1
|
Antonelli A, Battaglia AM, Sacco A, Petriaggi L, Giorgio E, Barone S, Biamonte F, Giudice A. Ferroptosis and oral squamous cell carcinoma: connecting the dots to move forward. FRONTIERS IN ORAL HEALTH 2024; 5:1461022. [PMID: 39296524 PMCID: PMC11408306 DOI: 10.3389/froh.2024.1461022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an aggressive disease whose incomplete biological comprehension contributes to the inappropriate clinical management and poor prognosis. Thus, the identification of new promising molecular targets to treat OSCC is of paramount importance. Ferroptosis is a regulated cell death caused by the iron-dependent accumulation of reactive oxygen species and the consequent oxidative damage of lipid membranes. Over the last five years, a growing number of studies has reported that OSCC is sensitive to ferroptosis induction and that ferroptosis inducers exert a remarkable antitumor effect in OSCC, even in those displaying low response to common approaches, such as chemotherapy and radiotherapy. In addition, as ferroptosis is considered an immunogenic cell death, it may modulate the immune response against OSCC. In this review, we summarize the so far identified ferroptosis regulatory mechanisms and prognostic models based on ferroptosis-related genes in OSCC. In addition, we discuss the perspective of inducing ferroptosis as a novel strategy to directly treat OSCC or, alternatively, to improve sensitivity to other approaches. Finally, we integrate data emerging from the research studies, reviewed here, through in silico analysis and we provide a novel personal perspective on the potential interconnection between ferroptosis and autophagy in OSCC.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Anna Martina Battaglia
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Alessandro Sacco
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Lavinia Petriaggi
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Emanuele Giorgio
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Selene Barone
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Flavia Biamonte
- Laboratory of Biochemistry and Cellular Biology, Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Amerigo Giudice
- Department of Health Science, School of Dentistry, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
2
|
Jiang L, Zheng H, Ishida M, Lyu Q, Akatsuka S, Motooka Y, Sato K, Sekido Y, Nakamura K, Tanaka H, Ishikawa K, Kajiyama H, Mizuno M, Hori M, Toyokuni S. Elaborate cooperation of poly(rC)-binding proteins 1/2 and glutathione in ferroptosis induced by plasma-activated Ringer's lactate. Free Radic Biol Med 2024; 214:28-41. [PMID: 38325565 DOI: 10.1016/j.freeradbiomed.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Reactive species are involved in various aspects of neoplastic diseases, including carcinogenesis, cancer-specific metabolism and therapeutics. Non-thermal plasma (NTP) can directly provide reactive species, by integrating atmospheric and interjacent molecules as substrates, to represent a handy strategy to load oxidative stress in situ. NTP causes apoptosis and/or ferroptosis specifically in cancer cells of various types. Plasma-activated Ringer's lactate (PAL) is another modality at the preclinical stage as cancer therapeutics, based on more stable reactive species. PAL specifically kills malignant mesothelioma (MM) cells, employing lysosomal ·NO as a switch from autophagy to ferroptosis. However, the entire molecular mechanisms have not been elucidated yet. Here we studied cytosolic iron regulations in MM and other cancer cells in response to PAL exposure. We discovered that cells with higher catalytic Fe(II) are more susceptible to PAL-induced ferroptosis. PAL caused a cytosolic catalytic Fe(II)-associated pathology through iron chaperones, poly (rC)-binding proteins (PCBP)1/2, inducing a disturbance in glutathione-regulated iron homeostasis. PCBP1/NCOA4-mediated ferritinophagy started at a later phase, further increasing cytosolic catalytic Fe(II), ending in ferroptosis. In contrast, PCBP2 after PAL exposure contributed to iron loading to mitochondria, leading to mitochondrial dysfunction. Therapeutic effect of PAL was successfully applied to an orthotopic MM xenograft model in mice. In conclusion, PAL can selectively sensitize MM cells to ferroptosis by remodeling cytoplasmic iron homeostasis, where glutathione and PCBPs play distinct roles, resulting in lethal ferritinophagy and mitochondrial dysfunction. Our findings indicate the clinical application of PAL as a ferroptosis-inducer and the potential of PCBPs as novel targets in cancer therapeutics.
Collapse
Affiliation(s)
- Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Moe Ishida
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Qinying Lyu
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kotaro Sato
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | - Kae Nakamura
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, 65 Tsurumai-cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Kenji Ishikawa
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Hiroaki Kajiyama
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, 65 Tsurumai-cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan; Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Furo-Cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
3
|
Peng S, Chen G, Yu KN, Feng Y, Zhao L, Yang M, Cao W, Almahi WAA, Sun M, Xu Y, Zhao Y, Cheng C, Zhu F, Han W. Synergism of non-thermal plasma and low concentration RSL3 triggers ferroptosis via promoting xCT lysosomal degradation through ROS/AMPK/mTOR axis in lung cancer cells. Cell Commun Signal 2024; 22:112. [PMID: 38347507 PMCID: PMC10860232 DOI: 10.1186/s12964-023-01382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/03/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Though (1S, 3R)-RSL3 has been used widely in basic research as a small molecular inducer of ferroptosis, the toxicity on normal cells and poor pharmacokinetic properties of RSL3 limited its clinical application. Here, we investigated the synergism of non-thermal plasma (NTP) and low-concentration RSL3 and attempted to rise the sensitivity of NSCLC cells on RSL3. METHODS CCK-8 assay was employed to detect the change of cell viability. Microscopy and flowcytometry were applied to identify lipid peroxidation, cell death and reactive oxygen species (ROS) level respectively. The molecular mechanism was inspected with western blot and RT-qPCR. A xenograft mice model was adopted to investigate the effect of NTP and RSL3. RESULTS We found the synergism of NTP and low-concentration RSL3 triggered severe mitochondria damage, more cell death and rapid ferroptosis occurrence in vitro and in vivo. NTP and RSL3 synergistically induced xCT lysosomal degradation through ROS/AMPK/mTOR signaling. Furthermore, we revealed mitochondrial ROS was the main executor for ferroptosis induced by the combined treatment. CONCLUSION Our research shows NTP treatment promoted the toxic effect of RSL3 by inducing more ferroptosis rapidly and provided possibility of RSL3 clinical application.
Collapse
Affiliation(s)
- Shengjie Peng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Guodong Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - K N Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, People's Republic of China
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, People's Republic of China
| | - Yue Feng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Lele Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Miaomiao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Wei Cao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Waleed Abdelbagi Ahmed Almahi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Mingyu Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yuan Xu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Cheng Cheng
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Fengqin Zhu
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China.
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
4
|
Siquara da Rocha LDO, de Morais EF, de Oliveira LQR, Barbosa AV, Lambert DW, Gurgel Rocha CA, Coletta RD. Exploring beyond Common Cell Death Pathways in Oral Cancer: A Systematic Review. BIOLOGY 2024; 13:103. [PMID: 38392321 PMCID: PMC10886582 DOI: 10.3390/biology13020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common and lethal type of head and neck cancer in the world. Variable response and acquisition of resistance to traditional therapies show that it is essential to develop novel strategies that can provide better outcomes for the patient. Understanding of cellular and molecular mechanisms of cell death control has increased rapidly in recent years. Activation of cell death pathways, such as the emerging forms of non-apoptotic programmed cell death, including ferroptosis, pyroptosis, necroptosis, NETosis, parthanatos, mitoptosis and paraptosis, may represent clinically relevant novel therapeutic opportunities. This systematic review summarizes the recently described forms of cell death in OSCC, highlighting their potential for informing diagnosis, prognosis and treatment. Original studies that explored any of the selected cell deaths in OSCC were included. Electronic search, study selection, data collection and risk of bias assessment tools were realized. The literature search was carried out in four databases, and the extracted data from 79 articles were categorized and grouped by type of cell death. Ferroptosis, pyroptosis, and necroptosis represented the main forms of cell death in the selected studies, with links to cancer immunity and inflammatory responses, progression and prognosis of OSCC. Harnessing the potential of these pathways may be useful in patient-specific prognosis and individualized therapy. We provide perspectives on how these different cell death types can be integrated to develop decision tools for diagnosis, prognosis, and treatment of OSCC.
Collapse
Affiliation(s)
- Leonardo de Oliveira Siquara da Rocha
- Department of Pathology and Forensic Medicine, School of Medicine, Federal University of Bahia, Salvador 40110-100, BA, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | - Everton Freitas de Morais
- Graduate Program in Oral Biology and Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil
| | - Lilianny Querino Rocha de Oliveira
- Graduate Program in Oral Biology and Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil
| | - Andressa Vollono Barbosa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | - Daniel W Lambert
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK
| | - Clarissa A Gurgel Rocha
- Department of Pathology and Forensic Medicine, School of Medicine, Federal University of Bahia, Salvador 40110-100, BA, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- Department of Propaedeutics, School of Dentistry, Federal University of Bahia, Salvador 40110-909, BA, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, BA, Brazil
| | - Ricardo D Coletta
- Graduate Program in Oral Biology and Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil
| |
Collapse
|
5
|
Cheng YC, Chang KW, Pan JH, Chen CY, Chou CH, Tu HF, Li WC, Lin SC. Cold Atmospheric Plasma Jet Irradiation Decreases the Survival and the Expression of Oncogenic miRNAs of Oral Carcinoma Cells. Int J Mol Sci 2023; 24:16662. [PMID: 38068984 PMCID: PMC10705903 DOI: 10.3390/ijms242316662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Despite recent advancements, therapies against advanced oral squamous cell carcinoma (OSCC) remain ineffective, resulting in unsatisfactory therapeutic outcomes. Cold atmospheric plasma (CAP) offers a promising approach in the treatment of malignant neoplasms. Although the effects of CAP in abrogating OSCC have been explored, the exact mechanisms driving CAP-induced cancer cell death and the changes in microRNA (miRNA) expression are not fully understood. We fabricated and calibrated an argon-CAP device to explore the effects of CAP irradiation on the growth and expression of oncogenic miRNAs in OSCC. The analysis revealed that, in OSCC cell lines following CAP irradiation, there was a significant reduction in viability; a downregulation of miR-21, miR-31, miR-134, miR-146a, and miR-211 expression; and an inactivation of the v-akt murine thymoma viral oncogene homolog (AKT) and extracellular signal-regulated kinase (ERK) signals. Pretreatment with blockers of apoptosis, autophagy, and ferroptosis synergistically reduced CAP-induced cell death, indicating a combined induction of variable death pathways via CAP. Combined treatments using death inhibitors and miRNA mimics, alongside the activation of AKT and ERK following the exogenous expression, counteracted the cell mortality associated with CAP. The CAP-induced downregulation of miR-21, miR-31, miR-187, and miR-211 expression was rescued through survival signaling. Additionally, CAP irradiation notably inhibited the growth of SAS OSCC cell xenografts on nude mice. The reduced expression of oncogenic miRNAs in vivo aligned with in vitro findings. In conclusion, our study provides new lines of evidence demonstrating that CAP irradiation diminishes OSCC cell viability by abrogating survival signals and oncogenic miRNA expression.
Collapse
Affiliation(s)
- Yun-Chien Cheng
- Department of Mechanical Engineering, College of Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (Y.-C.C.); (C.-Y.C.)
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
| | - Kuo-Wei Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112304, Taiwan
| | - Jian-Hua Pan
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
| | - Chao-Yu Chen
- Department of Mechanical Engineering, College of Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan; (Y.-C.C.); (C.-Y.C.)
| | - Chung-Hsien Chou
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
| | - Hsi-Feng Tu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (K.-W.C.); (J.-H.P.); (C.-H.C.); (H.-F.T.); (W.-C.L.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112304, Taiwan
| |
Collapse
|
6
|
Toyokuni S, Kong Y, Zheng H, Maeda Y, Katabuchi M, Motooka Y. Three-Dimensional Regulation of Ferroptosis at the Intersection of Iron, Sulfur, and Oxygen Executing Scrap and Build Toward Evolution. Antioxid Redox Signal 2023; 39:807-815. [PMID: 36401504 DOI: 10.1089/ars.2022.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Significance: Iron is an essential element for every life on earth as a primary media for electron flow. Sulfur compounds as sulfhydryls counteract catalytic activity of iron whereas sulfur overdose is also toxic. In aerobic organisms, oxygen is the major media for electron transfer with higher intracellular mobility, which cooperates with the iron system. Based on the importance of iron, there is no active pathway to excrete iron outside the body in higher species. Whereas bacterial infection causes a scramble for iron in situ, cancer can be the outcome of the side effects of long use of iron and oxygen. Recent Advances: Ferroptosis is a recently coined cell death, defined as catalytic Fe(II)-dependent regulated necrosis accompanied by lipid peroxidation. Researchers recently recognized that ferroptosis is involved in a variety of physiological and pathological contexts, including embryonic erythropoiesis, aging, neurodegeneration and cancer cell death. Alternatively, carcinogenesis is a process to obtain iron addiction with ferroptosis-resistance, based on rodent animal studies. Critical Issues: Here we propose that ferroptosis is three-dimensionally regulated by iron, sulfur and oxygen, which correspond to oxidants, antioxidants and membrane fluidity with susceptibility to lipid peroxidation, respectively. Future Directions: Whereas life attempts to prevent ferroptosis, ferroptotic cells eventually emit iron-loaded ferritin as extracellular vesicles to maintain monopoly of iron. Antioxid. Redox Signal. 39, 807-815.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hao Zheng
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Maeda
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Misako Katabuchi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Iuchi K, Fukasawa M, Murakami T, Hisatomi H. Cold atmospheric nitrogen plasma induces metal-initiated cell death by cell membrane rupture and mitochondrial perturbation. Cell Biochem Funct 2023; 41:687-695. [PMID: 37322606 DOI: 10.1002/cbf.3823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/06/2023] [Accepted: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Cold atmospheric plasma (CAP) is a novel biomedical tool used for cancer therapy. A device using nitrogen gas (N2 CAP) produced CAP that induced cell death through the production of reactive nitrogen species and an increase in intracellular calcium. In this study, we investigated the effect of N2 CAP-irradiation on cell membrane and mitochondrial function in human embryonic kidney cell line 293T. We investigated whether iron is involved in N2 CAP-induced cell death, as deferoxamine methanesulfonate (an iron chelator) inhibits this process. We found that N2 CAP induced cell membrane disturbance and loss of mitochondrial membrane potential in an irradiation time-dependent manner. BAPTA-AM, a cell-permeable calcium chelator, inhibited N2 CAP-induced loss of mitochondrial membrane potential. These results suggest that disruption of intracellular metal homeostasis was involved in N2 CAP-induced cell membrane rupture and mitochondrial dysfunction. Moreover, N2 CAP irradiation generated a time-dependent production of peroxynitrite. However, lipid-derived radicals are unrelated to N2 CAP-induced cell death. Generally, N2 CAP-induced cell death is driven by the complex interaction between metal movement and reactive oxygen and nitrogen species produced by N2 CAP.
Collapse
Affiliation(s)
- Katsuya Iuchi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo, Japan
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Mami Fukasawa
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo, Japan
| | - Tomoyuki Murakami
- Department of Systems Design Engineering, Faculty of Science and Technology, Seikei University, Tokyo, Japan
| | - Hisashi Hisatomi
- Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, Tokyo, Japan
| |
Collapse
|
8
|
Pacheco-Fernandez T, Markle H, Verma C, Huston R, Gannavaram S, Nakhasi HL, Satoskar AR. Field-Deployable Treatments For Leishmaniasis: Intrinsic Challenges, Recent Developments and Next Steps. Res Rep Trop Med 2023; 14:61-85. [PMID: 37492219 PMCID: PMC10364832 DOI: 10.2147/rrtm.s392606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/08/2023] [Indexed: 07/27/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease endemic primarily to low- and middle-income countries, for which there has been inadequate development of affordable, safe, and efficacious therapies. Clinical manifestations of leishmaniasis range from self-healing skin lesions to lethal visceral infection with chances of relapse. Although treatments are available, secondary effects limit their use outside the clinic and negatively impact the quality of life of patients in endemic areas. Other non-medicinal treatments, such as thermotherapies, are limited to use in patients with cutaneous leishmaniasis but not with visceral infection. Recent studies shed light to mechanisms through which Leishmania can persist by hiding in cellular safe havens, even after chemotherapies. This review focuses on exploring the cellular niches that Leishmania parasites may be leveraging to persist within the host. Also, the cellular, metabolic, and molecular implications of Leishmania infection and how those could be targeted for therapeutic purposes are discussed. Other therapies, such as those developed against cancer or for manipulation of the ferroptosis pathway, are proposed as possible treatments against leishmaniasis due to their mechanisms of action. In particular, treatments that target hematopoietic stem cells and monocytes, which have recently been found to be necessary components to sustain the infection and provide a safe niche for the parasites are discussed in this review as potential field-deployable treatments against leishmaniasis.
Collapse
Affiliation(s)
- Thalia Pacheco-Fernandez
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Hannah Markle
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
| | - Ryan Huston
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
- Department of Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Disease, Center for Biologics Evaluation and Research Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Abhay R Satoskar
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
- Department of Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, 43201, USA
| |
Collapse
|
9
|
Thapa P, Jiang H, Ding N, Hao Y, Alshahrani A, Wei Q. The Role of Peroxiredoxins in Cancer Development. BIOLOGY 2023; 12:666. [PMID: 37237480 PMCID: PMC10215932 DOI: 10.3390/biology12050666] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Peroxiredoxins (Prxs) are antioxidant enzymes with ubiquitous expression in human tissues. Prxs are expressed in archaea, bacteria, and eukaryota, often in multiple isoforms. Because of their abundant expression in different cellular organelles and extraordinary sensitivity to H2O2, Prxs are among the first defenses against oxidative stress. Prxs undergo reversible oxidation to disulfides, and some family members perform chaperone or phospholipase functions upon further oxidation. Prxs are upregulated in cancer cells. Research has suggested that Prxs can function as tumor promoters in various cancers. The major objective of this review is to summarize novel findings regarding the roles of Prxs in common cancer types. Prxs have been shown to influence differentiation of inflammatory cells and fibroblasts, remodeling of extracellular matrix, and regulation of stemness. Since aggressive cancer cells have higher intracellular levels of ROS that they can utilize to proliferate and metastasize compared to normal cells, it is critical that we understand the regulation and functions of primary antioxidants such as Prxs. These small but mighty proteins could prove to be key for improving cancer therapeutics and patient survival.
Collapse
Affiliation(s)
- Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
| | - Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
| | - Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, 1095 Veterans Dr, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| |
Collapse
|
10
|
Hu C, Zeng X, Zhu Y, Huang Z, Liu J, Ji D, Zheng Z, Wang Q, Tan W. Regulation of ncRNAs involved with ferroptosis in various cancers. Front Genet 2023; 14:1136240. [PMID: 37065473 PMCID: PMC10090411 DOI: 10.3389/fgene.2023.1136240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/08/2023] [Indexed: 03/31/2023] Open
Abstract
As a special pattern of programmed cell death, ferroptosis is reported to participate in several processes of tumor progression, including regulating proliferation, suppressing apoptotic pathways, increasing metastasis, and acquiring drug resistance. The marked features of ferroptosis are an abnormal intracellular iron metabolism and lipid peroxidation that are pluralistically modulated by ferroptosis-related molecules and signals, such as iron metabolism, lipid peroxidation, system Xc−, GPX4, ROS production, and Nrf2 signals. Non-coding RNAs (ncRNAs) are a type of functional RNA molecules that are not translated into a protein. Increasing studies demonstrate that ncRNAs have a diversity of regulatory roles in ferroptosis, thus influencing the progression of cancers. In this study, we review the fundamental mechanisms and regulation network of ncRNAs on ferroptosis in various tumors, aiming to provide a systematic understanding of recently emerging non-coding RNAs and ferroptosis.
Collapse
Affiliation(s)
- Chenxi Hu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangbo Zeng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zehai Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiacheng Liu
- Department of Infectious Diseases, Peking University Hepatology Institute, Peking University People’s Hospital, Beijing, China
| | - Ding Ji
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Zaosong Zheng, ; Qiong Wang, ; Wanlong Tan,
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Zaosong Zheng, ; Qiong Wang, ; Wanlong Tan,
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Zaosong Zheng, ; Qiong Wang, ; Wanlong Tan,
| |
Collapse
|
11
|
Toyokuni S, Zheng H, Kong Y, Sato K, Nakamura K, Tanaka H, Okazaki Y. Low-temperature plasma as magic wand to differentiate between the good and the evil. Free Radic Res 2023; 57:38-46. [PMID: 36919449 DOI: 10.1080/10715762.2023.2190860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plasma is the fourth physical state of matter, characterized by an ionized gaseous mixture, after solid, liquid, and gas phases, and contains a wide array of components such as ions, electrons, radicals, and ultraviolet ray. Whereas the sun and thunder are typical natural plasma, recent progress in the electronics enabled the generation of body-temperature plasma, designated as low-temperature plasma (LTP) or non-thermal plasma since the 1990s. LTP has attracted the attention of researchers for possible biological and medical applications. All the living species on earth utilize water as essential media for solvents and molecular transport. Thus, biological application of LTP naturally intervenes water whether LTP is exposed directly or indirectly, where plasma-activated lactate (PAL) is a standard, containing H2O2, NO2- and other identified molecules. Electron spin resonance and immunohistochemical studies demonstrated that LTP exposure is a handy method to load local oxidative stress. Cancer cells are characterized by persistent self-replication and high cytosolic catalytic Fe(II). Therefore, both direct exposure of LTP and PAL can provide higher damage to cancer cells in comparison to non-tumorous cells, which has been demonstrated in a variety of cancer types. The cell death mode is either apoptosis or ferroptosis, depending on the cancer-type. Thus, LTP and PAL are expected to work as an additional cancer therapy to the established guideline protocols, especially for use in somatic cavities or surgical margins.
Collapse
Affiliation(s)
- Shinya Toyokuni
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Hao Zheng
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yingyi Kong
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kotaro Sato
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kae Nakamura
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Response, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
12
|
Sato K, Fujii K, Tanaka H, Hori M, Hibi H, Toyokuni S. Exposure of low-temperature plasma after vaccination in tongue promotes systemic IgM induction against spike protein of SARS-CoV-2. Free Radic Res 2023; 57:30-37. [PMID: 36919453 DOI: 10.1080/10715762.2023.2190486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
COVID-19 has been pandemic since 2020 with persistent generation of new variants. Cellular receptor for SARS-CoV-2 is angiotensin-converting enzyme 2 (ACE2), where transmembrane serine protease-2 (TMPRSS2) is essential for viral internalization. We recently reported abundant expression of ACE2 and TMPRSS2 in the oral cavity of humans and mice. Therefore, oral cavity may work for COVID-19 infection gates. Here we undertook to evaluate whether vaccination in the tongue harbors any merit in comparison to subcutaneous injection. Low-temperature plasma (LTP) is the fourth physical state of matters with ionization above gas but at body temperature. LTP provides complex chemistry, eventually supplying oxidative and/or nitrosative stress on the interface. LTP-associated cellular death has been reported to cause apoptosis and/or ferroptosis. However, there is few data available on immunogenicity retention after LTP exposure. We therefore studied the effect of LTP exposure after the injection of keyhole limpet hemocyanin (KLH) or spike 2 protein of SARS-CoV-2 to the tongue of six-week-old male BALB/c mice, compared to subcutaneous vaccination. Whereas LTP did not change the expression of ACE2 and TMPRSS2 in the tongue, repeated LTP exposure after tongue vaccination significantly promoted systemic and specific IgM production at day 11. In contrast, repeated LTP exposure after subcutaneous vaccination of KLH decreased systemic IgM production. Of note, tongue injection produced significantly higher titer of IgM and IgG in the case of KLH. In conclusion, LTP significantly reinforced humoral immunity by IgM after tongue injection. Vaccination to the tongue can be a novel strategy to acquire immediate immunity.
Collapse
Affiliation(s)
- Kotaro Sato
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kouki Fujii
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
13
|
Abstract
Significance: The significance of ferroptosis in cancer therapeutics has now been unveiled. Specific ferroptosis inducers are expected as a promising strategy for cancer treatment, especially in cancers with epithelial mesenchymal transition and possibly in cancers with activated Hippo signaling pathways, both of which cause resistance to traditional chemotherapy but tend to show ferroptosis susceptibility. Recent Advances: Ferroptosis is a new form of regulated non-apoptotic cell death, which is characterized by iron-dependent lipid peroxidation, leading eventually to plasma membrane rupture. Its core mechanisms have been elucidated, consisting of a driving force as catalytic Fe(II)-dependent Fenton reaction and an incorporation of polyunsaturated fatty acids to membrane phospholipids via peroxisome-dependent and -independent pathways, and suppressing factors as prevention of lipid peroxidation with glutathione peroxidase 4 and direct membrane repair via coenzyme Q10 and ESCRT-III pathways. Critical Issues: Developments of ferroptosis inducers are in progress by nanotechnology-based drugs or by innovative engineering devices. Especially, low-temperature (non-thermal) plasma is a novel technology at the preclinical stage. The exposure can induce ferroptosis selectively in cancer cells rich in catalytic Fe(II). Future Directions: We also summarize and discuss the recently uncovered responsible molecular mechanisms in association with iron metabolism, ferroptosis and cancer therapeutics. Targeting ferroptosis in addition to the current therapeutic modalities would be important to cure advanced-stage cancer.
Collapse
Affiliation(s)
- Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Biosystem Science Division, Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
14
|
Yang L, Nao J. Ferroptosis: a potential therapeutic target for Alzheimer's disease. Rev Neurosci 2022:revneuro-2022-0121. [PMID: 36514247 DOI: 10.1515/revneuro-2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022]
Abstract
The most prevalent dementia-causing neurodegenerative condition is Alzheimer's disease (AD). The aberrant buildup of amyloid β and tau hyperphosphorylation are the two most well-known theories about the mechanisms underlying AD development. However, a significant number of pharmacological clinical studies conducted around the world based on the two aforementioned theories have not shown promising outcomes, and AD is still not effectively treated. Ferroptosis, a non-apoptotic programmed cell death defined by the buildup of deadly amounts of iron-dependent lipid peroxides, has received more attention in recent years. A wealth of data is emerging to support the role of iron in the pathophysiology of AD. Cell line and animal studies applying ferroptosis modulators to the treatment of AD have shown encouraging results. Based on these studies, we describe in this review the underlying mechanisms of ferroptosis; the role that ferroptosis plays in AD pathology; and summarise some of the research advances in the treatment of AD with ferroptosis modulators. We hope to contribute to the clinical management of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
15
|
Combined In Vitro Toxicity and Immunogenicity of Cold Plasma and Pulsed Electric Fields. Biomedicines 2022; 10:biomedicines10123084. [PMID: 36551840 PMCID: PMC9775231 DOI: 10.3390/biomedicines10123084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
In modern oncology, therapies are based on combining monotherapies to overcome treatment resistance and increase therapy precision. The application of microsecond-pulsed electric fields (PEF) is approved to enhance local chemotherapeutic drug uptake within combination electrochemotherapy regimens. Reactive oxygen species (ROS) have been implicated in anticancer effects, and cold physical plasma produces vast amounts of ROS, which have recently been shown to benefit head and neck cancer patients. PEF and cold plasma technology have been linked to immunogenic cell death (ICD) induction, a regulated cell death accompanied by sterile inflammation that promotes antitumor immunity. To this end, we investigated the combined effect of both treatments regarding their intracellular ROS accumulation, toxicity, ICD-related marker expression, and optimal exposure sequence in a leukemia model cell line. The combination treatment substantially increased ROS and intracellular glutathione levels, leading to additive cytotoxic effects accompanied by a significantly increased expression of ICD markers, such as the eat-me signal calreticulin (CRT). Preconditioned treatment with cold plasma followed by PEF exposure was the most potent treatment sequence. The results indicate additive effects of cold plasma and PEF, motivating further studies in skin and breast tumor models for the future improvement of ECT in such patients.
Collapse
|
16
|
Perrotti V, Caponio VCA, Muzio LL, Choi EH, Marcantonio MCD, Mazzone M, Kaushik NK, Mincione G. Open Questions in Cold Atmospheric Plasma Treatment in Head and Neck Cancer: A Systematic Review. Int J Mol Sci 2022; 23:ijms231810238. [PMID: 36142145 PMCID: PMC9498988 DOI: 10.3390/ijms231810238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022] Open
Abstract
Over the past decade, we witnessed a promising application of cold atmospheric plasma (CAP) in cancer therapy. The aim of this systematic review was to provide an exhaustive state of the art of CAP employed for the treatment of head and neck cancer (HNC), a tumor whose late diagnosis, local recurrence, distant metastases, and treatment failure are the main causes of patients’ death. Specifically, the characteristics and settings of the CAP devices and the in vitro and in vivo treatment protocols were summarized to meet the urgent need for standardization. Its molecular mechanisms of action, as well as the successes and pitfalls of current CAP applications in HNC, were discussed. Finally, the interesting emerging preclinical hypotheses that warrant further clinical investigation have risen. A total of 24 studies were included. Most studies used a plasma jet device (54.2%). Argon resulted as the mostly employed working gas (33.32%). Direct and indirect plasma application was reported in 87.5% and 20.8% of studies, respectively. In vitro investigations were 79.17%, most of them concerned with direct treatment (78.94%). Only eight (33.32%) in vivo studies were found; three were conducted in mice, and five on human beings. CAP showed pro-apoptotic effects more efficiently in tumor cells than in normal cells by altering redox balance in a way that oxidative distress leads to cell death. In preclinical studies, it exhibited efficacy and tolerability. Results from this systematic review pointed out the current limitations of translational application of CAP in the urge of standardization of the current protocols while highlighting promising effects as supporting treatment in HNC.
Collapse
Affiliation(s)
- Vittoria Perrotti
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | | | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Mariangela Mazzone
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
17
|
Okazaki Y, Ito N, Tanaka H, Hori M, Toyokuni S. Non-thermal plasma elicits ferrous chloride-catalyzed DMPO-OH. Free Radic Res 2022; 56:595-606. [PMID: 36519277 DOI: 10.1080/10715762.2022.2157272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Non-thermal plasma (NTP) induces the generation of reactive oxygen species (ROS) and reactive nitrogen species, such as hydroxyl radicals (•OH), hydrogen peroxide (H2O2), singlet oxygen, superoxide, ozone, and nitric oxide, at near-physiological temperatures. These molecules promote blood coagulation, wound healing, disinfection, and selective cancer cell death. Based on these evidences, clinical trials of NTP have been conducted for treating chronic wounds and head and neck cancers. Although clinical applications have progressed, the stoichiometric quantification of NTP-induced ROS remains unclear in the liquid phase in the presence of FeCl2 or FeCl3 in combination with biocompatible reducing agents, which may modulate the final biological effects of NTP. In this study, we employed electron paramagnetic resonance spectroscopy to quantify ROS using spin-trapping probe, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and H2O2, using luminescent probe in the presence of FeCl2 or FeCl3. NTP-induced DMPO-OH levels were elevated 10-100 µM FeCl2 or 500 and 1000 µM FeCl3. NTP-induced DMPO-OH with 10 µM FeCl2 or FeCl3 was significantly scavenged by ascorbate, α-tocopherol, dithiothreitol, reduced glutathione, or oxidized glutathione, whereas dehydroascorbate was ineffective in 2 mM DMPO. NTP-induced H2O2 was significantly degraded by 100 µM FeCl2 and FeCl3 in an iron-dependent manner. Meanwhile, decomposition of H2O2 by catalase decayed DMPO-OH efficiently in the presence of iron, indicating iron causes DMPO-OH production and degradation simultaneously. These results suggest that NTP-induced DMPO-OH is generated by the H2O2-consuming, iron-dependent Fenton reaction and ferryl intermediates. The potential iron-mediated ROS production by NTP is also discussed to clarify the interaction between NTP-induced ROS and biomolecules.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nanami Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan.,Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
18
|
Yin J, Fu J, Zhao Y, Xu J, Chen C, Zheng L, Wang B. Comprehensive Analysis of the Significance of Ferroptosis-Related Genes in the Prognosis and Immunotherapy of Oral Squamous Cell Carcinoma. Bioinform Biol Insights 2022; 16:11779322221115548. [PMID: 35966810 PMCID: PMC9373167 DOI: 10.1177/11779322221115548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/26/2022] [Indexed: 12/09/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a life-threatening disease, associated
with poor prognosis and the absence of specific biomarkers. Studies have shown
that the ferroptosis-related genes (FRGs) can be used as tumor prognostic
markers. However, FRGs’ prognostic value in OSCC needs further exploration. In
our study, gene expression profile and clinical data of OSCC patients were
collected from a public domain. We performed univariate and multivariate Cox
regression analyses to construct a multigene signature. The Kaplan-Meier and
receiver operating characteristic (ROC) methods were used to test the
effectiveness of the signature, followed by the expression analysis of human
leukocyte antigen (HLA) and immune checkpoints. The Cox regression analysis
identified 4 hubs from 103 FRGs expressed in OSCC that were associated with
overall survival (OS). A risk model based on the 4 FRGs was established to
classify patients into high-risk and low-risk groups. Compared with the low-risk
group, the survival time of the high-risk group was significantly reduced.
According to the multivariate Cox regression analysis, the risk score acted as
an independent predictor for OS. The accuracy of the 4 FRGs risk predictive
model was confirmed by ROC curve analysis. Moreover, the low-risk group had the
characteristics of higher expression of HLA and immune checkpoints, a lower
tumor purity, and a higher immune infiltration, indicating a more sensitive
response to immunotherapy. The novel FRGs-OSCC risk score system can be used to
predict the prognosis of OSCC patients and their response to immunotherapy.
Collapse
Affiliation(s)
- Junhao Yin
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiayao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yijie Zhao
- Department of Oral and Maxillofacial Surgery, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Jiabao Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Changyu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.,National Center for Stomatology, Shanghai, China.,National Clinical Research Center for Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
19
|
Sun HN, Guo XY, Xie DP, Wang XM, Ren CX, Han YH, Yu NN, Huang YL, Kwon T. Knockdown of Peroxiredoxin V increased the cytotoxicity of non-thermal plasma-treated culture medium to A549 cells. Aging (Albany NY) 2022; 14:4000-4013. [PMID: 35546738 PMCID: PMC9134956 DOI: 10.18632/aging.204063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
Abstract
Administration of non-thermal plasma therapy via the use of plasma-activated medium (PAM) might be a novel strategy for cancer treatment, as it induces apoptosis by increasing reactive oxygen species (ROS) levels. Peroxiredoxin V (PRDX5) scavenges ROS and reactive nitrogen species and is known to regulate several physiological and pathological reactions. However, its role in lung cancer cells exposed to PAM is unknown. Here, we investigated the effect of PRDX5 in PAM-treated A549 lung cancer cells and determined the mechanism underlying its cytotoxicity. Cell culture medium was treated with low temperature plasma at 16.4 kV for 0, 60, 120, or 180 s to develop PAM. PRDX5 was knocked down in A549 cells via transfection with short hairpin RNA targeting PRDX5. Colony formation and wound healing assays, flow cytometry, fluorescence microscopy, and western blotting were performed to detect the effect of PRDX5 knockdown on PAM-treated A549 cells. PAM showed higher cytotoxicity in lung cancer cells than in control cells, downregulated the mitogen-activated protein kinase signaling pathway, and induced apoptosis. PRDX5 knockdown significantly inhibited cell colony formation and migration, increased ROS accumulation, and reduced mitochondrial membrane potential in lung cancer cells. Hence, PRDX5 knockdown combined with PAM treatment represents an effective option for lung cancer treatment.
Collapse
Affiliation(s)
- Hu-Nan Sun
- Stem Cell and Regenerative Biology Laboratory, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Xiao-Yu Guo
- Stem Cell and Regenerative Biology Laboratory, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Dan-Ping Xie
- Stem Cell and Regenerative Biology Laboratory, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Xiao-Ming Wang
- Yabian Academy of Agricultural Science, Longjing 1334000, Jilin, China
| | - Chen-Xi Ren
- Stem Cell and Regenerative Biology Laboratory, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Ying-Hao Han
- Stem Cell and Regenerative Biology Laboratory, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Nan-Nan Yu
- Stem Cell and Regenerative Biology Laboratory, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Yu-Lan Huang
- Stem Cell and Regenerative Biology Laboratory, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si 56216, Jeonbuk, Republic of Korea
| |
Collapse
|
20
|
Qi M, Xu D, Wang S, Li B, Peng S, Li Q, Zhang H, Fan R, Chen H, Kong MG. In Vivo Metabolic Analysis of the Anticancer Effects of Plasma-Activated Saline in Three Tumor Animal Models. Biomedicines 2022; 10:biomedicines10030528. [PMID: 35327329 PMCID: PMC8945198 DOI: 10.3390/biomedicines10030528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, the emerging technology of cold atmospheric pressure plasma (CAP) has grown rapidly along with the many medical applications of cold plasma (e.g., cancer, skin disease, tissue repair, etc.). Plasma-activated liquids (e.g., culture media, water, or normal saline, previously exposed to plasma) are being studied as cancer treatments, and due to their advantages, many researchers prefer plasma-activated liquids as an alternative to CAP in the treatment of cancer. In this study, we showed that plasma-activated-saline (PAS) treatment significantly inhibited tumor growth, as compared with saline, in melanoma, and a low-pH environment had little effect on tumor growth in vivo. In addition, based on an ultra-high-performance liquid tandem chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) analysis of tumor cell metabolism, the glycerophospholipid metabolic pathway was the most susceptible metabolic pathway to PAS treatment in melanoma in vitro and in vivo. Furthermore, PAS also inhibited cell proliferation in vivo in oral tongue squamous-cell cancer and non-small-cell lung cancer. There were few toxic side effects in the three animal models, and the treatment was deemed safe to use. In the future, plasma-activated liquids may serve as a potential therapeutic approach in the treatment of cancer.
Collapse
Affiliation(s)
- Miao Qi
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (S.W.); (B.L.)
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
- Correspondence: (D.X.); (M.G.K.)
| | - Shuai Wang
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (S.W.); (B.L.)
| | - Bing Li
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (S.W.); (B.L.)
| | - Sansan Peng
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
| | - Qiaosong Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
| | - Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
| | - Runze Fan
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
| | - Hailan Chen
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA;
| | - Michael G. Kong
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA;
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA
- Correspondence: (D.X.); (M.G.K.)
| |
Collapse
|
21
|
Okazaki Y, Sasaki K, Ito N, Tanaka H, Matsumoto KI, Hori M, Toyokuni S. Tetrachloroaurate (III)-induced oxidation increases non-thermal plasma-induced oxidative stress. Free Radic Res 2022; 56:17-27. [DOI: 10.1080/10715762.2022.2026348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanako Sasaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nanami Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiromasa Tanaka
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Japan
- Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken-Ichiro Matsumoto
- Department of Radiation Regulatory Science Research, Quantitative RedOx Sensing Group, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masaru Hori
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
22
|
Cold Physical Plasma in Cancer Therapy: Mechanisms, Signaling, and Immunity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9916796. [PMID: 35284036 PMCID: PMC8906949 DOI: 10.1155/2021/9916796] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Despite recent advances in therapy, cancer still is a devastating and life-threatening disease, motivating novel research lines in oncology. Cold physical plasma, a partially ionized gas, is a new modality in cancer research. Physical plasma produces various physicochemical factors, primarily reactive oxygen and nitrogen species (ROS/RNS), causing cancer cell death when supplied at supraphysiological concentrations. This review outlines the biomedical consequences of plasma treatment in experimental cancer therapy, including cell death modalities. It also summarizes current knowledge on intracellular signaling pathways triggered by plasma treatment to induce cancer cell death. Besides the inactivation of tumor cells, an equally important aspect is the inflammatory context in which cell death occurs to suppress or promote the responses of immune cells. This is mainly governed by the release of damage-associated molecular patterns (DAMPs) to provoke immunogenic cancer cell death (ICD) that, in turn, activates cells of the innate immune system to promote adaptive antitumor immunity. The pivotal role of the immune system in cancer treatment, in general, is highlighted by many clinical trials and success stories on using checkpoint immunotherapy. Hence, the potential of plasma treatment to induce ICD in tumor cells to promote immunity targeting cancer lesions systemically is also discussed.
Collapse
|
23
|
Abd El-Aziz YS, Leck LYW, Jansson PJ, Sahni S. Emerging Role of Autophagy in the Development and Progression of Oral Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:6152. [PMID: 34944772 PMCID: PMC8699656 DOI: 10.3390/cancers13246152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a cellular catabolic process, which is characterized by degradation of damaged proteins and organelles needed to supply the cell with essential nutrients. At basal levels, autophagy is important to maintain cellular homeostasis and development. It is also a stress responsive process that allows the cells to survive when subjected to stressful conditions such as nutrient deprivation. Autophagy has been implicated in many pathologies including cancer. It is well established that autophagy plays a dual role in different cancer types. There is emerging role of autophagy in oral squamous cell carcinoma (OSCC) development and progression. This review will focus on the role played by autophagy in relation to different aspects of cancer progression and discuss recent studies exploring the role of autophagy in OSCC. It will further discuss potential therapeutic approaches to target autophagy in OSCC.
Collapse
Affiliation(s)
- Yomna S. Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta 31527, Egypt
| | - Lionel Y. W. Leck
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J. Jansson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
| |
Collapse
|
24
|
Li H, Zhang X, Yi C, He Y, Chen X, Zhao W, Yu D. Ferroptosis-related gene signature predicts the prognosis in Oral squamous cell carcinoma patients. BMC Cancer 2021; 21:835. [PMID: 34284753 PMCID: PMC8290602 DOI: 10.1186/s12885-021-08478-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/10/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The prognosis of oral squamous cell carcinoma (OSCC) patients is difficult to predict or describe due to its high-level heterogeneity and complex aetiologic factors. Ferroptosis is a novel form of iron-dependent cell death that is closely related to tumour growth and progression. This study aims to clarify the predictive value of ferroptosis-related genes (FRGs) on the overall survival(OS) of OSCC patients. METHODS The mRNA expression profile of FRGs and clinical information of patients with OSCC were collected from the TCGA database. Candidate differentially expressed ferroptosis-related genes (DE-FRGs) were identified by analysing differences between OSCC and adjacent normal tissues. A gene signature of prognosis-related DE-FRGs was established by univariate Cox analysis and LASSO analysis in the training set. Patients were then divided into high- and low-risk groups according to the cut-off value of risk scores, A nomogram was constructed to quantify the contributions of gene signature and clinical parameters to OS. Then several bioinformatics analyses were used to verify the reliability and accuracy of the model in the validation set. Finally, single-sample gene set enrichment analysis (ssGSEA) was also performed to reveal the underlying differences in immune status between different risk groups. RESULTS A prognostic model was constructed based on 10 ferroptosis-related genes. Patients in high-risk group had a significantly worse OS (p < 0.001). The gene signature was verified as an independent predictor for the OS of OSCC patients (HR > 1, p < 0.001). The receiver operating characteristic curve displayed the favour predictive performance of the risk model. The prediction nomogram successfully quantified each indicator's contribution to survival and the concordance index and calibration plots showed its superior predictive capacity. Finally, ssGSEA preliminarily indicated that the poor prognosis in the high-risk group might result from the dysregulation of immune status. CONCLUSION This study established a 10-ferroptosis-releated gene signature and nomogram that can be used to predict the prognosis of OSCC patients, which provides new insight for future anticancer therapies based on potential FRG targets.
Collapse
Affiliation(s)
- Hongyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China
| | - Chen Yi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China
| | - Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China
| | - Xun Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China
| | - Wei Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China. .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China. .,Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China. .,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510030, Guangdong, China. .,Department of Oral Emergency, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510030, Guangdong, China.
| |
Collapse
|
25
|
Okazaki Y, Tanaka H, Matsumoto KI, Hori M, Toyokuni S. Non-thermal plasma-induced DMPO-OH yields hydrogen peroxide. Arch Biochem Biophys 2021; 705:108901. [PMID: 33964248 DOI: 10.1016/j.abb.2021.108901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022]
Abstract
Recent developments in electronics have enabled the medical applications of non-thermal plasma (NTP), which elicits reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as hydroxyl radical (●OH), hydrogen peroxide (H2O2), singlet oxygen (1O2), superoxide (O2●-), ozone, and nitric oxide at near-physiological temperatures. In preclinical studies or human clinical trials, NTP promotes blood coagulation, eradication of bacterial, viral and biofilm-related infections, wound healing, and cancer cell death. To elucidate the solution-phase biological effects of NTP in the presence of biocompatible reducing agents, we employed electron paramagnetic resonance (EPR) spectroscopy to quantify ●OH using a spin-trapping probe, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO); 1O2 using a fluorescent probe; and O2●- and H2O2 using luminescent probes in the presence of thiols or tempol. NTP-induced ●OH was significantly scavenged by dithiothreitol (DTT), reduced glutathione (GSH), and oxidized glutathione (GSSG) in 2 or 5 mM DMPO. NTP-induced O2●- was significantly scavenged by 10 μM DTT and GSH, while 1O2 was not efficiently scavenged by these compounds. GSSG degraded H2O2 more effectively than GSH and DTT, suggesting that the disulfide bonds reacted with H2O2. In the presence of 1-50 mM DMPO, NTP-induced H2O2 quantities were unchanged. The inhibitory effect of tempol concentration (50 and 100 μM) on H2O2 production was observed in 1 and 10 mM DMPO, whereas it became ineffective in 50 mM DMPO. Furthermore, DMPO-OH did not interact with tempol. These results suggest that DMPO and tempol react competitively with O2●-. Further studies are warranted to elucidate the interaction between NTP-induced ROS and biomolecules.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan
| | - Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
26
|
Characterization of ferroptosis signature to evaluate the predict prognosis and immunotherapy in glioblastoma. Aging (Albany NY) 2021; 13:17655-17672. [PMID: 34244461 PMCID: PMC8312442 DOI: 10.18632/aging.203257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/19/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common type of brain cancer with poor survival outcomes and unsatisfactory response to current therapeutic strategies. Recent studies have demonstrated that ferroptosis-related genes (FRGs) are linked with the occurrence and development of GBM and may become promising biological indicators in GBM therapy. METHODS We systematically assessed the relationship between FRGs expression profiles and prognosis in glioma patients based on the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets to establish a risk score model according to the gene signature of multiple survival-associated DEGs. Further, the differences between the tumor microenvironment score, immune cell infiltration, immune checkpoint expression levels, and drug sensitivity in the high- and low-risk group are analyzed through a variety of algorithms in R software. RESULTS GBM patients were divided into two subgroups (high- and low-risk) according to the established risk score model. Patients in the high-risk group showed significantly reduced overall survival compared with those in the low-risk group. Also, we found that the high-risk group showed higher ImmuneScore and StromalScore, while different subgroups have significant differences in immune cell infiltration, immune checkpoint expression levels, and drug sensitivity. In summary, we developed and validated an FRGs risk model, which served as an independent prognostic indicator for GBM. Besides, the two subgroups divided by the model have significant differences, which provides novel insights for further studies as well as the personalized treatment of patients.
Collapse
|
27
|
Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, Lei P. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 2021; 6:49. [PMID: 33536413 PMCID: PMC7858612 DOI: 10.1038/s41392-020-00428-9] [Citation(s) in RCA: 598] [Impact Index Per Article: 199.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is an iron-dependent cell death, which is different from apoptosis, necrosis, autophagy, and other forms of cell death. The process of ferroptotic cell death is defined by the accumulation of lethal lipid species derived from the peroxidation of lipids, which can be prevented by iron chelators (e.g., deferiprone, deferoxamine) and small lipophilic antioxidants (e.g., ferrostatin, liproxstatin). This review summarizes current knowledge about the regulatory mechanism of ferroptosis and its association with several pathways, including iron, lipid, and cysteine metabolism. We have further discussed the contribution of ferroptosis to the pathogenesis of several diseases such as cancer, ischemia/reperfusion, and various neurodegenerative diseases (e.g., Alzheimer's disease and Parkinson's disease), and evaluated the therapeutic applications of ferroptosis inhibitors in clinics.
Collapse
Affiliation(s)
- Hong-Fa Yan
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
| | - Ting Zou
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Qing-Zhang Tuo
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
| | - Shuo Xu
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Hua Li
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 610041, Chengdu, China
| | - Abdel Ali Belaidi
- Melbourne Dementia Research Centre and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Center for Biotherapy, 610041, Chengdu, China.
| |
Collapse
|
28
|
Okazaki Y, Ishidzu Y, Ito F, Tanaka H, Hori M, Toyokuni S. L-Dehydroascorbate efficiently degrades non-thermal plasma-induced hydrogen peroxide. Arch Biochem Biophys 2021; 700:108762. [PMID: 33482147 DOI: 10.1016/j.abb.2021.108762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Non-thermal plasma (NTP) devices generate reactive oxygen species (ROS) and reactive nitrogen species, such as singlet oxygen (1O2), superoxide (O2-), hydroxyl radical (●OH), hydrogen peroxide (H2O2), ozone, and nitric oxide at near-physiological temperature. In preclinical studies, NTP promotes blood coagulation, wound healing with disinfection, and selective killing of cancer cells. Although these biological effects of NTP have been widely explored, the stoichiometric quantitation of ROS in the liquid phase has not been performed in the presence of biocompatible reducing agents, which may modify the final biological effects of NTP. Here, we utilized electron paramagnetic resonance spectroscopy to quantitate ●OH, using a spin-trapping probe 5,5-dimethyl-1-pyrroline-N-oxide; 1O2, using a fluorescent probe; and O2- and H2O2, using luminescent probes, after NTP exposure in the presence of antioxidants. l-ascorbate (Asc) at 50 μM concentration (physiological concentration in serum) significantly scavenged ●OH, whereas (-)-epigallocatechin gallate (EGCG) and α-tocopherol were also effective at performing scavenging activities at 250 μM concentrations. Asc significantly scavenged O2- and H2O2 at 100 μM. l-Dehydroascorbate (DHA), an oxidized form of Asc, degraded H2O2, whereas it did not quench ●OH or O2-, which are sources of H2O2. Furthermore, EGCG efficiently scavenged NTP-induced 1O2, O2-, and H2O2 in Chelex-treated water. These results indicate that the redox cycling of Asc/DHA and metabolites of DHA are important to be considered when applying NTP to cells and tissues. Additionally, ROS-reducing compounds, such as EGCG, affect the outcome. Further studies are warranted to elucidate the interaction between ROS and biomolecules to promote the medical applications of NTP.
Collapse
Affiliation(s)
- Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Yuuri Ishidzu
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan
| | - Fumiya Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hiromasa Tanaka
- Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan
| | - Masaru Hori
- Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
29
|
Carcinogenesis as Side Effects of Iron and Oxygen Utilization: From the Unveiled Truth toward Ultimate Bioengineering. Cancers (Basel) 2020; 12:cancers12113320. [PMID: 33182727 PMCID: PMC7698037 DOI: 10.3390/cancers12113320] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Cancer is a major cause of human mortality worldwide. No life on earth can live without iron. Persistent oxidative stress resulting from continuous use of iron and oxygen may be a fundamental cause of carcinogenesis. Many animal models demonstrated that excess iron may lead to carcinogenesis. This is supported by a variety of human epidemiological data on cancer risk and prognosis. Cancer is basically a disease of the genome with persistently activated oncogenes and inactivated tumor suppressor genes through which iron addiction with ferroptosis-resistance is established. We predict that fine use of nanomaterials and non-thermal plasma may be able to reverse this situation. Abstract Evolution from the first life on earth to humans took ~3.8 billion years. During the time there have been countless struggles among the species. Mycobacterium tuberculosis was the last major uncontrollable species against the human public health worldwide. After the victory with antibiotics, cancer has become the leading cause of death since 1981 in Japan. Considering that life inevitably depends on ceaseless electron transfers through iron and oxygen, we believe that carcinogenesis is intrinsically unavoidable side effects of using iron and oxygen. Many animal models unequivocally revealed that excess iron is a risk for carcinogenesis. This is supported by a variety of human epidemiological data on cancer risk and prognosis. Cancer is basically a disease of the genome with persistently activated oncogenes and inactivated tumor suppressor genes through which iron addiction with ferroptosis-resistance is maintained. Engineering has made a great advance in the past 50 years. In particular, nanotechnology is distinct in that the size of the engineered molecules is similar to that of our biomolecules. While some nano-molecules are found carcinogenic, there are principles to avoid such carcinogenicity with a smart possibility to use nano-molecules to specifically kill cancer cells. Non-thermal plasma is another modality to fight against cancer.
Collapse
|
30
|
Alu A, Han X, Ma X, Wu M, Wei Y, Wei X. The role of lysosome in regulated necrosis. Acta Pharm Sin B 2020; 10:1880-1903. [PMID: 33163342 PMCID: PMC7606114 DOI: 10.1016/j.apsb.2020.07.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/29/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Lysosome is a ubiquitous acidic organelle fundamental for the turnover of unwanted cellular molecules, particles, and organelles. Currently, the pivotal role of lysosome in regulating cell death is drawing great attention. Over the past decades, we largely focused on how lysosome influences apoptosis and autophagic cell death. However, extensive studies showed that lysosome is also prerequisite for the execution of regulated necrosis (RN). Different types of RN have been uncovered, among which, necroptosis, ferroptosis, and pyroptosis are under the most intensive investigation. It becomes a hot topic nowadays to target RN as a therapeutic intervention, since it is important in many patho/physiological settings and contributing to numerous diseases. It is promising to target lysosome to control the occurrence of RN thus altering the outcomes of diseases. Therefore, we aim to give an introduction about the common factors influencing lysosomal stability and then summarize the current knowledge on the role of lysosome in the execution of RN, especially in that of necroptosis, ferroptosis, and pyroptosis.
Collapse
Affiliation(s)
- Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuejiao Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
31
|
Li Y, Shen M, Jin C, Gao L, Liang B, Wang Z, Tan S, Chen A, Zhang F, Zhang Z, Zheng S. Regulation of ferroptosis by
ncRNA
: A new direction. IUBMB Life 2020. [DOI: 10.1002/iub.2381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica Nanjing University of Chinese Medicine Nanjing China
| | - Min Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica Nanjing University of Chinese Medicine Nanjing China
| | - Chun Jin
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica Nanjing University of Chinese Medicine Nanjing China
| | - Liyuan Gao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica Nanjing University of Chinese Medicine Nanjing China
| | - Baoyu Liang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica Nanjing University of Chinese Medicine Nanjing China
| | - Zhenyi Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica Nanjing University of Chinese Medicine Nanjing China
| | - Shanzhong Tan
- Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine Nanjing China
| | - Anping Chen
- Department of Pathology Saint Louis University St Louis Missouri USA
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica Nanjing University of Chinese Medicine Nanjing China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica Nanjing University of Chinese Medicine Nanjing China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica Nanjing University of Chinese Medicine Nanjing China
| |
Collapse
|
32
|
Pasqual-Melo G, Nascimento T, Sanches LJ, Blegniski FP, Bianchi JK, Sagwal SK, Berner J, Schmidt A, Emmert S, Weltmann KD, von Woedtke T, Gandhirajan RK, Cecchini AL, Bekeschus S. Plasma Treatment Limits Cutaneous Squamous Cell Carcinoma Development In Vitro and In Vivo. Cancers (Basel) 2020; 12:E1993. [PMID: 32708225 PMCID: PMC7409328 DOI: 10.3390/cancers12071993] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Cutaneous squamous cell carcinoma (SCC) is the most prevalent cancer worldwide, increasing the cost of healthcare services and with a high rate of morbidity. Its etiology is linked to chronic ultraviolet (UV) exposure that leads to malignant transformation of keratinocytes. Invasive growth and metastasis are severe consequences of this process. Therapy-resistant and highly aggressive SCC is frequently fatal, exemplifying the need for novel treatment strategies. Cold physical plasma is a partially ionized gas, expelling therapeutic doses of reactive oxygen and nitrogen species that were investigated for their anticancer capacity against SCC in vitro and SCC-like lesions in vivo. Using the kINPen argon plasma jet, a selective growth-reducing action of plasma treatment was identified in two SCC cell lines in 2D and 3D cultures. In vivo, plasma treatment limited the progression of UVB-induced SSC-like skin lesions and dermal degeneration without compromising lesional or non-lesional skin. In lesional tissue, this was associated with a decrease in cell proliferation and the antioxidant transcription factor Nrf2 following plasma treatment, while catalase expression was increased. Analysis of skin adjacent to the lesions and determination of global antioxidant parameters confirmed the local but not systemic action of the plasma anticancer therapy in vivo.
Collapse
Affiliation(s)
- Gabriella Pasqual-Melo
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
| | - Thiago Nascimento
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86051-990, Brazil; (T.N.); (L.J.S.); (F.P.B.); (J.K.B.); (A.L.C.)
| | - Larissa Juliani Sanches
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86051-990, Brazil; (T.N.); (L.J.S.); (F.P.B.); (J.K.B.); (A.L.C.)
| | - Fernanda Paschoal Blegniski
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86051-990, Brazil; (T.N.); (L.J.S.); (F.P.B.); (J.K.B.); (A.L.C.)
| | - Julya Karen Bianchi
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86051-990, Brazil; (T.N.); (L.J.S.); (F.P.B.); (J.K.B.); (A.L.C.)
| | - Sanjeev Kumar Sagwal
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
| | - Julia Berner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
- Clinic for Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Sauerbruchstr., 17475 Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
| | - Steffen Emmert
- Clinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany;
| | - Klaus-Dieter Weltmann
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Walther-Rathenau-Str. 48, 17489 Greifswald, Germany
| | - Rajesh Kumar Gandhirajan
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
| | - Alessandra Lourenço Cecchini
- Department of General Pathology, State University of Londrina, Rodovia Celso Garcia Cid, Londrina 86051-990, Brazil; (T.N.); (L.J.S.); (F.P.B.); (J.K.B.); (A.L.C.)
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (G.P.-M.); (S.K.S.); (J.B.); (A.S.); (K.-D.W.); (T.v.W.); (R.K.J.)
| |
Collapse
|
33
|
Medical Gas Plasma Treatment in Head and Neck Cancer—Challenges and Opportunities. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10061944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite progress in oncotherapy, cancer is still among the deadliest diseases in the Western world, emphasizing the demand for novel treatment avenues. Cold physical plasma has shown antitumor activity in experimental models of, e.g., glioblastoma, colorectal cancer, breast carcinoma, osteosarcoma, bladder cancer, and melanoma in vitro and in vivo. In addition, clinical case reports have demonstrated that physical plasma reduces the microbial contamination of severely infected tumor wounds and ulcerations, as is often seen with head and neck cancer patients. These antimicrobial and antitumor killing properties make physical plasma a promising tool for the treatment of head and neck cancer. Moreover, this type of cancer is easily accessible from the outside, facilitating the possibility of several rounds of topical gas plasma treatment of the same patient. Gas plasma treatment of head and neck cancer induces diverse effects via the deposition of a plethora of reactive oxygen and nitrogen species that mediate redox-biochemical processes, and ultimately, selective cancer cell death. The main advantage of medical gas plasma treatment in oncology is the lack of adverse events and significant side effects compared to other treatment modalities, such as surgical approaches, chemotherapeutics, and radiotherapy, making plasma treatment an attractive strategy for the adjuvant and palliative treatment of head and neck cancer. This review outlines the state of the art and progress in investigating physical plasma as a novel treatment modality in the therapy of head and neck squamous cell carcinoma.
Collapse
|