1
|
Yan L, Wen Z, Yang Y, Liu A, Li F, Zhang Y, Yang C, Li Y, Zhang Y. Dissecting the roles of prosaposin as an emerging therapeutic target for tumors and its underlying mechanisms. Biomed Pharmacother 2024; 180:117551. [PMID: 39405903 DOI: 10.1016/j.biopha.2024.117551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
As a dual-function protein, prosaposin (PSAP) is a lysosome-associated protein that participates in a variety of cellular processes. In the lysosome, PSAP is processed to activate enzymes that degrade lipids. In addition, PSAP proteins located extracellularly are involved in cancer progression, such as proliferation and tumor death suppression signaling. Moreover, under different situations, PSAP exhibits distinct metastasis potentials in tumors. However, comprehensive insight into PSAP in cancer progression has been lacking. Here, we provide a framework of the role of PSAP in cancer and its clinical application in cancer patients, providing a novel perspective on the clinical translation of PSAP.
Collapse
Affiliation(s)
- Lirong Yan
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Zhenpeng Wen
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yi Yang
- Department of Laboratory Animal Science, China Medical University, Shenyang, China
| | - Aoran Liu
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Fang Li
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Yuzhe Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Chunjiao Yang
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, Guangxi, China
| | - Yanke Li
- Department of Anorectal Surgery, the First Hospital of China Medical University, Shenyang, China.
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
2
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Okuizumi R, Harata R, Okamoto M, Sato S, Sugawara K, Aida Y, Nakamura A, Fujisawa A, Yamamoto Y, Kashiba M. Resveratrol is converted to the ring portion of coenzyme Q10 and raises intracellular coenzyme Q10 levels in HepG2 cell. J Clin Biochem Nutr 2024; 75:118-124. [PMID: 39345294 PMCID: PMC11425075 DOI: 10.3164/jcbn.24-70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/18/2024] [Indexed: 10/01/2024] Open
Abstract
Coenzyme Q10 is an essential lipid in the mitochondrial electron transport system and an important antioxidant. It declines with age and in various diseases, there is a need for a method to compensate for the decrease in coenzyme Q10. Resveratrol, a well-known anti-aging compound, has been shown to undergo metabolism to coenzyme Q10's benzene ring moiety in cells. However, administration of resveratrol did not alter or only slightly increased total intracellular coenzyme Q10 levels in many cell types. Synthesis of coenzyme Q10 requires not only the benzene ring moiety but also the side chain moiety. Biosynthesis of the side chain portion of coenzyme Q10 is mediated by the mevalonic acid pathway. Here, we explore the impact of resveratrol on coenzyme Q10 levels in HepG2 cells, which possess a robust mevalonic acid pathway. As a results, intracellular coenzyme Q10 levels were increased by resveratrol administration. Analysis using 13C6-resveratrol revealed that the benzene ring portion of resveratrol was converted to coenzyme Q10. Inhibition of the mevalonic acid pathway prevented the increase in coenzyme Q10 levels induced by resveratrol administration. These results indicate that resveratrol may be beneficial as a coenzyme Q10-enhancing reagent in cells with a well-developed mevalonic acid pathway.
Collapse
Affiliation(s)
- Rena Okuizumi
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Riku Harata
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Mizuho Okamoto
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Seiji Sato
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Kyosuke Sugawara
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Yukina Aida
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Akari Nakamura
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Akio Fujisawa
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Yorihiro Yamamoto
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Misato Kashiba
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
4
|
Hasegawa M, Yamamoto Y, Fujisawa A, Kashiba M. Prosaposin is a novel coenzyme Q10-binding protein. J Clin Biochem Nutr 2024; 74:108-112. [PMID: 38510690 PMCID: PMC10948348 DOI: 10.3164/jcbn.23-57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/28/2023] [Indexed: 03/22/2024] Open
Abstract
Coenzyme Q10 (CoQ10) is essential for mitochondrial ATP production and functions as an important antioxidant in every biomembrane and lipoprotein. Due to its hydrophobicity, a binding and transfer protein for CoQ10 is plausible, and we previously described saposin B as a CoQ10-binding and transfer protein. Here, we report that prosaposin, the precursor of saposin B, also binds CoQ10. As prosaposin is both a secretory protein and integral membrane protein, it is ubiquitous in the body. Prosaposin was isolated from human seminal plasma, and CoQ10 was extracted from hexane solution into the water phase. It was additionally found that immunoprecipitates of mouse brain cytosol generated using two different anti-prosaposin antibodies contained coenzyme Q9. Furthermore, mouse liver cytosol and mouse kidney cytosol also contained prosaposin-coenzyme Q9 complex. These results suggest that prosaposin binds CoQ10 in human cells and body fluids. The significance and role of the Psap-CoQ10 complex in vivo is also discussed.
Collapse
Affiliation(s)
- Makoto Hasegawa
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Yorihiro Yamamoto
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Akio Fujisawa
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| | - Misato Kashiba
- School of Bionics, Tokyo University of Technology, 1404-1 Katakura-machi, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|
5
|
Guile MD, Jain A, Anderson KA, Clarke CF. New Insights on the Uptake and Trafficking of Coenzyme Q. Antioxidants (Basel) 2023; 12:1391. [PMID: 37507930 PMCID: PMC10376127 DOI: 10.3390/antiox12071391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Coenzyme Q (CoQ) is an essential lipid with many cellular functions, such as electron transport for cellular respiration, antioxidant protection, redox homeostasis, and ferroptosis suppression. Deficiencies in CoQ due to aging, genetic disease, or medication can be ameliorated by high-dose supplementation. As such, an understanding of the uptake and transport of CoQ may inform methods of clinical use and identify how to better treat deficiency. Here, we review what is known about the cellular uptake and intracellular distribution of CoQ from yeast, mammalian cell culture, and rodent models, as well as its absorption at the organism level. We discuss the use of these model organisms to probe the mechanisms of uptake and distribution. The literature indicates that CoQ uptake and distribution are multifaceted processes likely to have redundancies in its transport, utilizing the endomembrane system and newly identified proteins that function as lipid transporters. Impairment of the trafficking of either endogenous or exogenous CoQ exerts profound effects on metabolism and stress response. This review also highlights significant gaps in our knowledge of how CoQ is distributed within the cell and suggests future directions of research to better understand this process.
Collapse
Affiliation(s)
- Michael D Guile
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Akash Jain
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Kyle A Anderson
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| | - Catherine F Clarke
- Department of Chemistry & Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90059, USA
| |
Collapse
|
6
|
Zhang Y, Bailey JT, Xu E, Singh K, Lavaert M, Link VM, D'Souza S, Hafiz A, Cao J, Cao G, Sant'Angelo DB, Sun W, Belkaid Y, Bhandoola A, McGavern DB, Yang Q. Mucosal-associated invariant T cells restrict reactive oxidative damage and preserve meningeal barrier integrity and cognitive function. Nat Immunol 2022; 23:1714-1725. [PMID: 36411380 PMCID: PMC10202031 DOI: 10.1038/s41590-022-01349-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
Abstract
Increasing evidence indicates close interaction between immune cells and the brain, revising the traditional view of the immune privilege of the brain. However, the specific mechanisms by which immune cells promote normal neural function are not entirely understood. Mucosal-associated invariant T cells (MAIT cells) are a unique type of innate-like T cell with molecular and functional properties that remain to be better characterized. In the present study, we report that MAIT cells are present in the meninges and express high levels of antioxidant molecules. MAIT cell deficiency in mice results in the accumulation of reactive oxidative species in the meninges, leading to reduced expression of junctional protein and meningeal barrier leakage. The presence of MAIT cells restricts neuroinflammation in the brain and preserves learning and memory. Together, our work reveals a new functional role for MAIT cells in the meninges and suggests that meningeal immune cells can help maintain normal neural function by preserving meningeal barrier homeostasis and integrity.
Collapse
Affiliation(s)
- Yuanyue Zhang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jacob T Bailey
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, USA
| | - En Xu
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kunal Singh
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Marieke Lavaert
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shanti D'Souza
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Alex Hafiz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Derek B Sant'Angelo
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Wei Sun
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology and Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Qi Yang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
7
|
Kurashiki T, Horikoshi Y, Kamizaki K, Sunaguchi T, Hara K, Morimoto M, Kitagawa Y, Nakaso K, Otsuki A, Matsura T. Molecular mechanisms underlying the promotion of wound repair by coenzyme Q10: PI3K/Akt signal activation via alterations to cell membrane domains. J Clin Biochem Nutr 2022; 70:222-230. [PMID: 35692678 PMCID: PMC9130066 DOI: 10.3164/jcbn.21-141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/04/2021] [Indexed: 11/22/2022] Open
Abstract
Coenzyme Q10 (CoQ10) promotes wound healing in vitro and in vivo. However, the molecular mechanisms underlying the promoting effects of CoQ10 on wound repair remain unknown. In the present study, we investigated the molecular mechanisms through which CoQ10 induces wound repair using a cellular wound-healing model. CoQ10 promoted wound closure in a dose-dependent manner and wound-mediated cell polarization after wounding in HaCaT cells. A comparison with other CoQ homologs, benzoquinone derivatives, and polyisoprenyl compounds suggested that the whole structure of CoQ10 is required for potent wound repair. The phosphorylation of Akt after wounding and the plasma membrane translocation of Akt were elevated in CoQ10-treated cells. The promoting effect of CoQ10 on wound repair was abrogated by co-treatment with a phosphatidylinositol 3-kinase (PI3K) inhibitor. Immunohistochemical and biochemical analyses showed that CoQ10 increased the localization of caveolin-1 (Cav-1) to the apical membrane domains of the cells and the Cav-1 content in the membrane-rich fractions. Depletion of Cav-1 suppressed CoQ10-mediated wound repair and PI3K/Akt signaling activation in HaCaT cells. These results indicated that CoQ10 increases the translocation of Cav-1 to the plasma membranes, activating the downstream PI3K/Akt signaling pathway, and resulting in wound closure in HaCaT cells.
Collapse
Affiliation(s)
- Tatsuyuki Kurashiki
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| | - Yosuke Horikoshi
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| | - Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University
| | - Teppei Sunaguchi
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| | - Kazushi Hara
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| | - Masaki Morimoto
- Division of Gastrointestinal and Pediatric Surgery, Department of Surgery, Faculty of Medicine, Tottori University
| | - Yoshinori Kitagawa
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Faculty of Medicine, Tottori University
| | - Kazuhiro Nakaso
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| | - Akihiro Otsuki
- Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Faculty of Medicine, Tottori University
| | - Tatsuya Matsura
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University
| |
Collapse
|
8
|
Takeuchi H, Sugawara K, Okamoto M, Nakamura A, Tanaka T, Fujita Y, Ishiguro K, Yamazaki H, Okada M, Mikami A, Fujisawa A, Yamamoto Y, Kashiba M. Reduced prosaposin levels in HepG2 cells with long-term coenzyme Q10 deficiency. J Clin Biochem Nutr 2022; 71:97-102. [PMID: 36213791 PMCID: PMC9519418 DOI: 10.3164/jcbn.21-126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/15/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | | | - Yui Fujita
- School of Bionics, Tokyo University of Technology
| | | | | | - Maiko Okada
- School of Bionics, Tokyo University of Technology
| | - Akane Mikami
- School of Bionics, Tokyo University of Technology
| | | | | | | |
Collapse
|
9
|
Ali FEM, Ahmed SF, Eltrawy AH, Yousef RS, Ali HS, Mahmoud AR, Abd-Elhamid TH. Pretreatment with Coenzyme Q10 Combined with Aescin Protects against Sepsis-Induced Acute Lung Injury. Cells Tissues Organs 2021; 210:195-217. [PMID: 34280918 DOI: 10.1159/000516192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/26/2021] [Indexed: 11/19/2022] Open
Abstract
Sepsis-associated acute lung injury (ALI) is a critical condition characterized by severe inflammatory response and mitochondrial dysfunction. Coenzyme Q10 (CoQ10) and aescin (AES) are well-known for their anti-inflammatory activities. However, their effects on lipopolysaccharide (LPS)-induced lung injury have not been explored yet. Here, we asked whether combined pretreatment with CoQ10 and AES synergistically prevents LPS-induced lung injury. Fifty male rats were randomized into 5 groups: (1) control; (2) LPS-treated, rats received a single i.p. injection of LPS (8 mg/kg); (3) CoQ10-pretreated, (4) AES-pretreated, or (5) combined-pretreated; animals received CoQ10 (100 mg/kg), AES (5 mg/kg), or both orally for 7 days before LPS injection. Combined CoQ10 and AES pretreatment significantly reduced lung injury markers; 52.42% reduction in serum C-reactive protein (CRP), 53.69% in alkaline phosphatase (ALKP) and 60.26% in lactate dehydrogenase (LDH) activities versus 44.58, 37.38, and 48.6% in CoQ10 and 33.81, 34.43, and 39.29% in AES-pretreated groups, respectively. Meanwhile, combination therapy significantly reduced interleukin (IL)-1β and tumor necrosis factor (TNF)-α expressions compared to monotherapy (p < 0.05). Additionally, combination therapy prevented LPS-induced histological and mitochondrial abnormalities greater than separate drugs. Western blotting indicated that combination therapy significantly suppressed nucleotide-binding oligomerization domain (NOD)-like receptors-3 (NLRP-3) inflammasome compared to separate drugs (p < 0.05). Further, combination therapy significantly decreased the expression of signaling cascades, p38 mitogen-activated protein kinases (p38 MAPK), nuclear factor kappa B (NF-κB)-p65, and extracellular-regulated kinases 1/2 (ERK1/2) versus monotherapy (p < 0.05). Interestingly, combined pretreatment significantly downregulated high mobility group box-1 (HMGB1) by 72.93%, and toll-like receptor 4 (TLR4) by -0.93-fold versus 61.92%, -0.83-fold in CoQ10 and 38.67%, -0.70-fold in AES pretreatment, respectively. Our results showed for the first time that the enhanced anti-inflammatory effect of combined CoQ10 and AES pretreatment prevented LPS-induced ALI via suppression of NLRP-3 inflammasome through regulation of HMGB1/TLR4 signaling pathway and mitochondrial stabilization.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Salwa F Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amira H Eltrawy
- Department of Anatomy and Embryology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Reda S Yousef
- Department of Biochemistry, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Howaida S Ali
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Amany R Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Tarek H Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
10
|
Okamoto M, Shimogishi M, Nakamura A, Suga Y, Sugawara K, Sato M, Nishi R, Fujisawa A, Yamamoto Y, Kashiba M. Differentiation of THP-1 monocytes to macrophages increased mitochondrial DNA copy number but did not increase expression of mitochondrial respiratory proteins or mitochondrial transcription factor A. Arch Biochem Biophys 2021; 710:108988. [PMID: 34274337 DOI: 10.1016/j.abb.2021.108988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/19/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Monocytes are differentiated into macrophages. In this study, mitochondrial DNA copy number (mtDNAcn) levels and downstream events such as the expression of respiratory chain mRNAs were investigated during the phorbol 12-myristate 13-acetate (PMA)-induced differentiation of monocytes. Although PMA treatment increased mtDNAcn, the expression levels of mRNAs encoded in mtDNA were decreased. The levels of mitochondrial transcription factor A mRNA and protein were also decreased. The levels of coenzyme Q10 remained unchanged. These results imply that, although mtDNAcn is considered as a health marker, the levels of mtDNAcn may not always be consistent with the parameters of mitochondrial functions.
Collapse
Affiliation(s)
- Mizuho Okamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Masanori Shimogishi
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Akari Nakamura
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Yusuke Suga
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Kyosuke Sugawara
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Michio Sato
- School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Ryotaro Nishi
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Akio Fujisawa
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
| | - Misato Kashiba
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan.
| |
Collapse
|
11
|
Wainwright L, Hargreaves IP, Georgian AR, Turner C, Dalton RN, Abbott NJ, Heales SJR, Preston JE. CoQ 10 Deficient Endothelial Cell Culture Model for the Investigation of CoQ 10 Blood-Brain Barrier Transport. J Clin Med 2020; 9:jcm9103236. [PMID: 33050406 PMCID: PMC7601674 DOI: 10.3390/jcm9103236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022] Open
Abstract
Primary coenzyme Q10 (CoQ10) deficiency is unique among mitochondrial respiratory chain disorders in that it is potentially treatable if high-dose CoQ10 supplements are given in the early stages of the disease. While supplements improve peripheral abnormalities, neurological symptoms are only partially or temporarily ameliorated. The reasons for this refractory response to CoQ10 supplementation are unclear, however, a contributory factor may be the poor transfer of CoQ10 across the blood-brain barrier (BBB). The aim of this study was to investigate mechanisms of CoQ10 transport across the BBB, using normal and pathophysiological (CoQ10 deficient) cell culture models. The study identifies lipoprotein-associated CoQ10 transcytosis in both directions across the in vitro BBB. Uptake via SR-B1 (Scavenger Receptor) and RAGE (Receptor for Advanced Glycation Endproducts), is matched by efflux via LDLR (Low Density Lipoprotein Receptor) transporters, resulting in no "net" transport across the BBB. In the CoQ10 deficient model, BBB tight junctions were disrupted and CoQ10 "net" transport to the brain side increased. The addition of anti-oxidants did not improve CoQ10 uptake to the brain side. This study is the first to generate in vitro BBB endothelial cell models of CoQ10 deficiency, and the first to identify lipoprotein-associated uptake and efflux mechanisms regulating CoQ10 distribution across the BBB. The results imply that the uptake of exogenous CoQ10 into the brain might be improved by the administration of LDLR inhibitors, or by interventions to stimulate luminal activity of SR-B1 transporters.
Collapse
Affiliation(s)
- Luke Wainwright
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Iain P. Hargreaves
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK;
- Department of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 5UA, UK
| | - Ana R. Georgian
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK; (A.R.G.); (N.J.A.)
| | - Charles Turner
- Evelina London Children’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (C.T.); (R.N.D.)
| | - R. Neil Dalton
- Evelina London Children’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (C.T.); (R.N.D.)
| | - N. Joan Abbott
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK; (A.R.G.); (N.J.A.)
| | - Simon J. R. Heales
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK;
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK;
| | - Jane E. Preston
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK; (A.R.G.); (N.J.A.)
- Correspondence: ; Tel.: +44-207-848-4881
| |
Collapse
|
12
|
Patten DA, Ouellet M, Allan DS, Germain M, Baird SD, Harper ME, Richardson RB. Mitochondrial adaptation in human mesenchymal stem cells following ionizing radiation. FASEB J 2019; 33:9263-9278. [PMID: 31112400 PMCID: PMC6662961 DOI: 10.1096/fj.201801483rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mitochondria are highly dynamic organelles that respond rapidly to a number of stressors to regulate energy transduction, cell death signaling, and reactive oxygen species generation. We hypothesized that mitochondrial remodeling, comprising both structural and functional alterations, following ionizing radiation (IR) may underlie some of the tenets of radiobiology. Mesenchymal stem cells (MSCs) are precursors of bone marrow stroma and are altered in acute myeloid leukemia and by radiation and chemotherapy. Here, we report on changes in mitochondrial remodeling in human MSCs following X-ray IR. Mitochondrial function was significantly increased in MSCs 4 h after IR as measured by mitochondrial oxygen consumption. Consistent with this elevated functional effect, electron transport chain supercomplexes were also increased in irradiated samples. In addition, mitochondria were significantly, albeit modestly, elongated, as measured by high-throughput automated confocal imaging coupled with automated mitochondrial morphometric analyses. We also demonstrate in fibroblasts that mitochondrial remodeling is required for the adaptation of cells to IR. To determine novel mechanisms involved in mitochondrial remodeling, we performed quantitative proteomics on isolated mitochondria from cells following IR. Label-free quantitative mitochondrial proteomics revealed notable changes in proteins in irradiated samples and identified prosaposin, and potentially its daughter protein saposin-B, as a potential candidate for regulating mitochondrial function following IR. Whereas research into the biologic effects of cellular irradiation has long focused on nuclear DNA effects, our experimental work, along with that of others, is finding that mitochondrial effects may have broader implications in the field of stress adaptation and cell death in cancer (including leukemia) and other disease states.-Patten, D. A., Ouellet, M., Allan, D. S., Germain, M., Baird, S. D., Harper, M.-E., Richardson, R. B. Mitochondrial adaptation in human mesenchymal stem cells following ionizing radiation.
Collapse
Affiliation(s)
- David A Patten
- Radiobiology and Health Branch, Chalk River Laboratories, Canadian Nuclear Laboratories (CNL), Chalk River, Ontario, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Mathieu Ouellet
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - David S Allan
- Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Marc Germain
- Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Stephen D Baird
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Faculty of Medicine, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Richard B Richardson
- Radiobiology and Health Branch, Chalk River Laboratories, Canadian Nuclear Laboratories (CNL), Chalk River, Ontario, Canada.,McGill Medical Physics Unit, Glen Site, Cedars Cancer Centre, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Nagase M, Yamamoto Y, Matsumoto N, Arai Y, Hirose N. Increased oxidative stress and coenzyme Q10 deficiency in centenarians. J Clin Biochem Nutr 2018; 63:129-136. [PMID: 30279624 PMCID: PMC6160725 DOI: 10.3164/jcbn.17-124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/26/2017] [Indexed: 12/19/2022] Open
Abstract
Aging populations are expanding worldwide, and the increasing requirement for nursing care has become a serious problem. Furthermore, successful aging is one of the highest priorities for individuals and societies. Centenarians are an informative cohort to study and inflammation has been found to be a key factor in predicting cognition and physical capabilities. Inflammation scores have been determined based on the levels of cytokines and C-reactive protein, however, serum antioxidants and lipid profiles have not been carefully examined. We found that the redox balance of coenzyme Q10 significantly shifted to the oxidized form and levels of strong antioxidants, such as ascorbic acid and unconjugated bilirubin, decreased significantly compared to 76-year-old controls, indicating an increased oxidative stress in centenarians. Levels of uric acid, an endogenous peroxynitrite scavenger, remained unchanged, suggesting that centenarians were experiencing moderate, chronic inflammatory conditions. Centenarians exhibited a hypocholesterolemic condition, while an increase in the ratio of free cholesterol to cholesterol esters suggests some impairment of liver function. Serum free fatty acids and monoenoic acid composition, markers of tissue oxidative damage, were significantly decreased in centenarians, indicating an impairment in the tissue repair system. Despite an elevation of the coenzyme Q10 binding protein Psap, serum total coenzyme Q10 levels decreased in centenarians. This suggests a serious deficiency of coenzyme Q10 in tissues, since tissue levels of coenzyme Q10 significantly decrease with age. Therefore, coenzyme Q10 supplementation could be beneficial for centenarians.
Collapse
Affiliation(s)
- Midori Nagase
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo 192-0982, Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo 192-0982, Japan
| | - Nozomi Matsumoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo 192-0982, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
14
|
Nagase M, Yamamoto Y, Matsumoto N, Arai Y, Hirose N. Increased oxidative stress and coenzyme Q10 deficiency in centenarians. J Clin Biochem Nutr 2018. [DOI: 10.3164/jcbn.17.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Midori Nagase
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Nozomi Matsumoto
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine
| | - Nobuyoshi Hirose
- Center for Supercentenarian Medical Research, Keio University School of Medicine
| |
Collapse
|
15
|
Nagase M, Sakurai A, Sugita A, Matsumoto N, Kubo A, Miyazaki Y, Kinoshita K, Yamamoto Y. Oxidative stress and abnormal cholesterol metabolism in patients with post-cardiac arrest syndrome. J Clin Biochem Nutr 2017; 61:108-117. [PMID: 28955127 PMCID: PMC5612819 DOI: 10.3164/jcbn.17-30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/29/2017] [Indexed: 01/27/2023] Open
Abstract
Patients with post-cardiac arrest syndrome (PCAS) suffer from whole body ischemia/reperfusion injury similar to that experienced by newborn babies. Increased oxidative stress was confirmed in PCAS patients (n = 40) at the time of hospitalization by a significant increase in the percentage of the oxidized form of coenzyme Q10 in total coenzyme Q10 compared to age-matched healthy controls (n = 55). Tissue oxidative damage in patients was suggested by the significant increase in plasma levels of free fatty acids (FFA) and the significant decrease in polyunsaturated fatty acid contents in total FFA. A greater decrease in free cholesterol (FC) compared to cholesterol esters (CE) was observed. Therefore, the FC/CE ratio significantly increased, suggesting deficiency of lecithin-cholesterol acyltransferase secreted from the liver. Time course changes of the above parameters were compared among 6 groups of patients divided according to outcome severity. Rapid declines of FC and CE were observed in patients who died within a day, while levels remained unchanged in patients discharged in a week. These data suggest that liver function is one of the key factors determining the survival of patients. Interestingly, therapeutic hypothermia treatment enhanced the increment of plasma ratio of coenzyme Q10 to total cholesterol at the end of rewarming.
Collapse
Affiliation(s)
- Midori Nagase
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo 192-0982, Japan
| | - Atsushi Sakurai
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Atsunori Sugita
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Nozomi Matsumoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo 192-0982, Japan
| | - Airi Kubo
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo 192-0982, Japan
| | - Yusuke Miyazaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo 192-0982, Japan
| | - Kosaku Kinoshita
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, 30-1 Oyaguchi Kamimachi, Itabashi-ku, Tokyo 173-8610, Japan
| | - Yorihiro Yamamoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura-cho, Hachioji, Tokyo 192-0982, Japan
| |
Collapse
|