1
|
Jena MK, Khan FB, Ali SA, Abdullah A, Sharma AK, Yadav V, Kancharla S, Kolli P, Mandadapu G, Sahoo AK, Rath PK, Taneera J, Kumar S, Mohanty AK, Goh KW, Ming LC, Ardianto C. Molecular complexity of mammary glands development: a review of lactogenic differentiation in epithelial cells. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:491-508. [PMID: 37694522 DOI: 10.1080/21691401.2023.2252872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
The mammary gland is a dynamic organ with various physiological processes like cellular proliferation, differentiation, and apoptosis during the pregnancy-lactation-involution cycle. It is essential to understand the molecular changes during the lactogenic differentiation of mammary epithelial cells (MECs, the milk-synthesizing cells). The MECs are organized as luminal milk-secreting cells and basal myoepithelial cells (responsible for milk ejection by contraction) that form the alveoli. The branching morphogenesis and lactogenic differentiation of the MECs prepare the gland for lactation. This process is governed by many molecular mediators including hormones, growth factors, cytokines, miRNAs, regulatory proteins, etc. Interestingly, various signalling pathways guide lactation and understanding these molecular transitions from pregnancy to lactation will help researchers design further research. Manipulation of genes responsible for milk synthesis and secretion will promote augmentation of milk yield in dairy animals. Identifying protein signatures of lactation will help develop strategies for persistent lactation and shortening the dry period in farm animals. The present review article discusses in details the physiological and molecular changes occurring during lactogenic differentiation of MECs and the associated hormones, regulatory proteins, miRNAs, and signalling pathways. An in-depth knowledge of the molecular events will aid in developing engineered cellular models for studies related to mammary gland diseases of humans and animals.
Collapse
Affiliation(s)
- Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Farheen Badrealam Khan
- Department of Biology, College of Arts and Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Syed Azmal Ali
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Abdullah Abdullah
- Department of Pharmacy, University of Malakand, Chakdara, Dir Lower, Pakistan
| | - Amarish Kumar Sharma
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skane University Hospital, Lund University, Malmo, Sweden
| | | | | | | | - Anjan Kumar Sahoo
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Prasana Kumar Rath
- Department of Veterinary Pathology, College of Veterinary Science and AH, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Sudarshan Kumar
- Proteomics and Structural Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | | | - Khang Wen Goh
- Faculty Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Kim SH, Ramos SC, Valencia RA, Cho YI, Lee SS. Heat Stress: Effects on Rumen Microbes and Host Physiology, and Strategies to Alleviate the Negative Impacts on Lactating Dairy Cows. Front Microbiol 2022; 13:804562. [PMID: 35295316 PMCID: PMC8919045 DOI: 10.3389/fmicb.2022.804562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Heat stress (HS) in dairy cows causes considerable losses in the dairy industry worldwide due to reduced animal performance, increased cases of metabolic disorders, altered rumen microbiome, and other health problems. Cows subjected to HS showed decreased ruminal pH and acetate concentration and an increased concentration of ruminal lactate. Heat-stressed cows have an increased abundance of lactate-producing bacteria such as Streptococcus and unclassified Enterobacteriaceae, and soluble carbohydrate utilizers such as Ruminobacter, Treponema, and unclassified Bacteroidaceae. Cellulolytic bacteria, especially Fibrobacteres, increase during HS due to a high heat resistance. Actinobacteria and Acetobacter, both acetate-producing bacteria, decreased under HS conditions. Rumen fermentation functions, blood parameters, and metabolites are also affected by the physiological responses of the animal during HS. Isoleucine, methionine, myo-inositol, lactate, tryptophan, tyrosine, 1,5-anhydro-D-sorbitol, 3-phenylpropionic acid, urea, and valine decreased under these conditions. These responses affect feed consumption and production efficiency in milk yield, growth rate, and reproduction. At the cellular level, activation of heat shock transcription factor (HSF) (located throughout the nucleus and the cytoplasm) and increased expression of heat shock proteins (HSPs) are the usual responses to cope with homeostasis. HSP70 is the most abundant HSP family responsible for the environmental stress response, while HSF1 is essential for increasing cell temperature. The expression of bovine lymphocyte antigen and histocompatibility complex class II (DRB3) is downregulated during HS, while HSP90 beta I and HSP70 1A are upregulated. HS increases the expression of the cytosolic arginine sensor for mTORC1 subunits 1 and 2, phosphorylation of mammalian target of rapamycin and decreases the phosphorylation of Janus kinase-2 (a signal transducer and activator of transcription factor-5). These changes in physiology, metabolism, and microbiomes in heat-stressed dairy cows require urgent alleviation strategies. Establishing control measures to combat HS can be facilitated by elucidating mechanisms, including proper HS assessment, access to cooling facilities, special feeding and care, efficient water systems, and supplementation with vitamins, minerals, plant extracts, and probiotics. Understanding the relationship between HS and the rumen microbiome could contribute to the development of manipulation strategies to alleviate the influence of HS. This review comprehensively elaborates on the impact of HS in dairy cows and introduces different alleviation strategies to minimize HS.
Collapse
Affiliation(s)
- Seon Ho Kim
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sonny C. Ramos
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Raniel A. Valencia
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
- Department of Animal Science, College of Agriculture, Central Luzon State University, Science City of Muñoz, Philippines
| | - Yong Il Cho
- Animal Disease and Diagnostic Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| | - Sang Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
3
|
Newly characterized bovine mammary stromal region with epithelial properties supports representative epithelial outgrowth development from transplanted stem cells. Cell Tissue Res 2021; 387:39-61. [PMID: 34698917 DOI: 10.1007/s00441-021-03545-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
Limited outgrowth development of bovine mammary epithelial stem cells transplanted into de-epithelialized mouse fat pads restricts advanced studies on this productive organ's development and renewal. We challenged the mouse-bovine incompatibility by implanting parenchymal adjacent or distant bovine stromal layers (close and far stroma, respectively) into the mouse fat pad to serve as an endogenous niche for transplanted stem cells. The close stroma better supported stem cell take rate and outgrowth development. The diameter of these open duct-like structures represented and occasionally exceeded that of the endogenous ducts and appeared 8.3-fold wider than the capsule-like structures developed in the mouse fat pad after similar cell transplantation. RNA-Seq revealed lower complement activity in this layer, associated with secretion of specific laminins and WNT proteins favoring epithelial outgrowth development. The close stroma appeared genetically more similar to the parenchyma than to the far stroma due to epithelial characteristics, mainly of fibroblasts, including expression of epithelial markers, milk protein genes, and functional mammary claudins. Gene markers and activators of the mesenchymal-to-epithelial transition were highly enriched in the epithelial gene cluster and may contribute to the acquired epithelial properties of this stromal layer.
Collapse
|
4
|
Ma L, Yang Y, Zhao X, Wang F, Gao S, Bu D. Heat stress induces proteomic changes in the liver and mammary tissue of dairy cows independent of feed intake: An iTRAQ study. PLoS One 2019; 14:e0209182. [PMID: 30625175 PMCID: PMC6326702 DOI: 10.1371/journal.pone.0209182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 11/30/2018] [Indexed: 01/17/2023] Open
Abstract
Heat stress decreases milk yield and deleteriously alters milk composition. Reduced feed intake partially explains some of the consequences of heat stress, but metabolic changes in the mammary tissue and liver associated with milk synthesis have not been thoroughly evaluated. In the current study, changes of protein abundance in the mammary tissue and liver between heat-stressed cows with ad libitum intake and pair-fed thermal neutral cows were investigated using the iTRAQ proteomic approach. Most of the differentially expressed proteins from mammary tissue and liver between heat-stressed and pair-fed cows were involved in Gene Ontology category of protein metabolic process. Pathway analysis indicated that differentially expressed proteins in the mammary tissue were related to pyruvate, glyoxylate and dicarboxylate metabolism pathways, while those in the liver participated in oxidative phosphorylation and antigen processing and presentation pathways. Several heat shock proteins directly interact with each other and were considered as central “hubs” in the protein interaction network. These findings provide new insights to understand the turnover of protein biosynthesis pathways within hepatic and mammary tissue that likely contribute to changes in milk composition from heat-stressed cows.
Collapse
Affiliation(s)
- Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongxin Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiaowei Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Fang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengtao Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- CAAS-ICRAF Joint Lab on Agroforestry and Sustainable Animal Husbandry, World Agroforestry Centre, East and Central Asia, Beijing, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
5
|
Tucker HLM, Holdridge J, Parsons CLM, Akers RM. Excess deposition of collagen in mammary glands of tamoxifen-treated Holstein heifers is associated with impaired mammary growth. Domest Anim Endocrinol 2018; 65:49-55. [PMID: 29894894 DOI: 10.1016/j.domaniend.2018.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/26/2018] [Accepted: 05/11/2018] [Indexed: 01/28/2023]
Abstract
It is established that the ovary and estrogen are essential to bovine mammary development with the onset of puberty. Recent studies have shown that ovariectomy in the very early prepubertal period, well before onset of puberty, also dramatically impairs mammary growth. Similarly, prepubertal heifers treated with the antiestrogen tamoxifen (TAM) also exhibit markedly impaired mammary growth in correspondence with reduced estrogen receptor α (ESR1) expression. Our objective was to evaluate the effect of TAM on the mammary stroma and specifically to determine if the reported decrease in mammary development was related to changes in TAM-induced alterations in the stroma surrounding the mammary parenchyma. Briefly, 16 Holstein heifers calves were randomly assigned to one of 2 treatment groups: TAM-injected or control. Calves were administered TAM (0.3 mg kg1 d1) or placebo from 28 to 120 d of age. At day 120, calves were euthanized and udders removed. Mammary tissue from near the boundary between the parenchyma and surrounding mammary fat pad was collected for histology and morphometric analysis, expression of selected extracellular matrix-related genes, and quantitation of stromal collagen deposition by study of Sirius Red-stained tissue sections imaged with polarized light. Compared with tissue from control heifers, TAM heifers frequently exhibited areas with abundant fibroblasts and mesenchymal cells especially within the intralobular stroma, as well as less complex ductal structures. Among the array of extracellular matrix-related genes tested, only a small difference (P < 0.05) in expression of laminin was found between treatments. The relative tissue area occupied by stromal tissue was not impacted by treatment. However, the deposition of collagen within the stromal tissue was more than doubled (P < 0.0001) in TAM-treated heifers. These data suggest that blocking ESR1 expression with TAM allows for excessive collagen deposition in the stroma surrounding the developing epithelial structures and that this interferes with both the degree of overall mammary parenchymal development, as well as the pattern of normal ductal morphogenesis.
Collapse
Affiliation(s)
- H L M Tucker
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - J Holdridge
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - C L M Parsons
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - R M Akers
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
6
|
Akers RM. A 100-Year Review: Mammary development and lactation. J Dairy Sci 2017; 100:10332-10352. [DOI: 10.3168/jds.2017-12983] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/15/2017] [Indexed: 01/13/2023]
|
7
|
Xiao Y, Rungruang S, Hall L, Collier J, Dunshea F, Collier R. Effects of niacin and betaine on bovine mammary and uterine cells exposed to thermal shock in vitro. J Dairy Sci 2017; 100:4025-4037. [DOI: 10.3168/jds.2016-11876] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023]
|
8
|
Hall LW, Dunshea FR, Allen JD, Rungruang S, Collier JL, Long NM, Collier RJ. Evaluation of dietary betaine in lactating Holstein cows subjected to heat stress. J Dairy Sci 2016; 99:9745-9753. [PMID: 27720159 DOI: 10.3168/jds.2015-10514] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 08/09/2016] [Indexed: 02/01/2023]
Abstract
Betaine (BET), a natural, organic osmolyte, improves cellular efficiency by acting as a chaperone, refolding denatured proteins. To test if dietary BET reduced the effect of heat stress (HS) in lactating dairy cows, multiparous, lactating Holstein cows (n=24) were blocked by days in milk (101.4±8.6 d) and randomly assigned to 1 of 3 daily intakes of dietary BET: the control (CON) group received no BET, mid intake (MID) received 57mg of BET/kg of body weight, and high dose (HI) received 114mg of BET/kg of body weight. Cows were fed twice daily and BET was top-dressed at each feeding. Cows were milked 2 times/d and milk samples were taken daily for analysis. Milk components, yield, feed intake, and water intake records were taken daily. Rectal temperature and respiration rate were taken 3 times/d at 0600, 1400, and 1800h. Cows were housed in environmentally controlled rooms and were allowed acclimation for 7d at thermoneutral (TN) conditions with a mean temperature-humidity index of 56.6. Cows were then exposed to 7d of TN followed by 7d of HS represented by a temperature-humidity index of 71.5 for 14d. This was followed by a recovery period of 3d at TN. Dietary BET increased milk yield during the TN period. No differences were found between BET and CON in total milk production or milk composition during HS. The increase in water intake during HS was not as great for cows fed BET compared with controls. The cows on CON diets had higher p.m. respiration rate than both MID and HI BET during HS, but lower rectal temperature compared with BET. No difference was found in serum glucose during TN, but cows given HI had elevated glucose levels during HS compared with CON. No differences were found in serum insulin levels between CON and BET but an intake by environment interaction was present with insulin increasing in HI-treated lactating dairy cows during HS. The heat shock response [heat shock protein (HSP) 27 and HSP70] was upregulated in bovine mammary epithelial cells in vitro. Blood leukocyte HSP27 was downregulated at the HI dose under TN conditions and HSP70 was upregulated at the HI dose and this effect was increased by HS. No effect was seen with the MID dose with HSP27 or HSP70. The lack of effect of BET at MID may be associated with uptake across the gut. We conclude that BET increased milk production under TN conditions and was associated with reduced feed and water intake and slightly increased body temperatures during HS of cows fed BET. The effect of BET on milk production was lost during HS with HI BET, whereas serum glucose levels increased during HS.
Collapse
Affiliation(s)
- L W Hall
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson 85719
| | - F R Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - J D Allen
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson 85719
| | - S Rungruang
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson 85719
| | - J L Collier
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson 85719
| | - N M Long
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson 85719
| | - R J Collier
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson 85719.
| |
Collapse
|
9
|
Osorio JS, Lohakare J, Bionaz M. Biosynthesis of milk fat, protein, and lactose: roles of transcriptional and posttranscriptional regulation. Physiol Genomics 2016; 48:231-56. [DOI: 10.1152/physiolgenomics.00016.2015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The demand for high-quality milk is increasing worldwide. The efficiency of milk synthesis can be improved by taking advantage of the accumulated knowledge of the transcriptional and posttranscriptional regulation of genes coding for proteins involved in the synthesis of fat, protein, and lactose in the mammary gland. Research in this area is relatively new, but data accumulated in the last 10 years provide a relatively clear picture. Milk fat synthesis appears to be regulated, at least in bovines, by an interactive network between SREBP1, PPARγ, and LXRα, with a potential role for other transcription factors, such as Spot14, ChREBP, and Sp1. Milk protein synthesis is highly regulated by insulin, amino acids, and amino acid transporters via transcriptional and posttranscriptional routes, with the insulin-mTOR pathway playing a central role. The transcriptional regulation of lactose synthesis is still poorly understood, but it is clear that glucose transporters play an important role. They can also cooperatively interact with amino acid transporters and the mTOR pathway. Recent data indicate the possibility of nutrigenomic interventions to increase milk fat synthesis by feeding long-chain fatty acids and milk protein synthesis by feeding amino acids. We propose a transcriptional network model to account for all available findings. This model encompasses a complex network of proteins that control milk synthesis with a cross talk between milk fat, protein, and lactose regulation, with mTOR functioning as a central hub.
Collapse
Affiliation(s)
| | - Jayant Lohakare
- Oregon State University, Corvallis, Oregon; and
- Kangwon National University, Chuncheon, South Korea
| | | |
Collapse
|
10
|
Lollivier V, Lacasse P, Angulo Arizala J, Lamberton P, Wiart S, Portanguen J, Bruckmaier R, Boutinaud M. In vivo inhibition followed by exogenous supplementation demonstrates galactopoietic effects of prolactin on mammary tissue and milk production in dairy cows. J Dairy Sci 2015; 98:8775-87. [DOI: 10.3168/jds.2015-9853] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/29/2015] [Indexed: 01/13/2023]
|
11
|
Prpar Mihevc S, Ogorevc J, Dovc P. Lineage-specific markers of goat mammary cells in primary culture. In Vitro Cell Dev Biol Anim 2014; 50:926-36. [PMID: 25213688 DOI: 10.1007/s11626-014-9796-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/03/2014] [Indexed: 11/29/2022]
Abstract
The objective of this study was morphological and functional characterization of cells from the primary cell culture developed from lactating goat mammary gland, focusing on distribution of lineage-specific markers. Primary cells were grown on a thin layer of basement membrane matrix, a growth surface that resembles in vivo conditions. The cells in adherent conditions rapidly proliferated and showed cobblestone morphology, typical for epithelial cells. Under non-adherent conditions, goat mammary cells formed spherical, acini-like structures that resembled alveoli of lactating mammary gland. Immunofluorescence and RNA sequencing were employed to determine expression of lineage-specific markers. Presence of markers cytokeratin 14 and 18, integrin alpha 6, vimentin, estrogen receptor, smooth muscle actin, and cytokeratin 5 was detected using immunofluorescence. The greatest expression was observed for markers typical for myoepithelial cells, luminal cells, and mesenchymal cells. Based on our characterization, we can conclude that established primary culture was composed of mainly epithelial and stromal cells. These findings demonstrate that primary mammary cells express some of the most important functional and biochemical markers needed for their characterization. First, they grow in the characteristic cobblestone morphology of epithelial cells. Second, they express classical cytoplasmic network of cytokeratin fibers. Third, they express markers typical of mammary parenchyma and stroma. The established cell culture represents a good in vitro model for studies of mammary gland development, differentiation, and lactation. We suggest that herein revealed lineage markers are suitable for characterization of mammary cells of goat and possibly other mammalian species.
Collapse
Affiliation(s)
- Sonja Prpar Mihevc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230, Domzale, Slovenia
| | | | | |
Collapse
|
12
|
Wall EH, Bond JP, McFadden TB. Milk yield responses to changes in milking frequency during early lactation are associated with coordinated and persistent changes in mammary gene expression. BMC Genomics 2013; 14:296. [PMID: 23638659 PMCID: PMC3658990 DOI: 10.1186/1471-2164-14-296] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 04/20/2013] [Indexed: 11/24/2022] Open
Abstract
Background The lactating mammary gland responds to changes in milking frequency by modulating milk production. This response is locally regulated and, in dairy cows, the udder is particularly sensitive during early lactation. Relative to cows milked twice-daily throughout lactation, those milked four-times-daily for just the first 3 weeks of lactation produce more milk throughout that lactation. We hypothesized that the milk yield response would be associated with increased mammary cell turnover and changes in gene expression during frequent milking and persisting thereafter. Cows were assigned to unilateral frequent milking (UFM; left udder halves milked twice-daily; right udder halves milked four-times daily) on days 1 to 21 of lactation, followed by twice-daily milking for the remainder of lactation. Relative to udder halves milked twice-daily, those milked four-times produced more milk during UFM; the difference in milk yield declined acutely upon cessation of UFM after day 21, but remained significantly elevated thereafter. We obtained mammary biopsies from both udder halves on days 21, 23, and 40 of lactation. Results Mammary cell proliferation and apoptosis were not affected by milking frequency. We identified 75 genes that were differentially expressed between paired udder halves on day 21 but exhibited a reversal of differential expression on day 23. Among those genes, we identified four clusters characterized by similar temporal patterns of differential expression. Two clusters (11 genes) were positively correlated with changes in milk yield and were differentially expressed on day 21 of lactation only, indicating involvement in the initial milk yield response. Two other clusters (64 genes) were negatively correlated with changes in milk yield. Twenty-nine of the 75 genes were also differentially expressed on day 40 of lactation. Conclusions Changes in milking frequency during early lactation did not alter mammary cell population dynamics, but were associated with coordinated changes in mammary expression of at least 75 genes. Twenty-nine of those genes were differentially expressed 19 days after cessation of treatment, implicating them in the persistent milk yield response. We conclude that we have identified a novel transcriptional signature that may mediate the adaptive response to changes in milking frequency.
Collapse
|
13
|
Piantoni P, Daniels KM, Everts RE, Rodriguez-Zas SL, Lewin HA, Hurley WL, Akers RM, Loor JJ. Level of nutrient intake affects mammary gland gene expression profiles in preweaned Holstein heifers. J Dairy Sci 2012; 95:2550-61. [PMID: 22541482 DOI: 10.3168/jds.2011-4539] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 01/05/2012] [Indexed: 12/22/2022]
Abstract
Bovine mammary parenchyma (PAR) and fat pad (MFP) development are responsive to preweaning level of nutrient intake. We studied transcriptome alterations in PAR and MFP from Holstein heifer calves (n=6/treatment) fed different nutrient intakes from birth to ca. 65 d age. Conventional nutrient intake received 441 g of dry matter (DM)/d of a control milk replacer (MR) [CON; 20% crude protein (CP), 20% fat, DM basis]. Calves in the accelerated nutrition groups received 951 g/d of high-protein/low-fat MR (HPLF; 28% CP, 20% fat, DM basis), 951 g/d of high-protein/high-fat MR (HPHF; 28% CP, 28% fat, DM basis), or 1,431 g/d of HPHF (HPHF+) MR. Out of 13,000 genes evaluated, over 1,500 differentially expressed genes (DEG) were affected (false discovery rate <0.10) by level of nutrient intake in PAR or MFP. Feeding HPLF versus CON resulted in the most dramatic changes in gene expression, with 278 and 588 DEG having ≥1.5-fold change in PAR and MFP. In PAR, the most-altered molecular functions were associated with metabolism of the cell (molecular transport and lipid metabolism) with most of the genes downregulated in HPLF versus CON. In MFP, DEG also were primarily associated with metabolism but changes also occurred in genes linked to cell morphology, cell-to-cell signaling, and immune response. Compared with CON, feeding HPHF or HPHF+ did not result in substantial additional effects on DEG beyond those observed with HPLF. The pentose phosphate, mitochondrial dysfunction, and ubiquinone biosynthesis pathways were among the most enriched due to HPLF versus CON in PAR and were inhibited, whereas glycosphingolipid biosynthesis, arachidonic acid metabolism, and eicosanoid synthesis pathways were among the most enriched due to HPLF versus CON in MFP and were inhibited. These responses suggest that, in PAR, doubling nutrient intake from standard feeding rates inhibited energy metabolism and activity of oxidative pathways that partly serve to protect cells against oxidative stress. The MFP in those heifers appeared to decrease production of lipid-derived metabolites that may play roles in signaling pathways within the adipocyte. Overall, results indicated that prepubertal/preweaned mammary transcriptome is responsive to long-term enhanced nutrient supply to achieve greater growth rates before weaning. The biological significance of these results to future milk production remains to be elucidated.
Collapse
Affiliation(s)
- P Piantoni
- Department of Animal Sciences, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Collier RJ, Hernandez LL, Horseman ND. Serotonin as a homeostatic regulator of lactation. Domest Anim Endocrinol 2012; 43:161-70. [PMID: 22608139 DOI: 10.1016/j.domaniend.2012.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 03/23/2012] [Accepted: 03/28/2012] [Indexed: 01/01/2023]
Abstract
Serotonin (5-HT), a neurotransmitter produced in mammary epithelial cells (MECs), acts via autocrine-paracrine mechanisms on MECs to regulate milk secretion in a variety of species. Recent studies in dairy cows reported that 5-HT ligands affect milk yield and composition. We determined the mRNA expression of bovine 5-HT receptor (5-HTR) subtypes in bovine mammary tissue (BMT) and cultured bovine MECs. We then used pharmacologic agents to evaluate functional activities of 5-HTR subtypes. The mRNAs for five receptor isoforms (5-HTR1B, 5-HTR2A, 5-HTR2B, 5-HTR4, and 5-HTR7) were identified by conventional reverse transcription PCR, real-time PCR, and in situ hybridization in BMT. In addition to luminal MEC expression, 5-HTR4 was expressed in myoepithelium, and 5-HTR1B, HTR2A, and HTR2B were expressed in small mammary blood vessels. Studies to date report that there are multiple 5-HTR isoforms in mammary tissue of rodents, humans, and cattle. Inhibition of the 5-HT reuptake transporter with selective 5-HT reuptake inhibitors (SSRIs) disrupted tight junctions and decreased milk protein mRNA expression in mouse, human, and bovine mammary cells. Selective 5-HT reuptake inhibitors act to increase the cellular exposure to 5-HT by preventing reuptake of 5-HT by the cell and eventual degradation. Increasing 5-HT concentration in milk via inhibiting its reuptake (SSRI), or by increasing the precursor for 5-HT synthesis 5-hydroxytryptophan, accelerated decline in milk synthesis at dry-off. We conclude that the 5-HT system in mammary tissue acts as a homeostatic regulator of lactation.
Collapse
Affiliation(s)
- R J Collier
- Department of Animal Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
15
|
Trott JF, Schennink A, Petrie WK, Manjarin R, VanKlompenberg MK, Hovey RC. TRIENNIAL LACTATION SYMPOSIUM: Prolactin: The multifaceted potentiator of mammary growth and function1,2. J Anim Sci 2012; 90:1674-86. [DOI: 10.2527/jas.2011-4682] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- J. F. Trott
- Department of Animal Science, University of California, Davis 95616
| | - A. Schennink
- Department of Animal Science, University of California, Davis 95616
| | - W. K. Petrie
- Department of Animal Science, University of California, Davis 95616
| | - R. Manjarin
- Department of Animal Science, University of California, Davis 95616
| | | | - R. C. Hovey
- Department of Animal Science, University of California, Davis 95616
| |
Collapse
|
16
|
Wall EH, Bond JP, McFadden TB. Acute milk yield response to frequent milking during early lactation is mediated by genes transiently regulated by milk removal. Physiol Genomics 2011; 44:25-34. [PMID: 22028429 DOI: 10.1152/physiolgenomics.00027.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Milking dairy cows four times daily (4×) instead of twice daily (2×) during early lactation stimulates an increase in milk yield that partly persists through late lactation; however, the mechanisms behind this response are unknown. We hypothesized that the acute mammary response to regular milkings would be transient and would involve different genes from those that may be specifically regulated in response to 4×. Nine multiparous cows were assigned at parturition to unilateral frequent milking (UFM; 2× of the left udder half, 4× of the right udder half). Mammary biopsies were obtained from both rear quarters at 5 days in milk (DIM), immediately after 4× glands had been milked (experiment 1, n = 4 cows), or 2.5 h after both udder halves had last been milked (experiment 2, n = 5 cows). Affymetrix GeneChip Bovine Genome Arrays were used to measure gene expression. We found 855 genes were differentially expressed in mammary tissue between 2× vs. 4× glands of cows in experiment 1 (false discovery rate ≤ 0.05), whereas none were differentially expressed in experiment 2 using the same criterion. We conclude that there is an acute transcriptional response to milk removal, but 4× milking did not elicit differential expression of unique genes. Therefore, there does not appear to be a sustained transcriptional response to 4× milking on day 5 of lactation. Using a differential expression plot of data from both experiments, as well as qRT-PCR, we identified at least two genes (chitinase 3-like-1 and low-density lipoprotein-related protein-2 that may be responsive to both milk removal and to 4× milking. Therefore, the milk yield response to 4× milking may be mediated by genes that are acutely regulated by removal of milk from the mammary gland.
Collapse
Affiliation(s)
- E H Wall
- Department of Animal Science, University of Vermont, Burlington, Vermont, USA
| | | | | |
Collapse
|
17
|
Establishment and characterization of a lactating bovine mammary epithelial cell model for the study of milk synthesis. Cell Biol Int 2010; 34:717-21. [PMID: 20214659 DOI: 10.1042/cbi20100023] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study sought to establish an in vitro lactating BMEC (bovine mammary epithelial cell) model, which may maintain the native function for a period of time. Mammary tissues of midlactation Holstein dairy cows were dispersed and cultured in a medium containing insulin, prolactin, hydrocortisone, transferrin, epidermal growth factor and fetal calf serum. After the cells migrating from the tissue reached approximately 80% of confluency, the tissues were removed, and secretory epithelial cells were enriched by digesting with 0.25% trypsin repeatedly to remove fibroblasts. The BMEC cells plated on plastic dishes displayed a monolayer, cobblestone, epithelial-like morphology and formed alveoli-like structures and island monolayer aggregates which are the typical characteristics of the mammary epithelial cells. The isolated cells were identified as of epithelial origin by staining with antibody against cytokeratin 18. A one-half logarithmically growth curve and abundant microvilli and cytoplasmic lipid droplets were observed in these cells. The transcription of the alphas1 casein gene and synthesis of alphas caseins were also detected in the model. Thus, our lactating BMEC model can be an effective model in vitro for studies of milk synthesis in the bovine mammary gland.
Collapse
|
18
|
Charoenphandhu N, Wongdee K, Krishnamra N. Is prolactin the cardinal calciotropic maternal hormone? Trends Endocrinol Metab 2010; 21:395-401. [PMID: 20304671 DOI: 10.1016/j.tem.2010.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 12/14/2022]
Abstract
To produce offspring, mothers require a large amount of calcium for fetal growth and milk production. Increased calcium demand leads to enhanced intestinal calcium absorption and stockpiling of bone calcium in pregnancy prior to demineralization in lactation. These coordinated events must be carefully organized by calciotropic hormone(s), but the classical hormones, namely 1,25-dihydroxyvitamin D(3), parathyroid hormone and calcitonin, do not appear to be responsible. Plasma prolactin (PRL) levels are elevated during pregnancy and, in view of the presence of PRL receptors in gut, bone and mammary glands, as well as recent evidence of the stimulatory effects of PRL on intestinal calcium transport, bone resorption and mammary calcium secretion, we postulate that PRL is the cardinal calciotropic hormone during pregnancy and lactation.
Collapse
|
19
|
Marshall AM, Nommsen-Rivers LA, Hernandez LL, Dewey KG, Chantry CJ, Gregerson KA, Horseman ND. Serotonin transport and metabolism in the mammary gland modulates secretory activation and involution. J Clin Endocrinol Metab 2010; 95:837-46. [PMID: 19965920 PMCID: PMC2840848 DOI: 10.1210/jc.2009-1575] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
CONTEXT Serotonin [5-hydroxytryptamine (5-HT)] is an important local regulator of lactation homeostasis; however, the roles for the serotonin reuptake transporter and monoamine oxidase have not been known. OBJECTIVE The aim of the study was to determine whether drugs that impact 5-HT affect human lactation physiology. DESIGN AND SETTING We conducted laboratory studies of human and animal models and an observational study of the onset of copious milk secretion in postpartum women at a university medical center. PARTICIPANTS We studied women expecting their first live-born infant; exclusion criteria were: referred to the medical center for another medical condition, known contraindication to breastfeed, and less than 19 yr of age and unable to obtain parental consent. INTERVENTION(S) The mothers were interviewed. The cell and animal studies consisted of a variety of biochemical, pharmacological, and genetic interventions. MAIN OUTCOME MEASURE(S) The human subjects outcome was prevalence of delayed onset of copious milk secretion. The cell and animal outcomes were physiological and morphological. RESULTS Inhibiting serotonin reuptake in mammary epithelial cells altered barrier function, and the effects were amplified by coadministering a monoamine oxidase inhibitor. Direct delivery of fluoxetine by slow-release pellets caused localized involution. TPH1 knockout mice displayed precocious secretory activation. Among a cohort of 431 women, those taking SSRI were more likely (P = 0.02) to experience delayed secretory activation. CONCLUSIONS Medications that perturb serotonin balance dysregulate lactation, and the effects are consistent with those predicted by the physiological effects of intramammary 5-HT bioactivity. Mothers taking serotonergic drugs may need additional support to achieve their breastfeeding goals.
Collapse
Affiliation(s)
- Aaron M Marshall
- 231 Albert Sabin Way, Molecular and Cellular Physiology, Cincinnati, Ohio 45267-0576, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Hernandez LL, Limesand SW, Collier JL, Horseman ND, Collier RJ. The bovine mammary gland expresses multiple functional isoforms of serotonin receptors. J Endocrinol 2009; 203:123-31. [PMID: 19654143 PMCID: PMC2741409 DOI: 10.1677/joe-09-0187] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent studies in dairy cows have demonstrated that serotonergic ligands affect milk yield and composition. Correspondingly, serotonin (5-HT) has been demonstrated to be an important local regulator of lactational homeostasis and involution in mouse and human mammary cells. We determined the mRNA expression of bovine 5-HT receptor (HTR) subtypes in bovine mammary tissue (BMT) and used pharmacological agents to evaluate functional activities of 5-HT receptors. The mRNAs for five receptor isoforms (HTR1B, 2A, 2B, 4, and 7) were identified by conventional real-time (RT)-PCR, RT quantitative PCR, and in situ hybridization in BMT. In addition to luminal mammary epithelial cell expression, HTR4 was expressed in myoepithelium, and HTR1B, 2A, and 2B were expressed in small mammary blood vessels. Serotonin suppressed milk protein mRNA expression (alpha-lactalbumin and beta-casein mRNA) in lactogen-treated primary bovine mammary epithelial cell (BMEC) cultures. To probe the functional activities of individual receptors, caspase-3 activity and expression of alpha-lactalbumin and beta-casein were measured. Both SB22489 (1B antagonist) and ritanserin (2A antagonist) increased caspase-3 activity. Expression of alpha-lactalbumin and beta-casein mRNA levels in BMEC were stimulated by low concentrations of SB224289, ritanserin, or pimozide. These results demonstrate that there are multiple 5-HT receptor isoforms in the bovine mammary gland, and point to profound differences between serotonergic systems of the bovine mammary gland and the human and mouse mammary glands. Whereas human and mouse mammary epithelial cells express predominately the protein for the 5-HT(7) receptor, cow mammary epithelium expresses multiple receptors that have overlapping, but not identical, functional activities.
Collapse
Affiliation(s)
- Laura L Hernandez
- Department of Animal SciencesUniversity of ArizonaTucson, Arizona, 85721USA
- Department of Molecular and Cellular PhysiologyUniversity of CincinnatiCincinnati, Ohio, 45267USA
| | - Sean W Limesand
- Department of Animal SciencesUniversity of ArizonaTucson, Arizona, 85721USA
| | - Jayne L Collier
- Department of Animal SciencesUniversity of ArizonaTucson, Arizona, 85721USA
| | - Nelson D Horseman
- Department of Molecular and Cellular PhysiologyUniversity of CincinnatiCincinnati, Ohio, 45267USA
| | - Robert J Collier
- Department of Animal SciencesUniversity of ArizonaTucson, Arizona, 85721USA
- (Correspondence should be addressed to R J Collier who is now at William Parker Agricultural Research Center, University of Arizona, 1650 Limberlost #2019, Tucson, Arizona 85719, USA; )
| |
Collapse
|
21
|
Menzies KK, Lefèvre C, Sharp JA, Macmillan KL, Sheehy PA, Nicholas KR. A novel approach identified the FOLR1 gene, a putative regulator of milk protein synthesis. Mamm Genome 2009; 20:498-503. [DOI: 10.1007/s00335-009-9207-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 07/01/2009] [Indexed: 12/25/2022]
|
22
|
Hernandez LL, Stiening CM, Wheelock JB, Baumgard LH, Parkhurst AM, Collier RJ. Evaluation of serotonin as a feedback inhibitor of lactation in the bovine. J Dairy Sci 2008; 91:1834-44. [PMID: 18420614 DOI: 10.3168/jds.2007-0766] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Serotonin (5-HT), a neurotransmitter synthesized from tryptophan, has been proposed as a feedback inhibitor of lactation. We determined that the gene coding for tryptophan hydroxylase 1, the rate-limiting enzyme for 5-HT synthesis, is expressed in bovine mammary epithelial cells in vitro and is upregulated by prolactin. In addition, 5-HT reduced the expression of alpha-lactalbu-min and casein genes in vitro. Furthermore, inhibiting 5-HT synthesis with p-chlorophenylalanine or blocking the 5-HT receptor with methysergide (METH) increased milk protein gene expression. We then evaluated effects of intramammary 5-HT or METH infusion on production and milk composition in 6 multiparous Holstein cows. Cows were assigned to a repeated measures design of contralateral intramammary infusions of METH (20 mg/quarter per d) or saline for 3 d followed by a 7-d washout period before administering 5-HT (50 mg/quarter/d) or SAL for 3 d. For each udder half, milk yield was recorded twice and composition was determined once per day. Blood samples were harvested each day for plasma to determine glucose and nonesterified fatty acid concentrations. Evaporative heat loss, respiration rate, left and right udder temperatures, and rectal temperatures were obtained after each milking to evaluate possible systemic effects of infusions. During METH and saline infusions milk yield increased 10.9%. During 5-HT and saline infusion milk yield decreased 11.1%. Milk yield and physiological responses suggested intramammary 5-HT and METH doses were high enough to cause systemic effects. Infusing saline, METH, and 5-HT increased milk SCC. Infusing 5-HT tended to reduce mean lactose concentration (4.3 vs. 4.6%) relative to saline. Milk protein content was decreased by METH and SAL (2.0%) and was increased (5.8%) by 5-HT followed by a 33% decrease postinfusion. Infusion of METH increased evaporative heat loss 11%, which decreased 11% postinfusion. Infusions of 5-HT or METH did not affect plasma nonesterified fatty acid or glucose concentrations, respiration rate, or milk fat content. We conclude 5-HT infusion reduced milk synthesis, whereas blocking the 5-HT receptor with METH increased milk synthesis. Doses of 5-HT and METH used in this study likely resulted in systemic effects. These data support the concept that 5-HT is a feedback inhibitor of lactation in the bovine.
Collapse
Affiliation(s)
- L L Hernandez
- Department of Animal Sciences, University of Arizona, Tucson 85721, USA
| | | | | | | | | | | |
Collapse
|