1
|
Koch F, Albrecht D, Albrecht E, Hansen C, Kuhla B. Novel Perspective on Molecular and Cellular Adaptations of the Mammary Gland-Regulating Milk Constituents and Immunity of Heat-Stressed Dairy Cows. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20286-20298. [PMID: 39226405 PMCID: PMC11421017 DOI: 10.1021/acs.jafc.4c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Climate change with increasing ambient temperatures negatively influences the biology of dairy cows and their milk production in the mammary gland (MG). This study aimed to elucidate the MG proteome, differences in milk composition, and ruminal short-chain fatty acid concentrations of dairy cows experiencing 7 days of heat stress [HS, 28 °C, temperature humidity index (THI) = 76], pair-feeding (PF), or ad libitum feeding (CON) at thermoneutrality (16 °C, THI = 60). Ruminal acetate, acetate/propionate ratio, and milk urea concentrations were greater, whereas milk protein and lactose were lower in HS than in control cows. Proteome analysis revealed an induced bacterial invasion of epithelial cells, leukocyte transendothelial migration, reduction of the pyruvate and carbon metabolism, and platelet activation in the MG of HS compared to CON or PF cows. These results highlight adaptive metabolic and immune responses to mitigate the negative effects of ambient heat in the MG.
Collapse
Affiliation(s)
- Franziska Koch
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Dirk Albrecht
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald 17489, Germany
| | - Elke Albrecht
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| | - Christiane Hansen
- Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries, Institute of Livestock Farming, Dummerstorf 18196, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Dummerstorf 18196, Germany
| |
Collapse
|
2
|
Orquera-Arguero KG, Casasús I, Ferrer J, Blanco M. Beef cows' performance and metabolic response to short nutritional challenges in different months of lactation. Res Vet Sci 2023; 159:26-34. [PMID: 37062229 DOI: 10.1016/j.rvsc.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Lactating cows can react to changes in nutrient availability with a range of behavioural and physiological mechanisms, which may differ among lactation stages. We investigated the effects of short feed restriction and refeeding periods on beef cows' performance and metabolic status in different months of lactation. For this, Parda de Montaña beef cows [n = 31; 626 ± 47.7 kg body weight (BW)] were subjected to short nutritional restriction and refeeding cycles, which were repeated in months 2, 3 and 4 of lactation. Each month, cows were consecutively fed a diet to meet 100% of their energy and protein requirements during a 4-day basal period, 55% during a 4-day restriction period, and again 100% during a 4-day refeeding period. The performance (energy balance, BW, milk yield and composition) and plasma metabolite concentrations (glucose, non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHB), urea and malondialdehyde) were measured daily. Most of the traits were significantly affected by the interaction between feeding period and lactation month. Feed restriction induced milk yield loss, decreased milk protein and increased milk urea contents to different extents. The plasma NEFA concentrations rose with restriction in months 2, 3 and 4 but BHB and urea concentrations increased only in month 4. Most of these metabolites lowered to basal values during refeeding. These results suggest that beef cows use different adaptation strategies to cope with nutritional challenges as lactation advances, body fat mobilisation predominates in early lactation and protein catabolism prevails at later stages.
Collapse
Affiliation(s)
- Karina G Orquera-Arguero
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Isabel Casasús
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Javier Ferrer
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | - Mireia Blanco
- Departamento de Ciencia Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain.
| |
Collapse
|
3
|
Faria LR, Junqueira FB, Campos JPA, Bazana MJF, Saczk AA, de Souza JC, de Lima RR, Alves NG. Metabolic Profiles and Follicular Dynamics of Prepubertal and Pubertal Santa Inês Ewe Lambs With Dietary Restriction and Supplementation With Roasted Whole Soybeans. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar Schmidt C, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Stahl K, Velarde A, Viltrop A, Winckler C, Earley B, Edwards S, Faucitano L, Marti S, de La Lama GCM, Costa LN, Thomsen PT, Ashe S, Mur L, Van der Stede Y, Herskin M. Welfare of cattle during transport. EFSA J 2022; 20:e07442. [PMID: 36092766 PMCID: PMC9449995 DOI: 10.2903/j.efsa.2022.7442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the framework of its Farm to Fork Strategy, the Commission is undertaking a comprehensive evaluation of the animal welfare legislation. The present Opinion deals with protection of cattle (including calves) during transport. Welfare of cattle during transport by road is the main focus, but other means of transport are also covered. Current practices related to transport of cattle during the different stages (preparation, loading/unloading, transit and journey breaks) are described. Overall, 11 welfare consequences were identified as being highly relevant for the welfare of cattle during transport based on severity, duration and frequency of occurrence: group stress, handling stress, heat stress, injuries, motion stress, prolonged hunger, prolonged thirst, respiratory disorders, restriction of movement, resting problems and sensory overstimulation. These welfare consequences and their animal-based measures are described. A variety of hazards, mainly relating to inexperienced/untrained handlers, inappropriate handling, structural deficiencies of vehicles and facilities, poor driving conditions, unfavourable microclimatic and environmental conditions, and poor husbandry practices leading to these welfare consequences were identified. The Opinion contains general and specific conclusions relating to the different stages of transport for cattle. Recommendations to prevent hazards and to correct or mitigate welfare consequences have been developed. Recommendations were also developed to define quantitative thresholds for microclimatic conditions within the means of transport and spatial thresholds (minimum space allowance). The development of welfare consequences over time was assessed in relation to maximum journey duration. The Opinion covers specific animal transport scenarios identified by the European Commission relating to transport of unweaned calves, cull cows, the export of cattle by livestock vessels, the export of cattle by road, roll-on-roll-off ferries and 'special health status animals', and lists welfare concerns associated with these.
Collapse
|
5
|
Yuan C, Wu M, Chen X, Li C, Zhang A, Lu W. Growth Performance and Hematological Changes in Growing Sika Deers Fed with Spent Mushroom Substrate of Pleurotus ostreatus. Animals (Basel) 2022; 12:ani12060765. [PMID: 35327162 PMCID: PMC8944863 DOI: 10.3390/ani12060765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary With the rapid development of the mushroom industry, a large number of spent mushroom substrate (SMS) has also been produced. SMS can be easily digested by ruminants and is suitable for feeding animals, such as cows, sheep, as well as deer. The results of this study show that the dietary spent mushroom substrate of Pleurotus ostreatus (SMS-MP) has no obvious effect on the physiological condition of growing sika deer, at the same time it can reduce the cost of feeding and avoid environmental pollution caused by improper disposal of SMS-MP. Abstract The purpose of this experiment is to expand the feed of growing sika deer and to explore the effects on growing sika deer of the spent mushroom substrate of Pleurotus ostreatus (SMS-MP). Twelve immature female growing sika deer were randomly assigned to four groups. The ratios of SMS-MP to replace concentration supplements were 0%, 10%, 20%, and 30%, respectively, and the growth performance, feed intake and apparent digestibility, serum biochemical indexes, blood physiological indexes, serum immune globulin and plasma amino acid of growing sika deer were measured. The results of the current study confirmed the applicability of SMS-MP as a feed ingredient in growing sika deer diets. There was no significant change in growth performance and hematology of growing sika deer when the concentrate supplement was replaced with 10–20% SMS-MP. However, replacing 30% of concentrate supplements with SMS-MP in the growing sika deer diet resulted in significantly decreased Hb and HCT levels. It can be concluded that, as a waste resource, adding a small amount of SMS-MP has no significant effect on the growth of sika deer, and at the same time can reduce the consumption of concentrate supplements, thereby improving the economic benefits of sika deer breeding.
Collapse
Affiliation(s)
| | | | | | | | - Aiwu Zhang
- Correspondence: (A.Z.); (W.L.); Tel.: +86-138-441-02196 (W.L.)
| | - Wenfa Lu
- Correspondence: (A.Z.); (W.L.); Tel.: +86-138-441-02196 (W.L.)
| |
Collapse
|
6
|
Tryptophan, Kynurenine and Kynurenic Acid Concentrations in Milk and Serum of Dairy Cows with Prototheca Mastitis. Animals (Basel) 2021; 11:ani11123608. [PMID: 34944383 PMCID: PMC8698139 DOI: 10.3390/ani11123608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
The aim of this work was to investigate serum and milk levels of tryptophan (TRP), kynurenine (KYN), and kynurenic acid (KYNA), as well as the activity of indoleamine 2,3-dioxygenase (IDO) in cows with mastitis due to Prototheca algae. The study was prompted by previous research showing a link between the KYN pathway of TRP metabolism and bovine mastitis of bacterial etiology. The study was carried out over a 2-year period (2018-2019) and included quarter milk and serum samples collected from six dairy herds in Poland. The samples were obtained from healthy cows and cows with Prototheca mastitis of either clinical and subclinical manifestation, as determined upon direct measurement of the somatic cell count or indirectly by performing a California Mastitis Test on suspected quarters. Both TRP and KYN concentrations were significantly lower in milk of mastitic cows compared to healthy animals (0.8 vs. 8.72 µM, p = 0.001; 0.07 vs. 0.32 µM, p = 0.001, respectively). The difference in TRP and KYN concentrations in the sera of the two animal groups was much less pronounced (25.55 vs. 27.57 µM, 3.03 vs. 3.56 nM, respectively). The concentration of KYNA was almost at the same level in milk (1.73 vs. 1.70 nM) and in serum (80.47 vs. 75.48 nM) of both mastitic and healthy cows. The data showed that the level of TRP and its metabolites in serum was conspicuously higher compared to milk in all cows under the study. The activity of IDO was significantly higher in milk of cows with Prototheca mastitis compared to healthy animals (71.4 vs. 40.86, p < 0.05), while in serum it was pretty much the same (135.94 vs. 124.98, p > 0.05). The IDO activity differed significantly between serum and milk both for mastitic (135.94 vs. 71.4, p < 0.05) and healthy cows (124.98 vs. 40.86, p < 0.001). In conclusion, low values of TRP and KYN concentrations or elevated IDO activity in milk samples might be used as markers of mastitis due to infectious causes, including Prototheca spp.
Collapse
|
7
|
Bochniarz M, Dąbrowski R, Kocki T, Błaszczyk P, Szczubiał M, Brodzki P, Krakowski L, Turski WA. Content of tryptophan and kynurenines in serum and milk of dairy cows with mastitis caused by Streptococcus spp. Reprod Domest Anim 2021; 57:277-283. [PMID: 34826180 DOI: 10.1111/rda.14050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
The aim of the study was to investigate serum and milk concentrations of tryptophan (TRP), kynurenine (KYN) and kynurenic acid (KYNA), and activity of indoleamine 2,3-dioxygenase (IDO) in cows suffering from mastitis caused by Streptococcus spp. The blood and milk samples were collected from Holstein-Friesian cows farmed in the Lublin region of Poland. It was found that TRP was lower in cows with mastitis both in serum and milk. KYN was lower in serum but not in milk. KYNA was not significantly altered in diseased cows both in serum and milk. The activity of IDO calculated as KYN to TRP ratio was unchanged in serum but was markedly elevated in milk of cows with mastitis. Our findings may have important implications for diagnosis of mastitis in cows because an increase of activity of IDO and reduction of TRP in milk might be a valuable early marker predicting the occurrence of the disease.
Collapse
Affiliation(s)
- Mariola Bochniarz
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Roman Dąbrowski
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | | | - Marek Szczubiał
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Piotr Brodzki
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Leszek Krakowski
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
8
|
Leduc A, Souchet S, Gelé M, Le Provost F, Boutinaud M. Effect of feed restriction on dairy cow milk production: a review. J Anim Sci 2021; 99:6312626. [PMID: 34196701 PMCID: PMC8248043 DOI: 10.1093/jas/skab130] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022] Open
Abstract
In the dairy cow, negative energy balance affects milk yield and composition as well as animal health. Studying the effects of negative energy balance on dairy cow milk production is thus essential. Feed restriction (FR) experiments attempting to reproduce negative energy balance by reducing the quantity or quality of the diet were conducted in order to better describe the animal physiology changes. The study of FR is also of interest since with climate change issues, cows may be increasingly faced with periods of drought leading to a shortage of forages. The aim of this article is to review the effects of FR during lactation in dairy cows to obtain a better understanding of metabolism changes and how it affects mammary gland activity and milk production and composition. A total of 41 papers studying FR in lactating cows were used to investigate physiological changes induced by these protocols. FR protocols affect the entire animal metabolism as indicated by changes in blood metabolites such as a decrease in glucose concentration and an increase in non-esterified fatty acid or β-hydroxybutyrate concentrations; hormonal regulations such as a decrease in insulin and insulin-like growth factor I or an increase in growth hormone concentrations. These variations indicated a mobilization of body reserve in most studies. FR also affects mammary gland activity through changes in gene expression and could affect mammary cell turnover through cell apoptosis, cell proliferation, and exfoliation of mammary epithelial cells into milk. Because of modifications of the mammary gland and general metabolism, FR decreases milk production and can affect milk composition with decreased lactose and protein concentrations and increased fat concentration. These effects, however, can vary widely depending on the type of restriction, its duration and intensity, or the stage of lactation in which it takes place. Finally, to avoid yield loss and metabolic disorders, it is important to identify reliable biomarkers to monitor energy balance.
Collapse
Affiliation(s)
- Antoine Leduc
- Institut Agro, INRAE, PEGASE, 35590 Saint Gilles, France.,Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France.,Institut de l'Elevage, 49105 Angers, France
| | - Sylvain Souchet
- Institut Agro, INRAE, PEGASE, 35590 Saint Gilles, France.,Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | | | - Fabienne Le Provost
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | | |
Collapse
|
9
|
Feng T, Ding H, Wang J, Xu W, Liu Y, Kenéz Á. Metabolite Profile of Sheep Serum With High or Low Average Daily Gain. Front Vet Sci 2021; 8:662536. [PMID: 34026897 PMCID: PMC8131665 DOI: 10.3389/fvets.2021.662536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China.,Joint Laboratory of Animal Science Between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Hongxiang Ding
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China.,Joint Laboratory of Animal Science Between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jing Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, China
| | - Wei Xu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China.,Joint Laboratory of Animal Science Between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource of Oklahoma State University, Beijing, China
| | - Ákos Kenéz
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Garcia-Lino AM, Gomez-Gomez A, Garcia-Mateos D, de la Fuente A, Alvarez AI, Pozo OJ, Merino G. Analysis of the interaction between tryptophan-related compounds and ATP-binding cassette transporter G2 (ABCG2) using targeted metabolomics. Food Chem 2020; 344:128665. [PMID: 33250293 DOI: 10.1016/j.foodchem.2020.128665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 11/04/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022]
Abstract
ATP-binding cassette transporter G2 (ABCG2) is involved in the secretion of several compounds in milk. The in vitro and in vivo interactions between tryptophan-related compounds and ABCG2 were investigated. The tryptophan metabolome was determined by liquid chromatography-tandem mass spectrometry in milk and plasma from wild-type and Abcg2-/- mice as well as dairy cows carrying the ABCG2 Y581S polymorphism (Y/S) and noncarrier animals (Y/Y). The milk-to-plasma ratios of tryptophan, kynurenic acid, kynurenine, anthranilic acid, and xanthurenic acid were higher in wild-type mice than in Abcg2-/- mice. The ratio was 2-fold higher in Y/S than in Y/Y cows for kynurenine. In vitro transport assays confirmed that some of these compounds were in vitro substrates of the transporter and validated the differences observed between the two variants of the bovine protein. These findings show that the secretion of metabolites belonging to the kynurenine pathway into milk is mediated by ABCG2.
Collapse
Affiliation(s)
- Alba M Garcia-Lino
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain
| | - Alex Gomez-Gomez
- Integrative Pharmacology and Systems Neuroscience Group, IMIM-Hospital del Mar Medical Research Institute, 88 Doctor Aiguader, 08003 Barcelona, Spain
| | - Dafne Garcia-Mateos
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain
| | - Alvaro de la Fuente
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain
| | - Ana I Alvarez
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain
| | - Oscar J Pozo
- Integrative Pharmacology and Systems Neuroscience Group, IMIM-Hospital del Mar Medical Research Institute, 88 Doctor Aiguader, 08003 Barcelona, Spain
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Faculty of Veterinary Medicine, Animal Health Institute (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain.
| |
Collapse
|
11
|
Mizuguchi H, Kim YH, Kanazawa T, Ikuta K, Sato S. Effects of short-term fasting on ruminal pH and volatile fatty acids in cattle fed high-roughage versus high-concentrate diets. J Vet Med Sci 2020; 82:1415-1420. [PMID: 32779635 PMCID: PMC7653324 DOI: 10.1292/jvms.20-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We evaluated whether the dietary roughage-to-concentrate ratio affects ruminal pH and
volatile fatty acids (VFAs) in response to a one-time morning fast. Four healthy
rumen-cannulated Holstein steers 4–5 months old were used. Cattle were subjected to 2
weeks of adaptation (high-roughage or high-concentrate diet), and morning feed restriction
was performed on the day after the adaptation period ended (Day 0). Thereafter, each diet
was reintroduced on the evening of Day 0. Our results showed that the 1-hr mean ruminal pH
from 0800 to 1900 on Day 0 was higher, and that from 1700 to 1900 on Day 1 was lower
(P<0.05) than pH on 1 day before fasting (Day −1) in cattle fed both
diets. On Day 0, total VFA levels decreased after morning fasting and were lower
(P<0.05) than those on Day −1 irrespective of evening refeeding.
Furthermore, blood non-esterified fatty acid and beta-hydroxybutyric acid levels on Day 0
increased and decreased, respectively, compared to Day −1 in cattle fed both diets. These
results indicate that even a one-time feed restriction can disrupt ruminal fermentation,
and the changes can persist to the next day after fasting.
Collapse
Affiliation(s)
| | - Yo-Han Kim
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Tomomi Kanazawa
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Kentaro Ikuta
- Awaji Agricultural Technology Center, Minami-Awaji, Hyogo 656-0442, Japan
| | - Shigeru Sato
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
12
|
Fleming A, Garrett K, Froehlich K, Beck M, Bryant RH, Edwards G, Gregorini P. Supplementation of Spring Pasture with Harvested Fodder Beet Bulb Alters Rumen Fermentation and Increases Risk of Subacute Ruminal Acidosis during Early Lactation. Animals (Basel) 2020; 10:ani10081307. [PMID: 32751524 PMCID: PMC7460450 DOI: 10.3390/ani10081307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Fodder beet (FB) is widely used in grazing dairy systems of New Zealand to support early- and late-lactation milk production, however, the large fraction of water-soluble carbohydrate present in FB bulbs presents a risk of subacute and acute ruminal acidosis. Despite widespread use of FB across New Zealand, the incidence of ruminal acidosis using industry-recommended methods of feeding FB has not been investigated. This study analyzed the time-dependent changes to rumen fermentation, apparent dry matter intake, milk production, milk composition and plasma amino acid concentration of grazing dairy cows supplemented with moderate amounts (40% of dry matter intake) of FB during early lactation. Our findings indicate that incidence of subacute ruminal acidosis due to FB is greater than currently realized, as 25% of cows developed severe subacute ruminal acidosis following transition to target FB allocation (40% of daily intake). Across all cows, FB reduced rumen pH, feed conversion efficiency and was not advantageous to milk production. These results suggest methods for adapting cows to a diet containing FB require further evaluation to reduce the risk of subacute ruminal acidosis (SARA) experienced by individuals within the herd. Abstract In a cross-over design, eight rumen cannulated dairy cows were used to explore the industry-recommended method for dietary transition to fodder beet (FB: Beta vulgaris L.) on changes to rumen fermentation and pH, milk production, dry matter intake (DMI) and the risk of subacute ruminal acidosis (SARA) during early lactation. Cows were split into two groups and individually allocated a ryegrass (Lolium Perenne L.) and white clover (Trifolium repens L.) diet (HO) or the same herbage supplemented with 6 kg DM/cow of harvested fodder beet bulbs (FBH). Dietary adaptation occurred over 20 days consisting of: stage 1: gradual transition to target FB intake (days 1–12, +0.5 kg DM of FB/d); stage 2: acclimatization (days 13–17) and stage 3: post-adaption sampling (days 18–20). Response variables were analyzed as a factorial arrangement of diet and stage of adaption using a combination of ANOVA and generalized linear mixed modelling. Dietary proportion of FB represented 22, (stage 1), 32 (stage 2) and 38% (stage 3) of daily DMI. One cow during each period developed SARA from FB and the duration of low pH increased with FBH compared to the HO treatment (p < 0.01). Rumen concentrations of lactic and butyric acid increased with FBH but concentrations of acetate, propionate and total volatile fatty acids (VFA) declined by 9.3% at day 20, compared to the HO treatment (p < 0.01). Treatments did not affect milk production but total DMI with supplemented cows increased during the final stage of adaptation and feed conversion efficiency (FCE kg milk/kg DM) declined with the FBH treatment. The occurrence of SARA in 25% of animals fed FB suggest it is a high-risk supplement to animal health and further evaluation of industry-recommended methods for feeding FB at the individual- and herd-scale are needed.
Collapse
|
13
|
Wang B, Luo Y, Su R, Yao D, Hou Y, Liu C, Du R, Jin Y. Impact of feeding regimens on the composition of gut microbiota and metabolite profiles of plasma and feces from Mongolian sheep. J Microbiol 2020; 58:472-482. [PMID: 32323198 DOI: 10.1007/s12275-020-9501-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 01/05/2023]
Abstract
Mongolian sheep are an indigenous ruminant raised for wool and meat production in China. The gut microbial community plays an important role in animal performance and metabolism. The objective of this study was to investigate the effects of two feeding regimens on the diversity and composition of gut microbiota and metabolite profiles of feces and plasma from Mongolian sheep. A total of 20 Mongolian sheep were assigned to one of two feeding regimens: free grazing (FG) and barn confinement (BC). When samples were collected, the average live weights of the sheep were 31.28 ± 1.56 kg and 34.18 ± 1.87 kg for the FG and BC groups, respectively. At the genus level, the FG group showed higher levels of Bacteroides, RC9_gut_group, Alistipes, Phocaeicola, Barnesiella, and Oscillibacter, and lower levels of Succinivibrio, Treponema, and Prevotella, compared to the BC group. The butyric acid content in feces was lower in the FG group (P > 0.05). Higher levels of palmitic acid, oleic acid, alpha-linolenic acid, L-carnitine, L-citrulline, and L-histidine, and lower levels of L-tyrosine, L-phenylalanine, and L-kynurenine were found in the plasma of the FG sheep. Moreover, there were substantial associations between several gut microbiota genera and alterations in feces and plasma metabolites especially those involved in the metabolism of butyric acid, linolenic acid, and L-tyrosine. Feeding regimens can not only influence the composition of gut microbiota, but also alter metabolic homeaostasis in sheep.
Collapse
Affiliation(s)
- Bohui Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.,Ordos City Food Inspection and Testing Center, Ordos, 017000, P. R. China
| | - Yulong Luo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Rina Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Duo Yao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Yanru Hou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Chang Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Rui Du
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| |
Collapse
|
14
|
Bochniarz M, Kocki T, Dąbrowski R, Szczubiał M, Wawron W, Turski WA. Tryptophan, kynurenine, kynurenic acid concentrations and indoleamine 2,3-dioxygenase activity in serum and milk of dairy cows with subclinical mastitis caused by coagulase-negative staphylococci. Reprod Domest Anim 2018; 53:1491-1497. [PMID: 30066969 DOI: 10.1111/rda.13299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/11/2018] [Indexed: 01/19/2023]
Abstract
The aim of the study was to investigate serum and milk concentrations of tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA), and indoleamine 2,3-dioxygenase (IDO) activity in cows suffering from subclinical mastitis caused by coagulase-negative staphylococci (MSCNS). TRP and kynurenines were determined by high-performance liquid chromatography (HPLC), and IDO activity was calculated as the KYN/TRP ratio. The blood and milk samples were collected from 40 midlactation Holstein-Fresian cows from two herds in the Lublin region in Poland. In the milk samples from 20 cows with subclinical mastitis, coagulase-negative staphylococci were isolated and in the milk obtained from healthy cows growth of microorganisms was not detected. TRP, KYN and KYNA concentrations were significantly lower in milk of cows with MSCNS compared to control animals (4.47 vs. 7.24 µM, 0.14 vs. 0.21 µM, 1.58 vs. 2.18 nM, respectively). There was no statistically significant difference in TRP and KYNA concentrations in serum between the studied animal groups (32.97 vs. 39.29 µM, 31.3 vs. 26.5 nM, respectively). In turn, the level of KYN was lower in the serum (0.81 vs. 1.13 µM) of cows with mastitis compared to healthy ones. No statistically significant differences in IDO activity, both in serum and in milk (25.24 and 27.55, 28.56 and 27.17, respectively) was revealed between the studied groups. These findings may have potential implications for diagnosis of mastitis in cows because reduction of these parameters in milk might be a marker predicting the occurrence of the disease.
Collapse
Affiliation(s)
- Mariola Bochniarz
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Roman Dąbrowski
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Marek Szczubiał
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Władysław Wawron
- Department and Clinic of Animal Reproduction, Faculty of Veterinary Medicine, University of Life Sciences, Lublin, Poland
| | - Waldemar A Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
15
|
Hammon HM, Frieten D, Gerbert C, Koch C, Dusel G, Weikard R, Kühn C. Different milk diets have substantial effects on the jejunal mucosal immune system of pre-weaning calves, as demonstrated by whole transcriptome sequencing. Sci Rep 2018; 8:1693. [PMID: 29374218 PMCID: PMC5785999 DOI: 10.1038/s41598-018-19954-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/08/2018] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence that nutrition during early mammalian life has a strong influence on health and performance in later life. However, there are conflicting data concerning the appropriate milk diet. This discrepancy particularly applies to ruminants, a group of mammals that switch from monogastric status to rumination during weaning. Little is known regarding how the whole genome expression pattern in the juvenile ruminant gut is affected by alternative milk diets. Thus, we performed a next-generation-sequencing-based holistic whole transcriptome analysis of the jejunum in male pre-weaned German Holstein calves fed diets with restricted or unlimited access to milk during the first 8 weeks of life. Both groups were provided hay and concentrate ad libitum. The analysis of jejunal mucosa samples collected 80 days after birth and four weeks after the end of the feeding regimes revealed 275 differentially expressed loci. While the differentially expressed loci comprised 67 genes encoding proteins relevant to metabolism or metabolic adaptation, the most distinct difference between the two groups was the consistently lower activation of the immune system in calves that experienced restricted milk access compared to calves fed milk ad libitum. In conclusion, different early life milk diets had significant prolonged effects on the intestinal immune system.
Collapse
Affiliation(s)
- H M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - D Frieten
- University of Applied Sciences, Bingen, Germany
| | - C Gerbert
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Münchweiler, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, Münchweiler, Germany
| | - G Dusel
- University of Applied Sciences, Bingen, Germany
| | - R Weikard
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - C Kühn
- Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany. .,University Rostock, Faculty of Agricultural and Environmental Sciences, Rostock, Germany.
| |
Collapse
|
16
|
Frieten D, Gerbert C, Koch C, Dusel G, Eder K, Kanitz E, Weitzel JM, Hammon HM. Ad libitum milk replacer feeding, but not butyrate supplementation, affects growth performance as well as metabolic and endocrine traits in Holstein calves. J Dairy Sci 2017; 100:6648-6661. [PMID: 28601458 DOI: 10.3168/jds.2017-12722] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/11/2017] [Indexed: 12/31/2022]
Abstract
The enhanced growth performance of calves fed a higher plane of nutrition pre-weaning is well documented, and the effect of butyrate on the development of the gastrointestinal tract in calves has been evaluated. The aim of this study was to examine the synergistic effects of ad libitum milk replacer (MR) feeding and butyrate supplementation on growth performance and energy metabolism in calves. Sixty-four (32 male, 32 female) Holstein calves were examined from birth until wk 11 of life. Calves received MR either ad libitum (Adl) or restrictively (Res) with (AdlB+, ResB+) or without (AdlB-, ResB-) 0.24% butyrate supplementation. Colostrum and transition milk were fed in predefined amounts (Res or Adl) for the first 3 d postpartum. Ad libitum and restrictive MR feeding with or without butyrate was performed from d 4 until wk 8 of age. From wk 9 to 10, all calves were gradually weaned and were fed 2 L/d until the end of the trial. Concentrate (CON), hay, and water were freely available. Intakes of MR and CON were measured daily. Calves were weighed at birth and weekly thereafter. Blood was drawn on d 1 before the first colostrum intake; on d 2, 4, and 7; and weekly thereafter until the end of the study to measure plasma concentrations of metabolites and hormones. Liver samples were taken at d 50 and at the end of the study to determine gene expression related to glucose metabolism. Milk, MR, and total nutrient intake were greater, but CON intake was lower in Adl than in Res calves, resulting in a greater body weight, but partially lower gain to feed ratio in Adl than in Res. Plasma concentrations of glucose and insulin were higher during the ad libitum milk-feeding period, whereas plasma β-hydroxybutyrate was lower in Adl than in Res. Plasma concentrations of nonesterified fatty acids, lactate, total bilirubin, and cortisol were lower, but triglyceride and cholesterol concentrations were higher in Adl than in Res at specific time points. Feed intake, growth performance, and metabolic and endocrine changes were insignificantly affected by butyrate, and hepatic gene expression of enzymes related to endogenous glucose production was barely influenced by ad libitum MR feeding and butyrate supplementation. Intensive MR feeding indicated greater stimulation of growth and anabolic metabolism, but butyrate supplementation did not further improve postnatal growth or anabolic processes either in intensive or restrictive MR-fed calves.
Collapse
Affiliation(s)
- D Frieten
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - C Gerbert
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Münchweiler an der Alsenz, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Münchweiler an der Alsenz, Germany
| | - G Dusel
- Department of Life Sciences and Engineering, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - E Kanitz
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - J M Weitzel
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
17
|
Kuhla B, Metges CC, Hammon HM. Endogenous and dietary lipids influencing feed intake and energy metabolism of periparturient dairy cows. Domest Anim Endocrinol 2016; 56 Suppl:S2-S10. [PMID: 27345317 DOI: 10.1016/j.domaniend.2015.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/30/2015] [Accepted: 12/06/2015] [Indexed: 11/21/2022]
Abstract
The high metabolic priority of the mammary gland for milk production, accompanied by limited feed intake around parturition results in a high propensity to mobilize body fat reserves. Under these conditions, fuel selection of many peripheral organs is switched, for example, from carbohydrate to fat utilization to spare glucose for milk production and to ensure partitioning of tissue- and dietary-derived nutrients toward the mammary gland. For example, muscle tissue uses nonesterified fatty acids (NEFA) but releases lactate and amino acids in a coordinated order, thereby providing precursors for milk synthesis or hepatic gluconeogenesis. Tissue metabolism and in concert, nutrient partitioning are controlled by the endocrine system involving a reduction in insulin secretion and systemic insulin sensitivity and orchestrated changes in plasma hormones such as insulin, adiponectin, insulin growth factor-I, growth hormone, glucagon, leptin, glucocorticoids, and catecholamines. However, the endocrine system is highly sensitive and responsive to an overload of fatty acids no matter if excessive NEFA supply originates from exogenous or endogenous sources. Feeding a diet containing rumen-protected fat from late lactation to calving and beyond exerts similar negative effects on energy intake, glucose and insulin concentrations as does a high extent of body fat mobilization around parturition in regard to the risk for ketosis and fatty liver development. High plasma NEFA concentrations are thought not to act directly at the brain level, but they increase the energy charge of the liver which is, signaled to the brain to diminish feed intake. Cows differing in fat mobilization during the transition phase differ in their hepatic energy charge, whole body fat oxidation, glucose metabolism, plasma ghrelin, and leptin concentrations and in feed intake several week before parturition. Hence, a high lipid load, no matter if stored, mobilized or fed, affects the endocrine system, metabolism, and feed intake, and increases the risk for metabolic disorders. Future research should focus on a timely parallel increase in feed intake and milk yield during early lactation to reduce the impact of body fat on feed intake, metabolic health, and negative energy balance.
Collapse
Affiliation(s)
- B Kuhla
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", Dummerstorf, 18196, Germany.
| | - C C Metges
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", Dummerstorf, 18196, Germany
| | - H M Hammon
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", Dummerstorf, 18196, Germany
| |
Collapse
|
18
|
Martineau R, Ouellet D, Kebreab E, Lapierre H. Casein infusion rate influences feed intake differently depending on metabolizable protein balance in dairy cows: A multilevel meta-analysis. J Dairy Sci 2016; 99:2748-2761. [DOI: 10.3168/jds.2015-10427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
|
19
|
Ginane C, Bonnet M, Baumont R, Revell DK. Feeding behaviour in ruminants: a consequence of interactions between a reward system and the regulation of metabolic homeostasis. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an14481] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Feeding behaviour, through both diet selection and food intake, is the predominant way that an animal attempts to fulfil its metabolic requirements and achieve homeostasis. In domestic herbivores across the wide range of production practices, voluntary feed intake is arguably the most important factor in animal production, and a better understanding of systems involved in intake regulation can have important practical implications in terms of performance, health and welfare. In this review, we provide a conceptual framework that highlights the critical involvement and interconnections of two major regulatory systems of feeding behaviour: the reward and the homeostatic systems. A review of the literature on ruminants and rodents provides evidence that feeding behaviour is not only shaped by homeostatic needs but also by hedonic and motivational incentives associated with foods through experiences and expectations of rewards. The different brain structures and neuronal/hormonal pathways involved in these two regulatory systems is evidence of their different influences on feeding behaviours that help explain deviation from behaviour based solely on satisfying nutritional needs, and offers opportunities to influence feeding motivation to meet applied goals in livestock production. This review further highlights the key contribution of experience in the short (behavioural learning) and long term (metabolic learning), including the critical role of fetal environment in shaping feeding behaviour both directly by food cue–consequence pairings and indirectly via modifications of metabolic functioning, with cascading effects on energy balance and body reserves and, consequently, on feeding motivation.
Collapse
|
20
|
Dänicke S, Meyer U, Winkler J, Schulz K, Ulrich S, Frahm J, Kersten S, Rehage J, Breves G, Häußler S, Sauerwein H, Locher L. Description of a bovine model for studying digestive and metabolic effects of a positive energy balance not biased by lactation or gravidity. Arch Anim Nutr 2014; 68:460-77. [DOI: 10.1080/1745039x.2014.973243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Laeger T, Wirthgen E, Piechotta M, Metzger F, Metges CC, Kuhla B, Hoeflich A. Effects of parturition and feed restriction on concentrations and distribution of the insulin-like growth factor-binding proteins in plasma and cerebrospinal fluid of dairy cows. J Dairy Sci 2014; 97:2876-85. [PMID: 24612811 DOI: 10.3168/jds.2013-7671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/07/2014] [Indexed: 01/19/2023]
Abstract
Hormones and metabolites act as satiety signals in the brain and play an important role in the control of feed intake (FI). These signals can reach the hypothalamus and brainstem, 2 major centers of FI regulation, via the blood stream or the cerebrospinal fluid (CSF). During the early lactation period of high-yielding dairy cows, the increase of FI is often insufficient. Recently, it has been demonstrated that insulin-like growth factors (IGF) may control FI. Thus, we asked in the present study if IGF-binding proteins (IGFBP) are regulated during the periparturient period and in response to feed restriction and therefore might affect FI as well. In addition, we specifically addressed conditional distribution of IGFBP in plasma and CSF. In one experiment, 10 multiparous German Holstein dairy cows were fed ad libitum and samples of CSF and plasma were obtained before morning feeding on d -20, -10, +1, +10, +20, and +40 relative to calving. In a second experiment, 7 cows in second mid-lactation were sampled for CSF and plasma after ad libitum feeding and again after feeding 50% of the previous ad libitum intake for 4 d. Intact IGFBP-2, IGFBP-3, and IGFBP-4 were detected in plasma by quantitative Western ligand blot analysis. In CSF, we were able to predominantly identify intact IGFBP-2 and a specific IGFBP-2 fragment containing detectable binding affinities for biotinylated IGF-II. Whereas plasma concentrations of IGFBP-2 and IGFBP-4 increased during the periparturient period, IGFBP-3 was unaffected over time. In CSF, concentrations of IGFBP-2, both intact and fragmented, were not affected during the periparturient period. Plasma IGF-I continuously decreased until calving but remained at a lower concentration in early lactation than in late pregnancy. Food restriction did not affect concentrations of IGF components present in plasma or CSF. We could show that the IGFBP profiles in plasma and CSF are clearly distinct and that changes in IGFBP in plasma do not simply correspond in the brain. We thus assume independent control of IGFBP distribution between plasma and CSF. Due to the known anorexic effect of IGF-I, elevated plasma concentrations of IGFBP-2 and IGFBP-4 during the postpartum period in conjunction with reduced plasma IGF-I concentrations may be interpreted as an endocrine response against negative energy balance in early lactation in dairy cows.
Collapse
Affiliation(s)
- T Laeger
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - E Wirthgen
- Ligandis GbR, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - M Piechotta
- Endocrinology Laboratory, Clinic for Cattle, University of Veterinary Medicine Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - F Metzger
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Neuroscience DTA, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - C C Metges
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - B Kuhla
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - A Hoeflich
- Ligandis GbR, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
22
|
Abstract
The control of energy intake is complex, including mechanisms that act independently (e.g. distention, osmotic effects, fuel-sensing) as well as interacting factors that are likely to affect feeding via their effects on hepatic oxidation. Effects of ruminant diets on feed intake vary greatly because of variation in their filling effects, as well as the type and temporal absorption of fuels. Effects of nutrients on endocrine response and gene expression affect energy partitioning, which in turn affects feeding behaviour by altering clearance of fuels from the blood. Dominant mechanisms controlling feed intake change with physiological state, which is highly variable among ruminants, especially through the lactation cycle. Ruminal distention might dominate control of feed intake when ruminants consume low-energy diets or when energy requirements are high, but fuel-sensing by tissues is likely to dominate control of feed intake when fuel supply is in excess of that required. The liver is likely to be a primary sensor of energy status because it is supplied by fuels from the portal drained viscera as well as the general circulation, it metabolises a variety of fuels derived from both the diet and tissues, and a signal related to hepatic oxidation of fuels is conveyed to feeding centres in the brain by hepatic vagal afferents stimulating or inhibiting feeding, depending on its energy status. The effects of somatotropin on export of fuels by milk secretion, effects of insulin on gluconeogenesis, and both on mobilisation and repletion of tissues, determine fuel availability and feed intake over the lactation cycle. Control of feed intake by hepatic energy status, affected by oxidation of fuels, is an appealing conceptual model because it integrates effects of various fuels and physiological states on feeding behaviour.
Collapse
|
23
|
Börner S, Albrecht E, Schäff C, Hacke S, Kautzsch U, Derno M, Hammon HM, Röntgen M, Sauerwein H, Kuhla B. Reduced AgRP activation in the hypothalamus of cows with high extent of fat mobilization after parturition. Gen Comp Endocrinol 2013; 193:167-77. [PMID: 23954363 DOI: 10.1016/j.ygcen.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/29/2013] [Accepted: 08/05/2013] [Indexed: 12/18/2022]
Abstract
Agouti-related protein (AgRP), produced by neurons located in the arcuate nucleus of the hypothalamus stimulates feed intake. During early lactation dairy cows increase their feed intake and additionally mobilize their fat reserves leading to increased plasma non-esterified fatty acid (NEFA) concentrations. Since cows with a higher extent of fat mobilization exhibit the lower feed intake, it seems that high NEFA concentrations confine hyperphagia. To test the involvement of AgRP neurons, we investigated 18 cows from parturition until day 40 postpartum (pp) and assigned the cows according to their NEFA concentration on day 40pp to either group H (high NEFA) or L (low NEFA). Both groups had comparable feed intake, body weight, milk yield, energy balance, plasma amino acids and leptin concentrations. Studies in respiratory chambers revealed the higher oxygen consumption and the lower respiratory quotient (RQ) in H compared to L cows. mRNA abundance of neuropeptide Y, peroxisome proliferator-activated receptor-gamma, AMP-activated protein kinase, and leptin receptor in the arcuate nucleus were comparable between groups. Immunohistochemical studies revealed the same number of AgRP neurons in H and L cows. AgRP neurons were co-localized with phosphorylated adenosine monophosphate-activated kinase without any differences between groups. The percentage of cFOS-activated AgRP neurons per total AgRP cells was lower in H cows and correlated negatively with oxygen consumption and NEFA, positively with RQ, but not with feed intake. We conclude that AgRP activation plays a pivotal role in the regulation of substrate utilization and metabolic rate in high NEFA dairy cows during early lactation.
Collapse
Affiliation(s)
- Sabina Börner
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schütz K, Cox N, Macdonald K, Roche J, Verkerk G, Rogers A, Tucker C, Matthews L, Meier S, Webster J. Behavioral and physiological effects of a short-term feed restriction in lactating dairy cattle with different body condition scores at calving. J Dairy Sci 2013; 96:4465-76. [DOI: 10.3168/jds.2012-6507] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/26/2013] [Indexed: 11/19/2022]
|
25
|
Laeger T, Sauerwein H, Tuchscherer A, Bellmann O, Metges C, Kuhla B. Concentrations of hormones and metabolites in cerebrospinal fluid and plasma of dairy cows during the periparturient period. J Dairy Sci 2013; 96:2883-93. [DOI: 10.3168/jds.2012-5909] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 01/09/2013] [Indexed: 01/18/2023]
|