1
|
O'Donnell C, Thorn C, Roskam E, Friel R, Kirwan SF, Waters SM, O'Flaherty V. Novel oxidising feed additives reduce in vitro methane emissions using the rumen simulation technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171808. [PMID: 38508273 DOI: 10.1016/j.scitotenv.2024.171808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Enteric methane (CH4) produced by ruminant livestock is a potent greenhouse gas and represents significant energy loss for the animal. The novel application of oxidising compounds as antimethanogenic agents with future potential to be included in ruminant feeds, was assessed across two separate experiments in this study. Low concentrations of oxidising agents, namely urea hydrogen peroxide (UHP) with and without potassium iodide (KI), and magnesium peroxide (MgO2), were investigated for their effects on CH4 production, total gas production (TGP), volatile fatty acid (VFA) profiles, and nutrient disappearance in vitro using the rumen simulation technique. In both experiments, the in vitro diet consisted of 50:50 grass silage:concentrate on a dry matter basis. Treatment concentrations were based on the amount of oxygen delivered and expressed in terms of fold concentration. In Experiment 1, four treatments were tested (Control, 1× UHP + KI, 1× UHP, and 0.5× UHP + KI), and six treatments were assessed in Experiment 2 (Control, 0.5× UHP + KI, 0.5× UHP, 0.25× UHP + KI, 0.25× UHP, and 0.12× MgO2). All treatments in this study had a reducing effect on CH4 parameters. A dose-dependent reduction of TGP and CH4 parameters was observed, where treatments delivering higher levels of oxygen resulted in greater CH4 suppression. 1× UHP + KI reduced TGP by 28 % (p = 0.611), CH4% by 64 % (p = 0.075) and CH4 mmol/g digestible organic matter by 71 % (p = 0.037). 0.12× MgO2 reduced CH4 volume by 25 % (p > 0.05) without affecting any other parameters. Acetate-to-propionate ratios were reduced by treatments in both experiments (p < 0.01). Molar proportions of acetate and butyrate were reduced, while propionate and valerate were increased in UHP treatments. High concentrations of UHP affected the degradation of neutral detergent fibre in the forage substrate. Future in vitro work should investigate alternative slow-release oxygen sources aimed at prolonging CH4 suppression.
Collapse
Affiliation(s)
- Caroline O'Donnell
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland.
| | - Camilla Thorn
- GlasPort Bio Ltd, Business Innovation Centre, University of Galway, Galway, Ireland
| | - Emily Roskam
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland; Teagasc Animal and Bioscience Research Department, Teagasc Grange, Meath, Ireland
| | - Ruairi Friel
- GlasPort Bio Ltd, Business Innovation Centre, University of Galway, Galway, Ireland
| | - Stuart F Kirwan
- Teagasc Animal and Bioscience Research Department, Teagasc Grange, Meath, Ireland
| | - Sinéad M Waters
- Teagasc Animal and Bioscience Research Department, Teagasc Grange, Meath, Ireland; School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland; GlasPort Bio Ltd, Business Innovation Centre, University of Galway, Galway, Ireland.
| |
Collapse
|
2
|
Foggi G, Terranova M, Daghio M, Amelchanka SL, Conte G, Ineichen S, Agnolucci M, Viti C, Mantino A, Buccioni A, Kreuzer M, Mele M. Evaluation of ruminal methane and ammonia formation and microbiota composition as affected by supplements based on mixtures of tannins and essential oils using Rusitec. J Anim Sci Biotechnol 2024; 15:48. [PMID: 38561832 PMCID: PMC10986001 DOI: 10.1186/s40104-024-01005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Dietary supplements based on tannin extracts or essential oil compounds (EOC) have been repeatedly reported as a promising feeding strategy to reduce the environmental impact of ruminant husbandry. A previous batch culture screening of various supplements identified selected mixtures with an enhanced potential to mitigate ruminal methane and ammonia formation. Among these, Q-2 (named after quebracho extract and EOC blend 2, composed of carvacrol, thymol, and eugenol) and C-10 (chestnut extract and EOC blend 10, consisting of oregano and thyme essential oils and limonene) have been investigated in detail in the present study with the semi-continuous rumen simulation technique (Rusitec) in three independent runs. For this purpose, Q-2 and C-10, dosed according to the previous study, were compared with a non-supplemented diet (negative control, NC) and with one supplemented with the commercial EOC-based Agolin® Ruminant (positive control, PC). RESULTS From d 5 to 10 of fermentation incubation liquid was collected and analysed for pH, ammonia, protozoa count, and gas composition. Feed residues were collected for the determination of ruminal degradability. On d 10, samples of incubation liquid were also characterised for bacterial, archaeal and fungal communities by high-throughput sequencing of 16S rRNA and 26S ribosomal large subunit gene amplicons. Regardless of the duration of the fermentation period, Q-2 and C-10 were similarly efficient as PC in mitigating either ammonia (-37% by Q-2, -34% by PC) or methane formation (-12% by C-10, -12% by PC). The PC was also responsible for lower feed degradability and bacterial and fungal richness, whereas Q-2 and C-10 effects, particularly on microbiome diversities, were limited compared to NC. CONCLUSIONS All additives showed the potential to mitigate methane or ammonia formation, or both, in vitro over a period of 10 d. However, several differences occurred between PC and Q-2/C-10, indicating different mechanisms of action. The pronounced defaunation caused by PC and its suggested consequences apparently determined at least part of the mitigant effects. Although the depressive effect on NDF degradability caused by Q-2 and C-10 might partially explain their mitigation properties, their mechanisms of action remain mostly to be elucidated.
Collapse
Affiliation(s)
- Giulia Foggi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56124, Pisa, Italy.
| | | | - Matteo Daghio
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, 50144, Italy
| | | | - Giuseppe Conte
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56124, Pisa, Italy
- Centro Di Ricerche Agro-Ambientali "E. Avanzi", University of Pisa, Pisa, 56122, Italy
| | - Simon Ineichen
- School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied Sciences, Zollikofen, Switzerland
| | - Monica Agnolucci
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56124, Pisa, Italy
- Centro Di Ricerche Agro-Ambientali "E. Avanzi", University of Pisa, Pisa, 56122, Italy
| | - Carlo Viti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, 50144, Italy
| | - Alberto Mantino
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56124, Pisa, Italy
- Centro Di Ricerche Agro-Ambientali "E. Avanzi", University of Pisa, Pisa, 56122, Italy
| | - Arianna Buccioni
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, 50144, Italy
| | - Michael Kreuzer
- Institute of Agricultural Sciences, ETH Zurich, Lindau, Switzerland
| | - Marcello Mele
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56124, Pisa, Italy
- Centro Di Ricerche Agro-Ambientali "E. Avanzi", University of Pisa, Pisa, 56122, Italy
| |
Collapse
|
3
|
Zhang S, Zhang X, Xiong Z, Li K, Gao Y, Bu Y, Zheng N, Zhao S, Wang J. Effect of red clover isoflavones on hormone, immune, inflammatory, and plasma biochemistry in lactating dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:306-312. [PMID: 38371476 PMCID: PMC10869575 DOI: 10.1016/j.aninu.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 02/20/2024]
Abstract
This study was to conducted to investigate the effect of red clover isoflavones on the health indicated by immune status and blood biochemistry in dairy cows. Sixty-eight healthy Holstein lactating cows were randomly divided into four treatments (n = 17 per treatment) from 5 blocks according to milk yield using a randomized complete block design. No initial differences in parity (2.13 ± 1.21), days in milk (165 ± 21 d), and milk yield (33.93 ± 3.81 kg/d) between groups. Cows were fed the basal diet supplemented with 0, 2, 4, or 8 g/kg red clover extract (RCE) in diet (dry matter based). Feeding, refusal feed weights, and milk yield were recorded three consecutive days in weeks 0, 4, 8, and 12. Blood was collected from the tail vein of the cows on the last day of weeks 4, 8 and 12, 1 h after the morning feeding, and analyzed for hormones, immunoglobulins, inflammatory markers, and markers of liver and kidney activities. The dry matter intake was significantly decreased by 3.7% in the 8 g/kg group (P < 0.05). The fat-corrected milk yield was significantly higher in both of the 2 and 4 g/kg groups (P < 0.01). Plasma estradiol and prolactin showed a quadratic effect with increasing RCE levels, with the highest in the 4 g/kg group (P < 0.05). Plasma tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β levels decreased linearly with increasing dietary RCE levels. Plasma IL-18 levels showed a quadratic effect with increasing dietary RCE levels, with significantly lower levels in both of the 2 and 4 g/kg groups (P < 0.05). Plasma immunoglobulin A and D-lactic acid levels showed a quadratic effect with increasing dietary RCE levels, with significantly higher level in the 4 g/kg group (P < 0.05). The liver function and kidney activity makers were similar (P > 0.05). These results recommend the supplementation of RCE at a level from 2 to 4 g/kg DM.
Collapse
Affiliation(s)
- Shiqi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhanbo Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kexin Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Martins LF, Cueva SF, Lage CFA, Ramin M, Silvestre T, Tricarico J, Hristov AN. A meta-analysis of methane-mitigation potential of feed additives evaluated in vitro. J Dairy Sci 2024; 107:288-300. [PMID: 38353472 DOI: 10.1016/s0022-0302(23)00819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/16/2023] [Indexed: 02/16/2024]
Abstract
A systematic literature review of in vitro studies was performed to identify methane (CH4) mitigation interventions with a potential to reduce CH4 emission in vivo. Data from 277 peer-reviewed studies published between 1979 and 2018 were reviewed. Individual CH4 mitigation interventions were classified into 14 categories of feed additives based on their type, chemical composition, and mode of action. Response variables evaluated were absolute CH4 emission (number of treatment means comparisons = 1,325); total volatile fatty acids (n = 1,007), acetate (n = 783), propionate (n = 792), and butyrate (n = 776) concentrations; acetate to propionate ratio (n = 675); digestibility of dry matter (n = 489), organic matter (n = 277), and neutral detergent fiber (n = 177). Total gas production was used as an explanatory variable in the model for CH4 production. Relative mean difference between treatment and control means reported in the studies was calculated and used for statistical analysis. The robust variance estimation method was used to analyze the effects of CH4 mitigation interventions. In vitro CH4 production was decreased by antibodies (-38.9%), chemical inhibitors (-29.2%), electron sinks (-18.9%), essential oils (-18.2%), plant extracts (-14.5%), plant inclusion (-11.7%), saponins (-14.8%), and tannins (-14.5%). Overall effects of direct-fed microbials, enzymes, macroalgae, and organic acids supplementation did not affect CH4 production in the current meta-analysis. When considering the effects of individual mitigation interventions containing a minimum number of 4 degrees of freedom within feed additives categories, Enterococcus spp. (i.e., direct-fed microbial), nitrophenol (i.e., electron sink), and Leucaena spp. (i.e., tannins) decreased CH4 production by 20.3%, 27.1%, and 23.5%, respectively, without extensively, or only slightly, affecting ruminal fermentation and digestibility of nutrients. It should be noted, however, that although the total number of publications (n = 277) and treatment means comparisons (n = 1,325 for CH4 production) in the current analysis were high, data for most mitigation interventions were obtained from less than 5 observations (e.g., maximum number of observations was 4, 7, and 22 for nitrophenol, Enterococcus spp., and Leucaena spp., respectively), because of limited data available in the literature. These should be further evaluated in vitro and in vivo to determine their true potential to decrease enteric CH4 production, yield, and intensity. Some mitigation interventions (e.g., magnesium, Heracleum spp., nitroglycerin, β-cyclodextrin, Leptospermum pattersoni, Fructulus Ligustri, Salix caprea, and Sesbania grandiflora) decreased in vitro CH4 production by over 50% but did not have enough observations in the database. These should be more extensively investigated in vitro, and the dose effect must be considered before adoption of mitigation interventions in vivo.
Collapse
Affiliation(s)
- L F Martins
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - S F Cueva
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - C F A Lage
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802; Cornell Cooperative Extension, Bath, NY 14810
| | - M Ramin
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Umeå, Sweden SE-901 83
| | - T Silvestre
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802; Kemin Industries, Singapore, 758200
| | - J Tricarico
- Innovation Center for U.S. Dairy, Rosemont, IL 60018
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802.
| |
Collapse
|
5
|
Martins LF, Cueva SF, Lage CFA, Ramin M, Silvestre T, Tricarico J, Hristov AN. A meta-analysis of methane mitigation potential of feed additives evaluated in vitro. J Dairy Sci 2023:S0022-0302(23)00649-5. [PMID: 37709018 DOI: 10.3168/jds.2023-23419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
A systematic literature review of in vitro studies was performed to identify methane (CH4) mitigation interventions with a potential to reduce CH4 emission in vivo. Data from 277 peer-reviewed studies published between 1979 and 2018 were reviewed. Individual CH4 mitigation interventions were classified into 14 categories of feed additives based on their type, chemical composition, and mode of action. Response variables evaluated were absolute CH4 emission (number of treatment means comparisons = 1,325); total volatile fatty acids (VFA; n = 1,007), acetate (n = 783), propionate (n = 792), and butyrate (n = 776) concentrations; acetate to propionate ratio (A:P; n = 675); digestibility of dry matter (DM; n = 489), organic matter (OM; n = 277), and neutral detergent fiber (NDF; n = 177). Total gas production was used as an explanatory variable in the model for CH4 production. Relative mean difference between treatment and control means reported in the studies were calculated and used for statistical analysis. Robust variance estimation method was used to analyze the effects of CH4 mitigation interventions. In vitro CH4 production was decreased by antibodies (-38.9%), chemical inhibitors (-29.2%), electron sinks (-18.9%), essential oils (-18.2%), plant extracts (-14.5%), plants inclusion (-11.7%), saponins (-14.8%), and tannins (-14.5%). Overall effects of direct fed microbials, enzymes, macroalgae, and organic acids supplementation did not affect CH4 production in the current meta-analysis. When considering the effects of individual mitigation interventions containing a minimum number of 4 degrees of freedom within feed additives categories, Enterococcus spp. (i.e., direct fed microbial), nitrophenol (i.e., electron sink), and Leucaena spp. (i.e., tannins) decreased CH4 production by 20.3, 27.1, and 23.5%, respectively, without extensively, or only slightly, affecting ruminal fermentation and digestibility of nutrients. It should be noted, however, that although the total number of publications (n = 277) and treatment means comparisons (n = 1,325 for CH4 production) in the current analysis were high, data for most mitigation interventions were obtained from less than 5 observations (e.g., maximum number of observations was 4, 7, and 22 for nitrophenol, Enterococcus spp., and Leucaena spp., respectively), because of limited data available in the literature. These should be further evaluated in vitro and in vivo to determine their true potential to decrease enteric CH4 production, yield, and intensity. Some mitigation interventions (e.g., magnesium, Heracleum spp., nitroglycerin, β-cyclodextrin, Leptospermum pattersoni, Fructulus Ligustri, Salix caprea, and Sesbania grandiflora) decreased in vitro CH4 production by over 50% but did not have enough observations in the database. These should be more extensively investigated in vitro, and the dose effect must be considered before adoption of mitigation interventions in vivo.
Collapse
Affiliation(s)
- L F Martins
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - S F Cueva
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - C F A Lage
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802; Cornell Cooperative Extension, Bath, NY, USA 14810
| | - M Ramin
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Umeå, Sweden SE-901 83
| | - T Silvestre
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802; Kemin Industries, Singapore, 758200
| | - J Tricarico
- Innovation Center for U.S. Dairy, Rosemont, IL, USA 60018
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802.
| |
Collapse
|
6
|
Cueva SF, Harper M, Roth GW, Wells H, Canale C, Gallo A, Masoero F, Hristov AN. Effects of ensiling time on corn silage starch ruminal degradability evaluated in situ or in vitro. J Dairy Sci 2023; 106:3961-3974. [PMID: 37105872 DOI: 10.3168/jds.2022-22817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/30/2022] [Indexed: 04/29/2023]
Abstract
Accurate measurements of concentration and ruminal degradability of corn silage starch is necessary for formulation of diets that meet the energy requirements of dairy cows. Five corn silage hybrids ensiled for 0 (unfermented), 30, 60, 120, and 150 d were used to determine the effects of ensiling time on starch degradability of corn silage. In addition, the effects of grind size of silage samples on 7-h in vitro starch degradability and the relationship between in vitro, in situ and near-infrared reflectance spectroscopy (NIRS) starch degradability were studied. In situ disappearance of corn silage starch increased from 0 to 150 d of ensiling, primarily as a result of an increase in the washout or rapidly degraded fraction of starch, particularly during the first 60 d of ensiling. When analyzed in vitro and by NIRS, ensiling time increased corn silage starch degradability either linearly or to a greater extent during the first 2 mo of ensiling. Differences in in situ starch disappearance among corn silage hybrids were apparent during the first 2 mo of ensiling but were attenuated as silages aged. No differences among hybrids were detected using a 7-h in vitro starch digestibility approach. Results from the in vitro subexperiment indicate that 7-h in vitro starch degradability was increased by reducing grind size of corn silage from 4 to 1 mm, regardless of ensiling duration. Fine grinding corn silages samples (i.e., 1-mm sieve) allowed distinguishing low- from medium- and high-starch degradability rated hybrids. Correlations among in situ, in vitro and NIRS measurements for starch degradability were medium to high (r ≥0.57); however, agreement among methods was low (concordance correlation coefficient ≤0.15). In conclusion, ensiling time linearly increased degradation rate of corn silage resulting in greater in situ starch disappearance after 150 d of ensiling. Reductions in grind size from 4 to 1 mm resulted in greater in vitro starch degradability, regardless of ensiling duration. Strong correlation but low agreement between starch degradability methods suggest that absolute estimations of corn silage starch degradability will vary, but all methods can be used to assess the effect of ensiling time on starch degradability.
Collapse
Affiliation(s)
- S F Cueva
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M Harper
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - G W Roth
- Department of Plant Science, The Pennsylvania State University, University Park 16802
| | - H Wells
- Cargill Animal Nutrition, Shippensburg, PA 17257
| | - C Canale
- Cargill Animal Nutrition, Shippensburg, PA 17257
| | - A Gallo
- Department of Animal Science, Food and Nutrition, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy 29100
| | - F Masoero
- Department of Animal Science, Food and Nutrition, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Piacenza, Italy 29100
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
7
|
Sujani S, White RR, Firkins JL, Wenner BA. Network analysis to evaluate complexities in relationships among fermentation variables measured within continuous culture experiments. J Anim Sci 2023; 101:skad085. [PMID: 37078886 PMCID: PMC10158529 DOI: 10.1093/jas/skad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023] Open
Abstract
The objective of this study was to leverage a frequentist (ELN) and Bayesian learning (BLN) network analyses to summarize quantitative associations among variables measured in 4 previously published dual-flow continuous culture fermentation experiments. Experiments were originally designed to evaluate effects of nitrate, defaunation, yeast, and/or physiological shifts associated with pH or solids passage rates on rumen conditions. Measurements from these experiments that were used as nodes within the networks included concentrations of individual volatile fatty acids, mM and nitrate, NO3-,%; outflows of non-ammonia nitrogen (NAN, g/d), bacterial N (BN, g/d), residual N (RN, g/d), and ammonia N (NH3-N, mg/dL); degradability of neutral detergent fiber (NDFd, %) and degradability of organic matter (OMd, %); dry matter intake (DMI, kg/d); urea in buffer (%); fluid passage rate (FF, L/d); total protozoa count (PZ, cells/mL); and methane production (CH4, mmol/d). A frequentist network (ELN) derived using a graphical LASSO (least absolute shrinkage and selection operator) technique with tuning parameters selected by Extended Bayesian Information Criteria (EBIC) and a BLN were constructed from these data. The illustrated associations in the ELN were unidirectional yet assisted in identifying prominent relationships within the rumen that were largely consistent with current understanding of fermentation mechanisms. Another advantage of the ELN approach was that it focused on understanding the role of individual nodes within the network. Such understanding may be critical in exploring candidates for biomarkers, indicator variables, model targets, or other measurement-focused explorations. As an example, acetate was highly central in the network suggesting it may be a strong candidate as a rumen biomarker. Alternatively, the major advantage of the BLN was its unique ability to imply causal directionality in relationships. Because the BLN identified directional, cascading relationships, this analytics approach was uniquely suited to exploring the edges within the network as a strategy to direct future work researching mechanisms of fermentation. For example, in the BLN acetate responded to treatment conditions such as the source of N used and the quantity of substrate provided, while acetate drove changes in the protozoal populations, non-NH3-N and residual N flows. In conclusion, the analyses exhibit complementary strengths in supporting inference on the connectedness and directionality of quantitative associations among fermentation variables that may be useful in driving future studies.
Collapse
Affiliation(s)
- Sathya Sujani
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Robin R White
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin A Wenner
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Spanghero M, Braidot M, Fabro C, Romanzin A. A meta-analysis on the relationship between rumen fermentation parameters and protozoa counts in in vitro batch experiments. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
9
|
Serra E, Lynch M, Gaffey J, Sanders J, Koopmans S, Markiewicz-Keszycka M, Bock M, McKay Z, Pierce K. Biorefined press cake silage as feed source for dairy cows: effect on milk production and composition, rumen fermentation, nitrogen and phosphorus excretion and in vitro methane production. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Silvestre T, Räisänen S, Cueva S, Wasson D, Lage C, Martins L, Wall E, Hristov A. Effects of a combination of Capsicum oleoresin and clove essential oil on metabolic status, lactational performance, and enteric methane emissions in dairy cows. J Dairy Sci 2022; 105:9610-9622. [DOI: 10.3168/jds.2022-22203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
|
11
|
Hristov AN, Melgar A, Wasson D, Arndt C. Symposium review: Effective nutritional strategies to mitigate enteric methane in dairy cattle. J Dairy Sci 2022; 105:8543-8557. [PMID: 35863922 DOI: 10.3168/jds.2021-21398] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/27/2022] [Indexed: 11/19/2022]
Abstract
Intensive research in the past decade has resulted in a better understanding of factors driving enteric methane (CH4) emissions in ruminants. Meta-analyses of large databases, developed through the GLOBAL NETWORK project, have identified successful strategies for mitigation of CH4 emissions. Methane inhibitors, alternative electron sinks, vegetable oils and oilseeds, and tanniferous forages are among the recommended strategies for mitigating CH4 emissions from dairy and beef cattle and small ruminants. These strategies were also effective in decreasing CH4 emissions yield and intensity. However, a higher inclusion rate of oils may negatively affect feed intake, rumen function, and animal performance, specifically milk components in dairy cows. In the case of nitrates (electron sinks), concerns with animal health may be impeding their adoption in practice, and potential emission trade-offs have to be considered. Tannins and tanniferous forages may have a negative effect on nutrient digestibility, and more research is needed to confirm their effects on overall animal performance in long-term experiments with high-producing animals. A meta-analysis of studies with dairy cows fed the CH4 inhibitor 3-nitrooxypropanol (3-NOP) at the Pennsylvania State University showed (1) a consistent 28 to 32% decrease in daily CH4 emissions or emissions yield and intensity; (2) no effect on dry matter intake, milk production, body weight, or body weight change, and a slight increase in milk fat concentration and yield (0.19 percentage units and 90 g/d, respectively); 3-NOP also appears to increase milk urea nitrogen concentration; (3) an exponential decrease in the mitigation effect of the inhibitor with increasing its dose (from 40 to 200 mg/kg of feed dry matter, corresponding to 3-NOP intake of 1 to 4.8 g/cow per day); and (4) a potential decrease in the efficacy of 3-NOP over time, which needs to be further investigated in long-term, full-lactation or multiple-lactation studies. The red macroalga Asparagopsis taxiformis has a strong CH4 mitigation effect, but studies are needed to determine its feasibility, long-term efficacy, and effects on animal production and health. We concluded that widespread adoption of mitigation strategies with proven effectiveness by the livestock industries will depend on cost, government policies and incentives, and willingness of consumers to pay a higher price for animal products with decreased carbon footprint.
Collapse
Affiliation(s)
- A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - D Wasson
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - C Arndt
- International Livestock Research Institute, PO Box 30709, Nairobi 00100, Kenya
| |
Collapse
|
12
|
Künzel S, Yergaliyev T, Wild KJ, Philippi H, Petursdottir AH, Gunnlaugsdottir H, Reynolds CK, Humphries DJ, Camarinha-Silva A, Rodehutscord M. Methane Reduction Potential of Brown Seaweeds and Their Influence on Nutrient Degradation and Microbiota Composition in a Rumen Simulation Technique. Front Microbiol 2022; 13:889618. [PMID: 35836418 PMCID: PMC9273974 DOI: 10.3389/fmicb.2022.889618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022] Open
Abstract
This study aimed to investigate the effects of two brown Icelandic seaweed samples (Ascophyllum nodosum and Fucus vesiculosus) on in vitro methane production, nutrient degradation, and microbiota composition. A total mixed ration (TMR) was incubated alone as control or together with each seaweed at two inclusion levels (2.5 and 5.0% on a dry matter basis) in a long-term rumen simulation technique (Rusitec) experiment. The incubation period lasted 14 days, with 7 days of adaptation and sampling. The methane concentration of total gas produced was decreased at the 5% inclusion level of A. nodosum and F. vesiculosus by 8.9 and 3.6%, respectively (P < 0.001). The total gas production was reduced by all seaweeds, with a greater reduction for the 5% seaweed inclusion level (P < 0.001). Feed nutrient degradation and the production of volatile fatty acids and ammonia in the effluent were also reduced, mostly with a bigger effect for the 5% inclusion level of both seaweeds, indicating a reduced overall fermentation (all P ≤ 0.001). Microbiota composition was analyzed by sequencing 16S rRNA amplicons from the rumen content of the donor cows, fermenter liquid and effluent at days 7 and 13, and feed residues at day 13. Relative abundances of the most abundant methanogens varied between the rumen fluid used for the start of incubation and the samples taken at day 7, as well as between days 7 and 13 in both fermenter liquid and effluent (P < 0.05). According to the differential abundance analysis with q2-ALDEx2, in effluent and fermenter liquid samples, archaeal and bacterial amplicon sequence variants were separated into two groups (P < 0.05). One was more abundant in samples taken from the treatment without seaweed supplementation, while the other one prevailed in seaweed supplemented treatments. This group also showed a dose-dependent response to seaweed inclusion, with a greater number of differentially abundant members between a 5% inclusion level and unsupplemented samples than between a 2.5% inclusion level and TMR. Although supplementation of both seaweeds at a 5% inclusion level decreased methane concentration in the total gas due to the high iodine content in the seaweeds tested, the application of practical feeding should be done with caution.
Collapse
Affiliation(s)
- Susanne Künzel
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Timur Yergaliyev
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Katharina J. Wild
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Hanna Philippi
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | | | - Helga Gunnlaugsdottir
- Matís, Reykjavík, Iceland
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Chris K. Reynolds
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - David J. Humphries
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Amélia Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
- Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
13
|
Opportunities and limitations of a standardisation of the rumen simulation technique (RUSITEC) for analyses of ruminal nutrient degradation and fermentation and on microbial community characteristics. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Benchaar C. Diet supplementation with thyme oil and its main component thymol failed to favorably alter rumen fermentation, improve nutrient utilization, or enhance milk production in dairy cows. J Dairy Sci 2020; 104:324-336. [PMID: 33131821 DOI: 10.3168/jds.2020-18401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/16/2020] [Indexed: 01/13/2023]
Abstract
Phenolic compounds and essential oils with high content of phenolic compounds have been reported to exert antimicrobial activities in vitro. The objective of this study was to determine the effects of dairy cow diet supplementation with thyme oil and its main component thymol on intake and total-tract apparent digestibility of nutrients, rumen fermentation characteristics, ruminal protozoa, nitrogen excretion, and milk production. For this aim, we used 8 multiparous, ruminally cannulated Holstein cows in a replicated 4 × 4 Latin square design (28 d periods), balanced for residual effects. Cows were fed 1 of the 4 following experimental treatments: total mixed ration (TMR) with no additive (control); TMR + monensin [24 mg/kg of dry matter (DM)]; TMR + thyme oil (50 mg/kg of DM); and TMR + thymol (50 mg/kg of DM). Compared with the control diet, feeding thyme oil or thymol had no effect on DM intake, nutrient total-tract apparent digestibility, total N excretion, ruminal pH, ammonia concentration, total volatile fatty acid (VFA) concentration, or acetate:propionate ratio. Ruminal protozoa density was not modified by thyme oil, but decreased with thymol supplementation. Supplementation with thyme oil or thymol did not affect milk production, milk composition, or efficiency of milk production. Neither thyme oil nor thymol affected efficiency of dietary N use for milk N secretion (N intake/milk N). Supplementation with monensin tended to decrease DM intake (-1.2 kg/d) and milk fat yield. Total-tract apparent digestibility of nutrients did not differ between cows fed monensin and cows fed the control diet. Total VFA concentration was not changed by monensin supplementation compared with control, but adding monensin shifted the VFA profile toward more propionate and less acetate, resulting in a decrease of acetate:propionate ratio. Protozoa density and ammonia concentration were lower in the ruminal content of cows fed monensin compared with that of cows fed the control diet. Total N excretion was not affected by monensin supplementation. Likewise, efficiency of use of dietary N for milk N secretion was unchanged in cows fed monensin. The results of this study contrasted with the claimed in vitro antimicrobial activity of thyme oil and thymol: we observed no positive effects on rumen metabolism (i.e., N and VFA) or milk performance in dairy cows. Under the conditions of this study, including thyme oil or thymol at 50 mg/kg of DM had no benefits for rumen fermentation, nutrient utilization and milk performance in dairy cows.
Collapse
Affiliation(s)
- C Benchaar
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 College Street, Sherbrooke, QC, Canada J1M 0C8.
| |
Collapse
|
15
|
Roca-Fernández AI, Dillard SL, Soder KJ. Ruminal fermentation and enteric methane production of legumes containing condensed tannins fed in continuous culture. J Dairy Sci 2020; 103:7028-7038. [PMID: 32475672 DOI: 10.3168/jds.2019-17627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Abstract
A continuous-culture fermentor study was conducted to assess nutrient digestibilities, volatile fatty acid (VFA) concentrations, microbial protein synthesis, bacterial nitrogen (N) efficiency, and enteric methane (CH4) production of four 50:50 grass-legume diets, randomly assigned in a 4 × 4 Latin square design. Four legumes with different concentrations of condensed tannins (CT) were tested: alfalfa [ALF; Medicago sativa L., non-CT legume]; birdsfoot trefoil [BFT; Lotus corniculatus L., low-CT legume]; crown vetch [CV; Securigera varia (L.) Lassen, moderate-CT legume]; and sericea lespedeza [SL; Lespedeza cuneata (Dum. Cours.) G. Don, high-CT legume]. Orchardgrass (Dactylis glomerata L.) was the common forage used in all diets. Four fermentors were evaluated over four 10-d periods by feeding 82 g of dry matter (DM)/d in 4 equal feedings. Methane output was recorded every 10 min. Effluent samples were collected during the last 3 d of the experiment, composited by fermentor and period, and analyzed for pH and VFA, as well as DM, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber for determination of apparent and true nutrient digestibilities. Microbial protein synthesis and bacterial efficiency were estimated by analysis of N flows and purines. The CT concentrations were 3, 21, 38 and 76 g/kg of DM for ALF, BFT, CV, and SL diets, respectively. The SL diet had decreased fiber digestibilities and total VFA concentrations compared with the other diets. This resulted in the least total CH4 production in the SL diet. Bacterial N efficiency per kilogram of organic matter truly digested was lower in the SL diet than in the BFT and CV diets. The lowest CH4 production per unit of digestible nutrients was also found in the SL diet. Further work should be conducted to find optimal diets (by testing other legumes, rations, and sources of CT) for reducing CH4 emissions without negatively affecting ruminal digestion to maintain or improve productivity.
Collapse
Affiliation(s)
- Ana I Roca-Fernández
- USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA 16802-3702
| | - S Leanne Dillard
- USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA 16802-3702
| | - Kathy J Soder
- USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA 16802-3702.
| |
Collapse
|
16
|
Foskolos A, Ferret A, Siurana A, Castillejos L, Calsamiglia S. Effects of Capsicum and Propyl-Propane Thiosulfonate on Rumen Fermentation, Digestion, and Milk Production and Composition in Dairy Cows. Animals (Basel) 2020; 10:ani10050859. [PMID: 32429202 PMCID: PMC7278403 DOI: 10.3390/ani10050859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Essential oils may affect rumen fermentation, nutrient digestion, and milk production and composition. The objective of this study was to test the effects of capsicum oleoresin (CAP) and propyl-propane thiosulfonate (PTSO) on rumen fermentation, total tract digestibility, and milk yield and composition in lactating dairy cattle. Six lactating Holstein cows (averaging (mean ± SD) 130 ± 40 days in milk and 723 ± 55 kg of body weight) fitted with rumen cannulae were used in a duplicated 3 × 3 Latin square design. Treatments were: a control diet (CTR), the CTR diet with the addition of 500 mg/d/cow of CAP, and the CTR diet with the addition of 250 mg/d/cow of PTSO. Dry matter intake (DMI) averaged 20.7 kg/d with a tendency towards higher intake in cows fed CAP and lower in those fed PTSO (p = 0.08). Milk yield averaged 31.8 kg/d with no difference among treatments. However, feed efficiency was higher in PTSO supplemented cows compared with CTR (1.65 and 1.41 kg of milk yield/kg of DMI, respectively; p < 0.01). At the doses used in this experiment, CAP and PTSO failed to demonstrate any effects on rumen fermentation, but PTSO increased the efficiency of feed utilization to produce milk.
Collapse
Affiliation(s)
- Andreas Foskolos
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.F.); (A.F.); (A.S.); (L.C.)
- Department of Animal Science, University of Thessaly, Campus Gaiopolis, 411 10 Larisa, Greece
| | - Alfred Ferret
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.F.); (A.F.); (A.S.); (L.C.)
| | - Adriana Siurana
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.F.); (A.F.); (A.S.); (L.C.)
| | - Lorena Castillejos
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.F.); (A.F.); (A.S.); (L.C.)
| | - Sergio Calsamiglia
- Animal Nutrition and Welfare Service (SNiBA), Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.F.); (A.F.); (A.S.); (L.C.)
- Correspondence: ; Tel.: +34-93581495
| |
Collapse
|
17
|
Brandao VLN, Marcondes MI, Faciola AP. Comparison of microbial fermentation data from dual-flow continuous culture system and omasal sampling technique: A meta-analytical approach. J Dairy Sci 2020; 103:2347-2362. [PMID: 31954580 DOI: 10.3168/jds.2019-17107] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/08/2019] [Indexed: 12/28/2022]
Abstract
Although the omasal sampling technique (OST) has been successfully used to estimate ruminal fermentation and nutrient flow, alternatives to invasive animal trials should be pursued and evaluated. The objective of this study was to evaluate carbohydrate and N metabolisms using a meta-analytical approach to compare 2 methods: dual-flow continuous culture system (DFCCS) and OST. To be included, studies needed to report diet chemical composition and report at least 1 of the dependent variables of interest. A total of 155 articles were included, in which 97 used the DFCCS and 58 used the OST. The independent variables used were dietary nonfiber carbohydrate concentration, neutral detergent fiber (NDF) degradability, true crude protein (CP) degradability, and efficiency of microbial protein synthesis (EMPS). In addition, 12 dependent variables were used. Statistical analyses were performed using the Mixed procedure of SAS (SAS Institute Inc., Cary, NC). A random coefficients model was used considering study as a random effect and including the possibility of covariance between the slope and the intercept. The effect of method (DFCCS or OST) was included and tested in the estimates of the intercept, linear, and quadratic effects of the independent variable. There was no method effect when NDF degradability was regressed with total volatile fatty acids concentration, true CP degradability, and EMPS. Molar proportions of acetate and propionate were quadratically associated with NDF degradability. When NDF degradability was regressed with acetate and propionate there was a method effect, differing only in the intercept (β0) estimate. True organic matter digestibility, bacterial N/total N, efficiency of N utilization, total volatile fatty acid concentration, and molar proportion of butyrate linearly increased as dietary nonfiber carbohydrate concentration increased, and none of these variables were affected by method. Concentration of ammonia N had a linear and positive association with true CP degradability. This was the only variable that had a method effect when regressed with true CP degradability, differing only in the estimate of the intercept (β0). As EMPS increased, efficiency of N utilization also increased, and it was affected by method. Overall, the majority of DFCCS responses were similar to OST. When a method effect was observed, it was mainly on the estimate of the intercept, demonstrating that the magnitude of these responses was different. However, the relationships between independent and dependent variables were similar across methods.
Collapse
Affiliation(s)
- V L N Brandao
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - M I Marcondes
- Department of Animal Science, Federal University of Viçosa, Viçosa, MG, Brazil, 36570900
| | - A P Faciola
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|
18
|
Spanghero M, Chiaravalli M, Colombini S, Fabro C, Froldi F, Mason F, Moschini M, Sarnataro C, Schiavon S, Tagliapietra F. Rumen Inoculum Collected from Cows at Slaughter or from a Continuous Fermenter and Preserved in Warm, Refrigerated, Chilled or Freeze-Dried Environments for In Vitro Tests. Animals (Basel) 2019; 9:ani9100815. [PMID: 31623149 PMCID: PMC6826744 DOI: 10.3390/ani9100815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 12/27/2022] Open
Abstract
The utilization of animal donors of rumen fluid for laboratory experiments can raise ethical concerns, and alternatives to the collection of rumen fluids from live animals are urgently requested. The aim of this study was to compare the fresh rumen fluid (collected at slaughter, W) with that obtained from a continuous fermenter (RCF) and three methods of rumen fluid preservation (refrigeration, R, chilling, C, and freeze-drying, FD). The fermentability of different inoculum was evaluated by three in vitro tests (neutral detergent fiber (NDF) and crude protein (CP) degradability and gas production, NDFd, RDP and GP, respectively) using six feeds as substrates. Despite the two types of inoculum differed in terms of metabolites and microbiota concentration, the differences in vitro fermentability between the two liquids were less pronounced than expected (-15 and 20% for NDFd and GP when the liquid of fermenter was used and no differences for RDP). Within each in vitro test, the data obtained from rumen and from fermenter liquids were highly correlated for the six feeds, as well as between W and R (r: 0.837-0.985; p < 0.01). The low fermentative capacity was found for C and, particularly, FD for liquids. RCF could be used to generate inoculum for in vitro purposes and short-term refrigeration is a valuable practice to manage inoculum.
Collapse
Affiliation(s)
- Mauro Spanghero
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, 33100 Udine, Italy.
| | - Maria Chiaravalli
- Dipartimento di Scienze Agrarie e Ambientali, University of Milan, 20122 Milano, Italy.
| | - Stefania Colombini
- Dipartimento di Scienze Agrarie e Ambientali, University of Milan, 20122 Milano, Italy.
| | - Carla Fabro
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, 33100 Udine, Italy.
| | - Federico Froldi
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore of Piacenza, 29122 Piacenza, Italy.
| | - Federico Mason
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences (IARFR PAS), 10-748 Olsztyn, Poland.
| | - Maurizio Moschini
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore of Piacenza, 29122 Piacenza, Italy.
| | - Chiara Sarnataro
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, University of Udine, 33100 Udine, Italy.
| | - Stefano Schiavon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, University of Padova, 35122 Padova, Italy.
| | - Franco Tagliapietra
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, University of Padova, 35122 Padova, Italy.
| |
Collapse
|
19
|
Dillard SL, Roca-Fernández AI, Rubano MD, Soder KJ. Evaluation of a single-flow continuous culture fermenter system for determination of ruminal fermentation and enteric methane production. J Anim Physiol Anim Nutr (Berl) 2019; 103:1313-1324. [PMID: 31298448 DOI: 10.1111/jpn.13155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/21/2018] [Accepted: 06/09/2019] [Indexed: 11/29/2022]
Abstract
A 4-unit, single-flow continuous culture fermenter system was developed to assess in vitro nutrient digestibility, volatile fatty acid (VFA) concentration and daily enteric methane (CH4 ) production of ruminant diets. The objective was to develop a closed-vessel system that maintained protozoal populations and provided accurate predictions of total CH4 production. A diet of 50% orchardgrass (Dactylis glomerata L.) and 50% alfalfa (Medicago sativa L.) was fed during 4, 10-day periods (7-day adaptation and 3-day collection). Fermenters were fed 82 g of dry matter (DM)/day in four equal feedings. pH and temperature were taken every 2 min, and CH4 concentration was measured every 10 min. Samples for DM and protozoal counts were taken daily, and daily effluent samples were collected for determination of DM, VFA and NH3 -N concentrations. There was no effect (p > 0.17) of adaptation versus collection days on vessel and effluent DM, temperature or pH. Initial protozoal counts decreased (p < 0.01), but recovered to initial counts by the collection period. Total VFA, acetate, propionate and isobutyrate concentrations did not differ (p ≥ 0.13) among periods or days of the collection period. There was no difference (p ≥ 0.37) among days or periods in total daily CH4 production and CH4 production per g of OM, NDF, digestible OM or digestible NDF fed. Data collected throughout 4 experimental periods demonstrated that the system was able to reach a steady state in fermentation well within the 7-day adaptation period and even typically variable data (i.e., CH4 production) were stable within and across periods. While further research is needed to determine the relationship between this system and in vivo data, this continuous culture fermenter system provides a valid comparison of in vitro ruminal fermentation and enteric CH4 production of ruminant diets that can then be further validated with in vivo studies.
Collapse
Affiliation(s)
- S Leanne Dillard
- Pasture Systems and Watershed Management Research Unit, USDA-Agricultural Research Service, University Park, Pennsylvania
| | - Ana I Roca-Fernández
- Pasture Systems and Watershed Management Research Unit, USDA-Agricultural Research Service, University Park, Pennsylvania.,Depto. Producción Vegetal, Escuela Politécnica Superior, Universidad de Santiago de Compostela, Lugo, España
| | - Melissa D Rubano
- Pasture Systems and Watershed Management Research Unit, USDA-Agricultural Research Service, University Park, Pennsylvania
| | - Kathy J Soder
- Pasture Systems and Watershed Management Research Unit, USDA-Agricultural Research Service, University Park, Pennsylvania
| |
Collapse
|
20
|
Brandao VLN, Faciola AP. Unveiling the relationships between diet composition and fermentation parameters response in dual-flow continuous culture system: a meta-analytical approach. Transl Anim Sci 2019; 3:1064-1075. [PMID: 32704870 PMCID: PMC7200414 DOI: 10.1093/tas/txz019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
The objective of this study was to investigate the functional form of the relationship between diet composition (dietary crude protein [CP] and neutral detergent fiber [NDF]) and amount of substrate (fermenter dry matter intake [DMI]) with microbial fermentation end products in a dual-flow continuous culture system. A meta-analysis was performed using data from 75 studies. To derive the linear models, the MIXED procedure was used, and for nonlinear models, the NLMIXED procedure was used. Significance levels to fit the model assumed for fixed and random effects were P ≤ 0.05. Independent variables were dietary NDF, CP, and fermenter DMI, whereas dependent variables were total volatile fatty acids (VFA) concentration; molar proportions of acetate, propionate, and butyrate; true ruminal digestibilities of organic matter (OM), CP, and NDF; ammonia nitrogen (NH3-N) concentration and flows of NH3-N; non-ammonia nitrogen; bacterial-N; dietary-N; and efficiency of microbial protein synthesis (EMPS). Ruminal digestibilities of OM, NDF, and CP decreased as fermenter DMI increased (P < 0.04). Dietary NDF and CP digestibilities were quadratically associated (P < 0.01). Total VFA linearly increased as DMI increased (P < 0.01), exponentially decreased as dietary NDF increased (P < 0.01), and was quadratically associated with dietary CP (P < 0.01), in which total VFA concentration was maximized at 18% dietary CP. Molar proportion of acetate exponentially increased (P < 0.01) as dietary NDF increased. Molar proportion of propionate linearly increased and exponentially decreased as DMI and dietary NDF increased, respectively (P < 0.01). Bacterial-N quadratically increased and dietary-N exponentially increased as DMI increased (P < 0.01). Flows of bacterial-N and dietary-N linearly decreased as dietary NDF increased (P < 0.02), and dietary-N flow was maximized at 18% CP. The EMPS linearly increased as dietary CP increased (P < 0.02) and was not affected by DMI or dietary NDF (P > 0.05). In summary, increasing fermenter DMI increased total VFA concentration and molar proportion of propionate, whereas, dietary NDF increased the molar proportion of acetate. Dietary CP increased bacterial-N flow and was positively associated with NH3-N concentration. Overall, the analysis of this dataset demonstrates evidences that the dual-flow continuous culture system provides valuable estimates of ruminal digestibility, VFA concentration, and nitrogen metabolism.
Collapse
Affiliation(s)
| | - Antonio P Faciola
- Department of Animal Sciences, University of Florida, Gainesville, FL
| |
Collapse
|
21
|
Hristov AN, Bannink A, Crompton LA, Huhtanen P, Kreuzer M, McGee M, Nozière P, Reynolds CK, Bayat AR, Yáñez-Ruiz DR, Dijkstra J, Kebreab E, Schwarm A, Shingfield KJ, Yu Z. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. J Dairy Sci 2019; 102:5811-5852. [PMID: 31030912 DOI: 10.3168/jds.2018-15829] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/27/2019] [Indexed: 01/17/2023]
Abstract
Nitrogen is a component of essential nutrients critical for the productivity of ruminants. If excreted in excess, N is also an important environmental pollutant contributing to acid deposition, eutrophication, human respiratory problems, and climate change. The complex microbial metabolic activity in the rumen and the effect on subsequent processes in the intestines and body tissues make the study of N metabolism in ruminants challenging compared with nonruminants. Therefore, using accurate and precise measurement techniques is imperative for obtaining reliable experimental results on N utilization by ruminants and evaluating the environmental impacts of N emission mitigation techniques. Changeover design experiments are as suitable as continuous ones for studying protein metabolism in ruminant animals, except when changes in body weight or carryover effects due to treatment are expected. Adaptation following a dietary change should be allowed for at least 2 (preferably 3) wk, and extended adaptation periods may be required if body pools can temporarily supply the nutrients studied. Dietary protein degradability in the rumen and intestines are feed characteristics determining the primary AA available to the host animal. They can be estimated using in situ, in vitro, or in vivo techniques with each having inherent advantages and disadvantages. Accurate, precise, and inexpensive laboratory assays for feed protein availability are still needed. Techniques used for direct determination of rumen microbial protein synthesis are laborious and expensive, and data variability can be unacceptably large; indirect approaches have not shown the level of accuracy required for widespread adoption. Techniques for studying postruminal digestion and absorption of nitrogenous compounds, urea recycling, and mammary AA metabolism are also laborious, expensive (especially the methods that use isotopes), and results can be variable, especially the methods based on measurements of digesta or blood flow. Volatile loss of N from feces and particularly urine can be substantial during collection, processing, and analysis of excreta, compromising the accuracy of measurements of total-tract N digestion and body N balance. In studying ruminant N metabolism, nutritionists should consider the longer term fate of manure N as well. Various techniques used to determine the effects of animal nutrition on total N, ammonia- or nitrous oxide-emitting potentials, as well as plant fertilizer value, of manure are available. Overall, methods to study ruminant N metabolism have been developed over 150 yr of animal nutrition research, but many of them are laborious and impractical for application on a large number of animals. The increasing environmental concerns associated with livestock production systems necessitate more accurate and reliable methods to determine manure N emissions in the context of feed composition and ruminant N metabolism.
Collapse
Affiliation(s)
- A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| | - A Bannink
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - L A Crompton
- School of Agriculture, Policy and Development, Centre for Dairy Research, University of Reading, PO Box 237 Earley Gate, Reading RG6 6AR, United Kingdom
| | - P Huhtanen
- Department of Agricultural Science, Swedish University of Agricultural Sciences, S-90, Umeå, Sweden
| | - M Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - M McGee
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland C15 PW93
| | - P Nozière
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - C K Reynolds
- School of Agriculture, Policy and Development, Centre for Dairy Research, University of Reading, PO Box 237 Earley Gate, Reading RG6 6AR, United Kingdom
| | - A R Bayat
- Milk Production Solutions, Production Systems, Natural Resources Institute Finland (Luke), FI 31600 Jokioinen, Finland
| | - D R Yáñez-Ruiz
- Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1, 18008, Granada, Spain
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - E Kebreab
- Department of Animal Science, University of California, Davis 95616
| | - A Schwarm
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - K J Shingfield
- Milk Production Solutions, Production Systems, Natural Resources Institute Finland (Luke), FI 31600 Jokioinen, Finland; Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3EB, United Kingdom
| | - Z Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| |
Collapse
|
22
|
Oh J, Harper M, Melgar A, Compart DMP, Hristov AN. Effects of Saccharomyces cerevisiae-based direct-fed microbial and exogenous enzyme products on enteric methane emission and productivity in lactating dairy cows. J Dairy Sci 2019; 102:6065-6075. [PMID: 31030921 DOI: 10.3168/jds.2018-15753] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/11/2019] [Indexed: 01/06/2023]
Abstract
The objective of this experiment was to investigate the effects of a Saccharomyces cerevisiae-based direct-fed microbial product (SDM) and an exogenous enzyme product (ENZ) on enteric methane emission, milk yield and composition, total-tract digestibility of nutrients, ruminal fermentation, and nitrogen excretion and secretion in lactating dairy cows. Eighteen Holstein cows were used in a 3 × 3 Latin square design experiment with three 28-d periods. Treatments were (1) control (no additive), (2) 28 g of SDM/d per cow, or (3) 10 g of ENZ/d per cow. Treatments were top-dressed at the time of feeding. The basal diet consisted of (dry matter basis) 60% forage and 40% concentrates and contained 16.5% crude protein and 32.0% neutral detergent fiber. Treatments had no effect on enteric methane production, yield (methane per kg of dry matter intake, DMI), or intensity (methane per kg of energy-corrected milk yield). Carbon dioxide production was similar among treatments. Compared with control, SDM increased milk yield by 2 kg/d without affecting DMI or feed efficiency. Supplementation of the diet with ENZ did not affect DMI, milk yield, or feed efficiency. Concentrations and yields of milk fat, true protein, and lactose, and energy-corrected milk yield were not different among treatments. Neither SDM nor ENZ had an effect on total-tract digestibility of nutrients or nitrogen excretion and secretion. Concentration of total volatile fatty acids (VFA) in ruminal fluid was increased by both SDM and ENZ, and rumen pH was decreased by SDM compared with the control. At levels similar to the control DMI, the increased concentration of VFA in ruminal fluid of cows receiving SDM suggests an increased postruminal supply of energy and may partly explain the increased milk yield with that treatment. However, it is important to note that milk composition and energy-corrected milk yield were not affected by treatment.
Collapse
Affiliation(s)
- J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M Harper
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | | | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
23
|
Capelari M, Johnson KA, Latack B, Roth J, Powers W. The effect of encapsulated nitrate and monensin on ruminal fermentation using a semi-continuous culture system. J Anim Sci 2018; 96:3446-3459. [PMID: 29800454 DOI: 10.1093/jas/sky211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/24/2018] [Indexed: 01/18/2023] Open
Abstract
Because enteric methane (CH4) production from ruminants represents a source of greenhouse gas emissions and an energy loss for the host animal alternatives to minimize emissions is a current research priority. Seven 37-d trials tested the effect of encapsulated nitrate (EN) and sodium monensin (MON) in diets commonly fed to dairy (DAIRY; 50:50 forage to concentrate; four trials) and beef cattle (BEEF; 15:85 forage to concentrate; three trials) on rumen fermentation and CH4 production using a semi-continuous fermentation system. A 3 × 2 factorial arrangement was used and additives (0, 1.25, and 2.5% of EN; 0 and 4 mg/L of MON) were tested alone and combined (EN + MON) totaling six treatments. Rumen fluid was pooled from five nonadapted lactating cows fed 50:50 forage to concentrate diet 3 h after morning feeding, and 1 L of processed inoculum was transferred to 2.2-L vessels. Treatment diets were added to nylon bags which remained in the anaerobic fermentation of mixed rumen microorganisms for 48 h. Nitrate decreased CH4 production in DAIRY (24.7 vs. 32.1 mM/d; P < 0.01) and BEEF trials (33.5 vs. 43.5 mM/d; P < 0.01). Methane production was decreased by MON in DAIRY (26.3 vs. 32.1; P < 0.01) and BEEF (26.6 vs. 43.5 mM/d; P < 0.01). The combination of EN + MON further decreased CH4 in DAIRY (21.3 vs. 32.1 mM/d; P = 0.03) and BEEF (19.3 vs. 43.5 mM/d; P = 0.01). Nitrate did not affect major VFA production in DAIRY and BEEF trials, but significantly decreased digestion of protein (96.8 vs. 97.6%; P < 0.01) and starch (79.0 vs. 80.4%; P < 0.01) in DAIRY and NDF (29.3 vs. 32.5%; P < 0.01) and starch (88.5 vs. 90.3%; P < 0.01) in BEEF. Monensin significantly affected VFA pattern with an increase in propionate (P < 0.01) and a decrease on acetate (P < 0.01) production with consequent decrease on acetate-to-propionate ratio in DAIRY (1.6 vs. 2.0; P < 0.01) and BEEF (1.6 vs. 1.9; P < 0.01). Monensin decreased NDF digestion in BEEF only (29.3 vs. 32.5 %; P < 0.01). Significant concentrations of nitrate and nitrite were detected only for EN and EN + MON (P < 0.01). Nitrate and MON effectively decreased CH4 production when fed separately and the combination of additives additively decreased CH4 production.
Collapse
Affiliation(s)
- Matheus Capelari
- Department of Animal Science, Michigan State University, East Lansing, MI
| | - Kristen A Johnson
- Department of Animal Science, Washington State University, Pullman, WA
| | - Brooke Latack
- Department of Animal Science, Michigan State University, East Lansing, MI
| | - Jolene Roth
- Department of Animal Science, Michigan State University, East Lansing, MI
| | - Wendy Powers
- Division of Agriculture and Natural Resources, University of California, Oakland, CA
| |
Collapse
|
24
|
Dillard SL, Roca-Fernández AI, Rubano MD, Elkin KR, Soder KJ. Enteric methane production and ruminal fermentation of forage brassica diets fed in continuous culture. J Anim Sci 2018; 96:1362-1374. [PMID: 29471524 DOI: 10.1093/jas/sky030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 02/15/2018] [Indexed: 11/14/2022] Open
Abstract
The aim of the current study was to determine nutrient digestibility, VFA production, N metabolism, and CH4 production of canola (Brassica napus L.), rapeseed (B. napus L.), turnip (Brassica rapa L.), and annual ryegrass (Lolium multiflorum Lam.) fed with orchardgrass (Dactylis glomerata L.) in continuous culture. Diets were randomly assigned to fermentors in a 4 × 4 Latin square design using 7 d for adaptation and 3 d for collection. Diets were: 1) 50% orchardgrass + 50% annual ryegrass (ARG); 2) 50% orchardgrass + 50% canola (CAN); 3) 50% orchardgrass + 50% rapeseed (RAP); and 4) 50% orchardgrass + 50% turnip (TUR). Feedings (82 g DM/d) occurred four times daily throughout 4, 10-d periods at 730, 1030, 1400, and 1900 h. Methane samples were collected every 10 min using a photoacoustic gas analyzer (LumaSense Technologies, Inc.; Santa Clara, CA) during the last 3 d of the experiment. Effluent samples were collected on d 8, 9, and 10, composited by fermentor, and analyzed for VFA and pH as well as DM, OM, CP, and fiber fractions for determination of nutrient digestibility. Forage samples were analyzed for CP, NDF, ADF, minerals, and glucosinolate (GLS) concentrations. Data were analyzed using the GLIMMIX procedure of SAS. Apparent DM, OM, and NDF digestibilities and true DM and OM digestibilities were similar (P > 0.28) among diets (45.1, 63.2, 44.1, 67.1, and 87.2%, respectively). Total VFA (87.2 mol/100 mol), pH (6.47), and acetate (A: 44.6 mol/100 mol) were also not different (P > 0.20) among diets. The A:P (P = propionate) ratio was greater (P < 0.01) in ARG and CAN than RAP and TUR. Daily CH4 production was greater (P < 0.01) in ARG than all other diets (68.9 vs. 11.2 mg/d). Methane, whether expressed as g per g of OM, NDF, digestible OM, or digestible NDF fed was greatest (P < 0.01) in ARG but similar (P > 0.18) among brassica diets. A significant negative correlation was observed between total GLS and CH4 production. However, when multiple regression analysis on CH4 production was completed, neither total GLS nor individual GLS were a significant component of the model. Addition of brassicas provided similar nutrient digestibility to ARG while reducing daily CH4 production, potentially making brassicas an alternative for ARG in pasture-based ruminant diets.
Collapse
Affiliation(s)
- Sandra Leanne Dillard
- USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA
| | - Ana I Roca-Fernández
- USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA.,Depto. Producción Vegetal, Escuela Politécnica Superior, Universidad de Santiago de Compostela, Lugo, España
| | - Melissa D Rubano
- USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA
| | - Kyle R Elkin
- USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA
| | - Kathy J Soder
- USDA-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA
| |
Collapse
|
25
|
Salfer IJ, Staley C, Johnson HE, Sadowsky MJ, Stern MD. Comparisons of bacterial and archaeal communities in the rumen and a dual-flow continuous culture fermentation system using amplicon sequencing. J Anim Sci 2018. [PMID: 29529208 DOI: 10.1093/jas/skx056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dual-flow continuous culture (CC) fermenters are commonly used to study rumen fermentation in vitro. Research using culture-based and oligonucleotide techniques has shown that certain microbial populations within fermenters may be maintained at abundances similar to those observed in vivo. In this study, bacterial and archaeal communities in the rumen of dairy cattle and in a dual-flow CC fermentation system were compared using high-throughput amplicon sequencing targeting the V4 hypervariable region of 16S rRNA. We hypothesized that the in vitro system harbored a comparable bacterial and archaeal community to that observed in the rumen. Members of the Bacteroidetes and Firmicutes made up the 2 most abundant phyla in the rumen, inoculum, and fermenters and did not differ among sample types (P > 0.10). Similarly, Prevotellaceae, the most abundant family in all 3 sample types, did not differ based on source (P = 0.80). However, beta diversity analyses revealed that bacterial and archaeal communities differed between fermenters and rumen samples (P ≤ 0.001), but fermenter bacterial and archaeal communities stabilized by day 4 of each period. While the overall bacterial and archaeal community differs between natural rumens and those detected in in vitro fermenter systems, several prominent taxa were maintained at similar relative abundances suggesting that fermenters may provide a suitable environment in which to study shifts among the predominant members of the microbial community.
Collapse
Affiliation(s)
- I J Salfer
- Department of Animal Science, University of Minnesota, St. Paul, MN
| | - C Staley
- BioTechnology Institute, Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN.,Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN
| | - H E Johnson
- Department of Animal Science, University of Minnesota, St. Paul, MN
| | - M J Sadowsky
- BioTechnology Institute, Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN.,Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN
| | - M D Stern
- Department of Animal Science, University of Minnesota, St. Paul, MN
| |
Collapse
|
26
|
Wagner B, Wenner B, Plank J, Poppy G, Firkins J. Investigation of ammonium lactate supplementation on fermentation end products and bacterial assimilation of nitrogen in dual-flow continuous culture. J Dairy Sci 2018; 101:8032-8045. [DOI: 10.3168/jds.2017-14358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
|
27
|
Wang P, Zhao S, Nan X, Jin D, Wang J. Influence of hydrolysis rate of urea on ruminal bacterial diversity level and cellulolytic bacteria abundance in vitro. PeerJ 2018; 6:e5475. [PMID: 30128212 PMCID: PMC6100864 DOI: 10.7717/peerj.5475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/27/2018] [Indexed: 11/20/2022] Open
Abstract
The objective of this experiment was to evaluate the effects of urea hydrolysis rate on ruminal bacterial diversity level and cellulolytic bacteria abundance in vitro. To control urea hydrolysis rate, urea and urease inhibitor (acetohydroxamic acid, AHA) were supplemented to a 2 × 2 factorial design, with urea supplemented at 0 or 20 g/kg dry matter (DM) of substrate, and AHA equivalent to 0 or 450 mg/kg DM of substrate. Ruminal fluid was collected from three Chinese Holstein dairy cows, fed a TMR, and incubated at 39 °C for 12 h after the addition of urea and AHA. Rumen fermentation parameters, which indicated the rate of ammonia formation (including ammonia-nitrogen (NH3-N) and urea-nitrogen concentrations, urease activity, and microbial crude protein) were measured by chemical analysis. Bacterial diversity was analyzed by denaturing gradient gel electrophoresis (DGGE). Total bacteria and cellulolytic bacteria abundance was detected by quantitative PCR. Results showed that AHA addition significantly decreased the rate of ammonia formation when urea was supplemented. Urea and AHA supplementation significantly increased the bacterial community diversity level according to the Shannon-Weiner index of 16S DGGE images. Furthermore, ruminal bacterial profiles were separated by ammonia release rate when urea was supplemented, according to the DGGE and hierarchical cluster analysis. Urea supplementation reduced the abundance of cellulolytic bacteria, such as Ruminococcus albus, R. flavefaciens, Fibrobacter succinogenes, and Butyrivibrio fibrosolvens, but inhibition of urea hydrolysis by AHA addition alleviated the reductions during the early period of incubation. In conclusion, slow release of ammonia induced by urease inhibitor influenced the ruminal bacterial diversity level and lessened the inhibition of total bacteria growth at the incubation of 12 h and F. succinogenes during the early period of incubation.
Collapse
Affiliation(s)
- Pengpeng Wang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, People's Republic of China
| | - Shengguo Zhao
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, People's Republic of China
| | - Xuemei Nan
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, People's Republic of China
| | - Di Jin
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, People's Republic of China
| | - Jiaqi Wang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, People's Republic of China
| |
Collapse
|
28
|
Terry SA, Ramos AFO, Holman DB, McAllister TA, Breves G, Chaves AV. Humic Substances Alter Ammonia Production and the Microbial Populations Within a RUSITEC Fed a Mixed Hay - Concentrate Diet. Front Microbiol 2018; 9:1410. [PMID: 30013529 PMCID: PMC6036602 DOI: 10.3389/fmicb.2018.01410] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/08/2018] [Indexed: 01/12/2023] Open
Abstract
Humic substances are a novel feed additive which may have the potential to mitigate enteric methane (CH4) production from ruminants as well as enhance microbial activity in the rumen. The aim of this study was to examine the effects of humic substances on fermentation characteristics and microbial communities using the rumen stimulation technique (RUSITEC). The experiment was conducted as a completely randomized design with 3 treatments duplicated in 2 runs (a 15-day period each run) with 2 replicates per run. Treatments consisted of a control diet (forage:concentrate; 60:40) without humic substances or humic substances added at either 1.5 g/d or 3.0 g/d. Dry matter disappearance, pH, fermentation parameters and gas production were measured from day 8 to 15. Samples for microbial profiling were taken on day 5, 10, and 15 using the digested feed bags for solid- associated microbes (SAM) and fermenter fluid for liquid- associated microbes (LAM). The inclusion of humic substances had no effect (P ≥ 0.19) on DM disappearance, pH or the concentrations of VFA. The production of NH3 was linearly decreased (P = 0.04) with increasing levels of humic substances in the diet. There was no effect (P ≥ 0.43) of humic substances on total gas, CO2 or CH4 production. The number of OTUs was significantly reduced in the 3.0 g/d treatment compared to the control on d 10 and 15; however, the microbial community structure was largely unaffected (P > 0.05). In the SAM samples, the genera Lachnospiraceae XPB1014 group, Succiniclasticum, and Fibrobacter were reduced in the 3.0 g/d treatment and Anaeroplasma, Olsenella, and Pseudobutyrivibrio were increased on day 5, 10, and 15. Within the LAM samples, Christensenellaceae R-7 and Succiniclasticum were the most differentially abundant genera between the control and 3.0 g/d HS treatment samples (P < 0.05). This study highlights the potential use of humic substances as a natural feed additive which may play a role in nitrogen metabolism without negatively affecting the ruminal microbiota.
Collapse
Affiliation(s)
- Stephanie A. Terry
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Aline F. O. Ramos
- Animal Science Graduate Course, Veterinary Medicine Institute, Federal University of Pará, Belém, Brazil
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Alexandre V. Chaves
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
29
|
Cabeza-Luna I, Carro M, Fernández-Yepes J, Molina-Alcaide E. Effects of modifications to retain protozoa in continuous-culture fermenters on ruminal fermentation, microbial populations, and microbial biomass assessed by two different methods. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
30
|
da Silva LG, Sampaio CB, de Paula EM, Shenkoru T, Brandao VLN, Dai X, Perryman B, Faciola AP. Nutritional evaluation and ruminal fermentation patterns of kochia compared with alfalfa and orchardgrass hays and ephedra and cheatgrass compared with orchardgrass hay as alternative arid-land forages for beef cattle in two dual-flow continuous culture system experiments. J Anim Sci 2018; 96:705-714. [PMID: 29385467 DOI: 10.1093/jas/skx071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective was to evaluate the ruminal fermentation patterns of forage kochia (FK) compared with alfalfa hay (AH) and orchardgrass hay (OH) (Exp. 1), and ephedra (EPH) and immature cheatgrass (CG) compared with OH (Exp. 2), using a dual-flow continuous culture system. Two in vitro experiments were conducted, and in each experiment, treatments were randomly assigned to six dual-flow fermenters (1,223 ± 21 mL) in a replicated 3 × 3 Latin square design, with three consecutive periods of 10 d each, consisting of 7 d for diet adaptation and 3 d for sample collection. Each fermenter was fed a total of 72 g/d (DM basis) and treatments were as follows: Exp. 1: 1) 100% OH, 2) 100% AH, and 3) 100% dried FK. Exp. 2: 1) 100% OH, 2) 100% dried CG, and 3) 100% dried EPH. On day 8, 9, and 10, samples of solid and liquid effluent from each fermenter were taken for digestibility analysis, and subsamples were collected for NH3-N, VFA, and bacterial N determinations. Data were analyzed using the MIXED procedure of SAS. In Exp. 1, treatments did not affect DM, OM, and NDF digestibilities, total VFA and molar proportions of acetate, propionate, butyrate, and branched-chain VFA. True CP digestibility, ruminal NH3-N concentration, and total N, NH3-N, NAN, and dietary N flows (g/d) were greater (P < 0.05) for FK compared with the other forages. However, treatments did not affect bacterial efficiency. In Exp. 2, DM, OM, and CP digestibilities were greater (P = 0.01) for EPH, and NDF digestibility was greater (P < 0.05) for EPH and CG compared with OH. Ephedra had the highest (P < 0.05) pH and acetate:propionate ratio and the lowest (P < 0.05) total VFA concentration. Total VFA, ruminal NH3-N concentration, and NH3-N flow (g/d) were highest (P < 0.05) for CG. Total N flow and bacterial efficiency were highest (P < 0.05) for OH and CG, while the flows (g/d) of NAN, bacterial N, and dietary N were greater (P < 0.05) for OH compared with the other forages. Results indicate that when compared with AH and OH (Exp. 1), FK has similar ruminal fermentation patterns and may be an adequate alternative for beef cattle producers. Furthermore, when compared with OH (Exp. 2), immature CG may also be an adequate forage alternative. This is especially important for areas in which conventional forages may not grow well such as the U.S. arid-land. However, EPH should not be used as the sole forage due to its poor ruminal fermentation as evidenced by the lowest total VFA concentration and propionate molar proportion.
Collapse
Affiliation(s)
| | | | | | - Teshome Shenkoru
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, NV
| | | | - Xiaoxia Dai
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | - Barry Perryman
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, NV
| | | |
Collapse
|
31
|
Iqbal MW, Zhang Q, Yang Y, Zou C, Li L, Liang X, Wei S, Lin B. Ruminal fermentation and microbial community differently influenced by four typical subtropical forages in vitro. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:100-108. [PMID: 30167491 PMCID: PMC6112341 DOI: 10.1016/j.aninu.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/19/2017] [Accepted: 10/10/2017] [Indexed: 01/26/2023]
Abstract
The present study evaluated the effects of 4 typical subtropical forages on ruminal microbial community composition to formulate a better diet for buffalo. Corn straw silage, elephant grass, cassava residues and sugarcane tail silage were used as substrates for in vitro fermentation. Eight replicates were set up for every substrate, and fermentation was carried out in a 100-mL glass syringe, using buffalo rumen inoculum. Every replicate was anaerobically dispensed with 10 mL of rumen inoculum, 20 mL of McDougall's buffer and 200 mg of dried substrate, and placed in a water bath at 39 °C. Gas production was recorded at 0, 2, 6, 12, 24, 36, 48 and 72 h of incubation. After 24 h, fermentation was ceased for 4 replicates and samples were collected. Volatile fatty acids (VFA) concentrations were measured using gas chromatography. Microbial populations were quantified using quantitative real-time PCR (qRT-PCR), and microbial community was analyzed using high throughput sequencing technology. The results showed, cassava residues as substrate had the highest gas production, acetate, propionate and total VFA concentrations (P < 0.05), and corn straw silage had the lowest acetate:propionate ratio (P < 0.05). The lowest numbers of fungi, Ruminococcus albus and Fibrobacter succinogenes, and the highest number of protozoa were observed with cassava residues (P < 0.05). The least abundances of bacterial phyla Firmicutes, Bacteroidetes and genus Prevotella, and substantially higher abundance of phylum proteobacteria (56%) and genus Succinivibrio (52%) were observed with cassava residues. The most abundances of Methanobrevibacter gottschalkii and Entodinium were observed with cassava residues. Spearman's correlations analysis showed, Succinivibrio had strong positive correlations with propionate, butyrate, Metadinium and M. gottschalkii, indicating fermentation products were related to microbial community. In conclusion, incubation with cassava residues resulted in lower number of fiber degrading microbes but higher protozoal population because of its low fiber contents. The microbial community was highly altered by in vitro incubation with cassava residues, whereas remained similar for the other 3 high fiber containing substrates.
Collapse
Affiliation(s)
- Muhammad W. Iqbal
- College of Animal Science, Guangxi University, Nanning 530000, China
| | - Qin Zhang
- College of Animal Science, Guangxi University, Nanning 530000, China
| | - Yingbai Yang
- College of Animal Science, Guangxi University, Nanning 530000, China
| | - Caixia Zou
- College of Animal Science, Guangxi University, Nanning 530000, China
| | - Lili Li
- Buffalo Research Institute, The Chinese Academy of Agricultural Sciences, Nanning 530000, China
| | - Xin Liang
- Buffalo Research Institute, The Chinese Academy of Agricultural Sciences, Nanning 530000, China
| | - Shengju Wei
- Buffalo Research Institute, The Chinese Academy of Agricultural Sciences, Nanning 530000, China
| | - Bo Lin
- College of Animal Science, Guangxi University, Nanning 530000, China
| |
Collapse
|
32
|
Wenner B, de Souza J, Batistel F, Hackmann T, Yu Z, Firkins J. Association of aqueous hydrogen concentration with methane production in continuous cultures modulated to vary pH and solids passage rate. J Dairy Sci 2017; 100:5378-5389. [DOI: 10.3168/jds.2016-12332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/07/2017] [Indexed: 11/19/2022]
|
33
|
Lower Methane Emissions from Yak Compared with Cattle in Rusitec Fermenters. PLoS One 2017; 12:e0170044. [PMID: 28076447 PMCID: PMC5226831 DOI: 10.1371/journal.pone.0170044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 12/28/2016] [Indexed: 01/20/2023] Open
Abstract
Globally methane (CH4) emissions from ruminant livestock account for 29% of total CH4 emissions. Inherited variation about CH4 emissions of different animal species might provide new opportunity for manipulating CH4 production. Six rumen-simulating fermenters (Rusitec) were set up for this study lasting for 16 d. The diet consisted of forage to concentrate ratio of 50:50 with barley straw as the forage. Treated vessels were supplied with rumen fluid from yak or cattle (3 vessels per animal species). Microbial growth was measured using 15N as a marker. The microbial community structure from liquid- and solid-fraction of each vessel was determined based on the 16S rRNA genes targeting both bacteria and archaea with MiSeq platform. CH4 yield was lower when the inoculum used from yak than that from cattle (0.26 and 0.33 mmol CH4/g dry matter intake, respectively). Lower H2 production was observed in Rusitec fermenters with rumen fluid from yak compare with that from cattle (0.28 and 0.86 mmol/d, respectively). The apparent digestibility of neutral detergent fiber, the isovalerate percentage with respect to the total amount of volatile fatty acids, the hydrogen recovery, and the proportion of liquid-associated microbial nitrogen derived from ammonia-nitrogen were higher in Rusitec fermenters incubated with rumen fluid from cattle than that from yak. The relative abundances of methanogens were no difference between two animal species. We hypothesize that more H2 production contributes to the higher methane emissions in cattle compare with yak.
Collapse
|
34
|
Blanch M, Carro M, Ranilla M, Viso A, Vázquez-Añón M, Bach A. Influence of a mixture of cinnamaldehyde and garlic oil on rumen fermentation, feeding behavior and performance of lactating dairy cows. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Mendoza A, Cajarville C, Repetto JL. Digestive response of dairy cows fed diets combining fresh forage with a total mixed ration. J Dairy Sci 2016; 99:8779-8789. [PMID: 27544857 DOI: 10.3168/jds.2016-11023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/11/2016] [Indexed: 11/19/2022]
Abstract
The objective of this experiment was to quantify the response of dairy cows fed a total mixed ration (TMR) to increasing access to high-quality temperate fresh forage with respect to energy intake, rumen fermentation, microbial protein flow, passage rate, nutrient digestion and utilization, and metabolic and endocrine profiles. Nine Holstein cows fed a TMR were assigned to the following treatments according to a 3×3 Latin square replicated 3 times with 20-d periods and sampling on the last 10 d of each period: 0 (T0), 4 (T4), or 8 (T8) h of daily access to fresh forage. The forage (Lolium multiflorum; 17.1% crude protein, 26.5% acid detergent fiber) was cut daily and offered ad libitum beginning at 0800h, and a TMR (16.1% crude protein, 22.9% acid detergent fiber) was offered ad libitum during the remaining time. Energy intake and balance were higher in T0 than in T8, which was reflected in higher blood glucose and insulin concentrations in T0. Total volatile fatty acid concentrations in the rumen were higher in T0 and T4 than in T8, pH was lower in T4 than in T8, and ammonia-N was higher in T0 than in T8. No differences among treatments were detected in microbial protein flow to the duodenum, digestibility of nutrients, apparent efficiency of energy, or N utilization for milk production, but the total mean retention time of feed in the digestive tract was higher in T8 than in T0. It is concluded that more than 4h of daily access to high-quality fresh forage in the diet of dairy cows fed a TMR reduced energy intake and balance but had no effects on nutrient digestion or utilization.
Collapse
Affiliation(s)
- A Mendoza
- Departamento de Producción de Bovinos, Universidad de la República, Ruta 1 km 42.5, 80100, San José, Uruguay
| | - C Cajarville
- Departamento de Nutrición Animal, Instituto de Producción Animal, Facultad de Veterinaria, Universidad de la República, Ruta 1 km 42.5, 80100, San José, Uruguay
| | - J L Repetto
- Departamento de Producción de Bovinos, Universidad de la República, Ruta 1 km 42.5, 80100, San José, Uruguay.
| |
Collapse
|
36
|
Jin D, Zhao S, Wang P, Zheng N, Bu D, Beckers Y, Wang J. Insights into Abundant Rumen Ureolytic Bacterial Community Using Rumen Simulation System. Front Microbiol 2016; 7:1006. [PMID: 27446045 PMCID: PMC4923134 DOI: 10.3389/fmicb.2016.01006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/13/2016] [Indexed: 01/07/2023] Open
Abstract
Urea, a non-protein nitrogen for dairy cows, is rapidly hydrolyzed to ammonia by urease produced by ureolytic bacteria in the rumen, and the ammonia is used as nitrogen for rumen bacterial growth. However, there is limited knowledge with regard to the ureolytic bacteria community in the rumen. To explore the ruminal ureolytic bacterial community, urea, or acetohydroxamic acid (AHA, an inhibitor of urea hydrolysis) were supplemented into the rumen simulation systems. The bacterial 16S rRNA genes were sequenced by Miseq high-throughput sequencing and used to reveal the ureoltyic bacteria by comparing different treatments. The results revealed that urea supplementation significantly increased the ammonia concentration, and AHA addition inhibited urea hydrolysis. Urea supplementation significantly increased the richness of bacterial community and the proportion of ureC genes. The composition of bacterial community following urea or AHA supplementation showed no significant difference compared to the groups without supplementation. The abundance of Bacillus and unclassified Succinivibrionaceae increased significantly following urea supplementation. Pseudomonas, Haemophilus, Neisseria, Streptococcus, and Actinomyces exhibited a positive response to urea supplementation and a negative response to AHA addition. Results retrieved from the NCBI protein database and publications confirmed that the representative bacteria in these genera mentioned above had urease genes or urease activities. Therefore, the rumen ureolytic bacteria were abundant in the genera of Pseudomonas, Haemophilus, Neisseria, Streptococcus, Actinomyces, Bacillus, and unclassified Succinivibrionaceae. Insights into abundant rumen ureolytic bacteria provide the regulation targets to mitigate urea hydrolysis and increase efficiency of urea nitrogen utilization in ruminants.
Collapse
Affiliation(s)
- Di Jin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural SciencesBeijing, China; Animal Science Unit, Gembloux Agro-Bio Tech, University of LiègeGembloux, Belgium
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences Beijing, China
| | - Pengpeng Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences Beijing, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences Beijing, China
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences Beijing, China
| | - Yves Beckers
- Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège Gembloux, Belgium
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
37
|
Yáñez-Ruiz D, Bannink A, Dijkstra J, Kebreab E, Morgavi D, O’Kiely P, Reynolds C, Schwarm A, Shingfield K, Yu Z, Hristov A. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.03.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
Lengowski MB, Zuber KHR, Witzig M, Möhring J, Boguhn J, Rodehutscord M. Changes in Rumen Microbial Community Composition during Adaption to an In Vitro System and the Impact of Different Forages. PLoS One 2016; 11:e0150115. [PMID: 26928330 PMCID: PMC4771158 DOI: 10.1371/journal.pone.0150115] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 02/09/2016] [Indexed: 11/18/2022] Open
Abstract
This study examined ruminal microbial community composition alterations during initial adaption to and following incubation in a rumen simulation system (Rusitec) using grass or corn silage as substrates. Samples were collected from fermenter liquids at 0, 2, 4, 12, 24, and 48 h and from feed residues at 0, 24, and 48 h after initiation of incubation (period 1) and on day 13 (period 2). Microbial DNA was extracted and real-time qPCR was used to quantify differences in the abundance of protozoa, methanogens, total bacteria, Fibrobacter succinogenes, Ruminococcus albus, Ruminobacter amylophilus, Prevotella bryantii, Selenomonas ruminantium, and Clostridium aminophilum. We found that forage source and sampling time significantly influenced the ruminal microbial community. The gene copy numbers of most microbial species (except C. aminophilum) decreased in period 1; however, adaption continued through period 2 for several species. The addition of fresh substrate in period 2 led to increasing copy numbers of all microbial species during the first 2–4 h in the fermenter liquid except protozoa, which showed a postprandial decrease. Corn silage enhanced the growth of R. amylophilus and F. succinogenes, and grass silage enhanced R. albus, P. bryantii, and C. aminophilum. No effect of forage source was detected on total bacteria, protozoa, S. ruminantium, or methanogens or on total gas production, although grass silage enhanced methane production. This study showed that the Rusitec provides a stable system after an adaption phase that should last longer than 48 h, and that the forage source influenced several microbial species.
Collapse
Affiliation(s)
- Melanie B. Lengowski
- Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart-Hohenheim, Baden-Württemberg, Germany
| | - Karin H. R. Zuber
- Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart-Hohenheim, Baden-Württemberg, Germany
| | - Maren Witzig
- Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart-Hohenheim, Baden-Württemberg, Germany
- * E-mail:
| | - Jens Möhring
- Institut für Kulturpflanzenwissenschaften, Fachgebiet Biostatistik, Universität Hohenheim, Stuttgart-Hohenheim, Baden-Württemberg, Germany
| | - Jeannette Boguhn
- Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart-Hohenheim, Baden-Württemberg, Germany
| | - Markus Rodehutscord
- Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart-Hohenheim, Baden-Württemberg, Germany
| |
Collapse
|
39
|
Oh J, Hristov AN. Effects of Plant-Derived Bio-Active Compounds on Rumen Fermentation, Nutrient Utilization, Immune Response, and Productivity of Ruminant Animals. ACS SYMPOSIUM SERIES 2016. [DOI: 10.1021/bk-2016-1218.ch011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- J. Oh
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - A. N. Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
40
|
Hristov AN, Oh J, Giallongo F, Frederick TW, Harper MT, Weeks HL, Branco AF, Moate PJ, Deighton MH, Williams SRO, Kindermann M, Duval S. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc Natl Acad Sci U S A 2015; 112:10663-8. [PMID: 26229078 PMCID: PMC4553761 DOI: 10.1073/pnas.1504124112] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period. Feed intake, milk production, and fiber digestibility were not affected by the inhibitor. Milk protein and lactose yields were increased by 3NOP. Rumen methane emission was linearly decreased by 3NOP, averaging about 30% lower than the control. Methane emission per unit of feed dry matter intake or per unit of energy-corrected milk were also about 30% less for the 3NOP-treated cows. On average, the body weight gain of 3NOP-treated cows was 80% greater than control cows during the 12-wk experiment. The experiment demonstrated that the methane inhibitor 3NOP, applied at 40 to 80 mg/kg feed dry matter, decreased methane emissions from high-producing dairy cows by 30% and increased body weight gain without negatively affecting feed intake or milk production and composition. The inhibitory effect persisted over 12 wk of treatment, thus offering an effective methane mitigation practice for the livestock industries.
Collapse
Affiliation(s)
- Alexander N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802;
| | - Joonpyo Oh
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - Fabio Giallongo
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - Tyler W Frederick
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - Michael T Harper
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - Holley L Weeks
- Department of Animal Science, The Pennsylvania State University, University Park, PA 16802
| | - Antonio F Branco
- Departamento de Zootecnia, Universidade Estadual de Maringá, PR 87020-900, Brazil
| | - Peter J Moate
- Agriculture Research Division, Department of Economic Development Jobs Transport and Resources, Ellinbank Centre, Ellinbank 3821, Victoria, Australia
| | - Matthew H Deighton
- Agriculture Research Division, Department of Economic Development Jobs Transport and Resources, Ellinbank Centre, Ellinbank 3821, Victoria, Australia
| | - S Richard O Williams
- Agriculture Research Division, Department of Economic Development Jobs Transport and Resources, Ellinbank Centre, Ellinbank 3821, Victoria, Australia
| | - Maik Kindermann
- Animal Nutrition and Health, DSM Nutritional Products, Basel CH-4002, Switzerland
| | - Stephane Duval
- Research Centre for Animal Nutrition and Health, DSM Nutritional Products France, Saint Louis Cedex 68305, France
| |
Collapse
|
41
|
Witzig M, Boguhn J, Zeder M, Seifert J, Rodehutscord M. Effect of donor animal species and their feeding on the composition of the microbial community establishing in a rumen simulation. J Appl Microbiol 2015; 119:33-46. [DOI: 10.1111/jam.12829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 11/26/2022]
Affiliation(s)
- M. Witzig
- Institut für Nutztierwissenschaften; Universität Hohenheim; Stuttgart Germany
| | - J. Boguhn
- Institut für Nutztierwissenschaften; Universität Hohenheim; Stuttgart Germany
| | - M. Zeder
- Technobiology GmbH; Buchrain Switzerland
| | - J. Seifert
- Institut für Nutztierwissenschaften; Universität Hohenheim; Stuttgart Germany
| | - M. Rodehutscord
- Institut für Nutztierwissenschaften; Universität Hohenheim; Stuttgart Germany
| |
Collapse
|
42
|
Ertl P, Knaus W, Metzler-Zebeli BU, Klevenhusen F, Khiaosa-Ard R, Zebeli Q. Substitution of common concentrates with by-products modulated ruminal fermentation, nutrient degradation, and microbial community composition in vitro. J Dairy Sci 2015; 98:4762-71. [PMID: 25981072 DOI: 10.3168/jds.2014-9063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/02/2015] [Indexed: 11/19/2022]
Abstract
A rumen simulation technique was used to evaluate the effects of the complete substitution of a common concentrate mixture (CON) with a mixture consisting solely of by-products from the food industry (BP) at 2 different forage-to-concentrate ratios on ruminal fermentation profile, nutrient degradation, and abundance of rumen microbiota. The experiment was a 2×2 factorial arrangement with 2 concentrate types (CON and BP) and 2 concentrate levels (25 and 50% of diet dry matter). The experiment consisted of 2 experimental runs with 12 fermentation vessels each (n=6 per treatment). Each run lasted for 10d, with data collection on the last 5d. The BP diets had lower starch, but higher neutral detergent fiber (NDF) and fat contents compared with CON. Degradation of crude protein was decreased, but NDF and nonfiber carbohydrate degradation were higher for the BP diets. At the 50% concentrate level, organic matter degradation tended to be lower for BP and CH4 formation per unit of NDF degraded was also lower for BP. The BP mixture led to a higher concentration of propionate and a lower acetate-to-propionate ratio, whereas concentrations of butyrate and caproate decreased. Concentrate type did not affect microbial community composition, except that the abundance of bacteria of the genus Prevotella was higher for BP. Increasing the concentrate level resulted in higher degradation of organic matter and crude protein. At the higher concentrate level, total short-chain fatty acid formation increased and concentrations of isobutyrate and valerate decreased. In addition, at the 50% concentrate level, numbers of protozoa increased, whereas numbers of methanogens, anaerobic fungi, and fibrolytic bacteria decreased. No interaction was noted between the 2 dietary factors on most variables, except that at the higher concentrate level the effects of BP on CH4 and CO2 formation per unit of NDF degraded, crude protein degradation, and the abundance of Prevotella were more prominent. In conclusion, the results of this study suggest that BP in the diet can adequately substitute CON with regard to ruminal fermentation profile and microbiota, showing even favorable fermentation patterns when fed at 50% inclusion rate.
Collapse
Affiliation(s)
- P Ertl
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria.
| | - W Knaus
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, BOKU-University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - B U Metzler-Zebeli
- Department for Farm Animals and Veterinary Public Health, Clinic for Swine, University of Veterinary Medicine, 1210 Vienna, Austria
| | - F Klevenhusen
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| | - R Khiaosa-Ard
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Q Zebeli
- Department for Farm Animals and Veterinary Public Health, Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
43
|
|
44
|
Fowler C, Plank J, Devillard E, Bequette B, Firkins J. Assessing the ruminal action of the isopropyl ester of 2-hydroxy-4-(methylthio) butanoic acid in continuous and batch cultures of mixed ruminal microbes. J Dairy Sci 2015; 98:1167-77. [DOI: 10.3168/jds.2014-8692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/25/2014] [Indexed: 02/02/2023]
|
45
|
Lee C, Oh J, Hristov A, Harvatine K, Vazquez-Anon M, Zanton G. Effect of 2-hydroxy-4-methylthio-butanoic acid on ruminal fermentation, bacterial distribution, digestibility, and performance of lactating dairy cows. J Dairy Sci 2015; 98:1234-47. [DOI: 10.3168/jds.2014-8904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 10/26/2014] [Indexed: 12/15/2022]
|
46
|
Wall EH, Doane PH, Donkin SS, Bravo D. The effects of supplementation with a blend of cinnamaldehyde and eugenol on feed intake and milk production of dairy cows. J Dairy Sci 2014; 97:5709-17. [DOI: 10.3168/jds.2014-7896] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 06/07/2014] [Indexed: 11/19/2022]
|
47
|
Meale SJ, Beauchemin KA, Hristov AN, Chaves AV, McAllister TA. Board-invited review: Opportunities and challenges in using exogenous enzymes to improve ruminant production. J Anim Sci 2013; 92:427-42. [PMID: 24363327 DOI: 10.2527/jas.2013-6869] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The ability of ruminants to convert plant biomass unsuitable for human consumption into meat and milk is of great societal and agricultural importance. However, the efficiency of this process is largely dependent on the digestibility of plant cell walls. Supplementing ruminant diets with exogenous enzymes has the potential to improve plant cell wall digestibility and thus the efficiency of feed utilization. Understanding the complexity of the rumen microbial ecosystem and the nature of its interactions with plant cell walls is the key to using exogenous enzymes to improve feed utilization in ruminants. The variability currently observed in production responses can be attributed to the array of enzyme formulations available, their variable activities, the level of supplementation, mode of delivery, and the diet to which they are applied as well as the productivity level of the host. Although progress on enzyme technologies for ruminants has been made, considerable research is still required if successful formulations are to be developed. Advances in DNA and RNA sequencing and bioinformatic analysis have provided novel insight into the structure and function of rumen microbial populations. Knowledge of the rumen microbial ecosystem and its associated carbohydrases could enhance the likelihood of achieving positive responses to enzyme supplementation. The ability to sequence microbial genomes represents a valuable source of information in terms of the physiology and function of both culturable and unculturable rumen microbial species. The advent of metagenomic, metatranscriptomic, and proteomic techniques will further enhance our understanding of the enzymatic machinery involved in cell wall degradation and provide a holistic view of the microbial community and the complexities of plant cell wall digestion. These technologies should provide new insight into the identification of exogenous enzymes that act synergistically with the rumen microbial populations that ultimately dictate the efficiency of feed digestion.
Collapse
Affiliation(s)
- S J Meale
- Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
48
|
Tekippe JA, Tacoma R, Hristov AN, Lee C, Oh J, Heyler KS, Cassidy TW, Varga GA, Bravo D. Effect of essential oils on ruminal fermentation and lactation performance of dairy cows. J Dairy Sci 2013; 96:7892-903. [PMID: 24119814 DOI: 10.3168/jds.2013-7128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022]
Abstract
Three experiments (Exp.) were conducted to study the effects of dietary addition of an essential oil product (EO) based on eugenol and cinnamaldehyde (0, control, or 525 mg/d of Xtract 6965; Pancosma SA, Geneva, Switzerland) on ruminal fermentation, total-tract digestibility, manure gas emissions, N losses, and dairy cow performance. In Exp. 1 and 3, the EO supplement was added to the vitamin-mineral premix. In Exp. 2, EO was top-dressed. Experiments 1 and 2 were crossover designs with 20 multiparous Holstein cows each (including 4 and 8 ruminally cannulated cows, respectively) and consisted of two 28-d periods. Intake of dry matter did not differ between treatments. Most ruminal fermentation parameters were unaffected by EO. Concentrations of ammonia (Exp. 1), isobutyrate (Exp. 1 and 2), and isovalerate (Exp. 1) were increased by EO compared with the control. Apparent total-tract digestibility of nutrients was similar between treatments, except total-tract digestibility of neutral-detergent fiber, which was increased or tended to be increased by EO in Exp. 1 and 2. Manure emissions of ammonia and methane were unaffected by EO. Blood plasma and milk urea-N concentrations and urinary N losses were increased by EO compared with the control in Exp. 1, but not in Exp. 2. Average milk yield, 3.5% fat-corrected milk yield, and milk fat, protein, and lactose concentrations were unaffected by treatment. Urinary excretion of purine derivatives, a marker for microbial protein production in the rumen, was greater in cows receiving the EO diet in Exp. 1, but not in Exp. 2. In Exp. 3, 120 Holstein cows were grouped in pens of 20 cows/pen in a 12-wk experiment to study production effects of EO. Dry matter intake, milk yield (a trend for a slight decrease with EO), milk components, milk urea N, and feed efficiency were similar between treatments. Results from these studies indicate that supplementing dairy cows with 525 mg/d of Xtract 6965 had moderate effects on ruminal fermentation, but consistently increased ruminal isobutyrate concentration and tended to increase total-tract digestibility of neutral-detergent fiber. Under the conditions of these experiments, Xtract 6965 fed at 525 mg/d did not affect milk production or composition.
Collapse
Affiliation(s)
- J A Tekippe
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, Makkar HPS, Adesogan AT, Yang W, Lee C, Gerber PJ, Henderson B, Tricarico JM. Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci 2013; 91:5045-69. [PMID: 24045497 DOI: 10.2527/jas.2013-6583] [Citation(s) in RCA: 439] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The goal of this review was to analyze published data related to mitigation of enteric methane (CH4) emissions from ruminant animals to document the most effective and sustainable strategies. Increasing forage digestibility and digestible forage intake was one of the major recommended CH4 mitigation practices. Although responses vary, CH4 emissions can be reduced when corn silage replaces grass silage in the diet. Feeding legume silages could also lower CH4 emissions compared to grass silage due to their lower fiber concentration. Dietary lipids can be effective in reducing CH4 emissions, but their applicability will depend on effects on feed intake, fiber digestibility, production, and milk composition. Inclusion of concentrate feeds in the diet of ruminants will likely decrease CH4 emission intensity (Ei; CH4 per unit animal product), particularly when inclusion is above 40% of dietary dry matter and rumen function is not impaired. Supplementation of diets containing medium to poor quality forages with small amounts of concentrate feed will typically decrease CH4 Ei. Nitrates show promise as CH4 mitigation agents, but more studies are needed to fully understand their impact on whole-farm greenhouse gas emissions, animal productivity, and animal health. Through their effect on feed efficiency and rumen stoichiometry, ionophores are likely to have a moderate CH4 mitigating effect in ruminants fed high-grain or mixed grain-forage diets. Tannins may also reduce CH4 emissions although in some situations intake and milk production may be compromised. Some direct-fed microbials, such as yeast-based products, might have a moderate CH4-mitigating effect through increasing animal productivity and feed efficiency, but the effect is likely to be inconsistent. Vaccines against rumen archaea may offer mitigation opportunities in the future although the extent of CH4 reduction is likely to be small and adaptation by ruminal microbes and persistence of the effect is unknown. Overall, improving forage quality and the overall efficiency of dietary nutrient use is an effective way of decreasing CH4 Ei. Several feed supplements have a potential to reduce CH4 emission from ruminants although their long-term effect has not been well established and some are toxic or may not be economically feasible.
Collapse
Affiliation(s)
- A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hristov AN, Lee C, Cassidy T, Heyler K, Tekippe JA, Varga GA, Corl B, Brandt RC. Effect of Origanum vulgare L. leaves on rumen fermentation, production, and milk fatty acid composition in lactating dairy cows. J Dairy Sci 2012; 96:1189-202. [PMID: 23245964 DOI: 10.3168/jds.2012-5975] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/04/2012] [Indexed: 01/07/2023]
Abstract
This experiment investigated the effects of dietary supplementation of Origanum vulgare L. leaf material (OR) on rumen fermentation, production, and milk fatty acid composition in dairy cows. The experimental design was a replicated 4 × 4 Latin square with 8 rumen-cannulated Holstein cows and 20-d experimental periods. Treatments were control (no OR supplementation), 250 g/cow per day OR (LOR), 500 g/d OR (MOR), and 750 g/d OR (HOR). Oregano supplementation had no effect on rumen pH, volatile fatty acid concentrations, and estimated microbial protein synthesis, but decreased ammonia concentration and linearly decreased methane production per unit of dry matter intake (DMI) compared with the unsupplemented control: 18.2, 16.5, 11.7, and 13.6g of methane/kg of DMI, respectively. Proportions of rumen bacterial, methanogen, and fungal populations were not affected by treatment. Treatment had no effect on total-tract apparent digestibility of dietary nutrients, except neutral detergent fiber digestibility was slightly decreased by all OR treatments compared with the control. Urinary N losses and manure odor were not affected by OR, except the proportion of urinary urea N in the total excreted urine N tended to be decreased compared with the control. Oregano linearly decreased DMI (28.3, 28.3, 27.5, and 26.7 kg/d for control, LOR, MOR, and HOR, respectively). Milk yield was not affected by treatment: 43.4, 45.2, 44.1, and 43.4 kg/d, respectively. Feed efficiency was linearly increased with OR supplementation and was greater than the control (1.46, 1.59, 1.60, and 1.63 kg/kg, respectively). Milk composition was unaffected by OR, except milk urea-N concentration was decreased. Milk fatty acid composition was not affected by treatment. In this short-term study, OR fed at 250 to 750 g/d decreased rumen methane production in dairy cows within 8h after feeding, but the effect over a 24-h feeding cycle has not been determined. Supplementation of the diet with OR linearly decreased DMI and increased feed efficiency. Oregano had no effects on milk fatty acid composition.
Collapse
Affiliation(s)
- A N Hristov
- Department of Dairy and Animal Science, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | |
Collapse
|