1
|
Pi X, Zhu L, Liu J, Zhang B. Effect of Thermal Processing on Food Allergenicity: Mechanisms, Application, Influence Factor, and Future Perspective. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20225-20240. [PMID: 39254084 DOI: 10.1021/acs.jafc.4c04860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Thermally processed foods are essential in the human diet, and their induced allergic reactions are also very common, seriously affecting human health. This review covers the effects of thermal processing on food allergenicity, involving boiling, water/oil bath heating, roasting, autoclaving, steaming, frying, microwave heating, ohmic heating, infrared heating, and radio frequency heating. It was found that thermal processing decreased the protein electrophoretic band intensity (except for infrared heating and radio frequency heating) responsible for destruction of linear epitopes and changed the protein structure responsible for the masking of linear/conformational epitopes or the destruction of conformational epitopes, thus decreasing food allergenicity. The outcome was related to thermal processing (e.g., temperature, time) and food (e.g., types, pH) condition. Of note, as for conventional thermal processing, it is necessary to control the generation of the advanced glycation end products in roasting/baking and frying, and the increase of structural flexibility in boiling and water/oil bath heating, autoclaving, and steaming must be controlled; otherwise, it might increase food allergenicity. As for novel thermal processing, the temperature nonuniformity of microwave and radio frequency heating, low penetration of infrared heating, and unwanted metal ion production of ohmic heating must be considered; otherwise, it might be the nonuniformity and low effect of allergenicity reduction and safety problems.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
- "Modern Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, P. R. China
| | - LiLin Zhu
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
| | - Jiayuan Liu
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
| | - Binjia Zhang
- College of Food Science, Southwest University, Chongqing, 400715, P. R. China
- "Modern Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing, 400715, P. R. China
| |
Collapse
|
2
|
Yun Z, Li J, Zhu W, Yuan X, Zhao J, Liao M, Ma L, Chen F, Hu X, Ji J. Effects of Chlorogenic Acid on Lowering IgE-Binding Capacity of Soybean 7S: Comparison between Covalent and Noncovalent Interaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12270-12280. [PMID: 38743450 DOI: 10.1021/acs.jafc.4c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Allergenicity of soybean 7S protein (7S) troubles many people around the world. However, many processing methods for lowering allergenicity is invalid. Interaction of 7S with phenolic acids, such as chlorogenic acid (CHA), to structurally modify 7S may lower the allergenicity. Hence, the effects of covalent (C-I, periodate oxidation method) and noncovalent interactions (NC-I) of 7S with CHA in different concentrations (0.3, 0.5, and 1.0 mM) on lowering 7S allergenicity were investigated in this study. The results demonstrated that C-I led to higher binding efficiency (C-0.3:28.51 ± 2.13%) than NC-I (N-0.3:22.66 ± 1.75%). The C-I decreased the α-helix content (C-1:21.06%), while the NC-I increased the random coil content (N-1:24.39%). The covalent 7S-CHA complexes of different concentrations had lower IgE binding capacity (C-0.3:37.38 ± 0.61; C-0.5:34.89 ± 0.80; C-1:35.69 ± 0.61%) compared with that of natural 7S (100%), while the noncovalent 7S-CHA complexes showed concentration-dependent inhibition of IgE binding capacity (N-0.3:57.89 ± 1.23; N-0.5:46.91 ± 1.57; N-1:40.79 ± 0.22%). Both interactions produced binding to known linear epitopes. This study provides the theoretical basis for the CHA application in soybean products to lower soybean allergenicity.
Collapse
Affiliation(s)
- Ze Yun
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Jiahao Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Wenyue Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Xin Yuan
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Jiajia Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Minjie Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Bøgh KL, Nielsen DM, Mohammad-Beigi H, Christoffersen HF, Jacobsen LN, Norrild RK, Svensson B, Schmidthaler K, Szépfalusi Z, Upton J, Eiwegger T, Bertelsen H, Buell AK, Sørensen LV, Larsen JM. Degree of hydrolysis is a poor predictor of the sensitizing capacity of whey- and casein-based hydrolysates in a Brown Norway rat model of cow's milk allergy. Food Res Int 2024; 181:114063. [PMID: 38448113 DOI: 10.1016/j.foodres.2024.114063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
The use of infant formulas (IFs) based on hydrolyzed cow's milk proteins to prevent cow's milk allergy (CMA) is highly debated. The risk of sensitization to milk proteins induced by IFs may be affected by the degree of hydrolysis (DH) as well as other physicochemical properties of the cow's milk-based protein hydrolysates within the IFs. The immunogenicity (specific IgG1 induction) and sensitizing capacity (specific IgE induction) of 30 whey- or casein-based hydrolysates with different physicochemical characteristics were compared using an intraperitoneal model of CMA in Brown Norway rats. In general, the whey-based hydrolysates demonstrated higher immunogenicity than casein-based hydrolysates, inducing higher levels of hydrolysate-specific and intact-specific IgG1. The immunogenicity of the hydrolysates was influenced by DH, peptide size distribution profile, peptide aggregation, nano-sized particle formation, and surface hydrophobicity. Yet, only the surface hydrophobicity was found to affect the sensitizing capacity of hydrolysates, as high hydrophobicity was associated with higher levels of specific IgE. The whey- and casein-based hydrolysates exhibited distinct immunological properties with highly diverse molecular composition and physicochemical properties which are not accounted for by measuring DH, which was a poor predictor of sensitizing capacity. Thus, future studies should consider and account for physicochemical characteristics when assessing the sensitizing capacity of cow's milk-based protein hydrolysates.
Collapse
Affiliation(s)
| | | | - Hossein Mohammad-Beigi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | - Rasmus Krogh Norrild
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Klara Schmidthaler
- Division of Pediatric Pulmonology, Allergy and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Zsolt Szépfalusi
- Division of Pediatric Pulmonology, Allergy and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Julia Upton
- Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Thomas Eiwegger
- Division of Immunology and Allergy, Food Allergy and Anaphylaxis Program, The Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada; Research Institute, The Hospital for Sick Children, Translational Medicine Program, Toronto, Canada; Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Hans Bertelsen
- Research & Development, Arla Foods Ingredients Group P/S, Videbæk, Denmark
| | - Alexander Kai Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Jeppe Madura Larsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Xu Y, Zhang F, Mu G, Zhu X. Effect of lactic acid bacteria fermentation on cow milk allergenicity and antigenicity: A review. Compr Rev Food Sci Food Saf 2024; 23:e13257. [PMID: 38284611 DOI: 10.1111/1541-4337.13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 01/30/2024]
Abstract
Cow milk is a major allergenic food. The potential prevention and treatment effects of lactic acid bacteria (LAB)-fermented dairy products on allergic symptoms have garnered considerable attention. Cow milk allergy (CMA) is mainly attributed to extracellular and/or cell envelope proteolytic enzymes with hydrolysis specificity. Numerous studies have demonstrated that LAB prevents the risk of allergies by modulating the development and regulation of the host immune system. Specifically, LAB and its effectors can enhance intestinal barrier function and affect immune cells by interfering with humoral and cellular immunity. Fermentation hydrolysis of allergenic epitopes is considered the main mechanism of reducing CMA. This article reviews the linear epitopes of allergens in cow milk and the effect of LAB on these allergens and provides insight into the means of predicting allergenic epitopes by conventional laboratory analysis methods combined with molecular simulation. Although LAB can reduce CMA in several ways, the mechanism of action remains partially clarified. Therefore, this review additionally attempts to summarize the main mechanism of LAB fermentation to provide guidance for establishing an effective preventive and treatment method for CMA and serve as a reference for the screening, research, and application of LAB-based intervention.
Collapse
Affiliation(s)
- Yunpeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P. R. China
| | - Feifei Zhang
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, P. R. China
| | - Guangqing Mu
- Dalian Key Laboratory of Functional Probiotics, Dalian, Liaoning, P. R. China
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, P. R. China
| |
Collapse
|
5
|
Shao YH, Zou L, Xiong ZH, Su LX, Tu ZC, Liu J. Simulated in vitro gastrointestinal digestion of β-lactoglobulin treated by ultrasound: Detection of peptides profile and the antioxidant activity. Food Res Int 2024; 175:113763. [PMID: 38129056 DOI: 10.1016/j.foodres.2023.113763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
The influence of ultrasonic pretreatment on the release and antioxidant activity of potential antioxidant peptides after in-vitro simulated gastrointestinal digestion of β-lactoglobulin (BLG) were measured by HPLC-MS/MS, chemical and cellular-based assays. The gastrointestinal digest was fractionated into four fractions by Sephadex G-25 gel filtration column, and fractions showed a considerable ABTS·+ scavenging ability. The fraction with the strongest antioxidant activity was produced by ultrasonicated BLG after gastrointestinal digestion, which relies on ultrasonic-promoted proteolysis to produce many small-molecule antioxidant peptides. The best active fraction has better cellular antioxidant activity and protection of H2O2-induced oxidative HepG2 cell model, which significantly increases the activities of antioxidant enzyme, and is concentration-dependent. HPLC-MS/MS analysis showed that there were more potential antioxidant peptides in the best active fraction. This research will provide a basis for the further application of ultrasonic in dairy products, which can promote the release of more potential antioxidant peptides-derived from gastrointestinal digestion.
Collapse
Affiliation(s)
- Yan-Hong Shao
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Lin Zou
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zi-Hao Xiong
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Ling-Xia Su
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Jun Liu
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
6
|
Chrysanthou A, Bosch-Fortea M, Gautrot JE. Co-Surfactant-Free Bioactive Protein Nanosheets for the Stabilization of Bioemulsions Enabling Adherent Cell Expansion. Biomacromolecules 2023; 24:4465-4477. [PMID: 36683574 PMCID: PMC10565825 DOI: 10.1021/acs.biomac.2c01289] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/03/2023] [Indexed: 01/24/2023]
Abstract
Bioemulsions are attractive platforms for the scalable expansion of adherent cells and stem cells. In these systems, cell adhesion is enabled by the assembly of protein nanosheets that display high interfacial shear moduli and elasticity. However, to date, most successful systems reported to support cell adhesion at liquid substrates have been based on coassemblies of protein and reactive cosurfactants, which limit the translation of bioemulsions. In this report, we describe the design of protein nanosheets based on two globular proteins, bovine serum albumin (BSA) and β-lactoglobulin (BLG), biofunctionalized with RGDSP peptides to enable cell adhesion. The interfacial mechanics of BSA and BLG assemblies at fluorinated liquid-water interfaces is studied by interfacial shear rheology, with and without cosurfactant acyl chloride. Conformational changes associated with globular protein assembly are studied by circular dichroism and protein densities at fluorinated interfaces are evaluated via surface plasmon resonance. Biofunctionalization mediated by sulfo-succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo-SMCC) is studied by fluorescence microscopy. On the basis of the relatively high elasticities observed in the case of BLG nanosheets, even in the absence of cosurfactant, the adhesion and proliferation of mesenchymal stem cells and human embryonic kidney (HEK) cells on bioemulsions stabilized by RGD-functionalized protein nanosheets is studied. To account for the high cell spreading and proliferation observed at these interfaces, despite initial moderate interfacial elasticities, the deposition of fibronectin fibers at the surface of corresponding microdroplets is characterized by immunostaining and confocal microscopy. These results demonstrate the feasibility of achieving high cell proliferation on bioemulsions with protein nanosheets assembled without cosurfactants and establish strategies for rational design of scaffolding proteins enabling the stabilization of interfaces with strong shear mechanics and elasticity, as well as bioactive and cell adhesive properties. Such protein nanosheets and bioemulsions are proposed to enable the development of new generations of bioreactors for the scale up of cell manufacturing.
Collapse
Affiliation(s)
- Alexandra Chrysanthou
- Institute
of Bioengineering and School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Minerva Bosch-Fortea
- Institute
of Bioengineering and School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Julien E. Gautrot
- Institute
of Bioengineering and School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, United Kingdom
| |
Collapse
|
7
|
Pereira RN, Rodrigues RM, Madalena DA, Vicente A. Tackling food allergens-The role of food processing on proteins' allergenicity. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:317-351. [PMID: 37722777 DOI: 10.1016/bs.afnr.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
This chapter examines how innovative and emerging food processing technologies, such as those that use heat, electricity, electromagnetic waves, and pressure, can modify protein denaturation, aggregation, and intermolecular interactions pathways, which can result in varying immunoreactive responses. It emphasizes the need to understand how these processing methods affect the protein epitopes recognized by antibodies and their respective priming pathways, especially during the sensitization stage that precedes an allergic response. Although traditional processing methods have been investigated, the impact of novel technologies on food protein allergenicity remains largely unknown. The chapter specifically focuses on milk proteins, which have clinical significance and are associated with cow's milk allergy, one of the most common food allergies in young children. Additionally, it examines potential scientific advancements that novel processing methods may bring to this field.
Collapse
Affiliation(s)
- Ricardo N Pereira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Rui M Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniel A Madalena
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - António Vicente
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
8
|
Västberg A, Bolinsson H, Leeman M, Nilsson L, Nylander T, Sejwal K, Sintorn IM, Lidayova K, Sjögren H, Wahlgren M, Elofsson U. Investigating Thermally Induced Aggregation of Somatropin- New Insights Using Orthogonal Techniques. Int J Pharm 2023; 637:122829. [PMID: 36948472 DOI: 10.1016/j.ijpharm.2023.122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023]
Abstract
Three orthogonal techniques were used to provide new insights into thermally induced aggregation of the therapeutic protein Somatropin at pH 5.8 and 7.0. The techniques were Dynamic Light Scattering (DLS), Asymmetric Flow-Field Flow-Fractionation (AF4), and the TEM-based analysis system MiniTEM™. In addition, Differential Scanning Calorimetry (DSC) was used to study the thermal unfolding and stability. DSC and DLS were used to explain the initial aggregation process and aggregation rate at the two pH values. The results suggest that electrostatic stabilization seems to be the main reason for the faster initial aggregation at pH 5.8, i.e., closer to the isoelectric point of Somatropin. AF4 and MiniTEM were used to investigate the aggregation pathway further. Combining the results allowed us to demonstrate Somatropin's thermal aggregation pathway at pH 7.0. The growth of the aggregates appears to follow two steps. Smaller elongated aggregates are formed in the first step, possibly initiated by partly unfolded species. In the second step, occurring during longer heating, the smaller aggregates assemble into larger aggregates with more complex structures.
Collapse
Affiliation(s)
- Amanda Västberg
- Research Institutes of Sweden, Drottning Kristinas väg 61B, 11428 Stockholm, Sweden; Department of Food Technology, Engineering and Nutrition, Faculty of Engineering LTH, Lund University, Lund, Sweden
| | - Hans Bolinsson
- Department of Food Technology, Engineering and Nutrition, Faculty of Engineering LTH, Lund University, Lund, Sweden
| | | | - Lars Nilsson
- Department of Food Technology, Engineering and Nutrition, Faculty of Engineering LTH, Lund University, Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | | | | | | | | | - Marie Wahlgren
- Department of Food Technology, Engineering and Nutrition, Faculty of Engineering LTH, Lund University, Lund, Sweden
| | - Ulla Elofsson
- Research Institutes of Sweden, Drottning Kristinas väg 61B, 11428 Stockholm, Sweden
| |
Collapse
|
9
|
Effects of high hydrostatic pressure treatment on the antigenicity, structural and digestive properties of whey protein. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Zhou Y, Jin W, Duan M, She X, Zhu S, Zhou X, Song J, Zhu D. Effects of exogenous strain fermentation on protein structure and allergenicity of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.). FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
11
|
Jiang S, Wang T, Chen K, Wang H, Meng X. Assessment of the effect of glycation on the allergenicity of sesame proteins. Food Res Int 2023; 168:112771. [PMID: 37120220 DOI: 10.1016/j.foodres.2023.112771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/28/2023]
Abstract
Sesame allergy is a growing concern worldwide. In this study, sesame proteins was glycated with glucose, galactose, lactose and sucrose respectively, and the allergenicity of different glycated sesame proteins were assessed by a comprehensive strategy, including simulated gastrointestinal digestion in vitro, a BALB/c mice model, a rat basophilic leukemia (RBL)-2H3 cell degranulation model and a serological experiment. Firstly, simulated gastrointestinal digestion in vitro showed that glycated sesame proteins were more easily to digest than raw sesame. Subsequently, the allergenicity of sesame proteins was assessed in vivo by detecting the allergic indexes of mice, and results showed that the levels of total immunoglobulin E (IgE) and histamine were reduced in glycated sesame proteins treated mice. Meanwhile, the Th2 cytokines (IL-4, IL-5, and IL-13) were downregulated significantly, demonstrating that sesame allergy was relieved in glycated sesame treated mice. Thirdly, the RBL-2H3 cell degranulation model results showed that the release of β-hexosaminidase and histamine were decreased to different degrees in glycated sesame proteins treated groups. Notably, the monosaccharide glycated sesame proteins exhibited lower allergenicity both in vivo and in vitro. Furthermore, the study also analyzed the structure alteration of sesame proteins, and the results showed that the secondary structure of glycated sesame proteins were changed (the content of α-helix and β-sheet were reduced), and the tertiary structure of sesame proteins after glycation modification was also changed (microenvironment around aromatic amino acids was altered). Besides, the surface hydrophobicity of glycated sesame proteins was also reduced except sucrose glycated sesame proteins. In conclusion, this study demonstrated that glycation reduced the allergenicity of sesame proteins effectively, especially glycation with monosaccharides, and the allergenicity reduction might be related to structural changes. The results will provide a new reference for developing hypoallergenic sesame products.
Collapse
|
12
|
Lectin microarray profiling demonstrates equivalent global glycosylation for whey protein ingredients enriched with α-lactalbumin and milk fat globule membrane. Food Res Int 2023; 164:112416. [PMID: 36737995 DOI: 10.1016/j.foodres.2022.112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Human milk fat globule membrane (MFGM) and whey proteins are nutritionally and functionally valuable, with many beneficial bioactivities associated with their glycosylation. However glycosylation of milk components other than free milk oligosaccharides are underinvestigated. Whey protein concentrate (WPC) ingredients with various enrichments or depletions are used in infant formula (IF) formulations to contribute to human milk equivalence and bioactivity benefits, but their overall or global glycosylation has not been compared. We compared the global glycosylation of commercial WPC ingredients for use in various IF formulations; two MFGM-enriched WPC ingredients (high fat HF1 and lower fat HF2), an α-lactalbumin-enriched WPC (WPC Lac) which has α-lactalbumin concentration closer to human milk and significantly less β-lactoglobulin which is not present in human milk, and two base WPC ingredients (WPC 80 and WPC 35) using lectin microarray profiling. WPC Lac and WPC HF1 glycosylation were highly similar to each other and both somewhat similar to WPC 35, while WPC HF2 was more similar to the base WPC 80 ingredient. N-linked glycosylation analysis demonstrated that WPC HF1 and WPC Lac were qualitatively most similar to one another, with WPC 80 and WPC 35 having similar structures, confirming lectin microarray profiling as a valuable method to compare global glycosylation. Thus WPC Lac may be a valuable ingredient for providing equivalent glycosylation to MFGM supplementation.
Collapse
|
13
|
Yang J, Kuang H, Xiong X, Li N, Song J. Alteration of the allergenicity of cow's milk proteins using different food processing modifications. Crit Rev Food Sci Nutr 2022; 64:4622-4642. [PMID: 36377678 DOI: 10.1080/10408398.2022.2144792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Milk is an essential source of protein for infants and young children. At the same time, cow's milk is also one of the most common allergenic foods causing food allergies in children. Recently, cow's milk allergy (CMA) has become a common public health issue worldwide. Modern food processing technologies have been developed to reduce the allergenicity of milk proteins and improve the quality of life of patients with CMA. In this review, we summarize the main allergens in cow's milk, and introduce the recent findings on CMA responses. Moreover, the reduced effects and underlying mechanisms of different food processing techniques (such as heating, high pressure, γ-ray irradiation, ultrasound irradiation, hydrolysis, glycosylation, etc.) on the allergenicity of cow's milk proteins, and the application of processed cow's milk in clinical studies, are discussed. In addition, we describe the changes of nutritional value in cow's milk treated by different food processing technologies. This review provides an in-depth understanding of the allergenicity reduction of cow's milk proteins by various food processing techniques.
Collapse
Affiliation(s)
- Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
- College of Modern Industry for Nutrition & Health, Chongqing Technology and Business University, Chongqing, China
| | - Hong Kuang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Xiaoli Xiong
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Ning Li
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Structural, rheological and functional properties of extruded mozzarella cheese influenced by the properties of the renneted casein gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Zhang W, Guan H, Huang D, Zou H, Li D. Effects of preheating temperatures on
β
‐lactoglobulin structure and binding interaction with dihydromyricetin. EFOOD 2022. [DOI: 10.1002/efd2.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Wenyuan Zhang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes Shandong Agricultural University Taian China
| | - Hui Guan
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes Shandong Agricultural University Taian China
| | - Dongjie Huang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes Shandong Agricultural University Taian China
| | - Hui Zou
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes Shandong Agricultural University Taian China
| | - Dapeng Li
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes Shandong Agricultural University Taian China
| |
Collapse
|
16
|
Zhao L, Shi F, Xie Q, Zhang Y, Evivie SE, Li X, Liang S, Chen Q, Xin B, Li B, Huo G. Co-fermented cow milk protein by Lactobacillus helveticus KLDS 1.8701 and Lactobacillus plantarum KLDS 1.0386 attenuates its allergic immune response in Balb/c mice. J Dairy Sci 2022; 105:7190-7202. [PMID: 35879161 DOI: 10.3168/jds.2022-21844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/02/2022] [Indexed: 11/19/2022]
Abstract
Milk protein is one of the major food allergens. As an effective processing method, fermentation may reduce the potential allergenicity of allergens. This study aimed to evaluate the therapeutic potential of co-fermented milk protein using Lactobacillus helveticus KLDS 1.8701 and Lactobacillus plantarum KLDS 1.0386 in cow milk protein allergy (CMPA) management. This study determined the secondary and tertiary structures of the fermented versus unfermented proteins by Fourier-transform infrared spectroscopy and surface hydrophobicity to evaluate its conformational changes. Our results showed that different fermentation methods have significantly altered the conformational structures of the cow milk protein, especially the tertiary structure. Further, the potential allergenicity of the fermented cow milk protein was assessed in Balb/c mice, and mice treated with the unfermented milk and phosphate-buffered saline were used as a control. We observed a significant reduction in allergenicity via the results of the spleen index, serum total IgE, specific IgE, histamine, and mouse mast cell protease 1 in the mice treated with the co-fermented milk protein. In addition, we analyzed the cytokines and transcription factors expression levels of spleen and jejunum and confirmed that co-fermentation could effectively reduce the sensitization of cow milk protein by regulating the imbalance of T helper (Th1/Th2 and Treg/Th17). This study suggested that changes of conformational structure could reduce the potential sensitization of cow milk protein; thus, fermentation may be a promising strategy for developing a method of hypoallergenic dairy products.
Collapse
Affiliation(s)
- Lina Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Fengyi Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co. Ltd., Qiqihaer 164800, China
| | - Yifan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Smith Etareri Evivie
- Department of Food Science and Human Nutrition, University of Benin, Benin City 300001, Nigeria; Department of Animal Science, University of Benin, Benin City 300001, Nigeria
| | - Xuetong Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Shengnan Liang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Qingxue Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Bowen Xin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China.
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory of Genetic and Metabolic Engineering of Lactic Acid Bacteria, Harbin 150030, China
| |
Collapse
|
17
|
Ma X, Li H, Zhang J, Ge Y, He L, Kang W, Huang W, Sun JL, Chen Y. Effect of Roasting on the Conformational Structure and IgE Binding of Sesame Allergens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9442-9450. [PMID: 35819315 DOI: 10.1021/acs.jafc.2c01617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sesame can trigger a systemic allergic reaction. In the present study, we investigated the responses of the structure and IgE binding of sesame allergens to different roasting treatments (120, 150, and 180 °C for 5 to 30 min). We analyzed the tryptic digestion peptides using a label-free mass spectrometry method. The total amount of soluble proteins in sesame was significantly reduced by roasting at 180 °C, followed by 150 °C. Ses i 1 was the most stable protein during processing as it still possessed a higher protein abundance compared to other allergens after roasting under 180 °C. The most unstable allergens were Ses i 4 and Ses i 7, which suffered severe protein degradation at 180 °C. Roasting at 180 °C remarkably increased the secondary structure content of α-helices but decreased that of β-sheets, whereas roasting at 120 and 150 °C had a limited effect on the secondary structure of sesame proteins. Moreover, serum pool Western blot analysis showed that the main allergens were oleosin of Ses i 4 and Ses i 5. The IgE-binding ability of sesame allergens was significantly decreased under 180 °C roasting, as well as the solubility of sesame proteins, which showed remarkable congruence in changes. Relative quantification results indicate that individual sesame allergens respond differently to the roasting process. In general, sesame allergens are unstable under roasting treatment. Therefore, the allergenic potential of sesame allergens may be minimized by selecting appropriate parameters during processing.
Collapse
Affiliation(s)
- Xiuli Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
- College of Food Engineering, Ludong University, Yantai 264025, People's Republic of China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Hong Li
- Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | - Jiukai Zhang
- College of Food Engineering, Ludong University, Yantai 264025, People's Republic of China
| | - Yiqiang Ge
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
- China Rural Technology Development Center, Beijing 100045, People's Republic of China
| | - Lei He
- College of Food Engineering, Ludong University, Yantai 264025, People's Republic of China
| | - Wenhan Kang
- College of Food Engineering, Ludong University, Yantai 264025, People's Republic of China
| | - Wensheng Huang
- College of Food Engineering, Ludong University, Yantai 264025, People's Republic of China
| | - Jin-Lyu Sun
- Peking Union Medical College Hospital, Beijing 100730, People's Republic of China
| | - Ying Chen
- College of Food Engineering, Ludong University, Yantai 264025, People's Republic of China
| |
Collapse
|
18
|
Li H, Yang J, Qin A, Yang F, Liu D, Li H, Yu J. Milk protein hydrolysates obtained with immobilized alcalase and neutrase on magnetite nanoparticles: Characterization and antigenicity study. J Food Sci 2022; 87:3107-3116. [PMID: 35638323 DOI: 10.1111/1750-3841.16189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 01/14/2023]
Abstract
Enzymatic hydrolysis is the most commonly used method to reduce the antigenicity of milk protein, but free protease is unstable and difficult to recycle after application. In this study, alcalase and neutrase were selected for immobilization on the modified magnetic Fe3 O4 nanoparticles. The reusability of the immobilized enzyme was 68.23% of the total starting activity after 5 recycling batches. The optimal hydrolysis conditions were an enzyme to substrate ratio of 6000 U/g and reaction at 50℃ and pH 8.5 for 3 h. Under these conditions, 22.76% hydrolysis of hydrolysate was achieved, and the antigenicity reduction rates of β-lactoglobulin and casein were 21.34% and 30.89%, respectively. In addition, 82.75% of the hydrolysate had a molecular weight less than 1 kDa, and free amino acids represented 13.65% of the sample. This result showed that the hydrolysis with immobilized enzyme was similar to that with free enzyme and the immobilized enzyme could be applied to produce hypoallergenic hydrolysate. PRACTICAL APPLICATION: Reduces milk protein allergenicity.
Collapse
Affiliation(s)
- Hongbo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Jingjing Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Airong Qin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Feifei Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Dingkuo Liu
- Dingzheng Xinxing Biotechnology (Tianjin) Co., Ltd., Taifeng Road, TEDA, Tianjin, China
| | - Hongjuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| | - Jinghua Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin Economic-Technological Development Area (TEDA), Tianjin, China
| |
Collapse
|
19
|
Experimental and computational studies on the mechanism of the β-lactoglobulin-derived peptide inhibiting the antigenicity of β-lactoglobulin. Food Chem 2022; 393:133333. [PMID: 35661607 DOI: 10.1016/j.foodchem.2022.133333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022]
Abstract
In this study, through a combined simulated enzymolysis-molecular docking-molecular simulation-activity determination-action mechanism strategy, we screened a β-LG-derived peptide (VAGTWYSL) to inhibit the antigenicity of β-LG and explored its mechanism of action. Our results indicate that the inhibitory effect of the peptide on the antigenicity of β-LG is affected by different experimental conditions, including pH, reaction time and concentration. Three factors may contribute to the reduced allergenicity of β-LG. First, there must be sufficient forces between the peptide and β-LG, as a result, hydrophobic forces and hydrogen bonds are the main forces to maintain the structural stability of the complex. Second, the binding of the peptide changes the secondary structure of β-LG, especially with an increase in α-helices and a decrease in β-turns. Third, the peptide binds to the hydrophobic region of β-LG, involving the antigenic epitope region Val41-Lys60, which may reduce the antigenicity.
Collapse
|
20
|
An overview on the exploring the interaction of inorganic nanoparticles with microtubules for the advancement of cancer therapeutics. Int J Biol Macromol 2022; 212:358-369. [PMID: 35618086 DOI: 10.1016/j.ijbiomac.2022.05.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 01/01/2023]
Abstract
Targeting microtubules (MTs), dynamic and stable proteins in cells, by different ligands have been reported to be a potential strategy to combat cancer cells. Inorganic nanoparticles (NPs) have been widely used as anticancer, antibacterial, and free radical scavenging agents, where the come in contact with biological macromolecules. The interaction between the NPs and biological macromolecules like MTs frequently occurs through different mechanisms. A prerequisite for a detailed exploration of MT structures and functions for biomedical applications like cancer therapy is to investigate profoundly the mechanisms involved in MT-NP interactions, for which the full explanation and characterization of the parameters that are responsible for the formation of a NP-protein complex are crucial. Therefore, in view of the fact that the goal of the rational NP-based future drug design and new therapies is to rely on the information of the structural details and protein-NPs binding mechanisms to manipulate the process of developing new potential drugs, a comprehensive investigation of the essence of the molecular recognition/interaction is also of considerable importance. In the present review, first, the microtubule (MT) structure and its binding sites upon interaction with MT stabilizing agents (MSAs) and MT destabilizing agents (MDAs) are introduced and rationalized. Next, MT targeting in cancer therapy and interaction of NPs with MTs are discussed. Furthermore, interaction of NPs with proteins and the manipulation of protein corona (PC), experimental techniques, and direct interaction of NPs with MTs, are discussed, and finally the challenges and future perspective of the field are introduced. We envision this review can provide useful information on the manipulation of the MT lattice for the progress of cancer nanomedicine.
Collapse
|
21
|
Hong SP, Mohd‐Naim NF, Keasberry NA, Ahmed MU. Electrochemical Detection of β‐Lactoglobulin Allergen Using Titanium Dioxide/Carbon Nanochips/Gold Nanocomposite‐based Biosensor. ELECTROANAL 2022. [DOI: 10.1002/elan.202100207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shyang Pei Hong
- Biosensors and Nanobiotechnology Laboratory Integrated Science Building Faculty of Science Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Noor Faizah Mohd‐Naim
- PAPRSB Institute of Health Sciences Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Natasha Ann Keasberry
- Biosensors and Nanobiotechnology Laboratory Integrated Science Building Faculty of Science Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| | - Minhaz Uddin Ahmed
- Biosensors and Nanobiotechnology Laboratory Integrated Science Building Faculty of Science Universiti Brunei Darussalam Jalan Tungku Link Gadong BE 1410 Brunei Darussalam
| |
Collapse
|
22
|
Hoppenreijs L, Fitzner L, Ruhmlieb T, Heyn T, Schild K, van der Goot AJ, Boom R, Steffen-Heins A, Schwarz K, Keppler J. Engineering amyloid and amyloid-like morphologies of β-lactoglobulin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Molecular interaction of Sunset Yellow with whey protein: Multi-spectroscopic techniques and computational study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Ji NR, Han XY, Yu CC, Wang YJ, He XR, Liu H, Huan F, Lai D, Cao MJ, Liu GM. Analysis of Immunoreactivity of α/α 2-Tropomyosin from Haliotis discus hannai, Based on IgE Epitopes and Structural Characteristics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15403-15413. [PMID: 34881872 DOI: 10.1021/acs.jafc.1c06401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tropomyosin (TM) was reported to be a supercoil allergen of shellfish. However, little information is available about its link between structure and allergenicity. In this study, the subunit of TM (α-TM) and supercoil of TM (α2-TM) were identified from Haliotis discus hannai. α2-TM showed higher immunoreactivity than α-TM. Meanwhile, seven linear epitopes in α-TM and α2-TM were verified, and two conformational epitopes in α2-TM were predicted. The physicochemical properties and chemical bond assays confirmed the existence of the disulfide bond in α2-TM. According to spectroscopy and hydrophobicity analysis, α-TM showed higher α-helix features and blueshift of the fluorescence intensity peak compared with those of α2-TM. The structure analysis revealed the possibility of conformational epitopes in α2-TM, which could explain the immunoreactivity differences between α-TM and α2-TM further. These results improved the understanding of Haliotis discus hannai TM, which lay the foundation for the food processing of abalone.
Collapse
Affiliation(s)
- Nai-Ru Ji
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Xin-Yu Han
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Chen-Chen Yu
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yu-Jia Wang
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Xin-Rong He
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Hong Liu
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Fei Huan
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Dong Lai
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian 361021, China
| | - Min-Jie Cao
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- College of Marine Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology, Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
25
|
|
26
|
Bull SP, Khutoryanskiy VV, Parker JK, Faka M, Methven L. Oral retention of thermally denatured whey protein: In vivo measurement and structural observations by CD and NMR. Food Chem 2021; 374:131650. [PMID: 34915364 DOI: 10.1016/j.foodchem.2021.131650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/04/2022]
Abstract
This study investigated structural changes and the in vivo retention in the oral cavity of heated whey protein concentrate (WPC). Heated WPC was shown to have both a higher retention time in the oral cavity compared to unheated whey protein up to 1 min post swallow, and a concomitant increase in free thiol concentration. Nuclear magnetic resonance and circular dichroism demonstrated structural changes in the secondary and tertiary structures of the WPC upon heating. Structural loss of the β-barrel was shown to increase during heating, leading to the exposure of hydrophobic regions. The increase in free thiols and hydrophobic regions are two factors which are known to increase mucoadhesive strength and hence increase oral retention of heated whey protein which may subsequently increase the perception of mouthdrying.
Collapse
Affiliation(s)
- Stephanie P Bull
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berks RG6 6AD, United Kingdom.
| | - Vitaliy V Khutoryanskiy
- Department of Pharmacy, University of Reading, Whiteknights, Reading, Berks RG6 6AD, United Kingdom.
| | - Jane K Parker
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berks RG6 6AD, United Kingdom.
| | - Marianthi Faka
- Volac International Ltd, 50 Fishers Lane, Orwell, Royston, Hertfordshire SG8 5QX, United Kingdom.
| | - Lisa Methven
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berks RG6 6AD, United Kingdom.
| |
Collapse
|
27
|
Tarhan Ö, Kaya A. Investigation of the compositional and structural changes in the proteins of cow milk when processed to cheese. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Shao YH, Zhang Y, Liu J, Tu ZC. Investigation into predominant peptide and potential allergenicity of ultrasonicated β-lactoglobulin digestion products. Food Chem 2021; 361:130099. [PMID: 34029892 DOI: 10.1016/j.foodchem.2021.130099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
The effect of ultrasonicated β-lactoglobulin on the allergenic potential of predominant peptide was studied in vitro digestion. Gastrointestinal (GI) digestion of ultrasonicated β-lg was fractionated into four fractions, which have different molecular weight and allergenic potentials. The lowest allergenicity of fraction was produced by ultrasonicated β-Lg after GI digestion, depending on the changes in the structure of β-Lg by ultrasonic and the promotion of its proteolysis, resulting in the production of numerous small peptides with significantly reduced IgE activity and basophil histamine release. Mass spectrometry analysis showed that ultrasonic can promote the further hydrolysis of large intermediate peptides, Y42, L54, L57/L58, L95, L104/F105, L122 were target residues that became more available to protease by the pretreatment of ultrasonic, thus have a smaller molecular weight with reduced allergenic potential. Ultrasonic processing of milk products alone could reduce the risk of an allergenic reaction in milk allergy patients to some extent.
Collapse
Affiliation(s)
- Yan-Hong Shao
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yao Zhang
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jun Liu
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Zong-Cai Tu
- National R&D Branch Center for Conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
29
|
Fei S, Zhou J, Wu Y, Tong P, Gao J, Chen H, Li X. Change in conformational, digestive and immunological characteristics of bovine allergen β-lactoglobulin induced by metal ions in combination with heating. Food Chem 2021; 364:130030. [PMID: 34198035 DOI: 10.1016/j.foodchem.2021.130030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Aggregation of bovine β-lactoglobulin is affected easily by external factors. In this study, effects of metal ions combining with temperature on aggregation of β-lactoglobulin were explored. The conformational characteristics of aggregates were detected by environment scanning electron microscope, CD spectrum and free sulfhydryl group, respectively. Digestive and immunological characteristics were assessed by simulated digestion in vitro and ELISA respectively. The results showed that the morphology of β-lactoglobulin aggregates became more amorphous in Cu2+ and Mg2+ treated samples and more constricted in Zu2+-induced protein. Among them, Cu2+ altered the secondary structure of β-lactoglobulin aggregates and free sulfhydryl content most as well as that in gastric digestion. However, all ion-treated groups had similar digestive stability in intestinal digestion. Specially, Ca2+ and Mg2+ made the antigenicity and potential allergenicity of β-lactoglobulin aggregates decrease, which helps us understand the role of metal ions in immunological characteristics.
Collapse
Affiliation(s)
- Shuangwen Fei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Jianwen Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Jingyan Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
30
|
Saxena J, Adhikari B, Brkljaca R, Huppertz T, Zisu B, Chandrapala J. Effect of compositional variation on physico-chemical and structural changes in infant formula during storage. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
MORENO HM, TOVAR CA, DOMÍNGUEZ-TIMÓN F, CANO-BÁEZ J, DÍAZ MT, PEDROSA MM, BORDERÍAS AJ. Gelation of commercial pea protein isolate: effect of microbial transglutaminase and thermal processing. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.19519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Helena María MORENO
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, España; Facultad de Vetrinatia, España
| | | | | | - Jorge CANO-BÁEZ
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, España
| | - María Teresa DÍAZ
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, España
| | | | | |
Collapse
|
32
|
Heyn TR, Mayer J, Neumann HR, Selhuber-Unkel C, Kwade A, Schwarz K, Keppler JK. The threshold of amyloid aggregation of beta-lactoglobulin: Relevant factor combinations. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Six flavonoids inhibit the antigenicity of β-lactoglobulin by noncovalent interactions: A spectroscopic and molecular docking study. Food Chem 2020; 339:128106. [PMID: 33152886 DOI: 10.1016/j.foodchem.2020.128106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/03/2020] [Accepted: 09/12/2020] [Indexed: 11/23/2022]
Abstract
It is practical to inhibit the allergenicity of β-lactoglobulin (β-LG) using natural products acting via noncovalent interactions; however, the mechanism of the effect has not been investigated in detail. Herein, the comprehensive noncovalent mechanism of inhibition of the antigenicity of β-LG by six flavonoids (kaempferol, myricetin, phloretin, epigallocatechin-3-gallate (EGCG), naringenin, and quercetin) was investigated by spectroscopic and molecular docking methods. Our results indicate that six flavonoids reduced the antigenicity of β-LG in the following order: EGCG > phloretin > naringenin > myricetin > kaempferol > quercetin, with antigenic inhibition rates of 72.6%, 68.4%, 59.7%, 52.3%, 51.4% and 40.8%, respectively. Six flavonoids induced distinct conformational changes in β-LG, which were closely associated with a decline in antigenicity of β-LG. The flavonoids bound to specific antigen epitopes in the β-sheet and β-turn of β-LG to induce a decrease in the antigenicity of the protein.
Collapse
|
34
|
Synchrotron micro-CT for studying coarsening in milk protein-stabilized foams in situ. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
|
36
|
Rodríguez Arzuaga M, Bosch A, Añón MC, Abraham AG. Heat induced conformational changes of whey proteins in model infant formulae: Effect of casein and inulin. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Combined effects of pH and thermal treatments on IgE-binding capacity and conformational structures of lectin from black kidney bean (Phaseolus vulgaris L.). Food Chem 2020; 329:127183. [PMID: 32521427 DOI: 10.1016/j.foodchem.2020.127183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
Combined effects of pH and thermal treatments on black kidney bean lectin (BKBL) were investigated by response surface methodology (RSM). Low-pH (1.0, 2.0, 3.0) incubation decreased hemagglutination activity (HA) and IgE-binding capacity, but the activities would be restored when the lectin was treated by pH shifting to 7.2. Conformational structure analyses indicated that low-pH induced protein unfolding and pH-shifting treatment resulted in a limited structural rearrangement. Mild heating, such as 60 °C for 3 min, slightly increased the HA and IgE-binding activities of pH shifted BKBL, but no obvious effects in the pH 1.0 incubated BKBL. High-temperature and long-time treatment might induce the protein aggregation, further decreased HA and IgE-binding capacities. RSM results showed both IgE-binding capacity and HA were the lowest under the combination of pH 1.0 incubation with 80 °C heating for 15 min or pH shifting from 1.0 to 7.2 with 100 °C heating for 10 min.
Collapse
|
38
|
Shao YH, Zhang Y, Liu J, Tu ZC. Influence of ultrasonic pretreatment on the structure, antioxidant and IgG/IgE binding activity of β-lactoglobulin during digestion in vitro. Food Chem 2020; 312:126080. [DOI: 10.1016/j.foodchem.2019.126080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 01/08/2023]
|
39
|
Monaci L, Pilolli R, De Angelis E, Crespo JF, Novak N, Cabanillas B. Food allergens: Classification, molecular properties, characterization, and detection in food sources. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 93:113-146. [PMID: 32711861 DOI: 10.1016/bs.afnr.2020.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Food allergy is a large and growing public health problem in many areas of the world. The prevalence of food allergy has increased in the last decades in a very significant way in many world regions, particularly in developed countries. In that respect, the research field of food allergy has experienced an extensive growth and very relevant progress has been made in recent years regarding the characterization of food allergens, the study of their immunological properties, and their detection in food sources. Furthermore, food labeling policies have also been improved decidedly in recent years. For that immense progress made, it is about time to review the latest progress in the field of food allergy. In this review, we intend to carry out an extensive and profound overview regarding the latest scientific advances and knowledge in the field of food allergen detection, characterization, and in the study of the effects of food processing on the physico-chemical properties of food allergens. The advances in food labeling policies, and methodologies for the characterization of food allergens are also thoroughly reviewed in the present overview.
Collapse
Affiliation(s)
- Linda Monaci
- Institute of Sciences of Food Production, CNR-ISPA, Bari, Italy
| | - Rosa Pilolli
- Institute of Sciences of Food Production, CNR-ISPA, Bari, Italy
| | | | - Jesus F Crespo
- Department of Allergy, Research Institute Hospital 12 de Octubre de Madrid, Madrid, Spain
| | - Natalija Novak
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Beatriz Cabanillas
- Department of Allergy, Research Institute Hospital 12 de Octubre de Madrid, Madrid, Spain.
| |
Collapse
|
40
|
Pereira RN, Costa J, Rodrigues RM, Villa C, Machado L, Mafra I, Vicente A. Effects of ohmic heating on the immunoreactivity of β-lactoglobulin – a relationship towards structural aspects. Food Funct 2020; 11:4002-4013. [DOI: 10.1039/c9fo02834j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ohmic heating changes the immunoreactivity of monomeric and aggregated β-LG forms.
Collapse
Affiliation(s)
| | - Joana Costa
- REQUIMTE-LAQV
- Faculdade de Farmácia
- Universidade do Porto
- 4050-313, Porto
- Portugal
| | | | - Caterina Villa
- REQUIMTE-LAQV
- Faculdade de Farmácia
- Universidade do Porto
- 4050-313, Porto
- Portugal
| | - Luís Machado
- Centre of Biological Engineering – University of Minho
- Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV
- Faculdade de Farmácia
- Universidade do Porto
- 4050-313, Porto
- Portugal
| | - António Vicente
- Centre of Biological Engineering – University of Minho
- Portugal
| |
Collapse
|
41
|
Differential Effects of Dry vs. Wet Heating of β-Lactoglobulin on Formation of sRAGE Binding Ligands and sIgE Epitope Recognition. Nutrients 2019; 11:nu11061432. [PMID: 31242665 PMCID: PMC6627217 DOI: 10.3390/nu11061432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 11/17/2022] Open
Abstract
The effect of glycation and aggregation of thermally processed β-lactoglobulin (BLG) on binding to sRAGE and specific immunoglobulin E (sIgE) from cow milk allergic (CMA) patients were investigated. BLG was heated under dry conditions (water activity < 0.7) and wet conditions (in phosphate buffer at pH 7.4) at low temperature (<73 °C) and high temperatures (>90 °C) in the presence or absence of the milk sugar lactose. Nε-(carboxymethyl)-l-lysine (CML) western blot and glycation staining were used to directly identify glycation structures on the protein fractions on SDS-PAGE. Western blot was used to specify sRAGE and sIgE binding fractions. sRAGE binding was highest under wet-heated BLG independent of the presence of the milk sugar lactose. Under wet heating, high-molecular-weight aggregates were most potent and did not require the presence of CML to generate sRAGE binding ligands. In the dry system, sRAGE binding was observed only in the presence of lactose. sIgE binding affinity showed large individual differences and revealed four binding profiles. Dependent on the individual, sIgE binding decreased or increased by wet heating independent of the presence of lactose. Dry heating required the presence of lactose to show increased binding to aggregates in most individuals. This study highlights an important role of heating condition-dependent protein aggregation and glycation in changing the immunogenicity and antigenicity of cow’s milk BLG.
Collapse
|
42
|
Bogahawaththa D, Chandrapala J, Vasiljevic T. Thermal denaturation of bovine β-lactoglobulin in different protein mixtures in relation to antigenicity. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Specific and sensitive ELISA for measurement of IgE-binding variations of milk allergen β-lactoglobulin in processed foods. Anal Chim Acta 2019; 1052:163-169. [DOI: 10.1016/j.aca.2018.11.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/20/2022]
|
44
|
Changes in soy protein immunoglobulin E reactivity, protein degradation, and conformation through fermentation with Lactobacillus plantarum strains. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Yu XX, Liu C, Lu MH, Liu YL, Yin JY, Zhang YH. Impact of enzymatic hydrolysis followed by transglutaminase-induced cross-linking on decreasing antigenicity and reserving partial interfacial properties of whey protein isolate. Food Funct 2019; 10:1653-1660. [DOI: 10.1039/c8fo01880d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Whey protein isolate (WPI) was hydrolyzed by alcalase and trypsin for three hydrolysis degrees (DHs), followed by transglutaminase (TGase) induced cross-linking.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| | - Chang Liu
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| | - Man-Hui Lu
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| | - Yan-Le Liu
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| | - Jia-Yi Yin
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science
- Ministry of Education
- Northeast Agricultural University
- Harbin 150030
- PR China
| |
Collapse
|
46
|
Mediwaththe A, Bogahawaththa D, Grewal MK, Chandrapala J, Vasiljevic T. Structural changes of native milk proteins subjected to controlled shearing and heating. Food Res Int 2018; 114:151-158. [DOI: 10.1016/j.foodres.2018.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
|
47
|
Characterization and structure of cold-extruded whey protein isolate: impact of ball milling. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0913-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Bogahawaththa D, Ashraf R, Chandrapala J, Donkor O, Vasiljevic T. In vitro immunogenicity of various native and thermally processed bovine milk proteins and their mixtures. J Dairy Sci 2018; 101:8726-8736. [DOI: 10.3168/jds.2018-14488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022]
|
49
|
The Effect of Digestion and Digestibility on Allergenicity of Food. Nutrients 2018; 10:nu10091129. [PMID: 30134536 PMCID: PMC6164088 DOI: 10.3390/nu10091129] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/03/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023] Open
Abstract
Food allergy prevalence numbers are still on the rise. Apart from environmental influences, dietary habits, food availability and life-style factors, medication could also play a role. For immune tolerance of food, several contributing factors ensure that dietary compounds are immunologically ignored and serve only as source for energy and nutrient supply. Functional digestion along the gastrointestinal tract is essential for the molecular breakdown and a prerequisite for appropriate uptake in the intestine. Digestion and digestibility of carbohydrates and proteins thus critically affect the risk of food allergy development. In this review, we highlight the influence of amylases, gastric acid- and trypsin-inhibitors, as well as of food processing in the context of food allergenicity.
Collapse
|
50
|
Sobhaninia M, Nasirpour A, Shahedi M, Golkar A, Desobry S. Fabrication of whey proteins aggregates by controlled heat treatment and pH: Factors affecting aggregate size. Int J Biol Macromol 2018; 112:74-82. [DOI: 10.1016/j.ijbiomac.2018.01.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/31/2017] [Accepted: 01/17/2018] [Indexed: 11/25/2022]
|