1
|
Xin H, Ahmad Khan N, Sun K, Sun F, Ur Rahman S, Fu Q, Li Y, Zhang Y, Hu G. Batch-to-batch variation in protein molecular structures, nutritive value and ruminal metabolism in corn coproducts. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
2
|
Xin H, Sun F, Sun K, Fu Q, Li Y, Zhang Y, Rahman SU, Khan NA. Batch-to-batch variation in carbohydrates molecular structures, nutritive value and biodegradation characteristics in corn coproducts. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Shi H, Yu P. Advanced synchrotron-based and globar-sourced molecular (micro) spectroscopy contributions to advances in food and feed research on molecular structure, mycotoxin determination, and molecular nutrition. Crit Rev Food Sci Nutr 2017; 58:2164-2175. [DOI: 10.1080/10408398.2017.1303769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Haitao Shi
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
4
|
Within plant variation of distillers dried grains with solubles (DDGS) produced from multiple raw materials in varying proportions: Chemical composition and in vitro evaluation of feeding value for ruminants. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Whiting I, Pirgozliev V, Rose S, Wilson J, Amerah A, Ivanova S, Staykova G, Oluwatosin O, Oso A. Nutrient availability of different batches of wheat distillers dried grains with solubles with and without exogenous enzymes for broiler chickens. Poult Sci 2017; 96:574-580. [DOI: 10.3382/ps/pew262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/14/2016] [Indexed: 11/20/2022] Open
|
6
|
Huang X, Zhang H, Yu P. Structural changes on a molecular basis of canola meal by conditioning temperature and time during pelleting process in relation to physiochemical (energy and protein) properties relevant to ruminants. PLoS One 2017; 12:e0170173. [PMID: 28207756 PMCID: PMC5313162 DOI: 10.1371/journal.pone.0170173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 12/31/2016] [Indexed: 11/24/2022] Open
Abstract
The objectives of this study were: (1) To investigate the effects of conditioning temperature (70, 80, 90°C), time (30, 60 sec), and interaction (temperature × time) during the pelleting process on internal protein molecular structure changes of the co-products; (2) To identify differences in protein molecular structures among pellets that were processed under different conditions, and between unprocessed mash and pellets; 3) To quantify protein molecular structure changes in relation to predicted energy and protein utilization in dairy cows. The final goal of this program was to show how processing conditions changed internal feed structure on a molecular basis and how molecular structure changes induced by feed processing affected feed milk value in dairy cows. The hypothesis in this study was that processing-induced protein inherent structure changes affected energy and protein availability in dairy cattle and the sensitivity and response of protein internal structure to the different pelleting process conditions could be detected by advanced molecular spectroscopy. The protein molecular structures, amides I and II, amide I to II ratios, α-helix structure, β-sheet structure, and α to β structure ratios, were determined using the advanced vibrational molecular spectroscopy (ATR-FT/IR). The energy values were determined using NRC2001 summary approach in terms of total digestible nutrients, metabolizable and net energy for lactation. The protein and carbohydrate subfactions that are related to rumen degradation characteristics and rumen undegraded protein supply were determined using updated CNCPS system. The experiment design was a RCBD and the treatment design was a 3x2 factorial design. The results showed that pelleting induced changes in protein molecular structure. The sensitivity and response of protein inherent structure to the pelleting depended on the conditioning temperature and time. The protein molecular structure changes were correlated (P < 0.05) with energy values and protein subfractions of the pelleted co-product. The results indicated that the protein internal molecular structure had significant roles in determining energy and protein nutritive values in dairy cows. Multi-regression study with model variables selection showed that the energy and protein profiles in pelleted co-products could be predicted with the protein molecular structure profiles. This approach provides us a relatively new way to estimate protein value in dairy cows based on internal protein molecular structure profile.
Collapse
Affiliation(s)
- Xuewei Huang
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Huihua Zhang
- College of Life Science and Engineering, Foshan University, Guangdong, China
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- College of Life Science and Engineering, Foshan University, Guangdong, China
- * E-mail:
| |
Collapse
|
7
|
Lei Y, Hannoufa A, Yu P. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage. Int J Mol Sci 2017; 18:E298. [PMID: 28146083 PMCID: PMC5343834 DOI: 10.3390/ijms18020298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/10/2017] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO) in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved in important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfa quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding.
Collapse
Affiliation(s)
- Yaogeng Lei
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada.
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
8
|
Rahman MDM, Theodoridou K, Yu P. Using vibrational infrared biomolecular spectroscopy to detect heat-induced changes of molecular structure in relation to nutrient availability of prairie whole oat grains on a molecular basis. J Anim Sci Biotechnol 2016; 7:52. [PMID: 27617083 PMCID: PMC5016947 DOI: 10.1186/s40104-016-0111-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/22/2016] [Indexed: 11/25/2022] Open
Abstract
Background To our knowledge, there is little study on the interaction between nutrient availability and molecular structure changes induced by different processing methods in dairy cattle. The objective of this study was to investigate the effect of heat processing methods on interaction between nutrient availability and molecular structure in terms of functional groups that are related to protein and starch inherent structure of oat grains with two continued years and three replication of each year. Method The oat grains were kept as raw (control) or heated in an air-draft oven (dry roasting: DO) at 120 °C for 60 min and under microwave irradiation (MIO) for 6 min. The molecular structure features were revealed by vibrational infrared molecular spectroscopy. Results The results showed that rumen degradability of dry matter, protein and starch was significantly lower (P <0.05) for MIO compared to control and DO treatments. A higher protein α-helix to β-sheet and a lower amide I to starch area ratio were observed for MIO compared to DO and/or raw treatment. A negative correlation (−0.99, P < 0.01) was observed between α-helix or amide I to starch area ratio and dry matter. A positive correlation (0.99, P < 0.01) was found between protein β-sheet and crude protein. Conclusion The results reveal that oat grains are more sensitive to microwave irradiation than dry heating in terms of protein and starch molecular profile and nutrient availability in ruminants.
Collapse
Affiliation(s)
- M D Mostafizar Rahman
- Ministry of Agriculture Strategic Research Chair in Feed R&D, Department of Animal and Poultry Science, College of Agriculture and Bioresources, The University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada ; The United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8550 Japan
| | - Katerina Theodoridou
- Ministry of Agriculture Strategic Research Chair in Feed R&D, Department of Animal and Poultry Science, College of Agriculture and Bioresources, The University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada ; Institute for Global Food Security, Queen's University Belfast, Clooreen Park, Malone Road, BT95HN Belfast, UK
| | - Peiqiang Yu
- Ministry of Agriculture Strategic Research Chair in Feed R&D, Department of Animal and Poultry Science, College of Agriculture and Bioresources, The University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|
9
|
Ji C, Zhang X, Yu P. Association of protein structure, protein and carbohydrate subfractions with bioenergy profiles and biodegradation functions in modeled forage. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 157:265-270. [PMID: 26702497 DOI: 10.1016/j.saa.2015.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
The objectives of this study were to detect unique aspects and association of forage protein inherent structure, biological compounds, protein and carbohydrate subfractions, bioenergy profiles, and biodegradation features. In this study, common available alfalfa hay from two different sourced-origins (FSO vs. CSO) was used as a modeled forage for inherent structure profile, bioenergy, biodegradation and their association between their structure and bio-functions. The molecular spectral profiles were determined using non-invasive molecular spectroscopy. The parameters included: protein structure amide I group, amide II group and their ratios; protein subfractions (PA1, PA2, PB1, PB2, PC); carbohydrate fractions (CA1, CA2, CA3, CA4, CB1, CB2, CC); biodegradable and undegradable fractions of protein (RDPA2, RDPB1, RDPB2, RDP; RUPA2 RUPB1, RUPB2, RUPC, RUP); biodegradable and undegradable fractions of carbohydrate (RDCA4, RDCB1, RDCB2, RDCB3, RDCHO; RUCA4, RUCB1; RUCB2; RUCB3 RUCC, RUCHO) and bioenergy profiles (tdNDF, tdFA, tdCP, tdNFC, TDN1×, DE3×, ME3×, NEL3×; NEm, NEg). The results show differences in protein and carbohydrate (CHO) subfractions in the moderately degradable true protein fraction (PB1: 502 vs. 420 g/kg CP, P=0.09), slowly degraded true protein fraction (PB2: 45 vs. 96 g/kg CP, P=0.02), moderately degradable CHO fraction (CB2: 283 vs. 223 g/kg CHO, P=0.06) and slowly degraded CHO fraction (CB3: 369 vs. 408 g/kg CHO) between the two sourced origins. As to biodegradable (RD) fractions of protein and CHO in rumen, there were differences in RD of PB1 (417 vs. 349 g/kg CP, P=0.09), RD of PB2 (29 vs. 62 g/kg CP, P=0.02), RD of CB2 (251 vs. 198 g/kg DM, P=0.06), RD of CB3 (236 vs. 261 g/kg CHO, P=0.08). As to bioenergy profile, there were differences in total digestible nutrient (TDN: 551 vs. 537 g/kg DM, P=0.06), and metabolic bioenergy (P=0.095). As to protein molecular structure, there were differences in protein structure 1st and 2nd amide groups (P<0.10), but no difference in the 1st to 2nd amide group intensity ratios (P>0.05). These results indicate that the sourced-origins and the internal molecular structure profiles affected biological functions, nutrient bioavailability and biodegradation.
Collapse
Affiliation(s)
- Cuiying Ji
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | - Xuewei Zhang
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China.
| | - Peiqiang Yu
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, 22 Jinjing Road, Tianjin 300384, China; Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
10
|
Li X, Zhang Y, Hannoufa A, Yu P. Transformation with TT8 and HB12 RNAi Constructs in Model Forage (Medicago sativa, Alfalfa) Affects Carbohydrate Structure and Metabolic Characteristics in Ruminant Livestock Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9590-9600. [PMID: 26492548 DOI: 10.1021/acs.jafc.5b03717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lignin, a phenylpropanoid polymer present in secondary cell walls, has a negative impact on feed digestibility. TT8 and HB12 genes were shown to have low expression levels in low-lignin tissues of alfalfa, but to date, there has been no study on the effect of down-regulation of these two genes in alfalfa on nutrient chemical profiles and availability in ruminant livestock systems. The objectives of this study were to investigate the effect of transformation of alfalfa with TT8 and HB12 RNAi constructs on carbohydrate (CHO) structure and CHO nutritive value in ruminant livestock systems. The results showed that transformation with TT8 and HB12 RNAi constructs reduced rumen, rapidly degraded CHO fractions (RDCA4, P = 0.06; RDCB1, P < 0.01) and totally degraded CHO fraction (TRDCHO, P = 0.08). Both HB12 and TT8 populations had significantly higher in vitro digestibility of neutral detergent fiber (NDF) at 30 h of incubation (ivNDF30) compared to the control (P < 0.01). The TT8 populations had highest ivDM30 and ivNDF240. Transformation of alfalfa with TT8 and HB12 RNAi constructs induced molecular structure changes. Different CHO functional groups had different sensitivities and different responses to the transformation. The CHO molecular structure changes induced by the transformation were associated with predicted CHO availability. Compared with HB12 RNAi, transformation with TT8 RNAi could improve forage quality by increasing the availability of both NDF and DM. Further study is needed on the relationship between the transformation-induced structure changes at a molecular level and nutrient utilization in ruminant livestock systems when lignification is much higher.
Collapse
Affiliation(s)
- Xinxin Li
- College of Agriculture and Bioresources, University of Saskatchewan , 51 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A8
- College of Animal Science and Technology, Northeast Agricultural University , Harbin 150030, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University , Harbin 150030, China
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, Canada N5V 4T3
| | - Peiqiang Yu
- College of Agriculture and Bioresources, University of Saskatchewan , 51 Campus Drive, Saskatoon, Saskatchewan, Canada S7N 5A8
- Tianjin Agricultural University , Tianjin 300384, China
| |
Collapse
|
11
|
Yang L, Yu P. Synchrotron-based and globar-sourced molecular (micro)spectroscopy contributions to advances in new hulless barley (with structure alteration) research on molecular structure, molecular nutrition, and nutrient delivery. Crit Rev Food Sci Nutr 2015; 57:224-236. [DOI: 10.1080/10408398.2013.876386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ling Yang
- College of Agriculture and Bioresources, The University of Saskatchewan, Saskatoon, Canada
| | - Peiqiang Yu
- College of Agriculture and Bioresources, The University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
12
|
Xin H, Zhang Y, Wang M, Li Z, Wang Z, Yu P. Characterization of protein and carbohydrate mid-IR spectral features in crop residues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 129:565-71. [PMID: 24813165 DOI: 10.1016/j.saa.2014.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 02/23/2014] [Accepted: 03/08/2014] [Indexed: 06/03/2023]
Abstract
To the best of our knowledge, a few studies have been conducted on inherent structure spectral traits related to biopolymers of crop residues. The objective of this study was to characterize protein and carbohydrate structure spectral features of three field crop residues (rice straw, wheat straw and millet straw) in comparison with two crop vines (peanut vine and pea vine) by using Fourier transform infrared spectroscopy (FTIR) technique with attenuated total reflectance (ATR). Also, multivariate analyses were performed on spectral data sets within the regions mainly related to protein and carbohydrate in this study. The results showed that spectral differences existed in mid-IR peak intensities that are mainly related to protein and carbohydrate among these crop residue samples. With regard to protein spectral profile, peanut vine showed the greatest mid-IR band intensities that are related to protein amide and protein secondary structures, followed by pea vine and the rest three field crop straws. The crop vines had 48-134% higher spectral band intensity than the grain straws in spectral features associated with protein. Similar trends were also found in the bands that are mainly related to structural carbohydrates (such as cellulosic compounds). However, the field crop residues had higher peak intensity in total carbohydrates region than the crop vines. Furthermore, spectral ratios varied among the residue samples, indicating that these five crop residues had different internal structural conformation. However, multivariate spectral analyses showed that structural similarities still exhibited among crop residues in the regions associated with protein biopolymers and carbohydrate. Further study is needed to find out whether there is any relationship between spectroscopic information and nutrition supply in various kinds of crop residue when fed to animals.
Collapse
Affiliation(s)
- Hangshu Xin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Mingjun Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhibo Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Peiqiang Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Department of Animal and Poultry Science, College of Agricultural and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; Department of Animal Science, Tianjin Agricultural University, 22 Jinjin Road, Tianjin 300384, China
| |
Collapse
|
13
|
Relationship of feeds protein structural makeup in common Prairie feeds with protein solubility, in situ ruminal degradation and intestinal digestibility. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2014.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Yang L, McKinnon JJ, Christensen DA, Beattie AD, Yu P. Characterizing the molecular structure features of newly developed hulless barley cultivars with altered carbohydrate traits (Hordeum vulgare L.) by globar-sourced infrared spectroscopy in relation to nutrient utilization and availability. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2013.12.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Yu P, Xin H, Ban Y, Zhang X. Interactive association between biopolymers and biofunctions in carinata seeds as energy feedstock and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation: current advanced molecular spectroscopic investigations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4039-4047. [PMID: 24773576 DOI: 10.1021/jf405809m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Recent advances in biofuel and bio-oil processing technology require huge supplies of energy feedstocks for processing. Very recently, new carinata seeds have been developed as energy feedstocks for biofuel and bio-oil production. The processing results in a large amount of coproducts, which are carinata meal. To date, there is no systematic study on interactive association between biopolymers and biofunctions in carinata seed as energy feedstocks for biofuel and bioethanol processing and their processing coproducts (carinata meal). Molecular spectroscopy with synchrotron and globar sources is a rapid and noninvasive analytical technique and is able to investigate molecular structure conformation in relation to biopolymer functions and bioavailability. However, to date, these techniques are seldom used in biofuel and bioethanol processing in other research laboratories. This paper aims to provide research progress and updates with molecular spectroscopy on the energy feedstock (carinata seed) and coproducts (carinata meal) from biofuel and bioethanol processing and show how to use these molecular techniques to study the interactive association between biopolymers and biofunctions in the energy feedstocks and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation.
Collapse
Affiliation(s)
- Peiqiang Yu
- Department of Animal Science, Tianjin Agricultural University , 22 Jinjin Road, Tianjin 300384, China
| | | | | | | |
Collapse
|
16
|
Gamage IH, Jonker A, Zhang X, Yu P. Non-destructive analysis of the conformational differences among feedstock sources and their corresponding co-products from bioethanol production with molecular spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 118:407-421. [PMID: 24076457 DOI: 10.1016/j.saa.2013.08.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 08/15/2013] [Accepted: 08/23/2013] [Indexed: 06/02/2023]
Abstract
The objective of this study was to determine the possibility of using molecular spectroscopy with multivariate technique as a fast method to detect the source effects among original feedstock sources of wheat and their corresponding co-products, wheat DDGS, from bioethanol production. Different sources of the bioethanol feedstock and their corresponding bioethanol co-products, three samples per source, were collected from the same newly-built bioethanol plant with current bioethanol processing technology. Multivariate molecular spectral analyses were carried out using agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA). The molecular spectral data of different feedstock sources and their corresponding co-products were compared at four different regions of ca. 1800-1725 cm(-1) (carbonyl CO ester, mainly related to lipid structure conformation), ca. 1725-1482 cm(-1) (amide I and amide II region mainly related to protein structure conformation), ca. 1482-1180 cm(-1) (mainly associated with structural carbohydrate) and ca. 1180-800 cm(-1) (mainly related to carbohydrates) in complex plant-based system. The results showed that the molecular spectroscopy with multivariate technique could reveal the structural differences among the bioethanol feedstock sources and among their corresponding co-products. The AHCA and PCA analyses were able to distinguish the molecular structure differences associated with chemical functional groups among the different sources of the feedstock and their corresponding co-products. The molecular spectral differences indicated the differences in functional, biomolecular and biopolymer groups which were confirmed by wet chemical analysis. These biomolecular and biopolymer structural differences were associated with chemical and nutrient profiles and nutrient utilization and availability. Molecular spectral analyses had the potential to identify molecular structure difference among bioethanol feedstock sources and their corresponding co-products.
Collapse
Affiliation(s)
- I H Gamage
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | | | | | | |
Collapse
|
17
|
Damiran D, Zhang X, Yu P. Optimized utilization of the co-products from bioethanol processing and oat grain: effect of blending on biochemical, biodegradation, and nutritional profiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11517-11523. [PMID: 24195597 DOI: 10.1021/jf403254a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The objective of this study was to (1) optimize the utilization of wheat-based dried distillers grains with soluble (wDDGS) by blending with oat ( Avena sativa L.) grain as an alternative feed for beef cattle when the barley price is high and (2) investigate the effect of blending on biochemical, biodegradation, and nutritional profiles. Oat grains were blended with wDDGS produced in western Canada at different levels (4:0, 3:1, 2:2, and 1:3 on %DM basis in two batches, denoted O0, O25, O50, and O75, respectively). The study revealed that increasing the wDDGS resulted in increasing most nutrient contents linearly (P < 0.05) except for starch and cell wall materials, which were linearly decreased (from 43.6 to 12.0% and from 34.5 to 29.1% of DM for starch and NDF, respectively). When wDDGS was increased in the blend/mixture, intestinally absorbable protein and degradable balance of protein increased (P < 0.05). Overall, through blending or combining with the cereal grain, the co-products from bioethanol processing could be optimally utilized. The best combination of oat to wDDGS ratio was 75% to 25%.
Collapse
Affiliation(s)
- Daalkhaijav Damiran
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan , 51 Campus Drive, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
18
|
Gamage I, Yu P. Short communication: Comparison of the newly developed DVE/OEB (2010) system and the National Research Council (2001) model in modeling metabolic characteristics of proteins in dairy cattle. J Dairy Sci 2013; 96:5908-13. [DOI: 10.3168/jds.2012-6105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 05/08/2013] [Indexed: 11/19/2022]
|
19
|
Azarfar A, Jonker A, Yu P. Protein structures among bio-ethanol co-products and its relationships with ruminal and intestinal availability of protein in dairy cattle. Int J Mol Sci 2013; 14:16802-16. [PMID: 23955265 PMCID: PMC3759936 DOI: 10.3390/ijms140816802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/27/2013] [Accepted: 08/05/2013] [Indexed: 11/22/2022] Open
Abstract
The objectives of this study were to reveal molecular structures of protein among different types of the dried distillers grains with solubles (100% wheat DDGS (WDDGS); DDGS blend1 (BDDGS1, corn to wheat ratio 30:70%); DDGS blend2 (BDDGS2, corn to wheat ratio 50:50 percent)) and different batches within DDGS type using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). Compared with BDDGS1 and BDDGS2, wheat DDGS had higher (p < 0.05) peak area intensities of protein amide I and II and amide I to II intensity ratio. Increasing the corn to wheat ratio form 30:70 to 50:50 in the blend DDGS did not affect amide I and II area intensities and their ratio. Amide I to II peak intensity ratio differed (p < 0.05) among the different batches within WDDGS and BDDGS1. Compared with both blend DDGS types, WDDGS had higher α-helix and β-sheet ratio (p < 0.05), while α-helix to β-sheet ratio was similar among the three DDGS types. The α-helix to β-sheet ratio differed significantly among batches within WDDGS. Principal component analysis (PCA) revealed that protein molecular structures in WDDGS differed from those of BDDGS1 and between different batches within BDDGS1 and BDDGS2. The α-helix to β-sheet ratios of protein in all DDGS types had an influence on availability of protein at the ruminal level as well as at the intestinal level. The α-helix to β-sheet ratio was positively correlated to rumen undegraded protein (r = 0.41, p < 0.05) and unavailable protein (PC; r = 0.59, p < 0.05).
Collapse
Affiliation(s)
- Arash Azarfar
- Department of Animal and Poultry Science, College of Agriculture and Bio-Resources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; E-Mails: (A.A.); (A.J.)
- Faculty of Agriculture, Lorestan University, PO Box 465, Khorramabad, Iran
| | - Arjan Jonker
- Department of Animal and Poultry Science, College of Agriculture and Bio-Resources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; E-Mails: (A.A.); (A.J.)
- Grasslands Research Centre, AgResearch Ltd., Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bio-Resources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; E-Mails: (A.A.); (A.J.)
- Department of Animal Science, Tianjin Agricultural University, 22 Jinjin Road, Xiqing District, Tianjin 300384, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-306-966-4132; Fax: +1-306-966-4151
| |
Collapse
|