1
|
Cuttance EL, Mason WA, Cranefield S, Laven RA. The effect of three different preservatives on the numbers and types of bacteria, Brix percentage, pH and nutritional composition of bovine colostrum sourced from New Zealand dairy farms. N Z Vet J 2024:1-10. [PMID: 39222940 DOI: 10.1080/00480169.2024.2392686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
AIMS To investigate the effect of preservation by addition of yoghurt starter, potassium sorbate and citric acid on counts of aerobic bacteria, Lactobacillus spp., Streptococcus thermophilus and coliforms, Brix percentage, pH, protein, fat and anhydrous lactose concentrations at 0, 7 and 14 days after collection for colostrum stored at ambient temperature. METHOD Approximately 2 L of first milking colostrum was collected from 10 farms in the Waikato region. Following mixing, it was split into five 400-mL sub-samples and allocated randomly to a control (two sub-samples), or treatment with yoghurt, potassium sorbate, or citric acid preservative. Throughout the trial samples remained in the laboratory at ambient temperature with the lids slightly ajar, and were stirred daily for 15-30 seconds using a sterile spatula. Sub-samples were tested on Days 0, 7 and 14. On Days 0 and 14 aerobic bacteria (by aerobic plate count (APC)), Lactobacillus spp., coliforms and Streptococcus thermophilus counts, pH, Brix percentage, protein, fat and anhydrous lactose were measured. On Day 7 only bacterial counts were completed.The data were analysed using non-parametric clustered bootstrap sampling to estimate the effect of treatment, time, and their interaction on the outcome variables. RESULTS Compared to control samples, on Day 7 the APC for potassium sorbate (1.0 (90% CI = 0.6-1.6) × 108 cfu/mL) was approximately seven-fold lower than for yoghurt (7.3 (90% CI = 4.1-11) × 108 cfu/mL), and approximately three-fold lower than citric acid (3.2 (90% CI = 0.2-4.3) × 108 cfu/mL) remaining low to Day 14. All preservatives reduced coliform growth compared to control samples at Day 7 but growth was lower for potassium sorbate than the other preservatives. For Lactobacillus spp., at Day 7, samples with yoghurt preservative had greater counts than the other two preservatives. Potassium sorbate reduced growth of S. thermophilus compared to the other treatments, especially at Day 7, with 7-10 times fewer S. thermophilus per mL compared to the other three groups. All groups showed an obvious acidification over time, with very little variation within days and treatment groups. There was no evidence for change in fat or protein percentage over time regardless of treatment. CONCLUSION AND CLINICAL RELEVANCE Aerobic and coliform bacteria proliferate extensively in unpreserved colostrum. All preservatives decreased coliform counts compared to un-preserved colostrum, but potassium sorbate was more effective at decreasing both coliforms and aerobic bacteria than either yoghurt or citric acid.
Collapse
Affiliation(s)
| | | | | | - R A Laven
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Chen T, Liu S, Zhang S, Song H, Zhuang Y, Ma J, Xiao J, Wang J, Ma Y, Wang Y, Wang W, Li S, Cao Z. Initial diet shapes resistance-gene composition and fecal microbiome dynamics in young ruminants during nursing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172103. [PMID: 38556024 DOI: 10.1016/j.scitotenv.2024.172103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
This study was conducted to examine how colostrum pasteurization affects resistance genes and microbial communities in calf feces. Forty female Holstein calves were randomly assigned to either the control (CON) group, which received unheated colostrum, or the pasteurized colostrum (PAT) group. The calves body weight was measured weekly before morning feeding. Calf starter intake were measured and recorded daily before morning feeding. Samples of colostrum were collected before feeding. Blood was collected on d 1 and 70 before morning feeding. Ten calves were randomly selected from each group (n = 20 calves total) for fecal sampling on d 3, 28, 56 and 70 for subsequent DNA extraction and metagenomic sequencing. Total bacterial counts in the colostrum were markedly higher in the CON group than in the PAT group. Pasteurized colostrum administration substantially reduced the ARO diversity and diminishes the abundance of Enterobacteriaceae, thereby decreasing their contribution to resistance genes. Pasteurization also reduced glucoside hydrolase-66 activity in 3-day-old calves which led to an increase in the activity of aminoglycoside antibiotics, resulting in 52.63 % of PAT-enriched bacteria acquiring aminoglycoside resistance genes. However, from the perspective of overall microbial community, the proportion of aminoglycoside, beta-lactam and tetracycline resistance genes carried by microbial community in PAT group was lower than CON group (P < 0.05). Fecal samples from the PAT group contained greater abundances of Subdoligranulum (P < 0.05) and Lachnospiraceae_NK4A136_group (P < 0.05) on days 28 and 70 compared to CON. Network analysis and abundance variations of the different bacteria obtained by linear discriminant analysis effect size analysis showed that pasteurized colostrum feeding reduced the interactions among related bacteria and maintained stability of the hind-gut microbiome. In conclusion, these findings underscore the intricate interactions between early diet, calf resistance-gene transmission and microbial dynamics, which should be carefully considered in calf-rearing practices.
Collapse
Affiliation(s)
- Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuyuan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haotong Song
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yimin Zhuang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Rabaza A, Fraga M, Mendoza A, Giannitti F. A meta-analysis of the effects of colostrum heat treatment on colostral viscosity, immunoglobulin G concentration, and the transfer of passive immunity in newborn dairy calves. J Dairy Sci 2023; 106:7203-7219. [PMID: 37164854 DOI: 10.3168/jds.2022-22555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/19/2023] [Indexed: 05/12/2023]
Abstract
Newborn ruminants depend on colostrum intake immediately after birth to obtain immunoglobulins for effective transfer of passive immunity (TPI). As colostrum may also be a vehicle of infectious agents, heat treatment of raw colostrum is a practice aimed at eliminating or reducing its pathogen load. Despite the usefulness of heat treatment in preventing the transmission of infectious colostrum-borne diseases, heat treatment of colostrum may have some side effects. A systematic review and meta-analysis were conducted to summarize the effects of colostrum heat treatment on colostral viscosity and IgG concentration, and serum IgG concentration as a proxy for TPI in newborn calves fed raw versus heat-treated colostrum. Moderators were studied to identify sources of heterogeneity. Literature databases were searched for peer-reviewed articles published between 1946 and 2022. A Master of Science thesis was also included. Five, 21, and 19 original publications were quantitatively evaluated in 3 separate meta-analyses, based on predefined selection criteria. Two-level and 3-level random-effects meta-analysis revealed a significant overall effect of heat treatment on colostral viscosity and IgG concentration, and serum IgG concentration in newborns. Heat-treated colostrum had significantly higher viscosity (21.0 cP, 95% CI: 3.8 to 38.2) and lower IgG concentration (-7.4 g/L, 95% CI: -11.1 to -3.7) compared with raw colostrum. Overall, newborn calves fed heat-treated colostrum had higher serum IgG concentrations (2.8 g/L, 95% CI: 1.4 to 4.0) 24-48 h after birth than those fed with raw colostrum. Particularly, this positive effect on the serum IgG concentrations was seen when colostrum was heat-treated at ≤60°C (2.9 g/L, 95% CI: 0.9 to 4.2) and when the standard low-temperature low-time (LTLT) method was used for heat treatment (2.6 g/L, 95% CI: 0.1 to 5.1). Colostrum treated at >60-63.5°C tended to have higher viscosity (275.6 cP, 95% CI: -37.9 to 589.3) and had lower IgG concentration (-21.7 g/L, 95% CI: -27.3 to -16.1). Calves fed colostrum treated at this temperature range had significantly lower serum IgG (-4.2 g/L, 95% CI: -7.9 to -0.4) compared with those fed raw colostrum. Heat treatment of colostrum at 72-76°C was not associated with a significant increase in colostral viscosity (6.3 cP, 95% CI: -324.3 to 336.9) nor a reduction in IgG colostral concentration (-13.1 g/L, 95% CI: -26.5 to 0.2), but calves fed colostrum treated at this temperature range had a significant reduction in serum IgG (-11.3 g/L, 95% CI: -17.1 to -5.4). Feeding newborn calves with colostrum heat-treated at ≤60°C by the standard LTLT method, particularly within 2 h after birth, resulted in increased serum IgG concentration at 24-48 h of age. Importantly, delaying feeding of heat-treated colostrum to newborns beyond 2 h of age resulted in no significant difference in IgG serum levels compared with feeding raw colostrum, highlighting the importance of early administration of heat-treated colostrum to favor TPI. On-farm colostrum heat treating should achieve an equilibrium between pathogen elimination and the preservation of colostral immunoglobulins while minimizing undesired increases in viscosity. The beneficial effects of colostrum heat treatment on TPI can be negligible if colostrum feeding is not performed within 2 h after birth.
Collapse
Affiliation(s)
- A Rabaza
- Unidad Mixta UMPI, Institut Pasteur de Montevideo + Instituto Nacional de Investigación Agropecuaria (INIA), Montevideo, 11400 Uruguay; Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA La Estanzuela, Colonia, 70000 Uruguay.
| | - M Fraga
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA La Estanzuela, Colonia, 70000 Uruguay
| | - A Mendoza
- Programa Nacional de Investigación en Producción de Leche, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA La Estanzuela, Colonia, 70000 Uruguay
| | - F Giannitti
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA La Estanzuela, Colonia, 70000 Uruguay.
| |
Collapse
|
4
|
Costa A, Sneddon NW, Goi A, Visentin G, Mammi LME, Savarino EV, Zingone F, Formigoni A, Penasa M, De Marchi M. Invited review: Bovine colostrum, a promising ingredient for humans and animals-Properties, processing technologies, and uses. J Dairy Sci 2023; 106:5197-5217. [PMID: 37268582 DOI: 10.3168/jds.2022-23013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/30/2023] [Indexed: 06/04/2023]
Abstract
Mammalian colostrum, known as "liquid gold," is considered a valuable source of essential nutrients, growth factors, probiotics, prebiotics, antibodies, and other bioactive compounds. Precisely for this reason, bovine colostrum (BC) is an emerging ingredient for the feed, food, and pharmaceutical industries, being nowadays commercially available in a variety of forms in several countries. Moreover, quite a large number of functional foods and supplements for athletes, human medicines, pet nutrition plans, and complementary feed for some livestock categories, such as piglets and calves, contain BC. The amount of BC yielded by a cow after calving represents approximately 0.5% of the yearly output in dairy breeds. For its nutritional properties and low availability, BC is characterized by a greater market value and an increasing demand compared with other by-products of the dairy sector. However, information regarding the market size of BC for the food and pharmaceutical industries, as well as future developments and perspectives, is scarcely available in the scientific literature. This lack can be attributed to industrial secrecy as well as to the relatively small scale of the BC business when compared with other dairy products, which makes the BC market limited, specific, and intended for a restricted audience. From a legal perspective, regulations assign BC to the large family of milk-derived powders; thus, collecting specific production data, as well as import-export trend information, is not straightforward and can result in unprecise estimates. Given that the interest in BC is increasing in different fields, it is important to have an overview of the production steps and of pros and cons of this emerging ingredient. The present narrative review discloses why BC has started to be considered a product rather than a by-product of the dairy industry. Moreover, the present document aims to summarize the existing methodologies used to assess BC quality in terms of immunoglobulin concentration, the different applications of BC in the industry, and the BC processing technologies. Finally, a panoramic view of the current international market is provided for the first time for this dairy product.
Collapse
Affiliation(s)
- A Costa
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell'Emilia (BO), Italy.
| | - N W Sneddon
- School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - A Goi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - G Visentin
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell'Emilia (BO), Italy
| | - L M E Mammi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell'Emilia (BO), Italy
| | - E V Savarino
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via N. Giustiniani 2, 35128 Padova (PD), Italy; Gastroenterology Unit, Azienda Ospedale Università di Padova, Via N. Giustiniani 2, 35128 Padova (PD), Italy
| | - F Zingone
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via N. Giustiniani 2, 35128 Padova (PD), Italy; Gastroenterology Unit, Azienda Ospedale Università di Padova, Via N. Giustiniani 2, 35128 Padova (PD), Italy
| | - A Formigoni
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell'Emilia (BO), Italy
| | - M Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
5
|
Zamuner F, Leury BJ, DiGiacomo K. Review: Feeding strategies for rearing replacement dairy goats - from birth to kidding. Animal 2023; 17:100853. [PMID: 37271015 DOI: 10.1016/j.animal.2023.100853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Goat kid rearing is a key profit driver and the cornerstone of future herd productivity in dairy systems. As goat kids get older, and progress from liquid (i.e., colostrum, milk) to solid feed (i.e., concentrate, hay, pasture), there is a reduction not only in feed cost but also in labour cost, disease susceptibility and mortality rates. Hence, research on rearing dairy goats has traditionally focused on improving early neonatal performance. However, recent research reveals that early-life nutrition may have long-term effects, and consequently, impact the lifetime productive performance and health of dairy goats. Therefore, this literature review has collected research on the various aspects of rearing replacement dairy goat kids in different production systems. It summarises research on areas such as colostrum management (i.e., colostrum quality, time, volume and frequency of colostrum feeding), liquid feeding in preweaned kids (i.e., maternal suckling vs artificial, restricted vs unrestricted), weaning strategies (i.e., abrupt vs step-down), and postweaning to postpubertal nutrition in replacement dairy goats, whilst highlighting gaps in the existing literature, and areas where it would be beneficial to refine and validate current recommendations. Such information can be used in the development of management plans to maximise the benefits of early-life nutrition on the long-term productivity of dairy goats.
Collapse
Affiliation(s)
- F Zamuner
- Faculty of Science - The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - B J Leury
- Faculty of Science - The University of Melbourne, Parkville, Victoria 3010, Australia
| | - K DiGiacomo
- Faculty of Science - The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Zakian A, Rasooli A, Nouri M, Ghorbanpour M, Khosravi M, Constable PD, Moazeni M. Effect of heating bovine colostrum at 60°C for 90' on colostrum quality and, the health and growth characteristics of Holstein dairy calves. Aust Vet J 2023; 101:175-186. [PMID: 36811133 DOI: 10.1111/avj.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/25/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023]
Abstract
AIMS The major objective of this study was to investigate the efficacy of heat-treating colostrum on the subsequent growth characteristics (weight gain, body size, dry matter intake and feed efficiency rate) and health of Holstein calves. METHODS A total of 1200 neonatal Holstein calves on one commercial dairy farm were enrolled. The calves were divided into heat-treated (60°C for 90 min) and unheated (raw) colostrum groups. Calf serum IgG and total protein concentrations were measured before and after colostrum consumption. Health characteristics and disease prevalence were recorded during the suckling period. RESULTS Consumption of heat-treated colostrum led to increased serum IgG (P < 0.0001) and total protein (P < 0.0001) concentrations, increased apparent efficacy of IgG absorption (P < 0.0001) and increased general health condition, weight gain (P < 0.0001) and clinical performance. CONCLUSIONS AND CLINICAL RELEVANCE Heat-treatment of colostrum is an effective method to improve health and increase growth characteristics (weight gain, body size, dry matter intake and feed efficiency rate) of neonatal dairy calves, most likely by decreasing microbial load and facilitating IgG absorption.
Collapse
Affiliation(s)
- A Zakian
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - A Rasooli
- Department of Animal Health Management, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - M Nouri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - M Ghorbanpour
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - M Khosravi
- F.K.A. Agriculture and Animal Husbandry Company, Isfahan, Iran
| | - P D Constable
- College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | - M Moazeni
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
7
|
An Evaluation of Nutritional and Therapeutic Factors Affecting Pre-Weaned Calf Health and Welfare, and Direct-Fed Microbials as a Potential Alternative for Promoting Performance—A Review. DAIRY 2022. [DOI: 10.3390/dairy3030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The priority for calf rearing has been to maintain good health and welfare in order to promote and sustain future production. However, there have been numerous reports of undesirable levels of morbidity and mortality amongst pre-weaned calves. This may be mitigated or exacerbated by nutritional management practices. Some areas of concern include colostrum feeding, utilization of waste milk, and restrictive milk feeding regimes. Antibiotics may be prescribed at lethal or sub-inhibitory doses to treat or prevent disease. However, extensive antibiotic use may disrupt the gastrointestinal microbiota and aid in expanding the antibiotic resistant gene pool. In an attempt to reduce the use of antibiotics, there is a demand to find alternative performance enhancers. Direct-fed microbials, also known as probiotics, may comply with this role. A DFM consists of live microorganisms that are biologically active and able to confer health benefits onto the host. Lactic acid bacteria have been the most frequently investigated; however, this field of research has expanded to include spore-forming bacteria and live yeast preparations. This review aims to provide a comprehensive evaluation of the nutritional management strategies that may increase a calf’s susceptibility to morbidity and mortality, the efficacy and sustainability of antibiotics as a tool for managing calf health and welfare, and the potential for DFMs as a supportive strategy for promoting calf wellbeing.
Collapse
|
8
|
Erickson PS. Colostrum Management: Keys to Optimizing Output and Uptake of Immunoglobulin G. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.914361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Colostrum is essential for the health and wellbeing of dairy cattle. This review provides insight into different means of augmenting or enhancing colostrum quality including colostrum feeding, dry cow management, prepartum cow diets, freezing, pasteurization, colostrum additives, and colostrum replacers. Other components in colostrum such as maternal cells and their importance are discussed. New research is needed regarding the components in colostrum (bioactive peptides and growth factors) and their effects on the neonate. Colostrum replacers and a prediction equation to estimate colostrum quality are reviewed.
Collapse
|
9
|
Lopez AJ, Yohe TT, Echeverry-Munera J, Nagorske M, Renaud DL, Steele MA. Effects of a low- or high-frequency colostrum feeding protocol on immunoglobulin G absorption in newborn calves. J Dairy Sci 2022; 105:6318-6326. [PMID: 35599023 DOI: 10.3168/jds.2021-21284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022]
Abstract
Calves might experience an upper limit of IgG absorption from colostrum ingestion at birth, but it is not clear whether the total IgG mass fed in the first meal or feeding frequencies can saturate the IgG transport mechanism and therefore limit IgG absorption. The objective of this study was to determine whether different colostrum replacer (CR) feeding frequencies affect serum IgG levels or apparent efficiency of absorption (AEA) in neonatal calves. Male Holstein calves (n = 40) were separated from their dams immediately after parturition and randomly assigned to receive CR [12% of birth body weight (BW)], following either (1) a low-frequency (LF; n = 20) or (2) a high-frequency (HF; n = 20) feeding protocol. Low-frequency calves received 2 CR meals (8% and 4% birth BW within 1 h after birth and 12 h after first CR feeding, respectively), whereas HF calves received 3 CR meals (4% of BW for each meal; within 1 h after birth, 6, and 12 h after first CR feeding). The CR powder fed had a dry matter IgG concentration of 30% and an IgG concentration of 70.5 g/L when reconstituted. All CR was fed via esophageal tube within 1 h after birth. Calves were bottle-fed pasteurized milk (5% birth BW) at 24, 36, and 48 h after the first CR feeding. Blood was collected before first CR feeding and at the following intervals post-CR feeding: every 2 h until 18 h; every 3 h from 18 to 30 h; and every 6 h from 30 to 48 h after the first CR feeding. Serum IgG values at 24 h did not differ between LF and HF (25.79 ± 0.93 and 25.66 ± 0.88 g/L, respectively). In the first meal, calves fed LF ingested a higher total IgG mass than HF (257.98 ± 4.16 g and 126.72 ± 4.05 g, respectively); however, AEA at 24 h did not differ for calves fed HF or LF (27.68 ± 1.16% and 27.63 ± 1.26%, respectively). The IgG area under the curve (AUC) at 24 h was greater for calves fed LF than HF (443.13 ± 15.17 and 379.59 ± 13.99 g of IgG/L × h, respectively). Additionally, AUC at 6 h, 12 h, and 48 h were greater for calves fed LF than HF. These results indicate that, although LF calves had a greater AUC, HF calves were still able to absorb IgG in the second and third meal, allowing HF calves to achieve serum IgG levels similar to those of LF calves at 24 h. In addition, the provision of 3 meals at 70.5 g/L of IgG within the first 12 h of life did not result in added benefits to serum IgG or AEA levels.
Collapse
Affiliation(s)
- A J Lopez
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - T T Yohe
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - J Echeverry-Munera
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - M Nagorske
- The Saskatoon Colostrum Company Ltd., Saskatoon, SK, Canada S7K 6A2
| | - D L Renaud
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - M A Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2.
| |
Collapse
|
10
|
Herrera-Chávez B, Trujillo AJ, Calero P, Falconí MI, Sánchez-Macías D. Effects of colostrum in milk on the effectiveness of the pasteurization process and cheese milk quality. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2056466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Byron Herrera-Chávez
- Animal Production and Industrialization Research Unit, Faculty of Engineering, Universidad Nacional de Chimborazo, Riobamba, Ecuador
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO, XIA, Departament de Ciència Animal i del Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Antonio José Trujillo
- Centre d'Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO, XIA, Departament de Ciència Animal i del Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Paola Calero
- Animal Production and Industrialization Research Unit, Faculty of Engineering, Universidad Nacional de Chimborazo, Riobamba, Ecuador
| | - María Inés Falconí
- Animal Production and Industrialization Research Unit, Faculty of Engineering, Universidad Nacional de Chimborazo, Riobamba, Ecuador
| | - Davinia Sánchez-Macías
- Animal Production and Industrialization Research Unit, Faculty of Engineering, Universidad Nacional de Chimborazo, Riobamba, Ecuador
| |
Collapse
|
11
|
Lopez AJ, Heinrichs AJ. Invited review: The importance of colostrum in the newborn dairy calf. J Dairy Sci 2022; 105:2733-2749. [PMID: 35094859 DOI: 10.3168/jds.2020-20114] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 10/03/2021] [Indexed: 12/12/2022]
Abstract
It is critical that bovine maternal colostrum is fed to newborn calves during their first hours of life. Colostrum is the secretion a cow produces after mammary involution that is rich in various nutrients. In addition to the nutritive value for newborn calves, immunoglobulins are of interest due to their role in developing the naïve immune system of calves at birth. The process by which a calf acquires immunity via absorption of immunoglobulins is defined as passive immunity. When calves consume an adequate amount of immunoglobulins, they are classified as having successful passive immunity (SPI). In contrast, if they are deprived of adequate colostrum, they are considered to have had a failure of transfer of passive immunity (FPI). Transfer of passive immunity is assessed by measuring serum IgG concentrations at 24 to 48 h of age. The major factors that influence whether a calf has SPI or FPI are colostrum IgG concentration, quantity fed, and age of calf at colostrum feeding. Monitoring apparent efficiency of immunoglobulin absorption in calves is often recommended to evaluate overall colostrum management practices. Serum IgG analyses can be determined with direct (radial immunodiffusion) or indirect (refractometry) methods and used to assess SPI or FPI prevalence.
Collapse
Affiliation(s)
- A J Lopez
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A J Heinrichs
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
12
|
Malik MI, Rashid MA, Raboisson D. Heat treatment of colostrum at 60°C decreases colostrum immunoglobulins but increases serum immunoglobulins and serum total protein: A meta-analysis. J Dairy Sci 2022; 105:3453-3467. [PMID: 35094858 DOI: 10.3168/jds.2021-21231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022]
Abstract
Calves are born hypogammaglobulinemic; thus, the newborn calf's immune defense relies on the ingestion and absorption of colostrum, which provides energy, immunoglobulins, immune cells, and cytokines to the newborn calf. A heat treatment applied to colostrum for 60 min at 60°C has been found to be effective at reducing the total bacterial count while preserving the colostrum IgG levels. The objective of this work was to perform a meta-analysis on the association between the characteristics of heat-treated colostrum and the concentration of colostrum IgG, serum IgG concentration, and serum total protein (STP). A meta-analysis was carried out based on existing peer-reviewed literature. Publications comparing colostrum IgG, serum IgG, and STP for heat-treated or raw frozen colostrum were included. The different heating temperatures applied to the colostrum were divided into 2 subgroups: high temperature (HT; > 60°C) and low temperature (LT; ≤ 60°C). Twelve studies, including 21 trials, met the inclusion criteria for colostrum IgG concentration. The results indicated decreases in colostrum IgG by 20.6 g/L [95% confidence interval (CI) = 11.8-29.4] for HT and 5.38 g/L (95% CI = 2.9-7.8) for LT when colostrum was heat-treated compared with raw or frozen colostrum. Heterogeneity was high to moderate (I2 = 82% for HT and 65% for LT). The heat treatment of colostrum was also associated with a nonsignificant decrease in serum IgG by 3.40 g/L for HT (95% CI = 7.54-0.74) but a significant increase in serum IgG by 2.65 g/L for LT (95% CI = 1.51-3.79). The regression model indicated that heterogeneity was not explained by any moderators. The heat treatment of colostrum was also associated with a significant increase in STP by 0.21 g/dL for LT (95% CI = 0.07-0.35). In conclusion, the present work demonstrated that the heat treatment of colostrum ≤60°C decreased colostrum IgG by 5.38 g/L for LT and increased serum IgG by 2.65 g/L and STP by 0.21 g/dL. When compared with the range of values observed in the field for serum IgG, the present results are of high interest for the cattle industry. Because immune colostrum benefits also include cytokines and immune cells, further work is required to evaluate the effect of colostrum heat treatment on these 2 immune components of colostrum.
Collapse
Affiliation(s)
- Muhammad I Malik
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad A Rashid
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Didier Raboisson
- Université de Toulouse, École nationale vétérinaire de Toulouse (ENVT), F-31076, Toulouse, France
| |
Collapse
|
13
|
Fischer-Tlustos A, Lopez A, Hare K, Wood K, Steele M. Effects of colostrum management on transfer of passive immunity and the potential role of colostral bioactive components on neonatal calf development and metabolism. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neonatal dairy and beef calves are required to ingest adequate volumes of high-quality colostrum during their first hours of life to acquire transfer of passive immunity (TPI). As such, immunoglobulin G (IgG) has largely been the focus of colostrum research over recent decades. Yet, little is known about the additional bioactive compounds in colostrum that potentially influence newborn calf development and metabolism. The purpose of this narrative review is to synthesize research regarding the effects of colostrum management practices on TPI, as well as to address the potential role of additional colostral bioactive molecules, including oligosaccharides, fatty acids, insulin, and insulin-like growth factor-I, in promoting calf development and metabolism. Due to the importance of IgG in ensuring calf immunity and health, we review past research describing the process of colostrogenesis and dam factors influencing the concentrations of IgG in an effort to maximize TPI. We also address the transfer of additional bioactive compounds in colostrum and prepartum management and dam factors that influence their concentrations. Finally, we highlight key areas of future research for the scientific community to pursue to ultimately improve the health and welfare of neonatal dairy calves.
Collapse
Affiliation(s)
- A.J. Fischer-Tlustos
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - A. Lopez
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - K.S. Hare
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - K.M. Wood
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - M.A. Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| |
Collapse
|
14
|
Robbers L, Jorritsma R, Nielen M, Koets A. A Scoping Review of On-Farm Colostrum Management Practices for Optimal Transfer of Immunity in Dairy Calves. Front Vet Sci 2021; 8:668639. [PMID: 34350226 PMCID: PMC8327206 DOI: 10.3389/fvets.2021.668639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Newborn calves are agammaglobulinemic and rely for their first immune protection almost completely on the transfer of immune constituents via colostrum. Inadequate colostrum management practices such as on-farm colostrum storage practices and colostrum feeding methods could affect immune components in colostrum and subsequently immune status of the newborn calf. We conducted a scoping review to identify all literature on the interactions between several colostrum management factors and immunological colostrum quality and passive transfer of immunity. Three major stages were defined: milking methods, colostrum treatment and storage, and administration procedures. Separate CAB Abstracts searches were performed for each of the subjects of interest. The search process was completed on November 9, 2020. Colostrum should be milked as soon as possible, as IgG concentration diminishes over time, probably due to dilution. To minimize bacterial contamination, it is advised to pasteurize colostrum in small batches at maximal 60°C for 30 or 60 min. Freeze/thawing of colostrum does not or only slightly affect IgG concentrations, as long as thawing is done au bain-marie and temperature does not exceed 40°C. In on-farm situations, it is difficult to determine the volume that should be fed as the variables contributing to the absorption of IgG by the newborn calf are many and include the quality of the colostrum, the bacterial contamination, the time interval between birth and first moment of feeding and the weight of the calf. Despite all knowledge regarding optimal colostrum management strategies, it remains challenging to predict the effects of certain colostrum management choices in field conditions. Therefore, we recommend measuring the colostral quality, weighing the newborn calf, adjusting the feeding volume accordingly to ensure optimal colostrum intake for each calf.
Collapse
Affiliation(s)
- Lisa Robbers
- Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ruurd Jorritsma
- Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Mirjam Nielen
- Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ad Koets
- Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Wageningen Bioveterinary Research, Lelystad, Netherlands
| |
Collapse
|
15
|
Feeding Calves with Pasteurized Colostrum and Milk Has a Positive Long-Term Effect on Their Productive Performance. Animals (Basel) 2020; 10:ani10091494. [PMID: 32847051 PMCID: PMC7552247 DOI: 10.3390/ani10091494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The main objective of this study was to observe whether feeding female calves with pasteurized colostrum and cow’s milk improved future reproductive performance, productive parameters, and health over the course of the heifer-rearing process and the three first lactations. During the heifer-rearing period, growth and health parameters were recorded in two populations: one that received pasteurized colostrum and milk during the first 21 days of life (Experimental Group-P) and one that received unpasteurized colostrum and milk (Control Group-NP). During the cows’ life, productive (305-d milk yield), reproductive (artificial insemination per pregnancy and calving interval), and health parameters (milk somatic cell count), as well as age at culling, were recorded. Feeding on-farm pasteurized colostrum and milk during the first 21 days of life reduced morbidity of bovine respiratory disease during the first year of life and diarrhea during the first 180 days of life. Moreover, it increased body weight at calving during the first three lactations. It also significantly increased milk production during the first lactation. Thus, feeding female dairy calves with pasteurized colostrum and milk improved health and productive parameters in heifers and cows, and has a positive long-term effect on cow’s production parameters. This practice is recommended as a general approach to improving performance in dairy herds. Abstract Female calves, checked for serum total protein ≥ 5.8 g/dL before 5 days of life, entered the study at 22 days of age after having received pasteurized colostrum and milk (P group, n = 127), or non-pasteurized colostrum and milk (NP group, n = 134). During the heifer-rearing period, productive (body weight; BW) and health parameters (bovine respiratory disease (BRD) and diarrhea) were recorded. Productive (305-d milk yield), reproductive (AI per pregnancy and calving interval), and health parameters (milk somatic cell count; SCC/mL), as well as age at culling, were recorded in a follow-up study. Feeding on-farm pasteurized colostrum and milk during the first 21 days of life reduced morbidity of bovine respiratory disease during the first year of life and diarrhea during the first 180 days of life. Moreover, it increased BW at calving during the first three lactations. It also significantly increases milk production during the first lactation. However, there were no differences in relation to reproductive performance and health of cows in the NP or P group. These results highlight that feeding calves with pasteurized colostrum and milk could improve health and production parameters throughout the heifer-rearing process and during their first lactation.
Collapse
|
16
|
Heinrichs AJ, Jones CM, Erickson PS, Chester-Jones H, Anderson JL. Symposium review: Colostrum management and calf nutrition for profitable and sustainable dairy farms. J Dairy Sci 2019; 103:5694-5699. [PMID: 31785867 DOI: 10.3168/jds.2019-17408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/11/2019] [Indexed: 01/31/2023]
Abstract
Multistate dairy management research project NC-2042, which is part of the National Institute of Food and Agriculture, has devoted an ongoing objective to calf and heifer nutrition and management. Within this objective, colostrum research has been a priority due to continued opportunities to improve this area on US dairy farms. Research has focused on heating colostrum to reduce bacterial populations and pathogens while increasing IgG absorption. Research also identified other proteins that are reduced when heating colostrum. Studies indicated an apparent upper limit to IgG absorption from colostrum fed to calves. Additional studies have shed light on absorption of IgG from colostrum replacers and evaluated the use of lactoferrin and sodium bicarbonate in both maternal colostrum and colostrum replacers. Milk replacer formulation, feeding strategies, and the effect of calfhood nutrition on future performance have also been researched. Finally, water quality and its effect on calves and heifers have been studied. This review focuses on research done by multistate research project NC-2042 member states in the area of colostrum and calf nutrition and management.
Collapse
Affiliation(s)
- A J Heinrichs
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| | - C M Jones
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - P S Erickson
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham 03824
| | - H Chester-Jones
- Southern Research and Outreach Center, University of Minnesota, Waseca 56093
| | - J L Anderson
- Dairy and Food Science Department, South Dakota State University, Brookings 57007
| |
Collapse
|
17
|
Song Y, Malmuthuge N, Li F, Guan LL. Colostrum feeding shapes the hindgut microbiota of dairy calves during the first 12 h of life. FEMS Microbiol Ecol 2019; 95:5127040. [PMID: 30307547 DOI: 10.1093/femsec/fiy203] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022] Open
Abstract
This study evaluated the effect of feeding non-heated and heated colostrum on the mucosa- and digesta-associated microbiota in the colon of dairy calves during the first 12 h of life. Thirty-two neonatal Holstein male calves were fed: no colostrum (NC, n = 8), non-heated colostrum (FC, n = 12) and heated colostrum (HC (60 °C, 60 min), n = 12) immediately after birth. The abundances of mucosa- and digesta-associated total bacteria were higher in the colon of FC fed calves compared to those fed no colostrum (NC) at 12 h of life. Compare to NC calves, a higher proportion of mucosa- and digesta-associated Clostridium cluster XIVa and Bifidobacterium, and a lower abundance of mucosa and digesta-associated E. coli were detected in the colon of FC and HC fed calves, as well as a tentatively lower relative abundance of Escherichia-Shigella genus in colon mucosa of HC fed calves. In addition, HC calves had lower abundances of E. coli and higher abundances of Bifidobacterium in mucosa-associated microbiota than FC fed calves. Our results suggest that feeding non-heated colostrum immediately after birth benefit neonatal calves with increased Bifidobacterium and decreased opportunistic pathogenic E. coli and Escherichia-Shigella genus in the colon, and feeding heated colostrum can fortify such effects.
Collapse
Affiliation(s)
- Yang Song
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada
| | - Nilusha Malmuthuge
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada
| | - Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada
| |
Collapse
|
18
|
Saldana D, Gelsinger S, Jones C, Heinrichs A. Effect of different heating times of high-, medium-, and low-quality colostrum on immunoglobulin G absorption in dairy calves. J Dairy Sci 2019; 102:2068-2074. [DOI: 10.3168/jds.2018-15542] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022]
|
19
|
Cuttance EL, Mason WA, Laven RA, Denholm KS, Yang D. Calf and colostrum management practices on New Zealand dairy farms and their associations with concentrations of total protein in calf serum. N Z Vet J 2018; 66:126-131. [DOI: 10.1080/00480169.2018.1431159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- EL Cuttance
- VetEnt, 49 Benson Road, Te Awamutu, New Zealand
| | - WA Mason
- VetEnt, 49 Benson Road, Te Awamutu, New Zealand
| | - RA Laven
- IVABS, Massey University, Palmerston North, New Zealand
| | - KS Denholm
- Cognosco, Anexa FVC, 25 Moorhouse St, Morrinsville, New Zealand
| | - D Yang
- IVABS, Massey University, Palmerston North, New Zealand
| |
Collapse
|
20
|
Cuttance EL, Mason WA, Laven RA, McDermott J, Phyn CVC. Prevalence and calf-level risk factors for failure of passive transfer in dairy calves in New Zealand. N Z Vet J 2017; 65:297-304. [DOI: 10.1080/00480169.2017.1361876] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- EL Cuttance
- VetEnt, 49 Benson Road, Te Awamutu, New Zealand
| | - WA Mason
- VetEnt, 49 Benson Road, Te Awamutu, New Zealand
| | - RA Laven
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - J McDermott
- VetEnt, 49 Benson Road, Te Awamutu, New Zealand
| | - CVC Phyn
- DairyNZ Ltd., Private Bag 3221, Hamilton, 3240, New Zealand
| |
Collapse
|
21
|
Armengol R, Fraile L. Colostrum and milk pasteurization improve health status and decrease mortality in neonatal calves receiving appropriate colostrum ingestion. J Dairy Sci 2016; 99:4718-4725. [DOI: 10.3168/jds.2015-10728] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/11/2016] [Indexed: 12/24/2022]
|
22
|
Malmuthuge N, Chen Y, Liang G, Goonewardene LA, Guan LL. Heat-treated colostrum feeding promotes beneficial bacteria colonization in the small intestine of neonatal calves. J Dairy Sci 2015; 98:8044-53. [PMID: 26342981 DOI: 10.3168/jds.2015-9607] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 07/13/2015] [Indexed: 01/17/2023]
Abstract
The present study investigated the effect of heat-treated colostrum feeding on the bacterial colonization in calf small intestine of neonatal calves within the first 12h of life. Newborn Holstein bull calves (n=32) were assigned to 3 treatment groups and fed with either fresh colostrum (FC, n=12) or heat-treated (60°C, 60 min) colostrum (HC, n=12) soon after birth, whereas the control (NC, n=8) group did not receive colostrum or water. Small intestinal tissues and contents were collected from proximal jejunum, distal jejunum, and ileum at 6 and 12h after birth, following euthanasia. Quantitative real time-PCR was used to explore the colonization of total bacteria, Lactobacillus, Bifidobacterium, and Escherichia coli. The feeding of colostrum soon after birth increased the colonization of total bacteria in calf gut within the first 12h compared with NC. In contrast, the prevalence of Lactobacillus was lower in HC and FC compared to NC. Remarkable changes in the prevalence of small intestinal tissue-attached Bifidobacterium were observed with the feeding of HC, but not that in small intestinal contents. The prevalence of Bifidobacterium was 3.2 and 5.2 fold higher in HC than FC and NC, respectively, at 6h. Although the feeding of FC did not enhance the prevalence of tissue-attached Bifidobacterium at 6h compared with NC, it displayed a gradual increase over the time that was higher than NC, but similar to that of HC at 12h. Moreover, the colonization of E. coli was drastically reduced in HC calves compared with FC and NC. Thus, the present study suggests that the feeding of HC enhances the colonization of Bifidobacterium but lessens E. coli in the calf small intestine immediately postpartum compared with that of FC and NC. The increased colonization of beneficial bacteria along with the decreased colonization of potential pathogens in calf gut may also diminish the neonatal calf diarrhea when calves are fed heat-treated colostrum soon after birth.
Collapse
Affiliation(s)
- Nilusha Malmuthuge
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Yanhong Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Guanxiang Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Laksiri A Goonewardene
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
23
|
Gelsinger S, Jones C, Heinrichs A. Effect of colostrum heat treatment and bacterial population on immunoglobulin G absorption and health of neonatal calves. J Dairy Sci 2015; 98:4640-5. [DOI: 10.3168/jds.2014-8790] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/15/2015] [Indexed: 01/05/2023]
|
24
|
Meganck V, Hoflack G, Opsomer G. Advances in prevention and therapy of neonatal dairy calf diarrhoea: a systematical review with emphasis on colostrum management and fluid therapy. Acta Vet Scand 2014; 56:75. [PMID: 25431305 PMCID: PMC4246539 DOI: 10.1186/s13028-014-0075-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 11/05/2014] [Indexed: 11/18/2022] Open
Abstract
Neonatal calf diarrhoea remains the most common cause of morbidity and mortality in preweaned dairy calves worldwide. This complex disease can be triggered by both infectious and non-infectious causes. The four most important enteropathogens leading to neonatal dairy calf diarrhoea are Escherichia coli, rota- and coronavirus, and Cryptosporidium parvum. Besides treating diarrhoeic neonatal dairy calves, the veterinarian is the most obvious person to advise the dairy farmer on prevention and treatment of this disease. This review deals with prevention and treatment of neonatal dairy calf diarrhoea focusing on the importance of a good colostrum management and a correct fluid therapy.
Collapse
|