1
|
Seo YJ, Lim C, Lim B, Kim JM. Microbial-transcriptome integrative analysis of heat stress effects on amino acid metabolism and lipid peroxidation in poultry jejunum. Anim Biotechnol 2024; 35:2331179. [PMID: 38519440 DOI: 10.1080/10495398.2024.2331179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Despite the significant threat of heat stress to livestock animals, only a few studies have considered the potential relationship between broiler chickens and their microbiota. Therefore, this study examined microbial modifications, transcriptional changes and host-microbiome interactions using a predicted metabolome data-based approach to understand the impact of heat stress on poultry. After the analysis, the host functional enrichment analysis revealed that pathways related to lipid and protein metabolism were elevated under heat stress conditions. In contrast, pathways related to the cell cycle were suppressed under normal environmental temperatures. In line with the transcriptome analysis, the microbial analysis results indicate that taxonomic changes affect lipid degradation. Heat stress engendered statistically significant difference in the abundance of 11 microorganisms, including Bacteroides and Peptostreptococcacea. Together, integrative approach analysis suggests that microbiota-induced metabolites affect host fatty acid peroxidation metabolism, which is correlated with the gene families of Acyl-CoA dehydrogenase long chain (ACADL), Acyl-CoA Oxidase (ACOX) and Acetyl-CoA Acyltransferase (ACAA). This integrated approach provides novel insights into heat stress problems and identifies potential biomarkers associated with heat stress.
Collapse
Affiliation(s)
- Young-Jun Seo
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Chiwoong Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
2
|
Das P, Alex R, Gowane GR, Vohra V, Paul D, Khan KD, Upadhyay A, De S, Ludri A. Chronic heat stress upregulates pyruvate metabolic process and gluconeogenesis but downregulates immune responses in Sahiwal cattle. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024:10.1007/s00484-024-02804-4. [PMID: 39446186 DOI: 10.1007/s00484-024-02804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Climate change and growing population and their strain on animal production are the impending challenges that the developing countries, like India, need to tackle in the coming days. This study aimed to detect and analyze the uncharacterized variation in the gene expression patterns with the change of condition, from thermoneutral to chronic hot-humid, in the Sahiwal cattle, one of the best breeds of milk-producing cattle in India, known for being heat-tolerant. Using RNA-Seq analysis on peripheral blood mononuclear cells (PBMCs), 4021 differentially expressed mRNAs (2772 upregulated, 1249 downregulated) and 1303 differentially expressed long non-coding RNAs (769 upregulated, 534 downregulated) were identified, with the thresholds of false discovery rate < 0.05 and|log2(fold change)| > 2. Significantly (p-adjusted < 0.05) overrepresented Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathways were analyzed, revealing upregulation of processes like pyruvate metabolic process, gluconeogenesis, ion transmembrane transport, neuropeptide signaling pathway, and animal organ development, with genes like SHH, GRK1, CHRM3, CAMK2A, and HSPB7 were upregulated, while translation and immune responses, with genes like RPS3, EEF1A1, TNF, BoLA-DRB3, and UBB were downregulated. Analysis of cis-mRNAs of DE-lncRNAs showed presence of both up- and down-regulated cis-mRNAs for both up- and down-regulated lncRNAs indicating existence of positive and negative regulation of mRNA expression by lncRNAs. Managemental nudges that decrease metabolic heat generation, like betaine and chromium supplementation, and increase heat dissipation, like microenvironment cooling, should be utilized. This study highlights the role of pyruvate metabolism and gluconeogenesis in coping up with heat stress and offers an improved understanding of the heat stress response of Sahiwal cattle along with the genes and pathways responsible for it.
Collapse
Affiliation(s)
- Pradyut Das
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rani Alex
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Gopal Ramdasji Gowane
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Vikas Vohra
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Dipankar Paul
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Kashif Dawood Khan
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Amritanshu Upadhyay
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sachinandan De
- Division of Animal Biotechnology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ashutosh Ludri
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
3
|
Nam KT, Choi N, Na Y, Choi Y. Effect of the Temperature-Humidity Index on the Productivity of Dairy Cows and the Correlation between the Temperature-Humidity Index and Rumen Temperature Using a Rumen Sensor. Animals (Basel) 2024; 14:2848. [PMID: 39409797 PMCID: PMC11476052 DOI: 10.3390/ani14192848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This study was conducted to evaluate the effects of high-temperature stress on dairy cow productivity and the correlation between rumen sensors. The data were collected on the temperature, humidity, milk productivity, milk components, blood components, and rumen sensor data from 125 dairy cows during the experimental period (1 May 2020 to 30 October 2020). High-temperature stress of dairy cows was evaluated based on the temperature-humidity index (THI). The correlations between the high-temperature stress, productivity, and sensor data were analyzed using SAS and R programs. The THI ranged from 46.9 to 81.0 during the experimental period, and a significant decrease was observed in the milk production of dairy cows during August (p < 0.05). Milk production was evaluated to decrease by 1.8% because of high-temperature stress during the experimental period. There was a significantly high negative correlation between the THI ratio of day and rumen temperature (r = 0.744; p < 0.001). The other rumen sensor data did not show a significant correlation with the productivity of dairy cows. The results can be utilized as a guideline for managing temperature and humidity to maintain dairy cow productivity on farms in high-temperature stress conditions.
Collapse
Affiliation(s)
- Ki Taeg Nam
- Department of Animal Science and Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea;
| | - Nackhoon Choi
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea; (N.C.); (Y.N.)
| | - Youngjun Na
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea; (N.C.); (Y.N.)
- Animal Data Laboratory, Antller Inc., Seoul 05029, Republic of Korea
| | - Yongjun Choi
- Department of Animal Science and Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea;
| |
Collapse
|
4
|
Bertens CA, Stoffel C, Crombie MB, Vahmani P, Penner GB. The effects of dietary cation-anion difference and dietary buffer for lactating dairy cattle under mild heat stress with night cooling. J Dairy Sci 2024:S0022-0302(24)01165-2. [PMID: 39343199 DOI: 10.3168/jds.2024-25225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024]
Abstract
The objective of this study was to investigate the interactive effect of dietary cation-anion difference (DCAD) and dietary buffer supply on DMI, ruminal fermentation, milk and milk component yields, and gastrointestinal tract (GIT) permeability in lactating dairy cattle exposed to mild heat stress. Sixteen lactating Holstein cows, including 8 ruminally cannulated primiparous (80 ± 19.2 DIM) and 8 non-cannulated multiparous (136 ± 38.8 DIM) cows, were housed in a tie-stall barn programmed to maintain a temperature-humidity index (THI) between 68 and 72 from 0600 h to 1600 h followed by natural night cooling. The experimental design was a replicated 4 × 4 Latin rectangle (21-d periods) with a 2 × 2 factorial treatment arrangement. Diets contained a low DCAD (LD; 17.5 mEq/100g of DM) or high DCAD (HD; 39.6 mEq/100g of DM) adjusted using NH4Cl and Na-acetate, with low (LB; 0% CaMg(CO3)2) or high buffer (HB; 1% CaMg(CO3)2). In addition to measurement of feed intake, ruminal fermentation, and milk and milk component yields, a ruminal dose of Cr-EDTA and an equimolar abomasal dose of Co-EDTA were used to evaluate total and post-ruminal gastrointestinal tract permeability, respectively. Treatments had no effect on DMI, ruminal short-chain fatty acid concentrations, or ruminal pH. Feeding HD improved blood acid-base balance, increased urine volume by 4 ± 1.5 kg/d, and increased milk fat by 0.14 ± 0.044 percentage units and milk fat yield by 36.5 ± 16.71 g/d. HB reduced milk fat percentage by 0.11 ± 0.044 percentage units and had no effect on milk fat yield. The HB treatments reduced urinary excretion of Co by 27% and tended to reduce urinary Cr excretion by 10%. Across all treatments, 72% of the Cr recovery was represented by Co suggesting that much of the permeability responses were post-ruminal during mild heat stress. In conclusion, increasing DCAD through greater Na supply during mild heat stress improved blood acid-base balance and may increase milk fat yield. Dietary inclusion of CaMg(CO3)2 improved post-ruminal GIT barrier function despite a lack of low ruminal pH. As there appeared to be a limited interactive effect between DCAD and buffer, increased DCAD and provision of buffer seem to independently influence physiological and performance responses in lactating dairy cows exposed to mild heat with night cooling.
Collapse
Affiliation(s)
- C A Bertens
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8
| | - C Stoffel
- Papillon Agricultural Company and MIN-AD Inc., Easton, MD 21601
| | - M B Crombie
- Papillon Agricultural Company and MIN-AD Inc., Easton, MD 21601
| | - P Vahmani
- Department of Animal Science, UC Davis, Davis, CA, USA 95616-5270
| | - G B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A8.
| |
Collapse
|
5
|
Mendonca LC, Carvalho WA, Campos MM, Souza GN, de Oliveira SA, Meringhe GKF, Negrao JA. Heat stress affects milk yield, milk quality, and gene expression profiles in mammary cells of Girolando cows. J Dairy Sci 2024:S0022-0302(24)01185-8. [PMID: 39343218 DOI: 10.3168/jds.2024-25498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Heat stress during lactation affects the physiological responses, hormonal release, health, and productivity of dairy cows. However, the adverse effects of heat stress on milk synthesis, immune response, and cellular apoptosis in mammary cells remains unknown in Bos indicus cows. This study aimed to understand the relationship between milk yield, milk quality, and the expression of genes related to milk synthesis, cell apoptosis, and immune response in mammary cells of Girolando cows. Twenty-four Girolando cows (3/4 Holstein and 1/4 Gir) were subjected to control (CT, with a temperature-humidity index ranging from 60 to 74, n = 12) or heat stress treatments (HS, with a temperature- humidity index ranging from 60 to 85, n = 12), from 111 to 120 d of lactation. Heat stress significantly increased the expression of heat shock proteins (HSPD1 and HSPD90AA1), insulin receptors (INSR), and prolactin receptors (PRLRsf) genes, and decreased the expression of glucocorticoid receptor (NR3C1) gene in mammary cells of the HS cows when compared with the CT cows. The HS cows exhibited significantly higher vaginal temperatures and cortisol release compared with the CT cows. Moreover, the HS cows had significantly lower dry matter intake and milk yield than CT cows. Although, HS cows showed higher percentage of lymphocytes in milk when compared with that from CT cows. There was no effect of heat stress on other leukocyte counts, somatic cell counts, bacterial counts in milk, or milk composition. Finally, this study demonstrated that Girolando cows are susceptible to heat stress, which decreases milk yield and affects the expression of genes linked to milk synthesis in the mammary cells.
Collapse
Affiliation(s)
- L C Mendonca
- São Paulo State University (UNESP), Faculty of Agricultural and Veterinary Sciences, Campus Jaboticabal; Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - W A Carvalho
- Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - M M Campos
- Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - G N Souza
- Brazilian Agricultural Research Corporation (Embrapa Dairy Cattle), Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - S A de Oliveira
- Department of Basic Sciences, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, 13635-900 Brazil
| | - G K F Meringhe
- Department of Basic Sciences, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, 13635-900 Brazil
| | - J A Negrao
- Department of Basic Sciences, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, 13635-900 Brazil.
| |
Collapse
|
6
|
Koch F, Albrecht D, Albrecht E, Hansen C, Kuhla B. Novel Perspective on Molecular and Cellular Adaptations of the Mammary Gland-Regulating Milk Constituents and Immunity of Heat-Stressed Dairy Cows. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20286-20298. [PMID: 39226405 PMCID: PMC11421017 DOI: 10.1021/acs.jafc.4c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Climate change with increasing ambient temperatures negatively influences the biology of dairy cows and their milk production in the mammary gland (MG). This study aimed to elucidate the MG proteome, differences in milk composition, and ruminal short-chain fatty acid concentrations of dairy cows experiencing 7 days of heat stress [HS, 28 °C, temperature humidity index (THI) = 76], pair-feeding (PF), or ad libitum feeding (CON) at thermoneutrality (16 °C, THI = 60). Ruminal acetate, acetate/propionate ratio, and milk urea concentrations were greater, whereas milk protein and lactose were lower in HS than in control cows. Proteome analysis revealed an induced bacterial invasion of epithelial cells, leukocyte transendothelial migration, reduction of the pyruvate and carbon metabolism, and platelet activation in the MG of HS compared to CON or PF cows. These results highlight adaptive metabolic and immune responses to mitigate the negative effects of ambient heat in the MG.
Collapse
Affiliation(s)
- Franziska Koch
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Dirk Albrecht
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald 17489, Germany
| | - Elke Albrecht
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Christiane Hansen
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, Institute of Livestock Farming, Dummerstorf 18196, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| |
Collapse
|
7
|
Oliveira CS, Dias HRS, Camargo AJDR, Mourão A, Feuchard VLDS, Muller MD, Brandão FZ, Nogueira LAG, Verneque RDS, Saraiva NZ, Camargo LSDA. Livestock-Forest integrated system attenuates deleterious heat stress effects in bovine oocytes. Anim Reprod Sci 2024; 268:107568. [PMID: 39106562 DOI: 10.1016/j.anireprosci.2024.107568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Global warming poses significant challenges to the fertility of tropical dairy cattle. One promising approach to mitigate heat stress effects on reproductive function and reduce the carbon footprint is the use of integrated livestock-forest (ILF) systems. The aim of this study was to investigate the effects of two different systems, namely Full Sun (FS) and ILF, on maternal hyperthermia and oocyte quality of Holstein and Girolando heifers during the tropical summer season. The temperature-humidity index (THI) data revealed intense heat stress during the experiment. Both the system (P<0.01) and the breed (P<0.01) factors had a significant impact on vaginal temperature, being hyperthermia more pronounced in the FS system and in the Holstein breed. Over the five time points collected at a 33-day interval, we observed distinct patterns for ILF (P=0.65) and FS (P<0.001) systems, suggesting an adaptive response in animals kept in FS systems. Furthermore, oocyte quality assessment revealed an effect of the system for oocyte diameter (P<0.001) and levels of IGFBP2 (P<0.001), and caspase 3 levels showed a decrease in ILF compared to FS for both Holstein (P<0.001) and Girolando (P<0.001) breeds. Collectively, these parameters indicate that oocyte quality during the summer months was superior in animals maintained in the ILF system. In conclusion, the ILF system demonstrated promising results in attenuating maternal hyperthermia and mitigating its effects on oocyte quality. Additionally, our observations suggest that animals in the FS system may exhibit an adaptive response to heat stress.
Collapse
Affiliation(s)
- Clara Slade Oliveira
- Embrapa Dairy Cattle, 610 Eugenio do Nascimento Ave., Juiz de Fora, MG 36038-330, Brazil
| | - Hugo Rocha Sabença Dias
- Embrapa Dairy Cattle, 610 Eugenio do Nascimento Ave., Juiz de Fora, MG 36038-330, Brazil; Universidade Federal Fluminense - UFF, Faculdade de Veterinária, Rua Vital Brazil Filho, 64, Santa Rosa, Niterói, RJ 24230-340, Brazil
| | - Agostinho Jorge Dos Reis Camargo
- Agricultural Research Company of the Rio de Janeiro State (PESAGRO RIO), São Boa Ventura Av., 770, Fonseca, Niterói, Rio de Janeiro 24120-19, Brazil
| | - Anderson Mourão
- Agricultural Research Company of the Rio de Janeiro State (PESAGRO RIO), São Boa Ventura Av., 770, Fonseca, Niterói, Rio de Janeiro 24120-19, Brazil
| | | | - Marcelo Dias Muller
- Embrapa Dairy Cattle, 610 Eugenio do Nascimento Ave., Juiz de Fora, MG 36038-330, Brazil
| | - Felipe Zandonadi Brandão
- Universidade Federal Fluminense - UFF, Faculdade de Veterinária, Rua Vital Brazil Filho, 64, Santa Rosa, Niterói, RJ 24230-340, Brazil
| | - Luiz Altamiro Garcia Nogueira
- Universidade Federal Fluminense - UFF, Faculdade de Veterinária, Rua Vital Brazil Filho, 64, Santa Rosa, Niterói, RJ 24230-340, Brazil
| | - Rui da Silva Verneque
- Embrapa Dairy Cattle, 610 Eugenio do Nascimento Ave., Juiz de Fora, MG 36038-330, Brazil
| | - Naiara Zoccal Saraiva
- Embrapa Dairy Cattle, 610 Eugenio do Nascimento Ave., Juiz de Fora, MG 36038-330, Brazil
| | | |
Collapse
|
8
|
Toledo I, Casarotto L, Dahl G. Seasonal effects on multiparous dairy cow behavior in early lactation. JDS COMMUNICATIONS 2024; 5:379-383. [PMID: 39310839 PMCID: PMC11410468 DOI: 10.3168/jdsc.2022-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/10/2023] [Indexed: 09/25/2024]
Abstract
Controlled studies have shown that heat stress abatement positively influences health, productivity, behavior, and reproductive performance of dairy cows during all stages of the lactation cycle. Based on previous findings, the present study focused on a better understanding of how seasonal changes affect the behavior of multiparous lactating dairy cows kept in typical free-stall housing with the objective to aid in the management of lactating cows exposed to variable environmental conditions. Automated monitoring devices (Nedap, the Netherlands) were used to assess behavioral activity of mature Holstein dairy cows during the "hot season" (HS; n = 19; July, August, and September) and the "cool season" (CS; n = 15; December, January, and February) under normal management conditions. Cows received a leg tag to measure daily lying time, and number of steps and standing bouts, and a neck tag to measure eating and rumination time. All cows were housed in sand-bedded freestall barns equipped with cooling systems (soakers and fans). Behavior, milk production and milk components were recorded for the first 9 wk of lactation after calving. Average temperature-humidity index (THI) was 78.2 ± 0.4 (± standard error) in the HS and 54.4 ± 0.2 in the CS. Fat-corrected milk yield was greater in the CS compared with HS during the first 5 wk of lactation. Milk protein percentage was lower in CS during the first 2 wk of lactation. In contrast with HS, milk fat percentage was greater in the CS. Compared with CS, overall, during HS cows spent less time eating, lying down, and tended to spend less time ruminating. In addition, exposure to high THI resulted in increases in standing bouts, and overall standing time in HS relative to CS. No differences in number of steps were observed between HS and CS. In summary, exposure to high THI during lactation seems to negatively affect the behavior and consequently the daily time budget of lactating Holstein cows, even under housing conditions with active cooling. A better understanding on how different seasons affect the daily time budget of lactating dairy cows may contribute to the development of more effective management strategies to decrease the negative effects of heat exposure.
Collapse
Affiliation(s)
- I.M. Toledo
- Institute of Food and Agricultural Sciences (IFAS) Extension, University of Florida, Gainesville, FL 32608
| | - L.T. Casarotto
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608
| | - G.E. Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608
| |
Collapse
|
9
|
Upadhyay VR, Ashutosh, Shashank CG, Singh NP. Deciphering the immune responses in late gestation Sahiwal cows under different microclimate and its carryover effect on progenies. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1885-1895. [PMID: 38861181 DOI: 10.1007/s00484-024-02716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The current investigation aimed to comprehend the inflammatory and related immune responses in intrauterine calves subjected to heat stress (HS) during late gestation. For this purpose, 48 Sahiwal cows in late gestation were chosen and categorized into four equal groups: naturally heat stressed (NHS), cooling-treated (CLT), spring, and winter, and likewise their neonate calves born in summer (IUHS - intrauterine heat stressed and IUCL - intrauterine cooled), spring, and winter seasons. Environmental parameters were recorded, and the temperature-humidity index (THI) was calculated daily throughout the study period. The average THI values ranged between 84.18 (summer-NHS), 73.88 (summer-CLT), 78.92 (spring), and 64.91 (winter). NHS and spring groups exhibited thermal stress based on THI (> 76.00). Various treatments significantly (P < 0.01) impacted parameters like rectal temperature (RT), respiratory rate (RR), pulse rate (PR), and skin temperature (ST) in Sahiwal cows and their calves during the study, except for heart rate (HR). Blood samples collected during different seasons and from cows housed in a climatic chamber were used to extract plasma. Plasma cortisol, interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and thiobarbituric acid reactive substances (TBARS) levels were notably higher (P < 0.05) in the NHS compared to the CLT group. Conversely, total antioxidant capacity (TAC) and immunoglobulin G (IgG) levels were higher (P < 0.05) in the CLT and winter groups. IUHS calves exhibited significantly (P < 0.05) lower overall mean plasma TAC and IgG levels but higher inflammatory and oxidative biomarkers, such as IL-6, TNF-α, and TBARS. Additionally, significant impacts on body weight were observed for factors such as interval (P < 0.01) and the interaction between treatment and interval (P < 0.05), exhibiting consistently lower body weight in IUHS calves throughout the study period. These findings suggest that late gestation heat stress may lead to physiological alterations in future calves. Strategies aimed at mitigating heat stress during late gestation should be considered not only for the productivity and well-being of the pregnant dam but also for the development and future performance of the calf.
Collapse
Affiliation(s)
- Vishwa Ranjan Upadhyay
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
- ICAR-National Research Centre on Camel, Bikaner, Rajasthan, 334001, India.
| | - Ashutosh
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - C G Shashank
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - N P Singh
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
10
|
Rosbrook P, Margolis LM, Pryor JL. Nutritional Considerations in Exercise-Based Heat Acclimation: A Narrative Review. Sports Med 2024:10.1007/s40279-024-02109-x. [PMID: 39217233 DOI: 10.1007/s40279-024-02109-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
In addition to its established thermoregulatory and cardiovascular effects, heat stress provokes alterations in macronutrient metabolism, gastrointestinal integrity, and appetite. Inadequate energy, carbohydrate, and protein intake have been implicated in reduced exercise and heat tolerance. Classic exercise heat acclimation (HA) protocols employ low-to-moderate-intensity exercise for 5-14 days, while recent studies have evolved the practice by implementing high-intensity and task-specific exercise during HA, which potentially results in impaired post-HA physical performance despite adequate heat adaptations. While there is robust literature demonstrating the performance benefit of various nutritional interventions during intensive training and competition, most HA studies implement few nutritional controls. This review summarizes the relationships between heat stress, HA, and intense exercise in connection with substrate metabolism, gastrointestinal function, and the potential consequences of reduced energy availability. We discuss the potential influence of macronutrient manipulations on HA study outcomes and suggest best practices to implement nutritional controls.
Collapse
Affiliation(s)
- Paul Rosbrook
- Center for Research & Education in Special Environments, Department of Exercise & Nutrition Sciences, State University of New York University at Buffalo, Buffalo, NY, USA.
| | - Lee M Margolis
- Military Nutrition Division, U.S. Army Research Institute for Environmental Medicine, Natick, MA, USA
| | - J Luke Pryor
- Center for Research & Education in Special Environments, Department of Exercise & Nutrition Sciences, State University of New York University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
11
|
Weinert-Nelson JR, Werner J, Jacobs AA, Anderson L, Williams CA, Davis BE. Impacts of heat stress on the accuracy of an ear-tag accelerometer for monitoring rumination and eating behavior in dairy-beef cross cattle using an automated gold standard. J Dairy Sci 2024:S0022-0302(24)01045-2. [PMID: 39098490 DOI: 10.3168/jds.2024-24858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
Accelerometer-based technologies can be utilized for precision monitoring of feeding behaviors, but limited information is available regarding the impact of varying environmental conditions on sensor performance. The objective of this study was to determine if a commercially available ear-tag sensor (CM; CowManager SensOor, Agis Automatisering BV) could accurately quantify eating and rumination time under heat stress conditions. Data obtained from CM sensors was compared with data collected using an automated gold standard (RW; Rumiwatch System; Itin+Hoch). Automated measurements were obtained from 2 experiments in which cattle were exposed to heat stress conditions. In the principal study (Experiment 1), 3428 h of data were collected from 9 Holstein × Angus steers (470.9 ± 23.9 kg) subjected to either thermoneutral (TN; 21.0°C; 64.0% humidity; temperature-humidity index [THI] = 67; 12- and 12-h light and dark cycle; n = 1714 h), or heat stress conditions (HS; cyclical daily temperatures to mimic diurnal patterns; 0800 - 2000 h: 33.6°C, 40.0% RH, THI: 83.5; 2000 - 0800 h: 23.2°C, 70.0% RH; THI: 70.3; n = 1714 h). Data (n = 719 h) from 6 Holstein x Angus steers (487.9 ± 9.1 kg) were obtained from a subsequent experiment (Experiment 2) to confirm consistency of ear-tag accelerometer performance under elevated THI (HS conditions as described above). In Experiment 1, CM was capable of quantifying rumination time with high accuracy under TN conditions (concordance correlation coefficient [CCC]: 0.75 - 0.81). Overall, agreement between CM and the automated gold standard declined 6 - 7% during HS, which was most apparent later in the day when cattle had been subjected to HS for multiple hours (moderate agreement; CCC: 0.68). Accuracy for rumination time was also only moderate for data collected during Experiment 2 (CCC: 0.55 - 0.61). In contrast, CM reported total eating (eating with the head down + head up while masticating) time with moderate accuracy for TN (CCC: 0.53 - 0.54), only achieved negligible to low accuracy during HS (CCC: 0.39 - 0.44 [Experiment 1] and 0.17 - 0.34 [Experiment 2]). Sensor performance did improve when CM eating time was compared specifically to the time spent with the head down reported by RW; HS still negatively influenced sensor performance, however, with high agreement during TN (CCC: 0.72 - 0.73) but low to moderate agreement during HS (CCC: 0.65 - 0.69 [Experiment 1] and 0.40 - 0.58 [Experiment 2]). Results of this study suggest accuracy of ear-tag accelerometers may be impaired when cattle are subjected to heat stress.
Collapse
Affiliation(s)
- Jennifer R Weinert-Nelson
- Forage-Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, KY, USA 40506
| | - Jessica Werner
- Animal Nutrition and Rangeland Management in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany
| | - Alayna A Jacobs
- Forage-Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, KY, USA 40506
| | - Les Anderson
- Department of Animal and Food Sciences, University of Kentucky Lexington, KY, USA 40506 USA
| | - Carey A Williams
- Department of Animal Sciences, Rutgers, the State University of New Jersey New Brunswick, NJ, USA 08901
| | - Brittany E Davis
- Forage-Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, KY, USA 40506.
| |
Collapse
|
12
|
Alberghina D, Amato A, Brancato G, Cavallo C, Liotta L, Lopreiato V. Impact of Heat Stress on the Balance between Oxidative Markers and the Antioxidant Defence System in the Plasma of Mid-Lactating Modicana Dairy Cows. Animals (Basel) 2024; 14:2034. [PMID: 39061496 PMCID: PMC11274016 DOI: 10.3390/ani14142034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Animal health is affected during heat stress as a result of impaired immune responses, increased production of reactive oxygen species, and/or a deficiency of antioxidants. This leads to an imbalance between oxidants and antioxidants and results in oxidative stress. Heat stress is usually measured in dairy cattle via the temperature-humidity index (THI). In the present study, we aimed at assessing the influence of incremental THI on the balance between oxidative markers and the antioxidant defence system in the plasma of Modicana cows. Twenty-four multiparous, mid-lactating dairy cows were divided into two groups on the basis of different levels of mean THI reached in the period of the previous week up until the day of blood and milk sampling (April THI1:55, May THI2:68, June THI3:71, July THI4:80). The blood samples were collected to measure reactive oxygen metabolites (ROM) and antioxidant defense markers (ferric reducing ability of plasma (FRAP), paraoxonase (PON), advanced oxidation protein products (AOPP), plasma thiol groups (SHp), as well as lipid-soluble antioxidant pro-vitamin (β-carotene) and vitamins (tocopherol and retinol). Milk characteristics, haematological values, and plasma biochemical metabolites were also evaluated. Results showed a significant increase in ROM (p < 0.05) and a significant decrease in PON (p < 0.05), AOPP (p < 0.05), and β-carotene (p < 0.001). Incremental THI significantly decreased levels of milk fat content, red and white blood cells, plasma glucose, and non-esterified fatty acids, while significantly increasing monocytes and the concentrations of β-hydroxybutyrate and creatinine, but not fructosamine. The results of the study show that heat stress significantly affects reactive oxygen species production and antioxidant parameters. Carotenoid supplementation should be considered to alleviate the impact of these effects.
Collapse
Affiliation(s)
- Daniela Alberghina
- Department of Veterinary Sciences, Università degli Studi di Messina, Viale Palatucci 13, 98168 Messina, Italy; (A.A.); (C.C.); (L.L.); (V.L.)
| | | | | | | | | | | |
Collapse
|
13
|
Zeng J, Wang D, Sun H, Liu H, Zhao FQ, Liu J. Heat stress affects mammary metabolism by influencing the plasma flow to the glands. J Anim Sci Biotechnol 2024; 15:92. [PMID: 38965570 PMCID: PMC11225325 DOI: 10.1186/s40104-024-01050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Environmental heat stress (HS) can have detrimental effects on milk production by compromising the mammary function. Mammary plasma flow (MPF) plays a crucial role in nutrient supply and uptake in the mammary gland. In this experiment, we investigated the physiological and metabolic changes in high-yielding cows exposed to different degrees of HS: no HS with thermal-humidity index (THI) below 68 (No-HS), mild HS (Mild-HS, 68 ≤ THI ≤ 79), and moderate HS (Mod-HS, 79 < THI ≤ 88) in their natural environment. Our study focused on the changes in blood oxygen supply and mammary glucose uptake and utilization. RESULTS Compared with No-HS, the MPF of dairy cows was greater (P < 0.01) under Mild-HS, but was lower (P < 0.01) in cows under Mod-HS. Oxygen supply and consumption exhibited similar changes to the MPF under different HS, with no difference in ratio of oxygen consumption to supply (P = 0.46). The mammary arterio-vein differences in glucose concentration were lower (P < 0.05) under Mild- and Mod-HS than under no HS. Glucose supply and flow were significantly increased (P < 0.01) under Mild-HS but significantly decreased (P < 0.01) under Mod-HS compared to No-HS. Glucose uptake (P < 0.01) and clearance rates (P < 0.01) were significantly reduced under Mod-HS compared to those under No-HS and Mild-HS. Under Mild-HS, there was a significant decrease (P < 0.01) in the ratio of lactose yield to mammary glucose supply compared to that under No-HS and Mod-HS, with no difference (P = 0.53) in the ratio of lactose yield to uptaken glucose among different HS situations. CONCLUSIONS Degrees of HS exert different influences on mammary metabolism, mainly by altering MPF in dairy cows. The output from this study may help us to develop strategies to mitigate the impact of different degrees of HS on milk production.
Collapse
Affiliation(s)
- Jia Zeng
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research, Zhejiang University, Hangzhou, China
| | - Diming Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research, Zhejiang University, Hangzhou, China
| | - Huizeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Feng-Qi Zhao
- Department of Animal & Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Dutta G, Alex R, Singh A, Gowane GR, Vohra V, De S, Verma A, Ludri A. Functional transcriptome analysis revealed upregulation of MAPK-SMAD signalling pathways in chronic heat stress in crossbred cattle. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1371-1385. [PMID: 38720050 DOI: 10.1007/s00484-024-02672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 07/26/2024]
Abstract
Animal geneticists and breeders have the impending challenge of enhancing the resilience of Indian livestock to heat stress through better selection strategies. Climate change's impact on livestock is more intense in tropical countries like India where dairy cattle crossbreeds are more sensitive to heat stress. The main reason for this study was to find the missing relative changes in transcript levels in thermo-neutral and heat stress conditions in crossbred cattle through whole-transcriptome analysis of RNA-Seq data. Differentially expressed genes (DEGs) identified based on the minimum log twofold change value and false discovery rate 0.05 revealed 468 up-regulated genes and 2273 down-regulated significant genes. Functional annotation and pathway analysis of these significant DEGs were compared based on Gene Ontology (Biological process), Kyoto Encyclopedia of Genes and Genome (KEGG), and Reactome pathways using g: Profiler, ShinyGO v0.76, and iDEP.951 web tools. On finding network visualization, the most over-represented and correlated pathways were neuronal and sensory organ development, calcium signalling pathway, Mitogen-activated protein kinase (MAPK) and Smad signalling pathway, Ras-proximate-1, or Ras-related protein 1 (Rap 1) signalling pathway, apoptosis, and oxidative stress. Similarly, down-regulated genes were most expressed in mRNA processing, immune system, B-cell receptor signalling pathway, Nucleotide oligomerization domain (NOD)-like receptors (NLRs) signalling pathway and nonsense-mediated decay (NMD) pathway. The heat stress-responsive genes identified in this study will facilitate our understanding of the molecular basis for climate resilience and heat tolerance in Indian dairy crossbreeds.
Collapse
Affiliation(s)
- Gaurav Dutta
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rani Alex
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Ayushi Singh
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Gopal R Gowane
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Vikas Vohra
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sachidanandan De
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Archana Verma
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ashutosh Ludri
- Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
15
|
Ellett MD, Rhoads RP, Hanigan MD, Corl BA, Perez-Hernandez G, Parsons CLM, Baumgard LH, Daniels KM. Relationships between gastrointestinal permeability, heat stress, and milk production in lactating dairy cows. J Dairy Sci 2024; 107:5190-5203. [PMID: 38428497 DOI: 10.3168/jds.2023-24043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
Heat stress (HS) is a global issue that decreases farm profits and compromises animal welfare. To distinguish between the direct and indirect effects of HS, 16 multiparous Holstein cows approximately 100 DIM were assigned to one of 2 treatments: pair fed to match HS cow intake, housed in thermoneutral conditions (PFTN, n = 8) or cyclical HS (n = 8). All cows were subjected to 2 experimental periods. Period 1 consisted of a 4 d thermoneutral period with ad libitum intake. During period 2 (P2), the HS cows were housed in cyclical HS conditions with a temperature-humidity index (THI) ranging from 76 to 80 and the PFTN cows were exposed to a constant THI of 64 for 4 d. Dry matter intake of the PFTN cows was intake matched to the HS cows. Milk yield, milk composition, rectal temperature, and respiration rate were recorded twice daily, blood was collected daily via a jugular catheter, and cows were fed twice daily. On d 3 of each period, Cr-EDTA and sucralose were orally administered and recovered via 24 h total urine collection to assess gastrointestinal permeability. All data were analyzed using the GLIMMIX procedure in SAS. The daily data collected in P1 was averaged and used as a covariate if deemed significant in the model. Heat stress decreased voluntary feed intake by 35% and increased rectal temperature and respiration rate (38.4°C vs. 39.4°C and 40 vs. 71 respirations/min, respectively). Heat stress reduced DMI by 35%, which accounted for 66% of the decrease in milk yield. The yields, and not concentrations, of milk protein, fat, and other solids were lower in the HS cows on d 4 of P2. Milk urea nitrogen was higher and plasma urea nitrogen tended to be higher on d 3 and d 4 of HS. Glucose was 7% lower in the HS cows and insulin was 71% higher in the HS cows than the PFTN cows on d 4 of P2. No difference in lipopolysaccharide-binding protein was observed. Heat stress cows produced 7 L/d more urine than PFTN cows. No differences were detected in the urine concentration or percentage of the oral dose recovered for Cr-EDTA or sucralose. In conclusion, HS was responsible for 34% of the reduction of milk yield. The elevated MUN and the tendency for elevated plasma urea nitrogen indicate a whole-body shift in nitrogen metabolism. No differences in gastrointestinal permeability or lipopolysaccharide-binding protein were observed. These results indicate that, under the conditions of this experiment, activation of the immune system by gut-derived lipopolysaccharide was not responsible for the decreased milk yield observed during HS.
Collapse
Affiliation(s)
- M D Ellett
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - R P Rhoads
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - M D Hanigan
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - B A Corl
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - G Perez-Hernandez
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - C L M Parsons
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - K M Daniels
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.
| |
Collapse
|
16
|
Koch F, Reyer H, Görs S, Hansen C, Wimmers K, Kuhla B. Heat stress and feeding effects on the mucosa-associated and digesta microbiome and their relationship to plasma and digesta fluid metabolites in the jejunum of dairy cows. J Dairy Sci 2024; 107:5162-5177. [PMID: 38431250 DOI: 10.3168/jds.2023-24242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024]
Abstract
The intestinal microbiota plays a pivotal role in digestive processes and maintains gut health and intestinal homeostasis. These functions may be compromised by increased environmental heat, which in turn reduces feed intake and gut integrity and activates the intestinal immune system. It remains unknown whether high ambient temperatures, which cause heat stress (HS) in dairy cows, disturb the eubiosis of the microbial community, and if so, to which extent the reduction in feed intake and the impairment of circulating and intestinal metabolites account for the alterations of the jejunal microbiota. To address these questions, jejunal digesta, mucosa, and plasma samples were collected from cows exposed to heat stress (HS; 28°C, temperature-humidity index [THI] = 76, n = 10), control conditions (CON; 16°C, THI = 60, n = 10), or pair-fed (PF; 16°C, THI = 60, n = 10) for 7 d. Digesta fluids were examined for pH, acetate, nonesterified fatty acids (NEFA), glucose, and lactate, and plasma samples were analyzed for glucose, lactate, BHB, triglycerides, NEFA, creatinine, and urea. The microbiota of the digesta and mucosa samples were analyzed by 16S rRNA sequencing. The α-diversity was higher in mucosa than digesta but was not affected by high ambient temperatures. However, the mucosa-associated microbiota appeared more responsive to ambient heat than the digesta microbiome. The adaptive responses under HS conditions comprised an increased mucosal abundance of Bifidobacteriaceae, Succinivibrionaceae UCG-001, Clostridia and Lactobacillus. In the digesta, HS has exerted effects on microbial abundance of Colidextribacter, and Lachnospiraceae UCG-008. Several correlations between plasma or intestinal metabolites and microbiota were elucidated, including Methanobacteriaceae correlating positively with plasma BHB and digesta glucose concentrations. Moreover, the reduction in feed intake during HS had non-negligible effects on microbial diversity and the abundance of certain taxa, underpinning the importance of nutrient supply on maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Franziska Koch
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Solvig Görs
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Christiane Hansen
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, Institute of Livestock Farming, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
17
|
Moore SS, Costa A, Penasa M, De Marchi M. Effects of different temperature-humidity indexes on milk traits of Holstein cows: A 10-year retrospective study. J Dairy Sci 2024; 107:3669-3687. [PMID: 38246553 DOI: 10.3168/jds.2023-23723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Test-day records (n = 723,091) collected between 2012 and 2021 from 43,015 Holstein cows at 157 farms located in northern Italy were used to study the effects of heat load on milk production and composition a posteriori. The data consisted of milk yield (kg/d), traditional gross composition traits, somatic cell score (SCS), differential somatic cell count (%), milk β-hydroxybutyrate (BHB, mmol/L), milk urea (mg/dL), and milk fatty acid composition (g/100 g of milk). Test-day records were then associated with their relative temperature-humidity indexes (THI) calculated using historical environmental data registered by weather stations. Indexes were created using either yearly or summer THI data. The yearly indexes included the average daily THI (adTHI) and the maximum daily THI (mdTHI) measured throughout the whole year, and the summer indexes focused on 3 mo only (June-August) and included the average daily summer THI (adTHIs), the maximum daily summer THI (mdTHIs), and the average daily THI of the hottest 4 h of the day (adTHI4h; 1200-1600 h). All indexes had significant effects on the majority of milk traits analyzed, with, in particular, adTHI and mdTHI being highly significant in explaining the variation of all traits. Milk yield started to decline at a higher THI compared with protein and fat content. The reduction in fat ceased in the elevated THI experienced during the summer months, as demonstrated by adTHIs, mdTHIs, and adTHI4h. The cows had a tendency for increased BHB concentration with elevated THI, suggesting a greater risk of negative energy balance in presence of heat stress. Furthermore, the concentration of the de novo fatty acids C14:0 and C16:0 was reduced in higher THI, reflecting altered mammary gland activity upon elevated heat load and stress. Milk SCS tended to increase with higher adTHIs, mdTHIs, and adTHI4h. The use of yearly indexes is recommended when investigating the effects of heat load on milk composition, whereas summer indexes are suggested when investigating traits influenced by extreme conditions, such as SCS and milk yield. With global temperatures expected to further rise in the upcoming decades, early and easy identification of cows or herds suffering from heat stress, such as through changes in milk composition, is crucial for timely intervention. Adapting measures to mitigate such effects of elevated THI on milk yield and composition is a necessity for the dairy industry to prevent detrimental impacts on dairy production.
Collapse
Affiliation(s)
- S Sterup Moore
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro (PD), Italy
| | - A Costa
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy.
| | - M Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro (PD), Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro (PD), Italy
| |
Collapse
|
18
|
Perez-Hernandez G, Ellett MD, Banda LJ, Dougherty D, Parsons CLM, Lengi AJ, Daniels KM, Corl BA. Cyclical heat stress during lactation influences the microstructure of the bovine mammary gland. J Dairy Sci 2024:S0022-0302(24)00866-X. [PMID: 38825136 DOI: 10.3168/jds.2024-24809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024]
Abstract
This study aimed to evaluate the impact of heat stress on mammary epithelial cell (MEC) losses into milk, secretory mammary tissue structure, and mammary epithelial cell activity. Sixteen multiparous Holstein cows (632 ± 12 kg BW) approximately 100 d in milk housed in climate-controlled rooms were paired by body weight and randomly allocated to one of 2 treatments, heat stress (HS) or pair feeding thermoneutral (PFTN) using 2 cohorts. Each cohort was subjected to 2 periods of 4 d each. In period 1, both treatments had ad libitum access to a common total mixed ration and were exposed to a controlled daily temperature-humidity index (THI) of 64. In period 2, HS cows were exposed to controlled cyclical heat stress (THI: 74 to 80), while PFTN cows remained at 64 THI and daily dry matter intake was matched to HS. Cows were milked twice daily, and milk yield was recorded at each milking. Individual milk samples on the last day of each period were used to quantify MEC losses by flow cytometry using butyrophilin as a cell surface marker. On the final day of period 2, individual bovine mammary tissue samples were obtained for histomorphology analysis, assessment of protein abundance, and evaluation of gene expression of targets associated with cellular capacity for milk and milk component synthesis, heat response, cellular proliferation, and autophagy. Statistical analysis was performed using the GLIMMIX procedure of SAS. Milk yield was reduced by 4.3 kg by HS (n = 7) compared with PFTN (n = 8). Independent of treatment, MEC in milk averaged 174 cells/mL (2.9% of total cells). There was no difference between HS vs. PFTN cows for MEC shed or concentration in milk. Alveolar area was reduced 25% by HS, and HS had 4.1 more alveoli than PFTN. Total number of nucleated MEC per area were greater in HS (389 ± 1.05) compared with PFTN (321 ± 1.05); however, cell number per alveolus was similar between groups (25 ± 1.5 vs. 26 ± 1.4). There were no differences in relative fold expression for GLUT1, GLUT8, CSN2, CSN3, LALBA, FASN, HSPA5, and HSPA8 in HS compared with PFTN. Immunoblotting analyses showed a decrease abundance for phosphorylated STAT5 and S6K1, and an increase in LC3 II in HS compared with PFTN. These results suggest that even if milk yield differences and histological changes occur in the bovine mammary gland after 4 d of heat exposure, MEC loss into milk, nucleated MEC number per alveolus, and gene expression of nutrient transport, milk component synthesis, and heat stress related targets are unaffected. In contrast, the abundance of proteins related to protein synthesis and cell survival decreased significantly, while an upregulation of proteins associated with autophagy in HS compared with PFTN.
Collapse
Affiliation(s)
| | - M D Ellett
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - L J Banda
- Animal Science Department, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - D Dougherty
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - C L M Parsons
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - A J Lengi
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - K M Daniels
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061
| | - B A Corl
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061.
| |
Collapse
|
19
|
Wang L, Zhang P, Du Y, Wang C, Zhang L, Yin L, Zuo F, Huang W. Effect of heat stress on blood biochemistry and energy metabolite of the Dazu black goats. Front Vet Sci 2024; 11:1338643. [PMID: 38860008 PMCID: PMC11163060 DOI: 10.3389/fvets.2024.1338643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 06/12/2024] Open
Abstract
The objective of this study was to determine the effects of heat stress (HS) on physiological, blood biochemical, and energy metabolism in Dazu black goats. Six wether adult Dazu black goats were subjected to 3 experimental periods: high HS (group H, temperature-humidity index [THI] > 88) for 15 d, moderate HS (group M, THI was 79-88) for 15 d, and no HS (group L, THI < 72) for 15 d. Rectal temperature (RT) and respiratory rate (RR) were determined on d 7 and 15 of each period, and blood samples were collected on d 15 of each period. All goats received glucose (GLU) tolerance test (GTT) and insulin (INS) tolerance test on d 7 and d 10 of each period. The results showed that HS decreased dry matter intake (DMI) and INS concentration (p < 0.05), and increased RT, RR, non-esterified fatty acid (NEFA), cortisol (COR), and total protein (TP) concentrations (p < 0.05). Compared to group L, the urea nitrogen (BUN) concentration increased and GLU concentration decreased in group H (p < 0.05). During the GTT, the area under the curve (AUC) of GLU concentrations increased by 12.26% (p > 0.05) and 40.78% (p < 0.05), and AUC of INS concentrations decreased by 26.04 and 14.41% (p < 0.05) in groups H and M compared to group L, respectively. The INS concentrations were not significant among the three groups (p > 0.05) during the ITT. A total of 60 differentially expressed metabolites were identified in response to groups H and M. In HS, changes in metabolites related to carbohydrate metabolism and glycolysis were identified (p < 0.05). The metabolites related to fatty acid β-oxidation accumulated, glycogenic and ketogenic amino acids were significantly increased, while glycerophospholipid metabolites were decreased in HS (p < 0.05). HS significantly increased 1-methylhistidine, creatinine, betaine, taurine, taurolithocholic acid, inosine, and hypoxanthine, while decreasing vitamin E in blood metabolites (p < 0.05). In summary, HS changed the metabolism of fat, protein, and energy, impaired GLU tolerance, and mainly increased amino acid metabolism to provide energy in Dazu black goats.
Collapse
Affiliation(s)
- Le Wang
- College of Animal Science and Technology, Chongqing Beef Cattle Engineering Technology Research Center, Southwest University, Chongqing, China
| | - Pengjun Zhang
- College of Animal Science and Technology, Chongqing Beef Cattle Engineering Technology Research Center, Southwest University, Chongqing, China
| | - Yuxuan Du
- College of Animal Science and Technology, Chongqing Beef Cattle Engineering Technology Research Center, Southwest University, Chongqing, China
| | - Changtong Wang
- College of Animal Science and Technology, Chongqing Beef Cattle Engineering Technology Research Center, Southwest University, Chongqing, China
| | - Li Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Li Yin
- College of Animal Science and Technology, Chongqing Beef Cattle Engineering Technology Research Center, Southwest University, Chongqing, China
- Chongqing Animal Husbandry Technology Extension Station, Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Chongqing Beef Cattle Engineering Technology Research Center, Southwest University, Chongqing, China
| | - Wenming Huang
- College of Animal Science and Technology, Chongqing Beef Cattle Engineering Technology Research Center, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Skibiel AL. Hepatic mitochondrial bioenergetics and metabolism across lactation and in response to heat stress in dairy cows. JDS COMMUNICATIONS 2024; 5:247-252. [PMID: 38646582 PMCID: PMC11026913 DOI: 10.3168/jdsc.2023-0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/01/2023] [Indexed: 04/23/2024]
Abstract
Lactation is energetically demanding for the dairy cow. Numerous morphological and metabolic changes orchestrated across different tissues in the body partition nutrients for milk synthesis. The liver is a key organ coordinating modifications in metabolism that increase substrate availability for the mammary gland. Impaired capacity to make the needed physiological adjustments for lactation, such as occurs with heat stress, can result in metabolic disease and poor lactation performance. At the cellular level, increases in mitochondrial density and bioenergetic and biosynthetic capacity are critical adaptations for successful lactation, providing energy and substrates for milk synthesis. Mitochondria are also involved in coordinating adaptation to a variety of stressors by providing the metabolic foundation to enlist a stress response. Heat stress can damage mitochondrial structures and impair mitochondrial function, with implications for pathogenesis and production. This systematic review focuses on the hepatic mitochondrial adaptations to lactation and the mitochondrial responses to heat stress. Future research directions are also discussed that may lead to improvements in managing the metabolic needs of the lactating cow and diminishing the adverse production and health consequences from environmental stress.
Collapse
Affiliation(s)
- Amy L. Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844
| |
Collapse
|
21
|
Rodríguez-Godina IJ, García JE, Morales JL, Contreras V, Véliz FG, Macías-Cruz U, Avendaño-Reyes L, Mellado M. Effect of heat stress during the dry period on milk yield and reproductive performance of Holstein cows. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:883-890. [PMID: 38308728 DOI: 10.1007/s00484-024-02633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
This study aimed to determine the influence of heat stress during the dry period on milk yield and reproductive performance of Holstein cows in a hot environment. Breeding and milk production records of cows, as well as meteorological data between 2017 and 2020 from a commercial dairy herd (n = 12,102 lactations), were used to determine the relationship between climatic conditions during the dry period (average of the temperature-humidity index (THI) at the beginning, middle, and end of the dry period) and reproductive efficiency and milk yield traits. THI was divided into < 70 (no heat stress), 70-80 (moderate heat stress), and > 80 (severe heat stress). First-service pregnancy rate of cows decreased (P < 0.01) with increasing hyperthermia during the dry period (9.5, 7.3, and 3.4% for THI < 70, 70-80, and > 80, respectively). All-service pregnancy rate was highest (P < 0.01) for cows not undergoing heat stress during the dry period (60.2%) and lowest (42.6%) for cows with severe heat stress during the dry period. Cows not experiencing heat stress during the dry period required a mean ± SD of 5.6 ± 3.8 services per pregnancy compared with 6.5 ± 3.6 (P < 0.01) for cows subjected to THI > 80 during the dry period. Cows not suffering heat stress during the dry period produced more (P < 0.01) 305-day milk (10,926 ± 1206 kg) than cows subjected to moderate (10,799 ± 1254 kg) or severe (10,691 ± 1297 kg) heat stress during the dry period. Total milk yield did not differ (P > 0.10) between cows not undergoing heat stress (13,337 ± 3346 kg) and cows subjected to severe heat stress during the dry period (13,911 ± 4018 kg). It was concluded that environmental management of dry cows during hot months is warranted to maximize reproductive performance and milk yield in the following lactation.
Collapse
Affiliation(s)
- Iris J Rodríguez-Godina
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, 25315, Saltillo, Mexico
| | - José E García
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, 25315, Saltillo, Mexico
| | - Juan L Morales
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, 27054, Torreon, Mexico
| | - Viridiana Contreras
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, 27054, Torreon, Mexico
| | - Francisco G Véliz
- Department of Veterinary Science, Autonomous Agrarian University Antonio Narro, 27054, Torreon, Mexico
| | - Ulises Macías-Cruz
- Institute of Agriculture Science, Autonomous University of Baja California, 21705, Mexicali, Mexico
| | - Leonel Avendaño-Reyes
- Institute of Agriculture Science, Autonomous University of Baja California, 21705, Mexicali, Mexico
| | - Miguel Mellado
- Department of Animal Nutrition, Autonomous Agrarian University Antonio Narro, 25315, Saltillo, Mexico.
| |
Collapse
|
22
|
Eslamizad M, Albrecht D, Kuhla B, Koch F. Cellular and mitochondrial adaptation mechanisms in the colon of lactating dairy cows during hyperthermia. J Dairy Sci 2024; 107:3292-3305. [PMID: 38056565 DOI: 10.3168/jds.2023-24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Heat stress causes barrier dysfunction and inflammation of the small intestine of several species. However, less is known about the molecular and cellular mechanisms underlying the response of the bovine large intestine to hyperthermia. We aimed to identify changes in the colon of dairy cows in response to constant heat stress using a proteomic approach. Eighteen lactating Holstein dairy cows were kept under constant thermoneutral conditions (16°C and 68% relative humidity [RH]; temperature-humidity index [THI] = 60) for 6 d (period 1) with free access to feed and water. Thereafter, 6 cows were equally allocated to (1) thermoneutral condition with ad libitum feeding (TNAL; 16°C, RH = 68%, THI = 60), (2) heat stress condition (HS; 28°C, RH = 50%, THI = 76) with ad libitum feeding, or (3) pair-feeding at thermoneutrality (TNPF; 16°C, RH = 68%, THI = 60) for another 7 d (period 2). Rectal temperature, milk yield, dry matter and water intake were monitored daily. Then, cows were slaughtered and colon mucosa samples were taken for proteomic analysis. Physiological data were analyzed by ANOVA and colon proteome data were processed using DESeq2 package in R. Rectal temperature was significantly higher in HS than in TNPF and TNAL cows in period 2. Proteomic analysis revealed an enrichment of activated pathways related to colonic barrier function and inflammation, heat shock proteins, AA metabolism, reduced overall protein synthesis rate, and post-transcriptional regulation induced by heat stress. Further regulations were found for enzymes of the tricarboxylic acid cycle and components of the mitochondrial electron transport chain, presumably to reduce the generation of reactive oxygen species, maintain cellular ATP levels, and prevent apoptosis in the colon of HS cows. These results highlight the cellular, extracellular, and mitochondrial adaptations of the colon during heat stress and suggest a dysfunction of the hindgut barrier integrity potentially resulting in a "leaky" colon.
Collapse
Affiliation(s)
- Mehdi Eslamizad
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner," 18196 Dummerstorf, Germany
| | - Dirk Albrecht
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, 17489 Greifswald, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner," 18196 Dummerstorf, Germany
| | - Franziska Koch
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner," 18196 Dummerstorf, Germany.
| |
Collapse
|
23
|
Chen L, Thorup VM, Kudahl AB, Østergaard S. Effects of heat stress on feed intake, milk yield, milk composition, and feed efficiency in dairy cows: A meta-analysis. J Dairy Sci 2024; 107:3207-3218. [PMID: 38101736 DOI: 10.3168/jds.2023-24059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023]
Abstract
Heat stress compromises dairy production by decreasing feed intake and milk yield, and it may also alter milk composition and feed efficiency. However, little information is available for evaluating such effects across different levels of heat stress and cows enrolled in heat stress studies. The objectives of this study were to evaluate the effects of heat stress on dry matter intake (DMI), energy-corrected milk (ECM), milk composition, and feed efficiency (kg ECM/kg DMI) and to investigate the relationship between such effects and heat stress intervention and animal characteristics by using meta-analytical approaches. Data from 31 studies (34 trials) fulfilled the inclusion criteria and were used for analysis. Results showed that heat stress decreased DMI, ECM, and milk protein concentration, but did not alter milk fat concentration or feed efficiency. Meta-regression confirmed that such reductions in DMI and ECM were significantly associated with increasing temperature-humidity index (THI). Over the period of heat stress, for each unit increase in THI, DMI and ECM decreased by 4.13% and 3.25%, respectively, in mid-lactation cows. Regression models further revealed the existence of a strong interaction between THI and lactation stage, which partially explained the large heterogeneity in effect sizes of DMI and ECM. The results indicated a need for more research on the relationship between the effect of heat stress and animal characteristics. This study calls for the implementation of mitigation strategies in heat-stressed herds due to the substantial decrease in productivity.
Collapse
Affiliation(s)
- L Chen
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele 8830, Denmark.
| | - V M Thorup
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele 8830, Denmark
| | - A B Kudahl
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele 8830, Denmark
| | - S Østergaard
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele 8830, Denmark
| |
Collapse
|
24
|
Turk R, Rošić N, Beer Ljubić B, Vince S. Effects of Summer Heat on Adipose Tissue Activity in Periparturient Simmental Cows. Metabolites 2024; 14:207. [PMID: 38668335 PMCID: PMC11051855 DOI: 10.3390/metabo14040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Hot climate is one of the major factors affecting the dairy industry. Heat stress could be responsible for decreased feed intake and consequently leads to alterations in energy metabolism, particularly during late pregnancy and early lactation. This study aimed to assess the effects of summer heat on adipose tissue activities during the periparturient period in Simmental cows. Two groups of cows were involved: heat-stressed cows (n = 12) that calved from June to August and thermoneutral cows (n = 12) that calved from October to December. Blood samples were taken from each cow during the periparturient period: 21 and 7 days before calving and 8, 16, 24, 32, and 40 days after calving. Glucose, beta-hydroxy butyrate (BHB), non-esterified fatty acids (NEFA), leptin (LP), and adiponectin (ADP) were measured in serum samples by commercial kits. Thermoneutral cows expressed higher degrees of lipomobilization syndrome than heat-stressed cows, indicated by significantly higher serum NEFA and BHB concentrations in the early lactation. Leptin levels were significantly decreased, while adiponectin was increased in heat-stressed cows compared to thermoneutral ones. The results indicated that heat-stressed cows during the periparturient period mobilized less fat from adipose tissue to reduce the heat generation by fatty acid oxidation.
Collapse
Affiliation(s)
- Romana Turk
- Department of Pathophysiology, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikola Rošić
- Veterinary Practice Jastrebarsko, 10450 Jastrebarsko, Croatia
| | - Blanka Beer Ljubić
- Laboratory of Internal Clinic, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Silvijo Vince
- Department for Reproduction with Clinic for Obstetrics, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
25
|
Erfani H, Ghorbani GR, Hashemzadeh F, Ghasemi E, Khademi AR, Naderi N, Drackley JK. Effects of complete substitution of dietary grain and protein sources with by-products on the production performance of mid-lactation dairy cows fed diets based on barley silage under heat-stress conditions. J Dairy Sci 2024; 107:1993-2010. [PMID: 37709014 DOI: 10.3168/jds.2022-23179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
This study evaluated the effects of replacing cereal grains and soybean meal with by-products (BY) on production performance, nutrient digestibility, ruminal fermentation, nutrient recovery, and eating and chewing behavior of moderate-producing dairy cows under heat-stress conditions. Twelve multiparous Holstein cows (116.7 ± 12.01 d in milk; 42.7 ± 5.06 kg/d milk yield; 665 ± 77 kg body weight; mean ± SD) were used in a replicated 3 × 3 Latin square with 28-d periods (21 d for diet adaptation and 7 d for sampling and data collection). Cows were fed a total mixed ration containing a 39.2:60.8 ratio of forage to concentrate throughout the experiment. All diets were formulated to be isoenergetic and isonitrogenous, with different concentrates. Diets were (1) control diet based on cereal grains (CON: ground corn and ground barley, plus soybean meal); (2) sugar-rich BY diet (S-BY-CM: beet pulp, citrus pulp, and liquid molasses, plus canola meal); and (3) cereal grain BY diet (CG-BY: rice bran, corn germ meal, wheat bran, barley sprout, and broken corn). Our results showed that replacing grains with BY increased neutral detergent fiber intake and digestibility but decreased starch intake, human-edible energy, and human-edible protein. Milk yield and dry matter intake (DMI) decreased more in cows fed the CG-BY diet compared with the other 2 treatments. In contrast, no significant differences were observed between the CON and S-BY-CM diets in terms of milk yield and DMI. The S-BY-CM diet increased energy-corrected milk production compared with the CG-BY diet (36.2 vs. 34.3 kg/d), but CG-BY enhanced feed conversion efficiency compared with the other 2 treatments. Although the S-BY-CM diet prolonged the eating and sorting of small particles, neither of the dietary treatments affected chewing activity or ruminal pH 4 h after feeding. Furthermore, both diets containing BY contributed to an increase in milk fat content in comparison to the CON group. Additionally, the CG-BY and S-BY-CM diets demonstrated better performance than the CON diet in terms of human-edible feed conversion efficiency for protein and energy. The results indicated that S-BY-CM can completely replace barley and corn grain in the diet of mid-lactating dairy cows exposed to heat-stress conditions without any negative effect on production and ruminal pH. However, the inclusion of CG-BY did impair DMI, milk yield, and digestibility of nutrients and is not recommended during heat-stress conditions.
Collapse
Affiliation(s)
- H Erfani
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - G R Ghorbani
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - F Hashemzadeh
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - E Ghasemi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - A R Khademi
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| | - N Naderi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - J K Drackley
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801.
| |
Collapse
|
26
|
Stefanska B, Sobolewska P, Fievez V, Pruszynska-Oszmałek E, Purwin C, Nowak W. The effect of heat stress on performance, fertility, and adipokines involved in regulating systemic immune response during lipolysis of early lactating dairy cows. J Dairy Sci 2024; 107:2111-2128. [PMID: 37923214 DOI: 10.3168/jds.2023-23804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
The aim of this study was to assess the potential effect of heat stress on dairy cow productivity, fertility, and biochemical blood indices during the early lactation stage in a temperate climate. Additionally, the study aimed to determine the role of leptin and adiponectin in regulating the immune response accompanying lipolysis after calving in dairy cows. The study included 100 clinically healthy Polish Holstein-Friesian dairy cows selected based on parity and 305 d of milk yield from 5 commercial farms with similar herd management and housing systems. Prospective cohort data were recorded from calving day until 150 d in milk, and microclimate loggers installed inside the barns were used to record temperature and relative humidity data to calculate daily temperature-humidity index (THI) on the calving day, through +7, +14, and +21 d during early lactation. Additionally, monthly productive performance parameters such as milk yield, chemical composition, fatty acids composition, and fertility indices were analyzed. Results showed that the THI from calving day through +7, +14, and +21 d during early lactation was negatively associated with fertility parameters such as delayed first estrus postpartum and an elongated calving interval, respectively, by 29, 27, 25, and 16 d. Furthermore, an increase in THI value during early lactation was associated with an elongated artificially inseminated service period, days open, and intercalving period. Increasing THI from calving day (0 d) through +7, +14, and up to +21 d during early lactation was also linked to decreased milk yield by 3.20, 4.10, 5.60, and 5.60 kg, respectively. The study also found that heat stress during early lactation was associated with a lower body condition score in dairy cows and higher concentrations of leptin, nonesterified fatty acids, and β-hydroxybutyrate, accompanied by a drastic reduction in adipose tissue-secreted adiponectin levels after calving. Additionally, heat stress-induced lipolysis in adipose tissue caused an inflammatory response that increased biochemical blood indices associated with immune responses such as cytokines, acute phase proteins, and heat shock protein. These findings suggest that exposing dairy cows to heat stress during early lactation can negatively affect their productive performance, fertility, and biochemical blood indices in subsequent lactations. Thus, farm management changes should be implemented during early lactation to mitigate the negative consequences of heat stress occurrence.
Collapse
Affiliation(s)
- B Stefanska
- Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, 60-632 Poznań, Poland.
| | - P Sobolewska
- Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, 60-632 Poznań, Poland
| | - V Fievez
- Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - E Pruszynska-Oszmałek
- Department of Animal Physiology, Biochemistry, and Biostructure, Poznań University of Life Science, 60-637 Poznań, Poland
| | - C Purwin
- Department of Animal Nutrition, Feed Science, and Cattle Breeding, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - W Nowak
- Department of Animal Nutrition, Poznań University of Life Sciences, 60-637 Poznań, Poland
| |
Collapse
|
27
|
Al-Saiady M, Al-Shaheen T, El-Waziry A, Mohammed AENA. Effects of extruded flaxseed and Salmate ® inclusion in the diet on milk yield and composition, ruminal fermentation and degradation, and kinetic flow of digesta and fluid in lactating dairy cows in the subtropics. Vet World 2024; 17:540-549. [PMID: 38680160 PMCID: PMC11045532 DOI: 10.14202/vetworld.2024.540-549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/09/2024] [Indexed: 05/01/2024] Open
Abstract
Background and Aim Dietary supplements play pivotal roles in promoting productive and reproductive performance in ruminant animals. The aims of the present study were to evaluate the effects of extruded flaxseed and Salmate® (Ballard Group, Inc, OH, USA) inclusion in diets on milk yield and composition, ruminal degradation and fermentation, and flow of fluids and digesta in lactating cattle. Materials and Methods Six rumen-fistulated Holstein lactating cows were distributed to a 6 × 6 design of Latin square (L.S.). The groups were assorted into a control group fed a basal control diet and two treated groups fed diets containing extruded flaxseed (7.0%) or Salmate® (25 g/head/day). The basal control, extruded flaxseed, and Salmate® diets were formulated as isonitrogenous and isoenergetic. Each L.S. period of the group comprised 21 days, including 10 days for adaptation to the diet and 11 days for data sampling and recording. Results Feed intake did not differ among the control, extruded flaxseed, and Salmate® groups. Milk yield (kg) and protein and fat composition (%) were improved on feeding the extruded flaxseed diet compared with the Salmate® and control diets. Extruded flaxseed or Salmate® diet had no effect on the values of ruminal pH, ammonia, and volatile fatty acids except isobutyrate, which decreased in the Salmate® group. Degradable efficiency and ruminal digestibility were significantly decreased with the inclusion of extruded flaxseed and/or Salmate® in the diets. The extruded flaxseed and Salmate® groups had a greater digesta passage rate than the control group. The extruded flaxseed and control groups had a greater liquid passage rate than the Salmate® group. Conclusion The inclusion of extruded flaxseed in the diet improved (p < 0.05) milk yield, milk composition, and milk Omega-6: Omega-3 ratio with no changes in ruminal fermentation, notable negative effects on degradable efficiency and ruminal digestibility.
Collapse
Affiliation(s)
- Mohammed Al-Saiady
- Department of ARASCO Research and Development, P.O. Box 53845, Riyadh, 11593, Kingdom of Saudi Arabia
| | - Tarek Al-Shaheen
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Hassa, 31982, Kingdom of Saudi Arabia
| | - Ahmed El-Waziry
- Department of Animal and Fish Production, Faculty of Agriculture, El-Shatby, Alexandria University, P.O. Box 21454, Egypt
| | - Abd El-Nasser Ahmed Mohammed
- Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Hassa, 31982, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Astuti PK, Ayoob A, Strausz P, Vakayil B, Kumar SH, Kusza S. Climate change and dairy farming sustainability; a causal loop paradox and its mitigation scenario. Heliyon 2024; 10:e25200. [PMID: 38322857 PMCID: PMC10845714 DOI: 10.1016/j.heliyon.2024.e25200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
It is arguable at this time whether climate change is a cause or effect of the disruption in dairy farming. Climate change drastically affects the productive performance of livestock, including milk and meat production, and this could be attributed to the deviation of energy resources towards adaptive mechanisms. However, livestock farming also contributes substantially to the existing greenhouse gas pool, which is the causal of the climate change. We gathered relevant information from the recent publication and reviewed it to elaborate on sustainable dairy farming management in a changing climatic scenario, and efforts are needed to gather this material to develop methods that could help to overcome the adversities associated with livestock industries. We summarize the intervention points to reverse these adversities, such as application of genetic technology, nutrition intervention, utilization of chemical inhibitors, immunization, and application of metagenomics, which may help to sustain farm animal production in the changing climate scenario.
Collapse
Affiliation(s)
- Putri Kusuma Astuti
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
- Department of Animal Breeding and Reproduction, Faculty of Animal Science, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Afsal Ayoob
- Centre for Animal Adaptation to Environment and Climate Change Studies, Kerala Veterinary and Animal Sciences University, Thrissur, 680651, Kerala, India
| | - Péter Strausz
- Department of Management and Organization, Institute of Management, Corvinus University of Budapest, 1093, Budapest, Hungary
| | - Beena Vakayil
- Centre for Animal Adaptation to Environment and Climate Change Studies, Kerala Veterinary and Animal Sciences University, Thrissur, 680651, Kerala, India
| | - S Hari Kumar
- Centre for Animal Adaptation to Environment and Climate Change Studies, Kerala Veterinary and Animal Sciences University, Thrissur, 680651, Kerala, India
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, 4032, Hungary
| |
Collapse
|
29
|
Ghezzi MD, Napolitano F, Casas-Alvarado A, Hernández-Ávalos I, Domínguez-Oliva A, Olmos-Hernández A, Pereira AMF. Utilization of Infrared Thermography in Assessing Thermal Responses of Farm Animals under Heat Stress. Animals (Basel) 2024; 14:616. [PMID: 38396584 PMCID: PMC10886350 DOI: 10.3390/ani14040616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Heat stress is a condition that can affect the health, performance, and welfare of farm animals. The perception of thermal stress leads to the activation of the autonomic nervous system to start a series of physiological and behavioral mechanisms to restore thermostability. One of these mechanisms is vasodilation of peripheral blood vessels to increase heat loss through the skin. Due to this aspect, infrared thermography has been suggested as a method to assess the thermal state of animals and predict rectal temperature values noninvasively. However, it is important to consider that predicting rectal temperature is challenging, and its association with IRT is not always a direct linear relationship. The present review aims to analyze the neurobiological response associated with heat stress and how thermal imaging in different thermal windows can be used to recognize heat stress in farmed ungulates.
Collapse
Affiliation(s)
- Marcelo Daniel Ghezzi
- Faculty of Veterinary Sciences, Veterinary Research Center (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CONICET-CICPBA, Tandil 7000, Argentina
| | - Fabio Napolitano
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlan Izcalli 54714, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
30
|
Blond B, Majkić M, Spasojević J, Hristov S, Radinović M, Nikolić S, Anđušić L, Čukić A, Došenović Marinković M, Vujanović BD, Obradović N, Cincović M. Influence of Heat Stress on Body Surface Temperature and Blood Metabolic, Endocrine, and Inflammatory Parameters and Their Correlation in Cows. Metabolites 2024; 14:104. [PMID: 38392996 PMCID: PMC10890091 DOI: 10.3390/metabo14020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
This study aimed to determine whether heat stress affected the values and correlations of metabolic, endocrinological, and inflammatory parameters as well as the rectal and body surface temperature of cows in the early and middle stages of lactation. This experiment was conducted in May (thermoneutral period), June (mild heat stress), and July (moderate to severe heat stress). In each period we included 15 cows in early lactation and 15 in mid-lactation. The increase in rectal and body surface temperatures (°C) in moderate to severe heat stress compared to the thermoneutral period in different regions was significant (p < 0.01) and the results are presented as mean and [95%CI]: rectal + 0.9 [0.81-1.02], eye + 6 [5.74-6.25], ear + 13 [11.9-14.0], nose + 3.5 [3.22-3.71], forehead + 6.6 [6.43-6.75], whole head + 7.5 [7.36-7.68], abdomen + 8.5 [8.25-8.77], udder + 7.5 [7.38-7.65], front limb + 6 [5.89-6.12], hind limb + 3.6 [3.46-3.72], and whole body + 9 [8.80-9.21]. During heat stress (in both mild and moderate to severe stress compared to a thermoneutral period), an increase in the values of extracellular heat shock protein 70 (eHsp70), tumor necrosis factor α (TNFα), cortisol (CORT), insulin (INS), revised quantitative insulin sensitivity check index (RQUICKI), urea, creatinine, total bilirubin, aspartate transpaminase (AST), gamma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), and creatin kinase (CK) occurred, as well as a decrease in the values of triiodothyronine (T3), thyroxine (T4), non-esterified fatty acids (NEFA), glucose (GLU), β-Hydroxybutyrate (BHB), calcium, phosphorus, total protein (TPROT), albumin (ALB), triglycerides (TGCs), and cholesterol (CHOL). In cows in early lactation compared to cows in mid-lactation, there was a significantly larger increase (p < 0.01) in the values of eHsp70, TNFα, GLU, RQUICKI, and GGT, while the INS increase was smaller during the three experimental periods. The decrease in the values of Ca, CHOL, and TGC was more pronounced in cows in early lactation compared to cows in mid-lactation during the three experimental periods. Rectal temperature was related to eHsp70 (r = 0.38, p < 0.001) and TNFα (r = 0.36, p < 0.01) and showed non-significant poor correlations with other blood parameters. Blood parameters correlate with body surface temperature, with the following most common results: eHsp70 and TNFα showed a moderately to strongly significant positive correlation (r = 0.79-0.96, p < 0.001); CORT, INS, and Creat showed fairly to moderately significant positive correlations; T3, T4, NEFA and GLU showed fairly to moderately significant negative correlations (r = 0.3-0.79; p < 0.01); RQUICKI, urea, AST, and GGT showed fairly and significantly positive correlations; and TGC, CHOL, TPROT, and ALB showed fairly and significantly negative correlations (r = 0.3-0.59; p < 0.01). Measuring the surface temperature of the whole body or head can be a useful tool in evaluating the metabolic response of cows because it has demonstrated an association with inflammation (TNFα, eHsp70), endocrine response (CORT, T3, T4), the increased use of glucose and decreased use of lipids for energy purposes (INS, NEFA, GLU, and RQUICKI), and protein catabolism (ALB, TPROT, urea, Creat), which underlies thermolysis and thermogenesis in cows under heat stress. In future research, it is necessary to examine the causality between body surface area and metabolic parameters.
Collapse
Affiliation(s)
- Bojan Blond
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| | - Mira Majkić
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| | - Jovan Spasojević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| | - Slavča Hristov
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, Zemun, 11080 Belgrade, Serbia
| | - Miodrag Radinović
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| | - Sandra Nikolić
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| | - Ljiljana Anđušić
- Faculty of Agriculture, University of Priština in Kosovska Mitrovica, Kopaonička bb, 38219 Lešak, Serbia
| | - Aleksandar Čukić
- Faculty of Agriculture, University of Priština in Kosovska Mitrovica, Kopaonička bb, 38219 Lešak, Serbia
| | | | | | - Nemanja Obradović
- Pasteur Institute Novi Sad, Hajduk Veljkova 1, 21000 Novi Sad, Serbia
| | - Marko Cincović
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Square Dositeja Obradovića 7, 21000 Novi Sad, Serbia
| |
Collapse
|
31
|
Jo JH, Jalil GN, Kim WS, Moon JO, Lee SD, Kwon CH, Lee HG. Effects of Rumen-Protected L-Tryptophan Supplementation on Productivity, Physiological Indicators, Blood Profiles, and Heat Shock Protein Gene Expression in Lactating Holstein Cows under Heat Stress Conditions. Int J Mol Sci 2024; 25:1217. [PMID: 38279240 PMCID: PMC10816680 DOI: 10.3390/ijms25021217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
In this study, we examined the effects of rumen-protected L-tryptophan supplementation on the productivity and physiological metabolic indicators in lactating Holstein cows under heat stress conditions. The study involved eight early lactating Holstein cows (days in milk = 40 ± 9 days; milk yield 30 ± 1.5 kg/day; parity 1.09 ± 0.05, p < 0.05), four cows per experiment, with environmentally controlled chambers. In each experiment, two distinct heat stress conditions were created: a low-temperature and low-humidity (LTLH) condition at 25 °C with 35-50% humidity and a high-temperature and high-humidity (HTHH) condition at 31 °C with 80-95% humidity. During the adaptation phase, the cows were subjected to LTLH and HTHH conditions for 3 days. This was followed by a 4-day heat stress phase and then by a 7-day phase of heat stress, which were complemented by supplementation with rumen-protected L-tryptophan (ACT). The findings revealed that supplementation with ACT increased dry matter intake as well as milk yield and protein and decreased water intake, heart rate, and rectal temperature in the HTHH group (p < 0.05). For plateletcrit (PCT, p = 0.0600), the eosinophil percentage (EOS, p = 0.0880) showed a tendency to be lower, while the monocyte (MONO) and large unstained cells (LUC) amounts were increased in both groups (p < 0.05). Albumin and glucose levels were lower in the HTHH group (p < 0.05). The gene expressions of heat shock proteins 70 and 90 in the peripheral blood mononuclear cells were higher in the ACT group (HTHH, p < 0.05). These results suggest that ACT supplementation improved productivity, physiological indicators, blood characteristics, and gene expression in the peripheral blood mononuclear cells of early lactating Holstein cows under heat-stress conditions. In particular, ACT supplementation objectively relieved stress in these animals, suggesting that L-tryptophan has potential as a viable solution for combating heat-stress-induced effects on the cattle in dairy farming.
Collapse
Affiliation(s)
- Jang-Hoon Jo
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.J.); (G.N.J.)
| | - Ghassemi Nejad Jalil
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.J.); (G.N.J.)
| | - Won-Seob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Jun-Ok Moon
- Institute of Integrated Technology, CJ CheilJedang, Suwon 16495, Republic of Korea;
| | - Sung-Dae Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea;
| | - Chan-Ho Kwon
- Department of Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea;
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Republic of Korea; (J.-H.J.); (G.N.J.)
| |
Collapse
|
32
|
Roach CM, Mayorga EJ, Baumgard LH, Ross JW, Keating AF. Zearalenone exposure differentially affects the ovarian proteome in pre-pubertal gilts during thermal neutral and heat stress conditions. J Anim Sci 2024; 102:skae115. [PMID: 38666409 PMCID: PMC11217906 DOI: 10.1093/jas/skae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/23/2024] [Indexed: 07/04/2024] Open
Abstract
Zearalenone (ZEN), a nonsteroidal estrogenic mycotoxin, causes endocrine disruption and porcine reproductive dysfunction. Heat stress (HS) occurs when exogenous and metabolic heat accumulation exceeds heat dissipation. Independently, HS and ZEN both compromise swine reproduction; thus, the hypothesis investigated was two-pronged: that ZEN exposure would alter the ovarian proteome and that these effects would differ in thermal neutral (TN) and HS pigs. Pre-pubertal gilts (n = 38) were fed ad libitum and assigned to either (TN: 21.0 ± 0.1 °C) or HS (12 h cyclic temperatures of 35.0 ± 0.2 °C and 32.2 ± 0.1 °C). Within the TN group, a subset of pigs were pair-fed (PF) to the amount of feed that the HS gilts consumed to eliminate the confounding effects of dissimilar nutrient intake. All gilts orally received a vehicle control (CT) or ZEN (40 μg/kg/BW) resulting in six treatment groups: thermoneutral (TN) vehicle control (TC; n = 6); TN ZEN (TZ; n = 6); PF vehicle control (PC; n = 6); PF ZEN (PZ; n = 6); HS vehicle control (HC; n = 7); or HS ZEN (HZ; n = 7) for 7 d. When compared to the TC pigs, TZ pigs had 45 increased and 39 decreased proteins (P ≤ 0.05). In the HZ pigs, 47 proteins were increased and 61 were decreased (P ≤ 0.05). Exposure to ZEN during TN conditions altered sec61 translocon complex (40%), rough endoplasmic reticulum membrane (8.2%), and proteasome complex (5.4%), asparagine metabolic process (0.60%), aspartate family amino acid metabolic process (0.14%), and cellular amide metabolic process (0.02%) pathways. During HS, ZEN affected cellular pathways associated with proteasome core complex alpha subunit complex (0.23%), fibrillar collagen trimer (0.14%), proteasome complex (0.05%), and spliceosomal complex (0.03%). Thus, these data identify ovarian pathways altered by ZEN exposure and suggest that the molecular targets of ZEN differ in TN and HS pigs.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
33
|
Mayorga EJ, Rodriguez-Jimenez S, Abeyta MA, Goetz BM, Opgenorth J, Moeser AJ, Baumgard LH. Investigating intestinal mast cell dynamics during acute heat stress in growing pigs. J Anim Sci 2024; 102:skae030. [PMID: 38290531 PMCID: PMC10889722 DOI: 10.1093/jas/skae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/26/2024] [Indexed: 02/01/2024] Open
Abstract
Objectives were to examine the temporal pattern of intestinal mast cell dynamics and the effects of a mast cell stabilizer (ketotifen [Ket]) during acute heat stress (HS) in growing pigs. Crossbred barrows (n = 42; 32.3 ± 1.9 kg body weight [BW]) were randomly assigned to 1 of 7 environmental-therapeutic treatments: (1) thermoneutral (TN) control (TNCon; n = 6), (2) 2 h HS control (2 h HSCon; n = 6), (3) 2 h HS + Ket (2 h HSKet; n = 6); (4) 6 h HSCon (n = 6), (5) 6 h HSKet (n = 6), (6) 12 h HSCon (n = 6), or (7) 12 h HSKet (n = 6). Following 5 d of acclimation to individual pens, pigs were enrolled in two experimental periods (P). During P1 (3 d), pigs were housed in TN conditions (21.5 ± 0.8 °C) for the collection of baseline measurements. During P2, TNCon pigs remained in TN conditions for 12 h, while HS pigs were exposed to constant HS (38.1 ± 0.2 °C) for either 2, 6, or 12 h. Pigs were euthanized at the end of P2, and blood and tissue samples were collected. Regardless of time or therapeutic treatment, pigs exposed to HS had increased rectal temperature, skin temperature, and respiration rate compared to their TNCon counterparts (1.9 °C, 6.9° C, and 119 breaths/min; P < 0.01). As expected, feed intake and BW gain markedly decreased in HS pigs relative to their TNCon counterparts (P < 0.01). Irrespective of therapeutic treatment, circulating corticotropin-releasing factor decreased from 2 to 12 h of HS relative to TNCon pigs (P < 0.01). Blood cortisol increased at 2 h of HS (2-fold; P = 0.04) and returned to baseline by 6 h. Plasma histamine (a proxy of mast cell activation) remained similar across thermal treatments and was not affected by Ket administration (P > 0.54). Independent of Ket or time, HS increased mast cell numbers in the jejunum (94%; P < 0.01); however, no effects of HS on mast cell numbers were detected in the ileum or colon. Jejunum and ileum myeloperoxidase area remained similar among treatments (P > 0.58) but it tended to increase (12%; P = 0.08) in the colon in HSCon relative to TNCon pigs. Circulating lymphocytes and basophils decreased in HSKet relative to TN and HSCon pigs (P ≤ 0.06). Blood monocytes and eosinophils were reduced in HS pigs relative to their TNCon counterparts (P < 0.01). In summary, HS increased jejunum mast cell numbers and altered leukocyte dynamics and proinflammatory biomarkers. However, Ket administration had no effects on mast cell dynamics measured herein.
Collapse
Affiliation(s)
- Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Megan A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Brady M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Julie Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
34
|
Rudolph TE, Roths M, Freestone AD, White-Springer SH, Rhoads RP, Baumgard LH, Selsby JT. Heat stress alters hematological parameters in barrows and gilts. J Anim Sci 2024; 102:skae123. [PMID: 38706303 PMCID: PMC11141298 DOI: 10.1093/jas/skae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024] Open
Abstract
The purpose of this investigation was to establish the role biological sex plays in circulating factors following heat stress (HS). Barrows and gilts (36.8 ± 3.7 kg body weight) were kept in either thermoneutral (TN; 20.8 ± 1.6 °C; 62.0% ± 4.7% relative humidity; n = 8/sex) conditions or exposed to HS (39.4 ± 0.6 °C; 33.7% ± 6.3% relative humidity) for either 1 (HS1; n = 8/sex) or 7 (HS7; n = 8/sex) d. Circulating glucose decreased as a main effect of the environment (P = 0.03). Circulating non-esterified fatty acid (NEFA) had an environment × sex interaction (P < 0.01) as HS1 barrows had increased NEFA compared to HS1 gilts (P = 0.01) and NEFA from HS7 gilts increased compared to HS1 gilts (P = 0.02) and HS7 barrows (P = 0.04). Cortisol, insulin, glucagon, T3, and T4 were reduced as a main effect of environment (P ≤ 0.01). Creatinine was increased in HS1 and HS7 animals compared to TN (P ≤ 0.01), indicative of decreased glomerular filtration rate. White blood cell populations exhibited differential patterns based on sex and time. Neutrophils and lymphocytes had an environment × sex interaction (P ≤ 0.05) as circulating neutrophils were increased in HS1 barrows compared to TN and HS7 barrows, and HS1 gilts (P ≤ 0.01) and HS7 barrows had less neutrophils compared to TN barrows (P = 0.01), whereas they remained similar in gilts. In contrast, barrow lymphocyte numbers were similar between groups, but in HS7 gilts they were decreased compared to TN and HS1 gilts (P ≤ 0.04). In total, these data demonstrate that HS alters a host of circulating factors and that biological sex mediates, at least in part, the physiological response to HS.
Collapse
Affiliation(s)
- Tori E Rudolph
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Melissa Roths
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Alyssa D Freestone
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Sarah H White-Springer
- Department of Animal Science, Texas A&M University and Texas A&M AgriLife Research, College Station, TX, 77843, USA
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77843, USA
| | - Robert P Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA, 50010, USA
| |
Collapse
|
35
|
Roach CM, Mayorga EJ, Baumgard LH, Ross JW, Keating AF. Phenotypic, endocrinological, and metabolic effects of zearalenone exposure and additive effect of heat stress in prepubertal female pigs. J Therm Biol 2024; 119:103742. [PMID: 38056360 DOI: 10.1016/j.jtherbio.2023.103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 12/08/2023]
Abstract
Independently, both heat stress (HS) and zearalenone (ZEN) compromise female reproduction, thus the hypothesis that ZEN would affect phenotypic, endocrine, and metabolic parameters in pigs with a synergistic and/or additive impact of HS was investigated. Prepubertal gilts (n = 6-7) were assigned to: thermoneutral (TN) vehicle control (TC; n = 6); TN ZEN (40 μg/kg; TZ; n = 6); pair-fed (PF; n = 6) vehicle control (PC; n = 6); PF ZEN (40 μg/kg; PZ; n = 6); HS vehicle control (HC; n = 7); and HS ZEN (40 μg/kg; HZ; n = 7) and experienced either constant 21.0 ± 0.10 °C (TN and PF) or 35.0 ± 0.2 °C (12 h) and 32.2 ± 0.1 °C (12 h) to induce HS for 7 d. Elevated rectal temperature (P < 0.01) and respiration rate (P < 0.01) confirmed induction of HS. Rectal temperature was decreased (P = 0.03) by ZEN. Heat stress decreased (P < 0.01) feed intake, body weight, and average daily gain, with absence of a ZEN effect (P > 0.22). White blood cells, hematocrit, and lymphocytes decreased (P < 0.04) with HS. Prolactin increased (P < 0.01) in PC and PZ and increased in HZ females (P < 0.01). 17β-estradiol reduced (P < 0.01) in HC and increased in TZ females (P = 0.03). Serum metabolites were altered by both HS and ZEN. Neither HS nor ZEN impacted ovary weight, uterus weight, teat size or vulva area in TN and PF treatments, although ZEN increased vulva area (P = 0.02) in HS females. Thus, ZEN and HS, independently and additively, altered blood composition, impacted the serum endocrine and metabolic profile and increased vulva size in prepubertal females, potentially contributing to infertility.
Collapse
Affiliation(s)
- Crystal M Roach
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
36
|
Brahmi E, Souli A, Maroini M, Abid I, Ben-Attia M, Salama AAK, Ayadi M. Seasonal variations of physiological responses, milk production, and fatty acid profile of local crossbred cows in Tunisia. Trop Anim Health Prod 2023; 56:11. [PMID: 38097894 DOI: 10.1007/s11250-023-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
The study investigates the seasonal variations of physiological responses, milk yield, milk composition, and milk fatty acid profile of local crossbred cows (Friesian × Brown Atlas) in northwestern Tunisia. A total of 80 multiparous cows from smallholder farmers were sampled between 2018 and 2019. The cows were feed the same diet ad libitum and exposed to the same Mediterranean climatic conditions. Weekly rectal temperature (RT; °C), respiratory rate (RR; rpm), and heart rate (HR; bpm) were measured per cow in each season. Individual milk yield and samples were recorded bi-weekly and collected in duplicate for chemical analyses. Milk fatty acids (FAs) were analyzed using gas chromatography-mass spectrometry (GC-MS). Results showed an increase (P < 0.05) in RT (+ 1.3%), RR (+ 12.1%), and HR (+ 9.9%) when the temperature-humidity index (THI) increased from winter (53.6) to summer (74.4) in response to heat stress. Milk yield did not vary significantly between seasons (8.3 L/day on average). Summer milk contained more fat (+ 7.8%) and log SCC (+ 13.7%). The proportion of the monounsaturated (31.2 vs. 27.2%) and polyunsaturated (4.29 vs. 3.86%) FAs decreased (P < 0.05) between winter and summer. Saturated FAs (64.5 vs. 67.7%) were higher (P < 0.05) in summer than in winter. Winter milk fat contained higher levels of C18:2cis-9 trans-11 (CLA) (0.73 vs. 0.56%) and ω-3 FA (0.83 vs. 0.63%), but a lower ω-6/ω-3 ratio (4.07 vs. 6.17%) compared to summer. As the cows were fed the same diet throughout the two seasons, the performances obtained were mainly due to the resistance of the local crossbred cow to the hot conditions. It is concluded that the local crossbred cow maintains its productivity and tolerate the hot Mediterranean climate.
Collapse
Affiliation(s)
- E Brahmi
- Environment Biomonitoring Laboratory (LR01/ES14), Department of Life Sciences, Faculty of Sciences, University of Carthage, 7021, Bizerta, Zarzouna, Tunisia.
- Higher School of Agriculture of Kef, University of Jendouba, 7119, El Kef, Tunisia.
| | - A Souli
- Environment Biomonitoring Laboratory (LR01/ES14), Department of Life Sciences, Faculty of Sciences, University of Carthage, 7021, Bizerta, Zarzouna, Tunisia
- Department of Animal Biotechnology, Higher Institute of Biotechnology of Beja, University of Jendouba, 9000, Beja, Tunisia
| | - M Maroini
- Department of Animal Biotechnology, Higher Institute of Biotechnology of Beja, University of Jendouba, 9000, Beja, Tunisia
| | - I Abid
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - M Ben-Attia
- Environment Biomonitoring Laboratory (LR01/ES14), Department of Life Sciences, Faculty of Sciences, University of Carthage, 7021, Bizerta, Zarzouna, Tunisia
| | - A A K Salama
- Department of Animal and Food Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M Ayadi
- Environment Biomonitoring Laboratory (LR01/ES14), Department of Life Sciences, Faculty of Sciences, University of Carthage, 7021, Bizerta, Zarzouna, Tunisia
- Department of Animal Biotechnology, Higher Institute of Biotechnology of Beja, University of Jendouba, 9000, Beja, Tunisia
| |
Collapse
|
37
|
Beale PK, Foley WJ, Moore BD, Marsh KJ. Warmer ambient temperatures reduce protein intake by a mammalian folivore. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220543. [PMID: 37839444 PMCID: PMC10577027 DOI: 10.1098/rstb.2022.0543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023] Open
Abstract
The interplay between ambient temperature and nutrition in wild herbivores is frequently overlooked, despite the fundamental importance of food. We tested whether different ambient temperatures (10°C, 18°C and 26°C) influenced the intake of protein by a marsupial herbivore, the common brushtail possum (Trichosurus vulpecula). At each temperature, possums were offered a choice of two foods containing different amounts of protein (57% versus 8%) for one week. Animals mixed a diet with a lower proportion of protein to non-protein (P : NP, 0.20) when held at 26°C compared to that at both 10°C and 18°C (0.22). Since detoxification of plant secondary metabolites imposes a protein cost on animals, we then studied whether addition of the monoterpene 1,8-cineole to the food changed the effect of ambient temperature (10°C and 26°C) on food choice. Cineole reduced food intake but also removed the effect of temperature on P : NP ratio and instead animals opted for a diet with higher P : NP (0.19 with cineole versus 0.15 without cineole). These experiments show the proportion of P : NP chosen by animals is influenced by ambient temperature and by plant secondary metabolites. Protein is critical for reproductive success in this species and reduced protein intake caused by high ambient temperatures may limit the viability of some populations in the future. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Phillipa K. Beale
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - William J. Foley
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ben D. Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Locked bag 1797, Penrith, New South Wales 2751, Australia
| | - Karen J. Marsh
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
38
|
Zhang M, Wu D, Ahmed Z, Liu X, Chen J, Ma J, Wang M, Liu J, Zhang J, Huang B, Lei C. The genetic secrets of adaptation: decoding the significance of the 30-bp insertion in the KRT77 gene for Chinese cattle. Anim Biotechnol 2023; 34:3847-3854. [PMID: 37452660 DOI: 10.1080/10495398.2023.2232663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The KRT77 gene is a type II epithelial cell α-keratin gene family member that plays a crucial role in animal epidermal and coat formation. This study aimed to investigate the relationship between the KRT77 gene and the adaptability of Chinese cattle in varying environments by exploring the distribution of an exon insertion of the KRT77 gene in different cattle populations. Our analysis involved amplifying and sequencing DNA samples from 362 individuals from 24 cattle breeds in China. Our findings reveal a gradual increase in the frequency of insertion from the northwest to the southeast population. We conducted an association analysis between the genotypes and climate data, revealing a correlation between the insertion and local annual mean temperature, relative humidity, and temperature humidity index. The study highlights the significance of the newly identified KRT77 gene insertion as a variation associated with environmental adaptation in Chinese cattle.This insertion variation increased insights into the genetic mechanisms that drive adaptation in Chinese cattle, emphasizing the importance of the 30-bp insertion in the KRT77 gene. Our findings facilitate further research to improve cattle breeding strategies for adaptability to changing environments from the northwest to the southeast population. In conclusion, this study provides value.
Collapse
Affiliation(s)
- Mengqi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Daoyi Wu
- Bijie Animal Husbandry and Veterinary Science Institute, Bijie, China
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of the Poonch Rawalakot-12350, Azad Jammu and Kashmir, Pakistan
| | - Xin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jialei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jinping Ma
- Bijie Animal Husbandry and Veterinary Science Institute, Bijie, China
| | - Mingjin Wang
- Bijie Animal Husbandry and Veterinary Science Institute, Bijie, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
39
|
Mozaffari Makiabadi MJ, Bafandeh M, Gharagozlou F, Vojgani M, Mobedi E, Akbarinejad V. Developmental programming of production and reproduction in dairy cows: II. Association of gestational stage of maternal exposure to heat stress with offspring's birth weight, milk yield, reproductive performance and AMH concentration during the first lactation period. Theriogenology 2023; 212:41-49. [PMID: 37690376 DOI: 10.1016/j.theriogenology.2023.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Although the negative effect of maternal exposure to heat stress on production and reproduction of offspring has been reported, there are some discrepancies among various studies about which gestational stage is more critical in this regard. Therefore, the present research was conducted to identify during which stage(s) of pregnancy maternal exposure to heat stress would lead to more dramatic decrease in productive and reproductive performance of offspring. To this end, offspring were classified based on the gestational stage they were in utero exposed to heat stress into four categories, including heat stress exposure (HSE) during only the first trimester of gestation (HSE1), HSE during the first and second trimester of gestation (HSE2), HSE during the second and third trimester of gestation (HSE3) and HSE during only the third trimester of gestation (HSE4). In study I, data of birth weight, milk yield and reproductive variables of 11,788 offspring and data of the month they were conceived were retrieved. In study II, blood samples (n = 521) were collected from offspring in various categories of HSE for measurement of serum AMH. Offspring in HSE1 and HSE2 categories were heavier than offspring in HSE3 and HSE4 categories (P < 0.0001). Offspring in HSE1 and HSE3 categories had the lowest and highest milk production, respectively (P < 0.05). First service conception rate was the greatest and worst in HSE1 and HSE4 categories, respectively (P < 0.05). Service per conception and calving to conception interval were greater in HSE2 than HSE4 category (P < 0.05). Concentration of AMH was lower in HSE1 than HSE4 category (P < 0.05). In conclusion, the present study indicated that the early stage of gestation could be a more critical period for the negative impact of in utero heat stress on developmental programming of milk production and ovarian reserves. Yet an evident temporal pattern for the adverse effect of maternal heat stress on developmental programming of reproductive performance in offspring was not found.
Collapse
Affiliation(s)
| | - Mohammad Bafandeh
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Faramarz Gharagozlou
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Vojgani
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Emadeddin Mobedi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
40
|
Giannone C, Bovo M, Ceccarelli M, Torreggiani D, Tassinari P. Review of the Heat Stress-Induced Responses in Dairy Cattle. Animals (Basel) 2023; 13:3451. [PMID: 38003069 PMCID: PMC10668733 DOI: 10.3390/ani13223451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
In the dairy cattle sector, the evaluation of the effects induced by heat stress is still one of the most impactful and investigated aspects as it is strongly connected to both sustainability of the production and animal welfare. On the other hand, more recently, the possibility of collecting a large dataset made available by the increasing technology diffusion is paving the way for the application of advanced numerical techniques based on machine learning or big data approaches. In this scenario, driven by rapid change, there could be the risk of dispersing the relevant information represented by the physiological animal component, which should maintain the central role in the development of numerical models and tools. In light of this, the present literature review aims to consolidate and synthesize existing research on the physiological consequences of heat stress in dairy cattle. The present review provides, in a single document, an overview, as complete as possible, of the heat stress-induced responses in dairy cattle with the intent of filling the existing research gap for extracting the veterinary knowledge present in the literature and make it available for future applications also in different research fields.
Collapse
Affiliation(s)
| | - Marco Bovo
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum University of Bologna, Viale Fanin 48, 40127 Bologna, Italy; (C.G.); (M.C.); (D.T.); (P.T.)
| | | | | | | |
Collapse
|
41
|
Habeeb AA, Osman SF, Teama FEI, Gad AE. The detrimental impact of high environmental temperature on physiological response, growth, milk production, and reproductive efficiency of ruminants. Trop Anim Health Prod 2023; 55:388. [PMID: 37910293 PMCID: PMC10620265 DOI: 10.1007/s11250-023-03805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
The optimal environments for ruminants are air temperatures between 13 and 20 °C, winds between 5 and 18 km/h, humidity levels between 55 and 65%, and a moderate amount of sunlight. In tropical and subtropical regions, climate is the top factor restricting animal growth and reproductive efficiency. The digestive system, blood biochemical components, and hormones all go through a range of physiological changes at high temperatures. Ruminant animals respond to heat stress by drinking more water, breathing more quickly, panting, and raising their rectal temperatures while reducing their activity levels, intake of roughage, and rumination. Blood metabolites and biochemical modifications are negatively impacted by the concentration of blood biochemical components and hormonal levels, particularly those of anabolic hormones, which are decreased as a result of the animals' exposure to high environmental temperatures. Changes in blood metabolite and hormone levels were influenced by the duration of exposure to high temperatures, the level of background heat, and the species, breed, and age of the animals. The major biological changes caused by heat stress have a negative impact on growth, milk production, and reproduction. Animals subjected to high environmental temperatures also undergo reductions in feed intake and feed efficiency. These changes eventually impair ruminant reproduction and production abilities.
Collapse
Affiliation(s)
- Alsaied Alnaimy Habeeb
- Egyptian Atomic Energy Authority, Nuclear Research Center, Radioisotopes Applications Division, Biological Applications Department, Cairo, P.O. 13759, Egypt.
| | - Samir F Osman
- Egyptian Atomic Energy Authority, Nuclear Research Center, Radioisotopes Applications Division, Biological Applications Department, Cairo, P.O. 13759, Egypt
| | - Fatma E I Teama
- Egyptian Atomic Energy Authority, Nuclear Research Center, Radioisotopes Applications Division, Biological Applications Department, Cairo, P.O. 13759, Egypt
| | - Ahmed E Gad
- Egyptian Atomic Energy Authority, Nuclear Research Center, Radioisotopes Applications Division, Biological Applications Department, Cairo, P.O. 13759, Egypt
| |
Collapse
|
42
|
Reiche AM, Amelchanka SL, Bapst B, Terranova M, Kreuzer M, Kuhla B, Dohme-Meier F. Influence of dietary fiber content and horn status on thermoregulatory responses of Brown Swiss dairy cows under thermoneutral and short-term heat stress conditions. J Dairy Sci 2023; 106:8033-8046. [PMID: 37641257 DOI: 10.3168/jds.2022-23071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/15/2023] [Indexed: 08/31/2023]
Abstract
In the present experiment, 10 horned and 10 disbudded mid-lactating Brown Swiss cows were included in a crossover feeding trial with a hay or hay and concentrate diet. The effects of dietary neutral detergent fiber (NDF) content and horn status on thermoregulatory responses under thermoneutral and short-term heat stress conditions were studied, as both are considered to ease the cow's thermoregulation under an environmental heat load. Cows received either ad libitum hay and alfalfa pellets (85:15, C-, NDF content: 41.0%) or restricted amounts of hay and concentrate (70:30, C+, NDF content: 34.5%). The level of restriction applied with the C+ diet was determined from pre-experimental ad libitum intakes, ensuring that both diets provided the same intake of net energy for lactation (NEL). For data collection, cows were housed in respiration chambers for 5 d. The climatic conditions were 10°C and 60% relative humidity (RH), considered thermoneutral (TN) conditions (temperature-humidity index (THI): 52) for d 1 and 2, and 25°C and 70% RH, considered heat stress (HS) conditions (THI: 74), for d 4 and 5. On d 3, the temperature and RH were increased gradually. Compared with TN, HS conditions increased the water intake, skin temperature, respiration and heart rates, and endogenous heat production. They did not affect body temperature, feed intake, or milk production. Lowering dietary fiber content via concentrate supplementation lowered methane and increased carbon dioxide production. It did not mitigate physiological responses to HS. Although the responses of horned and disbudded cows were generally similar, the slower respiration rates of horned cows under HS conditions indicate a possible, albeit minor, role of the horn in thermoregulation. In conclusion, future investigations on nutritional strategies must be conducted to mitigate mild heat stress.
Collapse
Affiliation(s)
- A-M Reiche
- Ruminant Nutrition and Emissions, Agroscope Posieux, 1725 Posieux, Switzerland.
| | - S L Amelchanka
- ETH Zurich, AgroVet-Strickhof, Eschikon 27, 8315 Lindau, Switzerland
| | - B Bapst
- Qualitas AG, 6300 Zug, Switzerland
| | - M Terranova
- ETH Zurich, AgroVet-Strickhof, Eschikon 27, 8315 Lindau, Switzerland
| | - M Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Eschikon 27, 8315 Lindau, Switzerland
| | - B Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - F Dohme-Meier
- Ruminant Nutrition and Emissions, Agroscope Posieux, 1725 Posieux, Switzerland
| |
Collapse
|
43
|
Chen YC, Orellana Rivas RM, Marins TN, Melo VHLR, Wang Z, Garrick M, Gao J, Liu H, Bernard JK, Melendez P, Tao S. Effects of heat stress abatement on systemic and mammary inflammation in lactating dairy cows. J Dairy Sci 2023; 106:8017-8032. [PMID: 37641342 DOI: 10.3168/jds.2023-23390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/06/2023] [Indexed: 08/31/2023]
Abstract
To examine the effects of evaporative cooling on systemic and mammary inflammation of lactating dairy cows, 30 multiparous Holstein cows (parity = 2.4, 156 d in milk) were randomly assigned to 1 of 2 treatments: cooling (CL) with fans and misters or not (NC). The experiment was divided into a 10-d baseline when all cows were cooled, followed by a 36-d environmental challenge when cooling was terminated for NC cows. The onset of environmental challenge was considered as d 1. Temperature-humidity index averaged 78.4 during the environmental challenge. Milk yield and dry matter intake (DMI) were recorded daily. Blood and milk samples were collected from a subset of cows (n = 9/treatment) on d -3, 1, 3, 7, 14, and 28 of the experiment to measure cortisol, interleukin 10 (IL10), tumor necrosis factor-α (TNF-α), haptoglobin, and lipopolysaccharide binding protein (LBP). Mammary biopsies were collected from a second subset of cows (n = 6/treatment) on d -9, 2, 10, and 36 to analyze gene expression of cytokines and haptoglobin. A subset of cows (n = 7/treatment) who were not subjected to mammary biopsy collection received a bolus of lipopolysaccharides (LPS) in the left rear quarter on d 30 of the experiment. Blood was sampled from cows and milk samples from the LPS-infused quarter were collected at -4, 0, 3, 6, 12, 24, 48, and 96 h relative to infusion, for analyses of inflammatory products. Deprivation of cooling decreased milk yield and DMI. Compared with CL cows, plasma cortisol concentration of NC cows was higher on d 1 but lower on d 28 of the experiment (cooling × time). Deprivation of cooling did not affect circulating TNF-α, IL10, haptoglobin, or LBP. Compared with CL cows, NC cows tended to have higher milk IL10 concentrations but did not show effects in TNF-α, haptoglobin, or LBP. No differences were observed in mammary tissue gene expression of TNF-α, IL10, and haptoglobin. Milk yield declined after LPS infusion but was not affected by treatment. Compared with CL cows, NC cows had greater milk somatic cell count following intramammary LPS infusion. Non-cooled cows had lower circulating TNF-α and IL10 concentrations and tended to have lower circulating haptoglobin concentrations than CL cows. Milk IL10 and TNF-⍺ concentrations were higher 3 h after LPS infusion for NC cows compared with CL cows. Additionally, NC cows tended to have higher milk haptoglobin concentration after LPS infusion than CL cows. In conclusion, deprivation of evaporative cooling had minimal effects on lactating cows' basal inflammatory status, but upregulated mammary inflammatory responses after intramammary LPS infusion.
Collapse
Affiliation(s)
- Y-C Chen
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - R M Orellana Rivas
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - T N Marins
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Victor H L R Melo
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Z Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - M Garrick
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J Gao
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - H Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - J K Bernard
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA 31973
| | - P Melendez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Tifton, GA 31793
| | - S Tao
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
44
|
Jo YH, Kim WS, Peng DQ, Nejad JG, Lee HG. Effects of different energy levels and two levels of temperature-humidity indices on growth, blood metabolites, and stress biomarkers in Korean native calves. J Therm Biol 2023; 117:103703. [PMID: 37748285 DOI: 10.1016/j.jtherbio.2023.103703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
This study investigated the effects of dietary energy levels on growth, blood metabolites, and stress biomarkers in Korean native calves subjected to heat stress (HS). Twenty-four calves (BW: 221.5 ± 24.9 kg; age: 162 ± 4.8 d) were randomly housed in climate-controlled chambers using 3 × 2 factorial design. There were three treatment groups including low energy (LE = 2.53), medium energy (ME = 2.63), and high energy levels (HE = 2.72 Mcal/kg of DM) and two stress levels (threshold: THI = 70-73; severe: THI = 89-91). The calves were adapted to 22 °C for 7 days, then to the target THI level for 14 days. Energy intake, average daily gain, and gain to feed ratio were determined to decline (p < 0.05) under severe HS compared with threshold. Under severe HS, rectal temperature was increased 0.67 °C compared with threshold. Severe HS increased glycine, ammonia, and 3-methylhistidine concentrations compared with threshold (p < 0.05). Gluconeogenic AAs in the blood were increased among the various energy levels regardless of HS. In PBMCs the expression of HSP70 gene was increased in the LE group (p < 0.05), and the HSP90 gene expression was increased in LE and ME groups (p < 0.05) under severe HS. However, the expression of genes HSP70 and HSP90 in HE group did not differ under severe HS (p > 0.05). It has been suggested that HE intake may have a beneficial effect on PBMCs by mitigating ATP depletion. No differences in growth performance were found when increasing energy intake with high protein (CP 17.5%) under HS. However, the increase in energy levels resulted in increased gluconeogenic AAs but decreased urea and 3-methylhistidine in blood. In conclusion, increased energy levels are thought to improve HS adaptability by inhibiting muscle degradation and glucose production using gluconeogenic AAs in Korea native calves under HS condition.
Collapse
Affiliation(s)
- Yong-Ho Jo
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Won-Seob Kim
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, South Korea; Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Dong-Qiao Peng
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Jalil Ghassemi Nejad
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
45
|
Halli K, Cohrs I, Brügemann K, Koch C, König S. Effects of temperature-humidity index on blood metabolites of German dairy cows and their female calves. J Dairy Sci 2023; 106:7281-7294. [PMID: 37500442 DOI: 10.3168/jds.2022-22890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/31/2023] [Indexed: 07/29/2023]
Abstract
Heat stress (HS) impairs productivity, health, and welfare in dairy cows, and additionally causes metabolic changes. Hence, specific metabolites could be used as HS biomarkers. Consequently, the aim of the present study was to compare blood metabolite concentrations of German Holstein dairy cows and of their female calves suffering from high temperature-humidity index (THI) during late gestation (cows) or during their first week of life (calves) or not. According to the mean daily THI (mTHI) at the day before blood sampling, animals were classified into 2 groups: high mTHI ≥60 (hmTHI) and low mTHI <60 (lmTHI). To perform a standard cross-sectional 2-group study, cow groups (n = 48) and calf groups (n = 47) were compared separately. Differences in metabolite concentrations between hmTHI and lmTHI animals were inferred based on a targeted metabolomics approach. In the first step, processed metabolomics data were evaluated by multivariate data analysis techniques, and were visualized using the web-based platform MetaboAnalyst V5.0. The most important metabolites with pronounced differences between groups were further analyzed in a second step using linear mixed models. We identified 9 thermally sensitive metabolites for the cows [dodecanedioic acid; 3-indolepropionic acid; sarcosine; triglycerides (14:0_34:0), (16:0_38:7), (18:0_32:1), and (18:0_36:2); phosphatidylcholine aa C38:1; and lysophosphatidylcholine a C20:3] and for the calves [phosphatidylcholines aa C38:1, ae C38:3, ae C36:0, and ae C36:2; cholesteryl esters (17:1) and (20:3); sphingomyelins C18:0 and C18:1; and p-cresol sulfate], most of them related to lipid metabolism. Apart from 2 metabolites (3-indolepropionic acid and sarcosine) in cows, the metabolite plasma concentrations were lower in hmTHI than in lmTHI groups. In our heat-stressed dry cows, results indicate an altered lipid metabolism compared with lactating heat-stressed cows, due to the missing antilipolytic effect of HS. The results also indicate alterations in lipid metabolism of calves due to high mTHI in the first week of life. From a cross-generation perspective, high mTHI directly before calving seems to reduce colostrum quality, with detrimental effects on metabolite concentrations in offspring.
Collapse
Affiliation(s)
- K Halli
- Institute of Animal Breeding and Genetics, Justus Liebig University, 35390 Giessen, Germany.
| | - I Cohrs
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - K Brügemann
- Institute of Animal Breeding and Genetics, Justus Liebig University, 35390 Giessen, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweiler an der Alsenz, Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus Liebig University, 35390 Giessen, Germany
| |
Collapse
|
46
|
Tsiamadis V, Valergakis GE, Soufleri A, Arsenos G, Banos G, Karamanlis X. Identification of temporal patterns of environmental heat stress of Holstein dairy heifers raised in Mediterranean climate during their in-utero and post-natal life periods and modelling their effects on age at first calving. J Therm Biol 2023; 117:103717. [PMID: 37774438 DOI: 10.1016/j.jtherbio.2023.103717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
A retrospective study was conducted to evaluate temporal patterns of environmental heat stress during the in-uterus period of development (IUP) and the 3-month post-natal (PN) period of dairy heifers, and to estimate their association with the age at first calving (AFC). Data from 30 dairy herds in Northern Greece including 9098 heifers were extracted from National Cattle Database. Data (2005-2019) regarding 230,100 farm-specific ambient daily temperature and relative humidity records, were obtained from ERA5-Land. Average monthly Temperature-Humidity-Index values (THI; low≤68, and high>68) were calculated and matched for each heifer to their IUP and PN. Subsequently, Cluster Analysis was used with monthly THIs as predictors to allocate heifers to THI clusters. The association of clusters with AFC was assessed with Generalized Linear Mixed Model analysis, an extended form of multiple linear regression. Finally, 8 Heat Stress Clusters (HSC; namely HSC-1 to HSC-8) were identified. Compared to HSC-8 (8th-9th IUP months and 1st PN month) heifers of HSC-5 (4th-7th IUP months) and HSC-6 (6th-8th IUP months) calved 13.8 and 17.8 days later, respectively (P < 0.01-0.001). Moreover, when AFC was treated as a binary variable, heifers of HSC-5 and HSC-6 had 1.15 and 1.34 (P < 0.01-0.001) higher risk of calving for the first time later than 787 days compared to HSC-8, respectively.
Collapse
Affiliation(s)
- V Tsiamadis
- Department of Animal Production, Faculty of Veterinary Medicine, Box 393, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| | - G E Valergakis
- Department of Animal Production, Faculty of Veterinary Medicine, Box 393, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - A Soufleri
- Department of Animal Production, Faculty of Veterinary Medicine, Box 393, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - G Arsenos
- Department of Animal Production, Faculty of Veterinary Medicine, Box 393, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - G Banos
- Department of Animal Production, Faculty of Veterinary Medicine, Box 393, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece; Scotland's Rural College, Roslin Institute Building, EH25 9RG, Midlothian, Scotland, UK
| | - X Karamanlis
- Department of Ecology and Environmental Protection, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| |
Collapse
|
47
|
Marquez-Acevedo AS, Hood WR, Collier RJ, Skibiel AL. Graduate Student Literature Review: Mitochondrial response to heat stress and its implications on dairy cattle bioenergetics, metabolism, and production. J Dairy Sci 2023; 106:7295-7309. [PMID: 37210354 DOI: 10.3168/jds.2023-23340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/03/2023] [Indexed: 05/22/2023]
Abstract
The dairy industry depends upon the cow's successful lactation for economic profitability. Heat stress compromises the economic sustainability of the dairy industry by reducing milk production and increasing the risk of metabolic and pathogenic disease. Heat stress alters metabolic adaptations, such as nutrient mobilization and partitioning, that support the energetic demands of lactation. Metabolically inflexible cows are unable to enlist the necessary homeorhetic shifts that provide the needed nutrients and energy for milk synthesis, thereby impairing lactation performance. Mitochondria provide the energetic foundation that enable a myriad of metabolically demanding processes, such as lactation. Changes in an animal's energy requirements are met at the cellular level through alterations in mitochondrial density and bioenergetic capacity. Mitochondria also act as central stress modulators and coordinate tissues' energetic responses to stress by integrating endocrine signals, through mito-nuclear communication, into the cellular stress response. In vitro heat insults affect mitochondria through a compromise in mitochondrial integrity, which is linked to a decrease in mitochondrial function. However, limited evidence exists linking the in vivo metabolic effects of heat stress with parameters of mitochondrial behavior and function in lactating animals. This review summarizes the literature describing the cellular and subcellular effects of heat stress, with a focus on the effect of heat stress on mitochondrial bioenergetics and cellular dysfunction in livestock. Implications for lactation performance and metabolic health are also discussed.
Collapse
Affiliation(s)
- A S Marquez-Acevedo
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844.
| | - W R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849
| | - R J Collier
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844
| | - A L Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844
| |
Collapse
|
48
|
Dean L, Tarpoff AJ, Nickles K, Place S, Edwards-Callaway L. Heat Stress Mitigation Strategies in Feedyards: Use, Perceptions, and Experiences of Industry Stakeholders. Animals (Basel) 2023; 13:3029. [PMID: 37835635 PMCID: PMC10572074 DOI: 10.3390/ani13193029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The purpose of this study was to: (1) understand heat mitigation strategies currently used and recommended by feedyard operators, veterinarians, and nutritionists, (2) understand their perceptions of heat mitigation strategies related to cattle health, performance, welfare, and carcass quality, (3) quantify the frequency of extreme heat events, and (4) understand industry needs associated with heat stress mitigation strategies. An online survey was shared via 11 industry association listservs. Descriptive statistics were performed on 56 responses (n = 22 operators, 26 veterinarians and eight nutritionists). Thematic analysis was performed on free-response questions. Sixteen (72.7%) operators, 23 (88.5%) veterinarians and eight (100%) nutritionists utilized at least one heat mitigation strategy. "Changing processing and shipping hours" (n = 42, 75%) had the most "strongly agree" responses when asked about strategy effectiveness. The majority of respondents agreed that heat stress negatively impacts cattle health, performance, and welfare (Mean ± SD; ≥7.8 ± 2.6 for all roles). Forty-two (75%) respondents experienced cattle death loss from extreme heat events. Thematic analysis indicated that respondents perceived pen infrastructure and water/feed management as important considerations for better mitigating heat stress impacts. When asked what resources would be helpful, respondents indicated research and data regarding the effectiveness of various strategies.
Collapse
Affiliation(s)
- Lauren Dean
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.D.); (S.P.)
| | - Anthony J. Tarpoff
- Department of Animal Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | | | - Sara Place
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.D.); (S.P.)
| | - Lily Edwards-Callaway
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA; (L.D.); (S.P.)
| |
Collapse
|
49
|
Zeng J, Cai J, Wang D, Liu H, Sun H, Liu J. Heat stress affects dairy cow health status through blood oxygen availability. J Anim Sci Biotechnol 2023; 14:112. [PMID: 37658441 PMCID: PMC10474781 DOI: 10.1186/s40104-023-00915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/06/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Rises in global warming and extreme weather occurrence make the risk of heat stress (HS) induced by high ambient temperatures more likely in high-yielding dairy cows, resulting in low milk quality and yield. In animals, oxygen is involved in many physiological and metabolic processes, but the effects of HS on oxygen metabolism remain unclear. Thus, the current study aimed to investigate how oxygen metabolism plays a role in health status of dairy cows by measuring the milk yield, milk composition, and blood biochemical variables of cows under different levels of HS: none (No-HS), mild (Mild-HS), and moderate HS (Mod-HS). RESULTS The HS significantly increased rectal temperature (Ptreat < 0.01) and respiration rate (Ptreat < 0.01). Under Mod-HS, greater Na+ (P < 0.05) and lower total CO2, and pH (P < 0.05) were observed relative to those under No-HS and Mild-HS. Oxygen concentrations in both coccygeal artery and mammary vein (Ptreat < 0.01) were lower under Mod-HS than under No-HS. Coccygeal vein concentrations of heat shock protein 90 (HSP90) (P < 0.05) increased during Mod-HS compared with those in cows under No-HS. Malondialdehyde increased during Mod-HS, and glutathione peroxidase (P < 0.01) increased during Mild-HS. Coccygeal vein concentrations of vascular endothelial growth factor (P < 0.01), heme oxygenase-1 (P < 0.01), and hypoxia-inducible factor 1α (P < 0.01) were greater in cows under Mod-HS than those under No-HS. Red blood cell count (P < 0.01) and hemoglobin concentration (P < 0.01) were lower in the coccygeal vein of dairy cows under Mild- and Mod-HS than those of cows under No-HS. CONCLUSIONS Exposure to HS negatively impacts the health status and lactation performance of dairy cows by limiting oxygen metabolism and transportation. However, the specific mechanism by which HS affects mammary function in cows remains unclear and requires further exploration.
Collapse
Affiliation(s)
- Jia Zeng
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Jie Cai
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Diming Wang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Huizeng Sun
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Jianxin Liu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Afarani OR, Zali A, Dehghan-Banadaki M, Kahyani A, Esfahani MA, Ahmadi F. Altering palmitic acid and stearic acid ratios in the diet of early-lactation Holsteins under heat stress: Feed intake, digestibility, feeding behavior, milk yield and composition, and plasma metabolites. J Dairy Sci 2023; 106:6171-6184. [PMID: 37500434 DOI: 10.3168/jds.2022-22934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/17/2023] [Indexed: 07/29/2023]
Abstract
The objective of this study was to evaluate the effects of varying the ratio of dietary palmitic (C16:0; PA) and stearic (C18:0; SA) acids on nutrient digestibility, production, and blood metabolites of early-lactation Holsteins under mild-to-moderate heat stress. Eight multiparous Holsteins (body weight = 589 ± 45 kg; days in milk = 51 ± 8 d; milk production = 38.5 ± 2.4 kg/d; mean ± standard deviation) were used in a duplicated 4 × 4 Latin square design (21-d periods inclusive of 7-d data collection). The PA (88.9%)- and SA (88.5%)-enriched fat supplements, either individually or in combination, were added to diets at 2% of dry matter (DM) to formulate the following treatments: (1) 100PA:0SA (100% PA + 0% SA), (2) 66PA:34SA (66% PA + 34% SA), (3) 34PA:66SA (34% PA + 66% SA), and (4) 0PA:100SA (0% PA + 100% SA). Diets offered, in the form of total mixed rations, were formulated to be isonitrogenous (crude protein = 17.2% of DM) and isocaloric (net energy for lactation = 1.69 Mcal/kg DM), with a forage-to-concentrate ratio of 40:60. Ambient temperature-humidity index averaged 72.9 throughout the experiment, suggesting that cows were under mild-to-moderate heat stress. No differences in DM intake across treatments were detected (mean 23.5 ± 0.64 kg/d). Increasing the dietary proportion of SA resulted in a linear decrease in total-tract digestibility of total fatty acids, but organic matter, DM, neutral detergent fiber, and crude protein digestibilities were not different across treatments. Decreasing dietary PA-to-SA had no effect on the time spent eating (340 min/d), rumination (460 min/d), and chewing (808 min/d). As dietary PA-to-SA decreased, milk fat concentration and yield decreased linearly, resulting in a linear decrease of 3.5% fat-corrected milk production and milk fat-to-protein ratio. Feed efficiency expressed as kg 3.5% fat-corrected milk/kg DM intake decreased linearly with decreasing the proportion of PA-to-SA in the diet. Treatments had no effect on milk protein and lactose content. A linear increase in de novo and preformed fatty acids was identified as the ratio of PA to SA decreased, while PA and SA concentrations of milk fat decreased and increased linearly, respectively. A linear reduction in blood nonesterified fatty acids and glucose was detected as the ratio of PA to SA decreased. Insulin concentration increased linearly from 10.3 in 100PA:0SA to 13.1 µIU/mL in 0PA:100SA, whereas blood β-hydroxybutyric acid was not different across treatments. In conclusion, the heat-stressed Holsteins in early-lactation phase fed diets richer in PA versus SA produced greater fat-corrected milk and were more efficient in converting feed to fat-corrected milk.
Collapse
Affiliation(s)
- O Ramezani Afarani
- Department of Animal Science, Agricultural and Natural Resources College, University of Tehran, Karaj 77871-31587, Iran
| | - A Zali
- Department of Animal Science, Agricultural and Natural Resources College, University of Tehran, Karaj 77871-31587, Iran.
| | - M Dehghan-Banadaki
- Department of Animal Science, Agricultural and Natural Resources College, University of Tehran, Karaj 77871-31587, Iran
| | - A Kahyani
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - M Asemi Esfahani
- Department of Animal Science, Khuzestan Ramin Agriculture and Natural Resources, Molasani, Ahvaz 63417-73637, Iran
| | - F Ahmadi
- Department of Eco-friendly Livestock Science, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, South Korea
| |
Collapse
|