of Aspergillus section Fumigati to the overall cytotoxicity of filtering respiratory protection devices (FRPD) and mechanic protection gloves (MPG) collected in 2019 from different workstations in one waste sorting industry in Portugal. The cytotoxicity of 133 Aspergillus section Fumigati isolates was determined as IC50 in human A549 epithelial lung cells and swine kidney cells, using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Aspergillus section Fumigati cytotoxicity results were compared with previous total cytotoxicity data from FRPD and MPG samples. A significant correlation was detected between the total cytotoxicity of samples and cytotoxicity of Aspergillus section Fumigati isolates in A549 cells (rS = −0.339, p = 0.030). The cytotoxicity of Aspergillus section Fumigati isolates explained 10.7% of the total cytotoxicity of the sample. On the basis of the comparison of cytotoxicity levels, it was possible to determine the contribution of Aspergillus section Fumigati isolates for the total cytotoxicity of protection devices used in the waste sorting industry. The results support in vitro toxicology as a relevant approach in risk assessments regarding cytotoxicity in passive sampling, and thus, useful in determining the contribution of relevant microbial contaminants to overall cytotoxicity. This approach can provide valuable answers in dose/response studies, and support innovations in risk characterization and their translation into occupational policies.
Collapse
|
19
|
Madsen AM, Raulf M, Duquenne P, Graff P, Cyprowski M, Beswick A, Laitinen S, Rasmussen PU, Hinker M, Kolk A, Górny RL, Oppliger A, Crook B. Review of biological risks associated with the collection of municipal wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148287. [PMID: 34139489 DOI: 10.1016/j.scitotenv.2021.148287] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
In many countries, the management of household waste has recently changed with an increased focus upon waste sorting resulting in lower collection frequency for some waste fractions. A consequence of this is the potential for increased growth of microorganisms in the waste before collection, which can lead to an increased exposure via inhalation for waste collection workers. Through a review of the literature, we aimed to evaluate risks caused by waste collecting workers' exposure to bioaerosols and to illuminate potential measures to reduce the exposure. Across countries and waste types, median exposure to fungi, bacteria, and endotoxin were typically around 104 colony forming units (cfu)/m3, 104 cfu/m3, and 10 EU/m3, respectively. However, some studies found 10-20+ times higher or lower median exposure levels. It was not clear how different types of waste influence the occupational exposure levels. Factors such as high loading, ventilation in and cleaning of drivers' cabs, increased collection frequency, waste in sealed sacks, and use of hand sanitizer reduce exposure. Incidences of gastrointestinal problems, irritation of the eye and skin and symptoms of organic dust toxic syndrome have been reported in workers engaged in waste collection. Several studies reported a correlation between bioaerosol exposure level and reduced lung function as either a short or a long term effect; exposure to fungi and endotoxin is often associated with an inflammatory response in exposed workers. However, a better understanding of the effect of specific microbial species on health outcomes is needed to proceed to more reliable risk assessments. Due to the increasing recycling effort and to the effects of global warming, exposure to biological agents in this working sector is expected to increase. Therefore, it is important to look ahead and plan future measures as well as improve methods to prevent long and short-term health effects.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum, Germany
| | - Philippe Duquenne
- The French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), France
| | - Pål Graff
- National Institute of Occupational Health (STAMI), PoBox 5330, 0304, Oslo, Norway
| | - Marcin Cyprowski
- Central Institute for Labour Protection - National Research Institute, 16 Czerniakowska Street, 00-701 Warsaw, Poland
| | - Alan Beswick
- HSE Science and Research Centre, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
| | - Sirpa Laitinen
- Finnish Institute of Occupational Health, P.O. Box 40 FI-00032 Työterveyslaitos, Finland
| | - Pil Uthaug Rasmussen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Manfred Hinker
- Allgemeine Unfallversicherungsanstalt, 1200 Wien, Adalbert-Stifter-Straße 65, Austria
| | - Annette Kolk
- Chemical and biological hazards Institute for Occupational Safety and Health of the German Social Accident Insurance (DGUV), Alte Heerstr. 111, 53757 Sankt Augustin, Germany
| | - Rafał L Górny
- Central Institute for Labour Protection - National Research Institute, 16 Czerniakowska Street, 00-701 Warsaw, Poland
| | - Anne Oppliger
- Unisanté, Department of occupational and environmental health, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Brian Crook
- HSE Science and Research Centre, Harpur Hill, Buxton, Derbyshire SK17 9JN, UK
| |
Collapse
|
20
|
Cyprowski M, Ławniczek-Wałczyk A, Stobnicka-Kupiec A, Górny RL. Occupational exposure to anaerobic bacteria in a waste sorting plant. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:1292-1302. [PMID: 34029169 DOI: 10.1080/10962247.2021.1934185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The study focused on exposure assessment to bacterial aerosols and organic dust in waste sorting plant. Samples were collected at different workplaces of waste sorting cycle i.e.: waste press, reloading area, loading of conveyor belt, sorting cabin, sorting hall, and control room. A quantitative analysis of aerobic and anaerobic bacteria was supplemented by qualitative analysis of anaerobic biota with the use of culture-based methods and biochemical tests. In addition, inhalable dust concentrations were also evaluated. To confirm the presence of Clostridium genus, the PCR reaction with specific primers (Chis150f and ClostIr) was performed. The average concentration of total bacteria in waste sorting plant was 4347 CFU m-3 (SD = 2439), of which 66% were anaerobic strains (2852 CFU m-3; SD = 2127). It was found that about 24% of anaerobic bacteria belonged to Clostridium genus (682 CFU m-3; SD = 633). The highest contamination with anaerobic bacteria was observed near the waste reloading plant (3740 CFU m-3), and the lowest in the control room (850 CFU m-3). The average concentration of inhalable dust in the waste sorting plant was 0.81 mg m-3 (SD = 0.59). The correlation analysis showed that the presence of anaerobic bacteria, including clostridia was significantly determined by the microclimate parameters. Qualitative analysis showed the presence of 16 anaerobic species belonging to 9 genera, of which Actinomyces, Clostridium, and Gemella were present at all workplaces. The molecular analysis confirmed the presence of Clostridium genus in both bioaerosol and settled dust samples.Implications: The study showed that anaerobic bacteria should be taken into account as an important component of this microbiota when assessing the exposure of waste sorting workers to biological agents. However, future studies should investigate more precisely how the composition of sorted waste as well as the season can affect the diversity of anaerobic bacteria in this working environment. More attention should be paid to regular cleaning of equipment surfaces in the plant, as deposited organic dust is an important reservoir of anaerobic bacteria, including those of a potentially pathogenic nature.
Collapse
Affiliation(s)
- Marcin Cyprowski
- Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Warsaw, Poland
| | - Anna Ławniczek-Wałczyk
- Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Warsaw, Poland
| | - Agata Stobnicka-Kupiec
- Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Warsaw, Poland
| | - Rafał L Górny
- Department of Chemical, Aerosol and Biological Hazards, Central Institute for Labour Protection - National Research Institute, Warsaw, Poland
| |
Collapse
|
21
|
Eriksen E, Graff P, Pedersen I, Straumfors A, Afanou AK. Bioaerosol Exposure and in vitro Activation of Toll-like Receptors in a Norwegian Waste Sorting Plant. Saf Health Work 2021; 13:9-16. [PMID: 35936194 PMCID: PMC9349000 DOI: 10.1016/j.shaw.2021.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
Background The global shift toward greener societies demands new technologies and work operations in the waste-management sector. However, progressive industrial methods do not necessarily consider workers’ health. This study characterized workers' exposure to bioaerosols and investigated the bioaerosols’ potential to engage the immune system in vitro. Methods Full shift personal aerosol sampling was conducted over three consecutive days. Dust load was analyzed by gravimetry, fungal and actinobacterial spores were analyzed by scanning electron microscopy, and endotoxin by limulus amebocyte lysate (LAL) assay. In vitro exposure of HEK cells to airborne dust samples was used to investigate the potential of inducing an inflammatory reaction. Results The total dust exposure level exceeded the recommended occupational exposure limit (OEL) of 5.0 mg/m3 in 3 out of 15 samples. The inhalable endotoxin level exceeded the recommended exposure level by a 7-fold, whereas the fungal spore level exceeded the recommended exposure level by an 11-fold. Actinobacterial spores were identified in 8 out of 14 samples. In vitro experiments revealed significant TLR2 activation in 9 out of 14 samples vs. significant TLR4 activation in all samples. Conclusion The present study showed that the dust samples contained potentially health-impairing endotoxin, fungi, and actinobacterial levels. Furthermore, the sampled dust contained microbial components capable of inducing TLR activation and thus have the potential to evoke an inflammatory response in exposed individuals.
Collapse
Affiliation(s)
- Elke Eriksen
- Corresponding author. STAMI, National Institute of Occupational Health, Gydas Vei 8, 0363 Oslo, Norway.
| | | | | | | | | |
Collapse
|
22
|
Kim B, Kim E, Cha W, Shin J, Choi BS, Kim D, Kim M, Kang W, Choi S. Occupational exposure to respirable crystalline silica in municipal household waste collection and road cleaning workers. Sci Rep 2021; 11:13370. [PMID: 34183721 PMCID: PMC8238943 DOI: 10.1038/s41598-021-92809-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 06/08/2021] [Indexed: 11/09/2022] Open
Abstract
Despite the increase in the number of cases among South Korean sanitation workers, lung cancer as a result of exposure to occupational carcinogen has not been sufficiently investigated. This study aimed to identify exposure levels of sanitation workers to respirable crystalline silica (RCS) for various tasks and factors that affect individual RCS exposure. Exposure to RCS was assessed for 90 sanitation workers from seven companies. The obtained geometric mean value of the RCS was 2.6 µg m-3, which is a similar level to recommendations set by California's Office of Environmental Health Hazard Assessment's Recommended Exposure Limit. Meanwhile, coal briquette ash (CBA) collectors exhibited the highest RCS concentration (24 µg m-3), followed by road cleaning workers who used a blower, municipal household waste collectors, sweepers, and drivers (p < 0.05). Additionally, when the ANOVA was conducted, statistically significant differences were observed in RCS concentrations among various factors such as job task, season, employment type and city scale. Our study confirmed that sanitation workers who work outdoors could be exposed to RCS. Due to the possibility of exposure to high RCS concentrations, special attention should be paid to the collection of used CBA and road cleaning involving the use of a blower.
Collapse
Affiliation(s)
- Boowook Kim
- Institute of Occupation and Environment, Korea Workers' Compensation and Welfare Service, 478, Munemi-ro, Incheon, 21417, Korea.
| | - Eunyoung Kim
- Institute of Occupation and Environment, Korea Workers' Compensation and Welfare Service, 478, Munemi-ro, Incheon, 21417, Korea
| | - Wonseok Cha
- Institute of Occupation and Environment, Korea Workers' Compensation and Welfare Service, 478, Munemi-ro, Incheon, 21417, Korea
| | - Jungah Shin
- Institute of Occupation and Environment, Korea Workers' Compensation and Welfare Service, 478, Munemi-ro, Incheon, 21417, Korea
| | - Byung-Soon Choi
- Institute of Occupation and Environment, Korea Workers' Compensation and Welfare Service, 478, Munemi-ro, Incheon, 21417, Korea
| | - Daeho Kim
- Institute of Occupation and Environment, Korea Workers' Compensation and Welfare Service, 478, Munemi-ro, Incheon, 21417, Korea
| | - Miyeon Kim
- Institute of Occupation and Environment, Korea Workers' Compensation and Welfare Service, 478, Munemi-ro, Incheon, 21417, Korea
| | - Wonyang Kang
- Institute of Occupation and Environment, Korea Workers' Compensation and Welfare Service, 478, Munemi-ro, Incheon, 21417, Korea
| | - Sungwon Choi
- Institute of Occupation and Environment, Korea Workers' Compensation and Welfare Service, 478, Munemi-ro, Incheon, 21417, Korea.
| |
Collapse
|
23
|
Nair AT. Bioaerosols in the landfill environment: an overview of microbial diversity and potential health hazards. AEROBIOLOGIA 2021; 37:185-203. [PMID: 33558785 PMCID: PMC7860158 DOI: 10.1007/s10453-021-09693-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/19/2021] [Indexed: 05/05/2023]
Abstract
Landfilling is one of the indispensable parts of solid waste management in various countries. Solid waste disposed of in landfill sites provides nutrients for the proliferation of pathogenic microbes which are aerosolized into the atmosphere due to the local meteorology and various waste disposal activities. Bioaerosols released from landfill sites can create health issues for employees and adjoining public. The present study offers an overview of the microbial diversity reported in the air samples collected from various landfill sites worldwide. This paper also discusses other aspects, including effect of meteorological conditions on the bioaerosol concentrations, sampling techniques, bioaerosol exposure and potential health impacts. Analysis of literature concluded that landfill air is dominated by microbial dust or various pathogenic microbes like Enterobacteriaceae, Staphylococcus aureus, Clostridium perfringens, Acinetobacter calcoaceticus and Aspergillus fumigatus. The bioaerosols present in the landfill environment are of respirable sizes and can penetrate deep into lower respiratory systems and trigger respiratory symptoms and chronic pulmonary diseases. Most studies reported higher bioaerosol concentrations in spring and summer as higher temperature and relative humidity provide a favourable environment for survival and multiplication of microbes. Landfill workers involved in solid waste disposal activities are at the highest risk of exposure to these bioaerosols due to their proximity to solid waste and as they practise minimum personal safety and hygiene measures during working hours. Workers are recommended to use personal protective equipment and practise hygiene to reduce the impact of occupational exposure to bioaerosols.
Collapse
Affiliation(s)
- Abhilash T. Nair
- Department of Applied Sciences and Humanities, National Institute of Foundry and Forge Technology (NIFFT), Hatia, Ranchi, Jharkhand 834003 India
| |
Collapse
|
24
|
Viegas C, Dias M, Almeida B, Carolino E, Viegas S. Aspergillus spp. presence on mechanical protection gloves from the waste sorting industry. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2020; 17:523-530. [PMID: 33206026 DOI: 10.1080/15459624.2020.1834113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The organic material present on waste sorting units serve as a substrate for different microorganisms, increasing workers' exposure to Aspergillus spp. This study intends to assess the Aspergillus spp. contamination on Mechanical Protection Gloves (MPG) from different workstations and understand the role of MPG in workers' exposure to these genera. Sixty-seven used MPG were collected from different workstations and extracts were seeded on malt extract agar (MEA) supplemented with chloramphenicol (0.05%) and dichloran glycerol (DG18). The same extracts were used for the molecular detection of fungal species/strains, with reported toxigenic potential, namely Aspergillus sections (Circumdati, Flavi, Fumigati, and Nidulantes). Among Aspergillus spp., the sections with the highest prevalence on MEA were Nigri (88.29%) and Fumigati (8.63%), whereas on DG18 were Nigri (31.79%) and Circumdati (30.77%). Aspergillus section Circumdati was detected in 22 MPG samples by RT-PCR (32.84%), Fumigati in 59 samples (88.06%), Nidulantes in 61 samples (91.05%), and Flavi in 6 samples (8.96%). It was showed that, even with daily replacement, MPG presented Aspergillus spp. contamination. Thus, a more regular replacement of MPG and the adoption of complementary hygienic procedures by workers are critical to guarantee workers' protection in this occupational environment.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre Universidade NOVA de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), Lisbon, Portugal
| | - Marta Dias
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Beatriz Almeida
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Elisabete Carolino
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre Universidade NOVA de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), Lisbon, Portugal
| |
Collapse
|
25
|
Viegas C, Twarużek M, Dias M, Almeida B, Carolino E, Kosicki R, Soszczyńska E, Grajewski J, Caetano LA, Viegas S. Assessment of the microbial contamination of mechanical protection gloves used on waste sorting industry: A contribution for the risk characterization. ENVIRONMENTAL RESEARCH 2020; 189:109881. [PMID: 32979993 DOI: 10.1016/j.envres.2020.109881] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
In Portugal, mechanical protection gloves (MPG) are of mandatory use and during their use sweat is released and, consequently, the humidity of the material increases leading to conditions favorable to the growth of microorganisms. However, no studies have been conducted in MPG to assess the bioburden. This study intended to determine the bioburden present in MPG and their biological effects, and to discuss the possibility to use MPG as a passive method to assess occupational exposure to microbial contamination. Fungal burden was characterized through molecular tools for fungal toxigenic species, and antifungal resistance and mycotoxins profiles were determined. Cell viability was determined in swine kidney (SK) monolayer and hepatocellular carcinoma (Hep G2) cell lines. All MPG samples presented Gram-negative bacteria. The fungal contamination ranged from 0 CFU.m-2 in both MEA and DG18, to 5.09 × 106 and 2.75 × 106 and the most commonly fungi found was Aspergillus spp. (50.46%). Azole resistant Aspergillus sections were found in azole supplemented media. Aspergillus sections (Circumdati, Flavi, Fumigati and Versicolores) were detected by molecular tools in 66 out of 67 samples. The most reported mycotoxin was mycophenolic acid (89.6%). HepG2 cells appear to be more sensitive to MPG contamination, with high cytotoxicity (IC50 < 0.05 mm2/ml) observed for 18 out of 57 gloves. MPG can be used in passive sampling to assess occupational exposure to bioburden in waste sorting industries and contribute for risk characterization. Some contaminants of MPG had cytotoxic potential and affected the biology of hepatic cells more than renal cells.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal.
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland.
| | - Marta Dias
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Beatriz Almeida
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Elisabete Carolino
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Robert Kosicki
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Ewelina Soszczyńska
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Jan Grajewski
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Liliana Aranha Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal
| |
Collapse
|
26
|
Liebers V, Brüning T, Raulf M. Occupational endotoxin exposure and health effects. Arch Toxicol 2020; 94:3629-3644. [DOI: 10.1007/s00204-020-02905-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
|
27
|
Assessment of airborne particles and bioaerosols concentrations in a waste recycling environment in Brazil. Sci Rep 2020; 10:14812. [PMID: 32908228 PMCID: PMC7481203 DOI: 10.1038/s41598-020-71787-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022] Open
Abstract
This study aims to assess the concentrations of size-fractioned particle mass (PM1.0, PM2.5, PM4.0, PM10) and number (PNC0.3, PNC0.5, PNC1.0, PNC2.5), bacteria, and fungi in a Materials Recycling Facility (MRF) in Brazil. The measurements were performed inside the waste processing shed (P1) and in the outdoor environment (P2) during working days in winter and spring of 2017, and summer of 2019. A total of 2,400 min of PM, 1,440 min of PNC, and 216 samples of bioaerosols were collected in the morning and afternoon. P1 has the strongest air contamination with mean values of 475.5 ± 563.7 µg m−3 for PM10, 58.6 ± 36.0 cm−3 for PNC0.3, 1,088.8 ± 825.2 colony-forming units per cubic meter (CFU m−3) for bacteria, and 2,738.3 ± 1,381.3 CFU m−3 for fungi. The indoor/outdoor ratios indicated the large influence of indoor sources due to the activities performed inside P1 that promote the generation and resuspension of pollutants. Gram-positive bacteria dominated with 58.6% of indoor samples. Overall, our results show a critical indoor air quality situation in a Brazilian MRF, which may cause several health risks for waste pickers. Finally, we call attention to the lack of occupational exposure limits for bioaerosols in industrial workplaces and mainly in MRFs.
Collapse
|
28
|
Karamkhani M, Asilian-Mahabadi H, Daraei B, Seidkhani-Nahal A, Noori-Zadeh A. Liver and kidney serum profile abnormalities in workers exposed to aflatoxin B1 in urban solid waste management centers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:472. [PMID: 32607657 DOI: 10.1007/s10661-020-08422-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Many workers are exposed to health problems arising from molds, fungi, and their toxins during waste processing. Aflatoxin B1 (AFB1) level in airborne and settled dust, aflatoxin B1-albumin (AFB1-Alb) adduct in serum, liver and kidney biochemical tests, and body redox change of workers in municipal dry waste-processing sites were investigated. The surface, personal, and area air dust and the blood of workers' samples were collected from the plastic and bread waste-sorting sections in three recycling municipal dry waste sites. Digestion (only for serum samples), passed through SPE cartridge, elution, and collection with methanol, immune-affinity column clean-up, and HPLC system equipped with post-column derivatization method and fluorescence detection were performed for determination of AFB1 and AFB1-Alb levels in the samples. The mean level of dust and AFB1 in the personal and area air, and in the settled dust and the AFB1-Alb in the serum of workers in the bread waste sorting, was higher than plastic waste-sorting samples, in all of the sites. The differences in the biochemical profiles of subjects exposed to aflatoxin B1 as compared to the control group especially in liver and kidney function parameters as well as antioxidant factors of the serum were significant. The workers in handling of municipal waste may be exposed to potentially hazardous levels of aflatoxin B1. The adverse effects of AFB1 on the kidney and liver may be caused by changes in the redox system.
Collapse
Affiliation(s)
- Morvarid Karamkhani
- Department of Occupational Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box. 14115-331, Iran
| | - Hassan Asilian-Mahabadi
- Department of Occupational Health, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, P.O. Box. 14115-331, Iran.
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box. 6153- 14155, Velenjak St., Shahid Chamran Highway, Tehran, Iran.
| | - Ali Seidkhani-Nahal
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Noori-Zadeh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
29
|
Viegas C, Dias M, Almeida B, Aranha Caetano L, Carolino E, Quintal Gomes A, Twarużek M, Kosicki R, Grajewski J, Marchand G, Viegas S. Are workers from waste sorting industry really protected by wearing Filtering Respiratory Protective Devices? The gap between the myth and reality. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:856-867. [PMID: 31835063 DOI: 10.1016/j.wasman.2019.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 05/22/2023]
Abstract
One of the solutions for decreasing the workers' exposure to bioburden is the use of Filtering Respiratory Protective Devices (FRPD). As such it is important to determine whether these devices are fulfilling their protective role. This is the basis of the current study, aimed at characterizing bioburden retained by 120 FRPD (both in interior layers and in exhalation valves) through culture based-methods and molecular tools and also via analysis of antifungal resistance and mycotoxins profile. Our results show that Gram - Bacteria are present at a higher prevalence than total bacteria in both matrixes. Regarding fungal identification, Chrysonilia sitophila presented the highest prevalence on interior layers (55.1% on malt extract agar (MEA) supplemented with chloramphenicol (0.05%); 59.6% on dichloran-glycerol agar (DG18)), whereas on exhalation valves Aspergillus sp. presented the highest prevalence on MEA (6.8%) and C. sitophila on DG18 (36.3%). Among Aspergillus genera, section Fumigati was the one with the highest prevalence in both matrices. Aspergillus sp. was the most prevalent on exhalation valves (75.0% ITRA) in the screening of azole resistance. Fumigati section was the most abundant Aspergillus sp. detected on the interior layers (33.33%, 40 samples out of 120) and on the exhalation valves (1.66%, 2 samples out of 120). The interior layers and exhalation valves from workers with more waste contact showed an increased exposure to bioburden. This study showed that FRPD can have high levels of bioburden, toxigenic fungal strains and Aspergillus sections with reduced susceptibility to the tested azoles and can be used as a passive sampling method since it mimics the results obtained by active methods in previous studies. The gathered information will be useful to prioritize multiple interventions on workers' education or even on FRPD replacement frequency.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Centro de Investigação em Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal.
| | - Marta Dias
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Beatriz Almeida
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Liliana Aranha Caetano
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Elisabete Carolino
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal
| | - Anita Quintal Gomes
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; University of Lisbon Institute of Molecular Medicine, Faculty of Medicine, Lisbon, Portugal
| | - Magdalena Twarużek
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Robert Kosicki
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Jan Grajewski
- Kazimierz Wielki University, Faculty of Biological Sciences, Department of Physiology and Toxicology, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
| | - Geneviève Marchand
- Institut de recherche Robert-Sauvé en santé et sécurité du travail, Montréal, Canada
| | - Susana Viegas
- H&TRC - Health & Technology Research Center, ESTeSL - Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Centro de Investigação em Saúde Pública, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
| |
Collapse
|
30
|
Brągoszewska E, Biedroń I, Hryb W. Microbiological Air Quality and Drug Resistance in Airborne Bacteria Isolated from a Waste Sorting Plant Located in Poland-A Case Study. Microorganisms 2020; 8:E202. [PMID: 32023994 PMCID: PMC7074821 DOI: 10.3390/microorganisms8020202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 01/24/2023] Open
Abstract
International interests in biological air pollutants have increased rapidly to broaden the pool of knowledge on their identification and health impacts (e.g., infectious, respiratory diseases and allergies). Antibiotic resistance and its wider implications present us with a growing healthcare crisis, and an increased understanding of antibiotic-resistant bacteria populations should enable better interpretation of bioaerosol exposure found in the air. Waste sorting plant (WSP) activities are a source of occupational bacterial exposures that are associated with many health disorders. The objectives of this study were (a) to assess bacterial air quality (BAQ) in two cabins of a WSP: preliminary manual sorting cabin (PSP) and purification manual sorting cabin (quality control) (QCSP), (b) determine the particle size distribution (PSD) of bacterial aerosol (BA) in PSP, QCSP, and in the outdoor air (OUT), and (c) determine the antibiotic resistance of isolated strains of bacteria. Bacterial strains were identified on a Biolog GEN III (Biolog, Hayward, CA, USA), and disc diffusion method for antimicrobial susceptibility testing was carried out according to the Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. A large share of fecal bacteria, Enterococcus faecalis and Alcaligenes faecalis spp. feacalis, was found in the tested indoor air, which is a potential health hazard to the workers of the monitored WSP. Our results demonstrate the necessity to take into account fecal air pollution levels to avoid making erroneous assumptions regarding the environmental selection of antibiotic resistance. Total elimination of many anthropogenic sources is not possible, but important findings of this study can be used to develop realistic management policies methods to improve BAQ.
Collapse
Affiliation(s)
- Ewa Brągoszewska
- Faculty of Power and Environmental Engineering, Department of Technologies and Installations for Waste Management, Silesian University of Technology, 18 Konarskiego St., 44-100 Gliwice, Poland;
| | - Izabela Biedroń
- Institute for Ecology of Industrial Areas, Environmental Microbiology Unit, 6 Kossutha St., 40-844 Katowice, Poland;
| | - Wojciech Hryb
- Faculty of Power and Environmental Engineering, Department of Technologies and Installations for Waste Management, Silesian University of Technology, 18 Konarskiego St., 44-100 Gliwice, Poland;
| |
Collapse
|
31
|
Madsen AM, Frederiksen MW, Bjerregaard M, Tendal K. Measures to reduce the exposure of waste collection workers to handborne and airborne microorganisms and inflammogenic dust. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 101:241-249. [PMID: 31630069 DOI: 10.1016/j.wasman.2019.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/23/2019] [Accepted: 10/10/2019] [Indexed: 05/21/2023]
Abstract
Waste collection is associated with various health symptoms. The aims of this study were to obtain knowledge about exposure to bacteria, fungi, and endotoxin during waste collection, and to study whether it is possible to reduce the exposures and the total inflammatory potential (TIP) of those exposures through simple interventions. The study was performed with an initial baseline exposure assessment, a second assessment with intervention workers only, and a third with intervention and reference workers. The waste collection workers were exposed to 7.8 × 103 cfu bacteria/m3, 1.4 × 104 cfu fungi/m3, and 92 endotoxin units/m3 (geometric mean values). The potential exposures in the truck cabs were up to 23 times higher than outdoor reference concentrations. For the intervention trucks and workers, airborne fungi in the truck cab were reduced; fungi, bacteria, and yeasts on the steering wheels were reduced; and the concentration of fungi on the workers' hands was reduced. Exposures were typically highest during collection of mixed household waste, in the summer, and for collection using trucks with low loading height. The TIP was highest for the reference group sampling mixed household waste, using trucks with low loading height, in the summer. Endotoxin, bacteria, and fungi contributed to the TIP of 42 personal exposure assessments. CONCLUSION: Motivating workers to reduce exposure through simple interventions improved hand and truck cab hygiene, but only slightly reduced personal exposure to airborne bioaerosols. Exposure can be reduced by only using trucks with high loading height.
Collapse
Affiliation(s)
- Anne Mette Madsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark.
| | - Margit W Frederiksen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Mette Bjerregaard
- The Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark
| | - Kira Tendal
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
32
|
Occupational Exposure to Endotoxin along a Municipal Scale Fecal Sludge Collection and Resource Recovery Process in Kigali, Rwanda. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234740. [PMID: 31783533 PMCID: PMC6926866 DOI: 10.3390/ijerph16234740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 11/29/2022]
Abstract
Background: Little is known about occupational exposures that occur along fecal sludge collection and resource recovery processes. This study characterizes inhaled endotoxin exposure to workers of a municipal scale fecal sludge-to-fuel processes in Kigali, Rwanda. Methods: Forty-two task-based air samples were collected from workers in five tasks along the fecal sludge collection and resource recovery process. Samples were processed for endotoxin using the limulus amebocyte lysate (LAL) test. To account for exposure variability and compare measured concentrations to established exposure limits, we used Monte Carlo modeling methods to construct distributions representing full eight-hour (8-h) exposures to endotoxin across eight exposure scenarios. Results: Geometric mean (GM) endotoxin concentrations in task-based samples ranged from 11–3700 EU/m3 with exposure concentrations increasing as the dryness of the fecal sludge increased through processing. The thermal dryer task had the highest endotoxin concentrations (GM = 3700 EU/m3) and the inlet task had the lowest (GM = 11 EU/m3). The geometric means (GM) of modeled 8-h exposure concentrations were between 6.7–960 EU/m3 and highest for scenarios which included the thermal dryer task in the exposure scenario. Conclusions: Our data suggest the importance of including worker exposure considerations in the design of nascent fecal sludge management processes. The methods used in this study combine workplace sampling with stochastic modeling and are useful for exposure assessment in resource constrained contexts.
Collapse
|
33
|
Brągoszewska E. Exposure to Bacterial and Fungal Aerosols: Microorganism Indices in A Waste-Sorting Plant in Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183308. [PMID: 31505746 PMCID: PMC6765772 DOI: 10.3390/ijerph16183308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
An increased understanding of airborne microorganism populations should enable a better interpretation of bioaerosol exposure found in a working environment. An assessment of the contamination levels of mesophilic bacterial aerosol (MBA) and fungal aerosol (FA) was carried out using two evaluation indices for microbiological pollution—the total index of microbiological contamination per cubic meter (TIMC/m3) and the indoor–outdoor index (IOI). An advantage of selected indices is the inclusion of several co-existing factors that have an impact on the formation of bioaerosol. When properly used, they also highlight the low efficiency of the ventilation system caused by an insufficient air exchange. In this study, the microbial air quality (MAQ) of the working environment was assessed during the spring season at a sorting plant located in Southern Poland. Sampling was undertaken in the plant using an Andersen six-stage impactor which allows the obtainment of information about the size distribution of the air microflora. The value of average concentrations of MBA and the average concentration of FA collected in the preliminary cabin of the sorting plant (PCSP) and the cleaning cabin of the sorting plant (CCSP) were analyzed. The obtained values of MBA were 1.6 times higher indoors, compared to outdoors, while FA was 1.7 times higher outdoors than indoors. The maximum TIMC/m3 value was obtained in PCSP (2626). The calculated IOI in this study suggests that MBA concentrations are influenced by internal sources, as opposed to FA. The purpose of this work was to present the usefulness of using indices in assessing air quality.
Collapse
Affiliation(s)
- Ewa Brągoszewska
- Department of Technologies and Installations for Waste Management, Faculty of Power and Environmental Engineering, Silesian University of Technology, 18 Konarskiego St., 44-100 Gliwice, Poland.
| |
Collapse
|
34
|
Air Quality and Potential Health Risk Impacts of Exposure to Bacterial Aerosol in a Waste Sorting Plant Located in the Mountain Region of Southern Poland, Around Which There Are Numerous Rural Areas. ATMOSPHERE 2019. [DOI: 10.3390/atmos10070360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many studies have shown an association between working in waste sorting plants (SP) and occupational health problems, such as skin irritation or pulmonary diseases. These symptoms have been related to biological aerosol exposure. The main goal of this work was to assess the levels of concentration and the characteristics of bacterial aerosols in waste sorting plants, based on measurements taken in a plant located in the mountain region of Southern Poland, around which there are numerous rural areas. The average concentrations of culturable bacterial aerosol (CCBA) collected in the unloading hall of the waste sorting plant (UHSP) and the outdoor air of the sorting plant (OSP) were 2687 CFU/m3 and 1138 CFU/m3, respectively. Sampling was undertaken in the plant using an Andersen six-stage impactor (with aerodynamic cut-off diameters of 7.0, 4.7, 3.3, 2.1, 1.1, and 0.65 μm), during the spring of 2019. Size distributions were unimodal, with a peak in particle bacterial aerodynamic diameters at less than 3.3 µm, increasing the potentially adverse health effects of their inhalation. An analysis was conducted to determine the antibiotic resistance of isolated strains of bacteria. During the study, it was found that isolates belonging to the genus Bacillus were most frequently detected in the waste sorting plant. Isolates with the highest resistance to antibiotics belonged to the genus Neisseria. This test indicates that the use of personal protective equipment is necessary.
Collapse
|
35
|
Lee MS, Allen JG, Christiani DC. Endotoxin and [Formula: see text] Contamination in Electronic Cigarette Products Sold in the United States. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:047008. [PMID: 31017484 PMCID: PMC6785222 DOI: 10.1289/ehp3469] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cigarette smoke contains microbes and microbial toxins, such as endotoxin and [Formula: see text], that may have adverse respiratory effects. To our knowledge, the potential for contamination of electronic cigarette (EC) products sold in the United States has not been investigated. OBJECTIVES We aimed to determine whether popular cartridge and e-liquid EC products were contaminated with endotoxin or glucan and to examine differences according to the type and flavor of products. METHODS We selected 37 cartridges and 38 e-liquid products with the highest nicotine content from the ten top-selling U.S. brands. Flavors were classified into four groups: tobacco, menthol, fruit, and other. Endotoxin and glucan were measured using an endotoxin-specific kinetic turbidimetric assay and a Glucatell® Kinetic Assay (Associates of Cape Cod, Inc.), respectively. RESULTS Endotoxin concentrations were over the limit of detection (LOD) in 17 of 75 products tested (23%), and glucan concentrations were greater than LOD in 61 of 75 products (81%). After adjusting for brand and flavor, the mean glucan concentration was 3.2 times higher [95% confidence interval (CI): [Formula: see text], 18.4] in cartridge vs. e-liquid samples. After adjusting for brand and type of product, glucan concentrations in tobacco- and menthol-flavored ECs were 10.4 (95% CI: 1.8, 44.9) and 3.5 (95% CI: 0.1, 17.3) times higher than concentrations found in fruit-flavored products. CONCLUSIONS EC products may be contaminated with microbial toxins. Further studies with large representative samples of products are needed to confirm our findings, identify sources and routes of contamination, and evaluate health effects associated with the use of contaminated products. https://doi.org/10.1289/EHP3469.
Collapse
Affiliation(s)
- Mi-Sun Lee
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Joseph G. Allen
- Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David C. Christiani
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Madsen AM, Frederiksen MW, Mahmoud Kurdi I, Sommer S, Flensmark E, Tendal K. Expanded cardboard waste sorting and occupational exposure to microbial species. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:345-356. [PMID: 31109535 DOI: 10.1016/j.wasman.2019.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Member states of the European Union have to maximize recycling. The current, Danish cardboard recycling system can be improved by increasing the kinds of cardboard products that can be recycled to include e.g. used beverage cartons and pizza boxes (i.e. an expanded cardboard fraction (ECF)). This study aims to obtain knowledge about exposure to airborne endotoxin and microorganisms at species level at different collection frequencies of ECF, and whether an increase in waste sorted fractions means that each waste fraction is collected less frequently. Bacterial and endotoxin concentrations were associated significantly with temperature inside the waste containers and endotoxin and fungal exposures with collection frequency. The concentration of fungi was highest at the truck back and for reduced collection frequencies. The geometric mean diameters of particles with bacteria were between 3.0 and 5.2 μm and with fungi between 3.8 μm and 6.0 μm. In total, 81 and 25 different bacterial and fungal species were found at the waste receiving plant, respectively. Work with ECF caused exposures to food-related microorganisms (e.g. Arthrobacter arilaitensis and Penicillium camemberti), potential pathogens (e.g. Bacillus cereus, Salmonella sp. and P. expansum), and commensal bacteria. Bacillus cereus and Salmonella were found in the particle size fraction often being swallowed. Workers collecting EFC will be at risk of being exposed to microbial species that normally are related to residual waste. It seems to be advisable with an EFC collection frequency shorter than eight weeks. However, introduction of new waste fractions has generally been associated with reduced collection frequencies.
Collapse
Affiliation(s)
- Anne Mette Madsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark.
| | - Margit W Frederiksen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Iman Mahmoud Kurdi
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Sussi Sommer
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Elisabeth Flensmark
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Kira Tendal
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
37
|
Environmental microbiology: Perspectives for legal and occupational medicine. Leg Med (Tokyo) 2018; 35:34-43. [DOI: 10.1016/j.legalmed.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/09/2018] [Accepted: 09/23/2018] [Indexed: 11/18/2022]
|
38
|
Sources of Airborne Endotoxins in Ambient Air and Exposure of Nearby Communities—A Review. ATMOSPHERE 2018. [DOI: 10.3390/atmos9100375] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endotoxin is a bioaerosol component that is known to cause respiratory effects in exposed populations. To date, most research focused on occupational exposure, whilst much less is known about the impact of emissions from industrial operations on downwind endotoxin concentrations. A review of the literature was undertaken, identifying studies that reported endotoxin concentrations in both ambient environments and around sources with high endotoxin emissions. Ambient endotoxin concentrations in both rural and urban areas are generally below 10 endotoxin units (EU) m−3; however, around significant sources such as compost facilities, farms, and wastewater treatment plants, endotoxin concentrations regularly exceeded 100 EU m−3. However, this is affected by a range of factors including sampling approach, equipment, and duration. Reported downwind measurements of endotoxin demonstrate that endotoxin concentrations can remain above upwind concentrations. The evaluation of reported data is complicated due to a wide range of different parameters including sampling approaches, temperature, and site activity, demonstrating the need for a standardised methodology and improved guidance. Thorough characterisation of ambient endotoxin levels and modelling of endotoxin from pollution sources is needed to help inform future policy and support a robust health-based risk assessment process.
Collapse
|
39
|
Nasiry F, Nasehi F, Hazrati S, Raeisi E, Karamati E. Exposure of Ardabil Municipal Waste Workers to Bacterial Bio-Aerosols in 2017. ACTA ACUST UNITED AC 2018. [DOI: 10.29252/j.health.9.2.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
40
|
Kim KH, Kabir E, Jahan SA. Airborne bioaerosols and their impact on human health. J Environ Sci (China) 2018; 67:23-35. [PMID: 29778157 PMCID: PMC7128579 DOI: 10.1016/j.jes.2017.08.027] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/24/2017] [Accepted: 08/30/2017] [Indexed: 05/19/2023]
Abstract
Bioaerosols consist of aerosols originated biologically such as metabolites, toxins, or fragments of microorganisms that are present ubiquitously in the environment. International interests in bioaerosols have increased rapidly to broaden the pool of knowledge on their identification, quantification, distribution, and health impacts (e.g., infectious and respiratory diseases, allergies, and cancer). However, risk assessment of bioaerosols based on conventional culture methods has been hampered further by several factors such as: (1) the complexity of microorganisms or derivatives to be investigated; (2) the purpose, techniques, and locations of sampling; and (3) the lack of valid quantitative criteria (e.g., exposure standards and dose/effect relationships). Although exposure to some microbes is considered to be beneficial for health, more research is needed to properly assess their potential health hazards including inter-individual susceptibility, interactions with non-biological agents, and many proven/unproven health effects (e.g., atopy and atopic diseases).
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Ehsanul Kabir
- Department of Farm, Power & Machinery, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | |
Collapse
|
41
|
Viegas C, Faria T, de Oliveira AC, Caetano LA, Carolino E, Quintal-Gomes A, Twarużek M, Kosicki R, Soszczyńska E, Viegas S. A new approach to assess occupational exposure to airborne fungal contamination and mycotoxins of forklift drivers in waste sorting facilities. Mycotoxin Res 2017; 33:285-295. [DOI: 10.1007/s12550-017-0288-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 10/19/2022]
|
42
|
Ncube F, Ncube EJ, Voyi K. Bioaerosols, Noise, and Ultraviolet Radiation Exposures for Municipal Solid Waste Handlers. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2017; 2017:3081638. [PMID: 28167969 PMCID: PMC5266811 DOI: 10.1155/2017/3081638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/25/2016] [Indexed: 11/29/2022]
Abstract
Few studies have investigated the occupational hazards of municipal solid waste workers, particularly in developing countries. Resultantly these workers are currently exposed to unknown and unabated occupational hazards that may endanger their health. We determined municipal solid waste workers' work related hazards and associated adverse health endpoints. A multifaceted approach was utilised comprising bioaerosols sampling, occupational noise, thermal conditions measurement, and field based waste compositional analysis. Results from our current study showed highest exposure concentrations for Gram-negative bacteria (6.8 × 103 cfu/m3) and fungi (12.8 × 103 cfu/m3), in the truck cabins. Significant proportions of toxic, infectious, and surgical waste were observed. Conclusively, municipal solid waste workers are exposed to diverse work related risks requiring urgent sound interventions. A framework for assessing occupational risks of these workers must prioritize performance of exposure assessment with regard to the physical, biological, and chemical hazards of the job.
Collapse
Affiliation(s)
- France Ncube
- School of Health Systems and Public Health (SHSPH), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Esper Jacobeth Ncube
- School of Health Systems and Public Health (SHSPH), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Kuku Voyi
- School of Health Systems and Public Health (SHSPH), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
43
|
Carducci A, Donzelli G, Cioni L, Verani M. Quantitative Microbial Risk Assessment in Occupational Settings Applied to the Airborne Human Adenovirus Infection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13070733. [PMID: 27447658 PMCID: PMC4962274 DOI: 10.3390/ijerph13070733] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 12/31/2022]
Abstract
Quantitative Microbial Risk Assessment (QMRA) methodology, which has already been applied to drinking water and food safety, may also be applied to risk assessment and management at the workplace. The present study developed a preliminary QMRA model to assess microbial risk that is associated with inhaling bioaerosols that are contaminated with human adenovirus (HAdV). This model has been applied to air contamination data from different occupational settings, including wastewater systems, solid waste landfills, and toilets in healthcare settings and offices, with different exposure times. Virological monitoring showed the presence of HAdVs in all the evaluated settings, thus confirming that HAdV is widespread, but with different average concentrations of the virus. The QMRA results, based on these concentrations, showed that toilets had the highest probability of viral infection, followed by wastewater treatment plants and municipal solid waste landfills. Our QMRA approach in occupational settings is novel, and certain caveats should be considered. Nonetheless, we believe it is worthy of further discussions and investigations.
Collapse
Affiliation(s)
- Annalaura Carducci
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy.
| | - Gabriele Donzelli
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy.
| | - Lorenzo Cioni
- Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa 56126, Italy.
| | - Marco Verani
- Laboratory of Hygiene and Environmental Virology, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy.
| |
Collapse
|
44
|
Mataloni F, Badaloni C, Golini MN, Bolignano A, Bucci S, Sozzi R, Forastiere F, Davoli M, Ancona C. Morbidity and mortality of people who live close to municipal waste landfills: a multisite cohort study. Int J Epidemiol 2016; 45:806-15. [PMID: 27222499 PMCID: PMC5005946 DOI: 10.1093/ije/dyw052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The evidence on the health effects related to residing close to landfills is controversial. Nine landfills for municipal waste have been operating in the Lazio region (Central Italy) for several decades. We evaluated the potential health effects associated with contamination from landfills using the estimated concentration of hydrogen sulphide (H2S) as exposure. METHODS A cohort of residents within 5 km of landfills was enrolled (subjects resident on 1 January 1996 and those who subsequently moved into the areas until 2008) and followed for mortality and hospitalizations until 31 December 2012. Assessment of exposure to the landfill (H2S as a tracer) was performed for each subject at enrolment, using a Lagrangian dispersion model. Information on several confounders was available (gender, age, socioeconomic position, outdoor PM10 concentration, and distance from busy roads and industries). Cox regression analysis was performed [Hazard Ratios (HRs), 95% confidence intervals (CIs)]. RESULTS The cohort included 242 409 individuals. H2S exposure was associated with mortality from lung cancer and respiratory diseases (e.g. HR for increment of 1 ng/m(3) H2S: 1.10, 95% CI 1.02-1.19; HR 1.09, 95% CI 1.00-1.19, respectively). There were also associations between H2S and hospitalization for respiratory diseases (HR = 1.02, 95% CI 1.00-1.03), especially acute respiratory infections among children (0-14 years) (HR = 1.06, 95% CI 1.02-1.11). CONCLUSIONS Exposure to H2S, a tracer of airborne contamination from landfills, was associated with lung cancer mortality as well as with mortality and morbidity for respiratory diseases. The link with respiratory disease is plausible and coherent with previous studies, whereas the association with lung cancer deserves confirmation.
Collapse
Affiliation(s)
| | - Chiara Badaloni
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | | | | | - Simone Bucci
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | | | | | - Marina Davoli
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Carla Ancona
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| |
Collapse
|
45
|
Madsen AM, Alwan T, Ørberg A, Uhrbrand K, Jørgensen MB. Waste Workers’ Exposure to Airborne Fungal and Bacterial Species in the Truck Cab and During Waste Collection. ANNALS OF OCCUPATIONAL HYGIENE 2016; 60:651-68. [PMID: 27098185 PMCID: PMC4915520 DOI: 10.1093/annhyg/mew021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 12/30/2022]
Abstract
A large number of people work with garbage collection, and exposure to microorganisms is considered an occupational health problem. However, knowledge on microbial exposure at species level is limited. The aim of the study was to achieve knowledge on waste collectors’ exposure to airborne inhalable fungal and bacterial species during waste collection with focus on the transport of airborne microorganisms into the truck cab. Airborne microorganisms were collected with samplers mounted in the truck cab, on the workers’ clothes, and outdoors. Fungal and bacterial species were quantified and identified. The study showed that the workers were exposed to between 112 and 4.8×104 bacteria m−3 air and 326 and 4.6×104 fungi m−3 air. The personal exposures to bacteria and fungi were significantly higher than the concentrations measured in the truck cabs and in the outdoor references. On average, the fungal and bacterial concentrations in truck cabs were 111 and 7.7 times higher than outdoor reference measurements. In total, 23 fungal and 38 bacterial species were found and identified. Most fungal species belonged to the genus Penicillium and in total 11 Penicillium species were found. Identical fungal species were often found both in a personal sample and in the same person’s truck cab, but concentrations were on average 27 times higher in personal samples. Concentrations of fungal and bacterial species found only in the personal samples were lower than concentrations of species also found in truck cabs. Skin-related bacteria constituted a large fraction of bacterial isolates found in personal and truck cab samples. In total, six Staphylococcus species were found. In outdoor samples, no skin-related bacteria were found. On average, concentrations of bacterial species found both in the truck cab and personal samples were 77 times higher in personal samples than in truck cab samples. In conclusion, high concentrations of fungi were found in truck cabs, but the highest concentrations were found in personal samples; fungal and bacterial species found in high concentrations in personal samples were also found in truck cabs, but in lower concentrations indicating that both fungi and bacteria are transported by the workers into the truck cab, and are subsequently aerosolized in the truck cab.
Collapse
Affiliation(s)
- Anne Mette Madsen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Taif Alwan
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Anders Ørberg
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Katrine Uhrbrand
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Marie Birk Jørgensen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
46
|
Schlosser O, Déportes IZ, Facon B, Fromont E. Extension of the sorting instructions for household plastic packaging and changes in exposure to bioaerosols at materials recovery facilities. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 46:47-55. [PMID: 26116007 DOI: 10.1016/j.wasman.2015.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to assess how extending the sorting instructions for plastic packaging would affect the exposure of workers working at materials recovery facility (MRF) to dust, endotoxins, fungi and bacteria, taking into consideration other factors that could have an influence on this exposure. Personal sampling was carried out at four MRFs during six sampling campaigns at each facility, both in sorting rooms and when the workers were involved in "mobile tasks" away from the rooms. The data was analysed by describing the extension of sorting instructions both using a qualitative variable (after vs before) and using data for the pots and trays recycling stream, including or excluding plastic film. Overall, before the extension of the sorting guidelines, the geometric mean of personal exposure levels in sorting rooms was 0.3mg/m(3) for dust, 27.7 EU/m(3) for endotoxins, 13,000 CFU/m(3) for fungi and 1800 CFU/m(3) for bacteria. When workers were involved in mobile tasks away from the rooms, these averages were 0.5mg/m(3), 25.7 EU/m(3), 28,000 CFU/m(3) and 5100 CFU/m(3) respectively.The application by households of instructions to include pots, trays and film with other recyclable plastic packaging led to an increase in exposure to endotoxins, fungi and bacteria at MRFs. For an increase of 0.5 kg per inhabitant per year in the pots, trays and film recycling stream, exposure in sorting rooms rose by a factor of 1.4-2.2, depending on the biological agent. Exposure during mobile tasks increased by a factor of 3.0-3.6. The age of the waste amplified the effect of the extension of sorting instructions on exposure to fungi, bacteria and endotoxins. Factors that had a significant influence on the exposure of workers to dust and/or bioaerosols included the presence of paper, newspapers and magazines in the sorted waste, the order in which incoming waste was treated and the quality of the ventilation system in the sorting rooms. The levels of exposure observed in this study highlight the need to implement appropriate preventive measures against bioaerosols at MRFs for dry waste. There are grounds to justify these preventive measures, both inside sorting rooms and for the MRF as a whole, regardless of whether the decision to extend sorting instructions for household plastic waste is adopted.
Collapse
Affiliation(s)
- O Schlosser
- SUEZ Environnement(1), 38 rue du Président Wilson, 78230 Le Pecq, France.
| | - I Z Déportes
- Agence de l'Environnement et de la Maîtrise de l'Énergie (ADEME), Service Mobilisation et Valorisation des Déchets, BP 90406, 49004 Angers Cedex 01, France.
| | - B Facon
- CRAMIF, Laboratoire des Biocontaminants, 17-19 avenue de Flandre, 67954 Paris Cedex 19, France.
| | - E Fromont
- Eco-Emballages, 50 boulevard Haussmann, 75009 Paris, France.
| |
Collapse
|
47
|
Viegas C, Faria T, dos Santos M, Carolino E, Gomes AQ, Sabino R, Viegas S. Fungal burden in waste industry: an occupational risk to be solved. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:199. [PMID: 25796518 DOI: 10.1007/s10661-015-4412-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
High loads of fungi have been reported in different types of waste management plants. This study intends to assess fungal contamination in one waste-sorting plant before and after cleaning procedures in order to analyze their effectiveness. Air samples of 50 L were collected through an impaction method, while surface samples, taken at the same time, were collected by the swabbing method and subject to further macro- and microscopic observations. In addition, we collected air samples of 250 L using the impinger Coriolis μ air sampler (Bertin Technologies) at 300 L/min airflow rate in order to perform real-time quantitative PCR (qPCR) amplification of genes from specific fungal species, namely Aspergillus fumigatus and Aspergillus flavus complexes, as well as Stachybotrys chartarum species. Fungal quantification in the air ranged from 180 to 5,280 CFU m(-3) before cleaning and from 220 to 2,460 CFU m(-3) after cleaning procedures. Surfaces presented results that ranged from 29×10(4) to 109×10(4) CFU m(-2) before cleaning and from 11×10(4) to 89×10(4) CFU m(-2) after cleaning. Statistically significant differences regarding fungal load were not detected between before and after cleaning procedures. Toxigenic strains from A. flavus complex and S. chartarum were not detected by qPCR. Conversely, the A. fumigatus species was successfully detected by qPCR and interestingly it was amplified in two samples where no detection by conventional methods was observed. Overall, these results reveal the inefficacy of the cleaning procedures and that it is important to determine fungal burden in order to carry out risk assessment.
Collapse
Affiliation(s)
- Carla Viegas
- Environment and Health RG, Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Lisbon, Portugal,
| | | | | | | | | | | | | |
Collapse
|
48
|
Pinto MJDV, Veiga JM, Fernandes P, Ramos C, Gonçalves S, Velho MMLV, Guerreiro JS. Airborne microorganisms associated with packaging glass sorting facilities. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:685-696. [PMID: 26039746 DOI: 10.1080/15287394.2015.1021942] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recent years, efforts have been undertaken to reduce the volume of residual waste through sorting and recycling. The waste management and recycling sector is thriving and the number of workers there is increasing. In this context, prior knowledge of the risks to which workers may be exposed is of crucial importance, and preventive measures need to be put in place to accurately identify and quantify those risks. This study aimed to assess occupational risk of exposure to biological agents (viable bacteria and fungi) in a Portuguese waste packaging glass sorting plant. Air samples were collected from selected locations in waste sorting cabins (critical area, CA), administrative services (noncritical area, NCA) and outdoors (control point, CP). Duplicate air samples were collected through an impaction method. The investigation was carried out over an 8-mo period with two collection periods, autumn/winter (AW) and spring/summer (SS), in order to access the influence of any seasonal variation. In the 36 air samples collected, 319 bacterial and 196 mold identifications were performed. Air samples revealed existence of high environmental contamination by bacteria (1.6 × 10(4) colony forming units [cfu]/m(3)) and fungi (1.5 × 10(4) cfu/m(3)). The predominant bacterial genus was Staphylococcus (coagulase negative) with values ranging from 29.6 to 60% of the total count of bacteria. Genera Bacillus, Micrococcus, and Staphylococcus (coagulase negative) were also present at all sampling sites, regardless of the season. However, the counts of these genera, in the CA, were higher in warmer seasons. The genus Penicillium was the most frequent genus present with an approximate value of 95% of total fungal count in the CA. Seasonal variation was a significant factor for total bacteria and fungi, except for NCA versus CP. Overall, the highest levels of bacterial and fungal species (10(4) cfu/m(3)) were found in the waste sorting cabin (CA). These results highlight the importance of proper design and risk evaluation when planning a new waste facility, such that working conditions minimize proliferation of biological agents in the workplace.
Collapse
|
49
|
Occupational exposure to particulate matter in 2 Portuguese waste-sorting units. Int J Occup Med Environ Health 2014; 27:854-62. [DOI: 10.2478/s13382-014-0310-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 06/05/2014] [Indexed: 11/20/2022] Open
|
50
|
Viegas S, Veiga L, Figueiredo P, Almeida A, Carolino E, Viegas C. Assessment of workers' exposure to aflatoxin B1 in a Portuguese waste industry. ACTA ACUST UNITED AC 2014; 59:173-81. [PMID: 25324565 DOI: 10.1093/annhyg/meu082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aflatoxin B1 (AFB1) is considered by different International Agencies as a genotoxic and potent hepatocarcinogen. However, despite the fact that the fungi producing this compound are detected in some work environments, AFB1 is rarely monitored in occupational settings. The aim of the present investigation was to assess exposure to AFB1 of workers from one Portuguese waste company located in the outskirt of Lisbon. Occupational exposure assessment to AFB1 was done with a biomarker of internal dose that measures AFB1 in the serum by enzyme-linked immunosorbent assay. Forty-one workers from the waste company were enrolled in this study (26 from sorting; 9 from composting; 6 from incineration). A control group (n = 30) was also considered in order to know the AFB1 background levels for the Portuguese population. All the workers showed detectable levels of AFB1 with values ranging from 2.5ng ml(-1) to 25.9ng ml(-1) with a median value of 9.9±5.4ng ml(-1). All of the controls showed values below the method's detection limit. Results obtained showed much higher (8-fold higher) values when compared with other Portuguese settings already studied, such as poultry and swine production. Besides this mycotoxin, other mycotoxins are probably present in this occupational setting and this aspect should be taken into consideration for the risk assessment process due to possible synergistic reactions. The data obtained suggests that exposure to AFB1 occurs in a waste management setting and claims attention for the need of appliance of preventive and protective safety measures.
Collapse
Affiliation(s)
- Susana Viegas
- 1.Environment and Health RG, Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Av. D. João II, lote 4.69.01, Parque das Nações, 1990-096 Lisbon, Portugal 2.Center for Malaria & Tropical Diseases (CMDT), Public Health and Policy, Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Avenida Padre Cruz, 1600-560 Lisboa, Portugal
| | - Luisa Veiga
- 3.Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Lisbon, Portugal
| | - Paula Figueiredo
- 3.Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Lisbon, Portugal
| | - Ana Almeida
- 3.Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Lisbon, Portugal
| | - Elisabete Carolino
- 1.Environment and Health RG, Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Av. D. João II, lote 4.69.01, Parque das Nações, 1990-096 Lisbon, Portugal
| | - Carla Viegas
- 1.Environment and Health RG, Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Av. D. João II, lote 4.69.01, Parque das Nações, 1990-096 Lisbon, Portugal
| |
Collapse
|