1
|
Barone LJ, Cardoso NP, Mansilla FC, Castillo M, Capozzo AV. Enhanced infectivity of bovine viral diarrhoea virus (BVDV) in arginase-producing bovine monocyte-derived macrophages. Virulence 2023:2283899. [PMID: 37966797 DOI: 10.1080/21505594.2023.2283899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023] Open
Abstract
Macrophages are important cells of the innate immunity that play a major role in Bovine Viral Diarrhea Virus (BVDV) pathogenesis. Macrophages are not a homogenous population; they exist in different phenotypes, typically divided into two main categories: classically (pro-inflammatory) and alternatively activated (anti-inflammatory) or M1 and M2, respectively. The role of bovine macrophage phenotypes on BVDV infection is still unclear. This study characterized the interaction between BVDV, and monocyte-derived macrophages (Mo-Mφ) collected from healthy cattle and polarized to an M1 or M2 state by using LPS, INF-γ, IL-4 or azithromycin. Arginase activity quantitation was utilized as a marker of the M2 Mo-Mφ spectrum. There was a significant association between arginase activity and the replication rate of BVDV strains of different genotypes and biotypes. Inhibition of arginase activity also reduced BVDV infectivity. Calves treated with azithromycin induced Mo-Mφ of the M2 state produced high levels of arginase. Interestingly, azithromycin administered in vivo increased the susceptibility of macrophages to BVDV infection ex vivo. Mo-Mφ from pregnant dams and calves produced higher arginase levels than those from non-pregnant adult animals. The increased infection of arginase-producing alternatively activated bovine macrophages with BVDV supports the need to delve into a possible leading role of M2 macrophages in establishing the immune-suppressive state during BVDV convalescence.
Collapse
Affiliation(s)
- Lucas José Barone
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Nancy Patricia Cardoso
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Florencia Celeste Mansilla
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Mariángeles Castillo
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Alejandra Victoria Capozzo
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Porta NG, Suarez-Archilla G, Miotti C, Molineri AI, Alvarez I, Trono K, Signorini M, Ruiz V. Seroprevalence and risk factors associated with bovine Leukemia virus infection in argentine beef cattle. Res Vet Sci 2023; 164:104999. [PMID: 37708828 DOI: 10.1016/j.rvsc.2023.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, an endemic disease in dairy cattle of Argentina. However, little is known about the seroprevalence of BLV in beef cattle. In this study, we conducted a cross-sectional study including farms from thirteen provinces of Argentina. A total of 5827 bovine serum samples were collected from 76 farms and analyzed using an in-house developed enzyme-linked immunosorbent assay. Information about herd management was collected through a questionnaire, and univariate and multivariate analyses were performed to detect risk factors associated with BLV infection. Herd-level seroprevalence was 71.05%, while the mean animal-level seroprevalence was 7.23% (median = 2.69%; min = 0, max = 75). Only two provinces had no positive BLV samples. The other eleven provinces showed more than 50% of their farms infected with BLV. The multivariate model revealed that BLV prevalence was significantly associated with the use of animals raised in the same farm for cattle replacement (P = 0.005), breeding cows by natural mating with a bull (P < 0.001), and weaning calves after 6 months of age (P = 0.011). This extensive study revealed that BLV seroprevalence in Argentine beef farms has increased during the last years and allowed identifying some management practices associated with BLV prevalence. These data deserve special attention because BLV infection in beef cattle seems to lead to a dissemination pattern similar to that observed during the last decades in dairy cattle, especially considering that Argentina is the sixth beef producer in the world, with about 5% of global beef production.
Collapse
Affiliation(s)
- Natalia Gabriela Porta
- Laboratorio de Virus Adventicios, Instituto de Virología e Innovaciones Tecnológicas (IVIT), INTA-CONICET. Nicolás Repetto y De los Reseros (s/n), Hurlingham (CP1686), Buenos Aires, Argentina.
| | - Guillermo Suarez-Archilla
- Instituto de Investigación de la Cadena Láctea (IDICaL) INTA-CONICET. Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina.
| | - Camila Miotti
- Instituto de Investigación de la Cadena Láctea (IDICaL) INTA-CONICET. Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina.
| | - Ana Inés Molineri
- Instituto de Investigación de la Cadena Láctea (IDICaL) INTA-CONICET. Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina.
| | - Irene Alvarez
- Laboratorio de Virus Adventicios, Instituto de Virología e Innovaciones Tecnológicas (IVIT), INTA-CONICET. Nicolás Repetto y De los Reseros (s/n), Hurlingham (CP1686), Buenos Aires, Argentina
| | - Karina Trono
- Laboratorio de Virus Adventicios, Instituto de Virología e Innovaciones Tecnológicas (IVIT), INTA-CONICET. Nicolás Repetto y De los Reseros (s/n), Hurlingham (CP1686), Buenos Aires, Argentina.
| | - Marcelo Signorini
- Instituto de Investigación de la Cadena Láctea (IDICaL) INTA-CONICET. Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina.
| | - Vanesa Ruiz
- Laboratorio de Virus Adventicios, Instituto de Virología e Innovaciones Tecnológicas (IVIT), INTA-CONICET. Nicolás Repetto y De los Reseros (s/n), Hurlingham (CP1686), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Nakatsuchi A, Bao A, Watanuki S, Matsuura R, Borjigin L, Bai L, Kuroda M, Matsumoto Y, Kohara J, Aida Y. Anti-BLV antibodies in whey correlate with bovine leukemia virus disease progression and BoLA-DRB3 polymorphism. Front Vet Sci 2022; 9:1038101. [PMID: 36504869 PMCID: PMC9732667 DOI: 10.3389/fvets.2022.1038101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Bovine leukemia virus (BLV) belongs to the family Retroviridae and is a causative agent for enzootic bovine leucosis, the most common neoplastic disease affecting cattle worldwide. BLV proviral load (PVL) is associated with disease progression and transmission risk but requires blood collection and quantitative PCR testing. Anti-BLV antibodies in whey have been used as a diagnostic tool for BLV infection; however, quantitative utilization has not been fully investigated. Furthermore, bovine leukocyte antigen (BoLA)-DRB3 is a polymorphic gene associated with BLV infectivity and PVL, but its effect on anti-BLV antibody levels in whey from BLV infected dams is unknown. Therefore, we aimed to investigate whether it is possible to correctly predict PVL in the blood and milk based on the amount of anti-BLV antibodies in milk, and whether the BoLA-DRB3 alleles associate with the amount of anti-BLV antibodies in milk. Methods We examined whey from 442 dams from 11 different dairy farms located in 6 prefectures in Japan, including susceptible dams carrying at least one BoLA-DRB3* 012:01 or * 015:01 allele related with high PVL, resistant dams carrying at least one BoLA-DRB3 * 002:01, * 009:02, or * 014:01:01 allele related with low PVL, and neutral dams carrying other alleles. Results First, our results provided compelling evidence that anti-BLV antibody levels in whey were positively correlated with the anti-BLV antibody levels in serum and with BLV PVL in blood and milk, indicating the possibility of estimating BLV PVL in blood and milk by measuring anti-BLV antibody levels in whey. Thus, our results showed that antibody titers in milk might be effective for estimating BLV transmission risk and disease progression in the field. Second, we demonstrated that anti-BLV antibody levels in whey from BLV resistant dams were significantly lower than those from susceptible and neutral dams. Discussion This is the first report suggesting that the BoLA-DRB3 polymorphism affects anti-BLV antibody levels in whey from BLV-infected dams. Taken together, our results suggested that anti-BLV antibody levels in whey, measured by enzyme-linked immunosorbent assay, may be a useful marker to diagnose the risk of BLV infection and estimate PVL in blood and milk.
Collapse
Affiliation(s)
- Ayumi Nakatsuchi
- Institute of Animal Health, JA Zen-Noh (National Federation of Agricultural Cooperative Associations), Sakura, Japan,Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Aronggaowa Bao
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sonoko Watanuki
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Matsuura
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, Wako, Japan
| | - Maho Kuroda
- Institute of Animal Health, JA Zen-Noh (National Federation of Agricultural Cooperative Associations), Sakura, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Junko Kohara
- Agriculture Research Department, Animal Research Center, Hokkaido Research Organization, Shintoku, Japan,Junko Kohara
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Viral Infectious Diseases Unit, RIKEN, Wako, Japan,*Correspondence: Yoko Aida
| |
Collapse
|
4
|
Kuczewski A, Adams C, Lashewicz B, van der Meer F. Alberta dairy farmers’ and veterinarians’ opinion about bovine leukemia virus control measures. Prev Vet Med 2022; 200:105590. [DOI: 10.1016/j.prevetmed.2022.105590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/22/2021] [Accepted: 01/23/2022] [Indexed: 11/30/2022]
|
5
|
Barzegar H, Mirshahabi H, Motamed N, Yavarmanesh M, Mahdavi Poor B, Moaddab SR, Asgharzadeh M. Identification of bovine leukemia virus in raw milk samples in North-West of Iran. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2021; 12:223-227. [PMID: 34345390 PMCID: PMC8328253 DOI: 10.30466/vrf.2019.102686.2446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 12/09/2019] [Indexed: 11/01/2022]
Abstract
Bovine leukemia virus (BLV) is one of the most important carcinogenic viruses genetically related to the human T-cell lymphotropic viruses (HTLV-1 and HTLV-2). The virus infects type B lymphocytes and creates lymph glands tumors. Recently, the association between the presence of this virus and breast cancer has been addressed in humans. Here, we studied the prevalence of BLV in the samples of raw milk of native Iranian and Iranian-foreign cows in traditional, semi-industrial and industrial dairy farms in rural and urban areas of Zanjan province. Raw milk samples of cows were collected manually in sterile tubes. The samples were tested by nested-PCR method. Forty samples (9.93%) out of 403 samples showed BLV contamination. In this study, nested-PCR was successfully applied to determine the level of contamination in raw milk samples from cows infected with BLV. Furthermore, a relatively high rate of BLV infection was found in dairy cows in Zanjan province, northwestern of Iran.
Collapse
Affiliation(s)
- Hossein Barzegar
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hessam Mirshahabi
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nima Motamed
- Department of Social Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoud Yavarmanesh
- Department of Food science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Behroz Mahdavi Poor
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Hematology and Oncology Research Center, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Kuczewski A, Orsel K, Barkema HW, Mason S, Erskine R, van der Meer F. Invited review: Bovine leukemia virus-Transmission, control, and eradication. J Dairy Sci 2021; 104:6358-6375. [PMID: 33741150 DOI: 10.3168/jds.2020-18925] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/21/2020] [Indexed: 11/19/2022]
Abstract
Bovine leukemia virus (BLV) infection, endemic in North American dairy herds, has production-limiting effects. A literature review of available papers published since 1995 concerning BLV transmission and its control was conducted. Although confirmed transmission routes were reviewed (blood, natural breeding, in utero, colostrum, and milk), there is still a lack of detailed information on other specific risks for transmission (e.g., contact transmission and hoof-trimming knives). Eradication of BLV has been achieved by combined management, segregation, and culling approaches. In contrast, although sole implementation of best management practices aimed at prevention of BLV transmission has decreased within-herd BLV prevalence, it has not eradicated BLV from a herd. Therefore, control and eradication of BLV by best management practices only should be further investigated. Additionally, the role of proviral load in infected cattle was investigated. Cattle with a high proviral load seem to be more likely to infect others, whereas those with a very low proviral load seem to have low risks of transmitting BLV. Information on proviral load could be taken into account when controlling BLV in high-prevalence herds. In conclusion, there is a need for detailed, large-scale studies investigating roles of specific transmission routes, knowing proviral load of infected individuals.
Collapse
Affiliation(s)
- Alessa Kuczewski
- Department of Ecosystem and Public Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Karin Orsel
- Department of Production Animal Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Herman W Barkema
- Department of Production Animal Health, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Steve Mason
- Agromedia International Inc., Calgary, AB T2L 0T6, Canada
| | - Ron Erskine
- Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Frank van der Meer
- Department of Ecosystem and Public Health, University of Calgary, Calgary, AB T2N 4Z6, Canada.
| |
Collapse
|
7
|
Benitez OJ, Roberts JN, Norby B, Bartlett PC, Takeshima SN, Watanuki S, Aida Y, Grooms DL. Breeding bulls as a potential source of bovine leukemia virus transmission in beef herds. J Am Vet Med Assoc 2020; 254:1335-1340. [PMID: 31067187 DOI: 10.2460/javma.254.11.1335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the prevalence of bovine leukemia virus (BLV) in beef bulls; evaluate the presence of BLV provirus DNA in blood, smegma, and semen samples; and analyze whether blood BLV proviral load was associated with differential blood cell counts. DESIGN Observational cross-sectional study. ANIMALS 121 beef bulls ≥ 2 years old from 39 Michigan herds. PROCEDURES Blood, smegma, and semen samples were collected from each bull during a routine breeding soundness examination. An ELISA was used to detect serum anti-BLV antibodies. A coordination of common motifs-quantitative PCR assay was used to detect BLV provirus DNA in blood, smegma, and semen samples. Bulls with positive results on both the BLV serum ELISA and coordination of common motifs-quantitative PCR assay were considered infected with BLV. RESULTS 19 of 39 (48.7%) herds and 54 of 121 (44.6%) bulls were infected with BLV. Provirus DNA was detected in the blood of all 54 and in smegma of 4 BLV-infected bulls but was not detected in any semen sample. Lymphocyte count was significantly greater in BLV-infected bulls than in uninfected bulls. The proportion of BLV-infected bulls with lymphocytosis (16/54 [29.6%]) was greater than the proportion of uninfected bulls with lymphocytosis (6/67 [9%]). Lymphocyte count was positively associated with BLV proviral load in BLV-infected bulls. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that almost half of beef bulls and herds were infected with BLV, and BLV provirus DNA was detected in the smegma of some BLV-infected bulls. Bulls may have an important role in BLV transmission in beef herds.
Collapse
|
8
|
Watanuki S, Takeshima SN, Borjigin L, Sato H, Bai L, Murakami H, Sato R, Ishizaki H, Matsumoto Y, Aida Y. Visualizing bovine leukemia virus (BLV)-infected cells and measuring BLV proviral loads in the milk of BLV seropositive dams. Vet Res 2019; 50:102. [PMID: 31783914 PMCID: PMC6884895 DOI: 10.1186/s13567-019-0724-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/14/2019] [Indexed: 12/02/2022] Open
Abstract
Bovine leukemia virus (BLV) infects cattle and causes serious problems for the cattle industry, worldwide. Vertical transmission of BLV occurs via in utero infection and ingestion of infected milk and colostrum. The aim of this study was to clarify whether milk is a risk factor in BLV transmission by quantifying proviral loads in milk and visualizing the infectivity of milk. We collected blood and milk from 48 dams (46 BLV seropositive dams and 2 seronegative dams) from seven farms in Japan and detected the BLV provirus in 43 blood samples (89.6%) but only 22 milk samples (45.8%) using BLV-CoCoMo-qPCR-2. Although the proviral loads in the milk tended to be lower, a positive correlation was firstly found between the proviral loads with blood and milk. Furthermore, the infectivity of milk cells with BLV was visualized ex vivo using a luminescence syncytium induction assay (LuSIA) based on CC81-GREMG cells, which form syncytia expressing enhanced green fluorescent protein (EGFP) in response to BLV Tax and Env expressions when co-cultured with BLV-infected cells. Interestingly, in addition to one BLV-infected dam with lymphoma, syncytia with EGFP fluorescence were observed in milk cells from six BLV-infected, but healthy, dams by an improved LuSIA, which was optimized for milk cells. This is the first report demonstrating the infectious capacity of cells in milk from BLV-infected dams by visualization of BLV infection ex vivo. Thus, our results suggest that milk is a potential risk factor for BLV vertical spread through cell to cell transmission.
Collapse
Affiliation(s)
- Sonoko Watanuki
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Department of Food and Nutrition, Jumonji University, Niiza, Saitama, 352-8510, Japan
| | - Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hironobu Murakami
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Laboratory of Animal Health II, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Reiichiro Sato
- Laboratory of Farm Animal Internal Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Hiroshi Ishizaki
- Grazing Animal Unit and Nasu Operation Unit, Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan. .,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
9
|
Olagoke O, Quigley BL, Eiden MV, Timms P. Antibody response against koala retrovirus (KoRV) in koalas harboring KoRV-A in the presence or absence of KoRV-B. Sci Rep 2019; 9:12416. [PMID: 31455828 PMCID: PMC6711960 DOI: 10.1038/s41598-019-48880-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/13/2019] [Indexed: 01/13/2023] Open
Abstract
Koala retrovirus (KoRV) is in the process of endogenization into the koala (Phascolarctos cinereus) genome and is currently spreading through the Australian koala population. Understanding how the koala's immune system responds to KoRV infection is critical for developing an efficacious vaccine to protect koalas. To this end, we analyzed the antibody response of 235 wild koalas, sampled longitudinally over a four-year period, that harbored KoRV-A, and with or without KoRV-B. We found that the majority of the sampled koalas were able to make anti-KoRV antibodies, and that there was a linear increase in anti-KoRV IgG levels in koalas up to approximately seven years of age and then a gradual decrease thereafter. Koalas infected with both KoRV-A and KoRV-B were found to have slightly higher anti-KoRV IgG titers than koalas with KoRV-A alone and there was an inverse relationship between anti-KoRV IgG levels and circulating KoRV viral load. Finally, we identified distinct epitopes on the KoRV envelope protein that were recognized by antibodies. Together, these findings provide insight into the koala's immune response to KoRV and may be useful in the development of a therapeutic KoRV vaccine.
Collapse
Affiliation(s)
- O Olagoke
- Genecology Research Center, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Queensland, Australia
| | - B L Quigley
- Genecology Research Center, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Queensland, Australia
| | - M V Eiden
- Section on Directed Gene Transfer, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - P Timms
- Genecology Research Center, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Queensland, Australia.
| |
Collapse
|
10
|
Alvarez I, Porta NG, Trono K. Detection of Bovine Leukemia Virus RNA in Blood Samples of Naturally Infected Dairy Cattle. Vet Sci 2019; 6:vetsci6030066. [PMID: 31390719 PMCID: PMC6789540 DOI: 10.3390/vetsci6030066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 01/01/2023] Open
Abstract
The viral expression in vivo, in bovine leukemia virus (BLV)-infected cattle, is considered to be restricted to extremely low levels, and the mitosis of infected B lymphocytes is regarded as the main mode of virus persistence within the infected host. In this study, the presence of BLV RNA in whole blood from seven asymptomatic cows naturally infected with BLV during one year, including a complete milking cycle and two delivery time points, was investigated by nested-PCR using the oligonucleotides complementary to the tax and pol gene. BLV RNA was detected in four cows at different time points, especially in high blood proviral load cows and around delivery time. This study describes for the first time the detection of free BLV RNA in blood from BLV-infected asymptomatic cows. The results obtained suggest the occurrence of persistent low-level expression of the tax and pol genes that could be a result of viral reactivation, within the asymptomatic period. This finding may be important in the pathogenesis of BLV infection, associated with the delivery period.
Collapse
Affiliation(s)
- Irene Alvarez
- Instituto de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires C1686, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad autónoma de Buenos Aires C1425FQB, Argentina.
| | - Natalia Gabriela Porta
- Instituto de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires C1686, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad autónoma de Buenos Aires C1425FQB, Argentina
| | - Karina Trono
- Instituto de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires C1686, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Ciudad autónoma de Buenos Aires C1425FQB, Argentina
| |
Collapse
|
11
|
Konishi M, Ishizaki H, Kameyama KI, Murakami K, Yamamoto T. The effectiveness of colostral antibodies for preventing bovine leukemia virus (BLV) infection in vitro. BMC Vet Res 2018; 14:419. [PMID: 30594182 PMCID: PMC6311012 DOI: 10.1186/s12917-018-1724-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL). The incidence of EBL in Japan is increasing annually; and the cases of EBL in cattle younger than 2 years old has been reported. Therefore, it is vital to find a method to control BLV infection, especially in young calves. In this study, to evaluate the protective ability of colostral antibodies against BLV infection, as well as the potential for BLV infection mediated by colostrum/milk, we investigated temporal fluctuations in the anti-BLV antibody titer and BLV proviral load (PVL) in colostrum/milk and peripheral blood of six infected dams during lactation. The association between PVL and antibody titer in colostrum and peripheral blood was then investigated using samples from a further twenty-seven cattle. Antibody concentrations were measured with a Syncytium-induction Inhibition Assay using colostral/milk whey and serum. PVL in peripheral blood and colostrum was measured by real-time PCR. RESULTS Colostral antibodies showed high inhibitory activity until day 3 of lactation. The antibody titer and PVL in peripheral blood showed lesser changes than those in colostrum/milk throughout lactation. The colostral antibody titer was significantly higher than the serum antibody titer in all samples, whereas the colostrum PVL was significantly lower than the blood PVL. The blood PVL showed a significant correlation with serum antibody titer, colostrum PVL, and colostral antibody titer. However, there were no major correlations between the serum and colostral antibody titers. CONCLUSIONS This is the first report investigating the temporal changes in colostral antibody titer in terms of inhibiting BLV infection in vitro. The results of antibody detection by Syncytium-induction Inhibition Assay suggested that the protective activity of the colostral antibodies against BLV infection would be conferred by anti-BLV gp51 antibody. The high antibody titer of colostral whey suggests that colostral whey could be a potential source of antibodies with a low risk of infection in neonatal calves.
Collapse
Affiliation(s)
- Misako Konishi
- Epidemiology Unit, Division of Viral Disease and Epidemiology, National Institute of Animal Health, NARO 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Hiroshi Ishizaki
- Grazing Animal Unit, Division of Grassland Farming, Institute of Livestock and Grassland Science, NARO. 768 Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan
| | - Ken-Ichiro Kameyama
- National Institute of Animal Health, NARO, Exotic Diseases Research Station Josuihoncho, Kodaira, Tokyo, 187-0022, Japan
| | - Kenji Murakami
- Cooperative Department of Veterinary Medicine, Iwate University Faculty of Agriculture, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Takehisa Yamamoto
- Epidemiology Unit, Division of Viral Disease and Epidemiology, National Institute of Animal Health, NARO 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| |
Collapse
|
12
|
Ruiz V, Porta NG, Lomónaco M, Trono K, Alvarez I. Bovine Leukemia Virus Infection in Neonatal Calves. Risk Factors and Control Measures. Front Vet Sci 2018; 5:267. [PMID: 30410920 PMCID: PMC6209627 DOI: 10.3389/fvets.2018.00267] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/05/2018] [Indexed: 11/13/2022] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL). Although efficient eradication programs have been successfully implemented in most European countries and Oceania, BLV infection rates are still high worldwide. BLV naturally infects cattle, inducing a persistent infection with diverse clinical outcomes. The virus infects lymphocytes and integrates a DNA intermediate as a provirus into the genome of the cells. Therefore, exposure to biological fluids contaminated with infected lymphocytes potentially spreads the virus. Vertical transmission may occur in utero or during delivery, and about 10% of calves born to BLV-infected dams are already infected at birth. Most frequently, transmission from dams to their offspring occurs through the ingestion of infected colostrum or milk. Therefore, although EBL is not a disease specific to the neonatal period, during this period the calves are at special risk of becoming infected, especially in dairy farms, where they ingest colostrum and/or raw milk either naturally or artificially. Calves infected during the first week of life could play an active role in early propagation of BLV to susceptible animals. This review discusses the main factors that contribute to neonatal BLV infection in dairy herds, as well as different approaches and management practices that could be implemented to reduce the risk of BLV transmission during this period, aiming to decrease BLV infection in dairy herds.
Collapse
Affiliation(s)
- Vanesa Ruiz
- Instituto Nacional de Tecnología Agropecuaria-Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Natalia Gabriela Porta
- Instituto Nacional de Tecnología Agropecuaria-Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marina Lomónaco
- Instituto Nacional de Tecnología Agropecuaria-Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Buenos Aires, Argentina
| | - Karina Trono
- Instituto Nacional de Tecnología Agropecuaria-Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Irene Alvarez
- Instituto Nacional de Tecnología Agropecuaria-Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
13
|
Martinez Cuesta L, Nieto Farias MV, Lendez PA, Barone L, Pérez SE, Dolcini GL, Ceriani MC. Stable infection of a bovine mammary epithelial cell line (MAC-T) with bovine leukemia virus (BLV). Virus Res 2018; 256:11-16. [PMID: 30055215 DOI: 10.1016/j.virusres.2018.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022]
Abstract
Bovine leukemia virus (BLV) is a retrovirus that affects cattle causing a lymphoproliferative disease. BLV infection has been associated with misbalance of the immune response causing a higher incidence of other infections. Mastitis is one of the most important conditions that affect milk production in cattle. The aim of this study was to stably infect a bovine mammary epithelial cell line (MAC-T). MAC-T cell line was successfully infected with BLV and the infection was confirmed by nested PCR, qPCR, immunocytochemistry, western blot and transmission electron microscopy. This is the first report of a bovine mammary epithelial cell line stably infected with BLV. This new cell line could be used as an in vitro model to study the effect of BLV on the immune response in the mammary gland and the relationship with other agents causing mastitis.
Collapse
Affiliation(s)
- Lucia Martinez Cuesta
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Pinto 399, Tandil, 7000 Pcia. Buenos Aires, Argentina.
| | - Maria Victoria Nieto Farias
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Pinto 399, Tandil, 7000 Pcia. Buenos Aires, Argentina
| | - Pamela Anahi Lendez
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Pinto 399, Tandil, 7000 Pcia. Buenos Aires, Argentina
| | - Lucas Barone
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología, Nicolás Repetto y Los Reseros s/n, Hurlingham, B1686, Provincia de Buenos Aires, Argentina
| | - Sandra Elizabeth Pérez
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Pinto 399, Tandil, 7000 Pcia. Buenos Aires, Argentina
| | - Guillermina Laura Dolcini
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Pinto 399, Tandil, 7000 Pcia. Buenos Aires, Argentina
| | - Maria Carolina Ceriani
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Pinto 399, Tandil, 7000 Pcia. Buenos Aires, Argentina
| |
Collapse
|