1
|
Al-Wraikat M, Zhang L, Li L, Abubaker MA, Liu Y. Recent advances in wolfberry polysaccharides and whey protein-based biopolymers for regulating the diversity of gut microbiota and its mechanism: A review. Int J Biol Macromol 2024; 281:136401. [PMID: 39383924 DOI: 10.1016/j.ijbiomac.2024.136401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/11/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Imbalances in gut microbiota diversity are associated with various health issues, including obesity and related disorders. There is a growing interest in developing synergistic biopolymers based on wolfberry polysaccharides and whey protein to address these problems due to their potential health benefits. This review explores recent advances in understanding how functional foods based on Lycium barbarum polysaccharides (LBP) and whey protein (WP) influence gut microbiota diversity and their underlying mechanisms. We examine the impact of these biopolymers on microbial composition and functionality, focusing on their roles in improving health by regulating gut microbiota. The combined effects of WP and LBP significantly enhance gut microbiome metabolic activities and taxonomic diversity, offering promising avenues for treating obesity and related disorders.
Collapse
Affiliation(s)
- Majida Al-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Lan Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Linqiang Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China.
| |
Collapse
|
2
|
Precupas A, Gheorghe D, Leonties AR, Popa VT. Resveratrol Effect on α-Lactalbumin Thermal Stability. Biomedicines 2024; 12:2176. [PMID: 39457489 PMCID: PMC11504486 DOI: 10.3390/biomedicines12102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The effect of resveratrol (RESV) on α-lactalbumin (α-LA) thermal stability was evaluated using differential scanning calorimetry (DSC), circular dichroism (CD) and dynamic light scattering (DLS) measurements. Complementary information offered by molecular docking served to identify the binding site of the ligand on the native structure of protein and the type of interacting forces. DSC thermograms revealed a double-endotherm pattern with partial overlapping of the two components. The most relevant effect of RESV is manifested in the narrowing of the protein thermal fingerprint: the first process (peak temperature T1) is shifted to higher temperatures while the second one (peak temperature T2) to lower values. The CD data indicated partial conformational changes in the protein non-α-helix domain at T1, resulting in a β-sheet richer intermediate (BSRI) with an unaffected, native-like α-helix backbone. The RESV influence on this process may be defined as slightly demoting, at least within DSC conditions (linear heating rate of 1 K min-1). On further heating, unfolding of the α-helix domain takes place at T2, with RESV acting as a promoter of the process. Long time incubation at 333 K produced the same type of BSRI: no significant effect of RESV on the secondary structure content was detected by CD spectroscopy. Nevertheless, the size distribution of the protein population obtained from DLS measurements revealed the free (non-bound) RESV action manifested in the developing of larger size aggregates.
Collapse
Affiliation(s)
- Aurica Precupas
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania; (D.G.); (A.R.L.)
| | | | | | - Vlad Tudor Popa
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania; (D.G.); (A.R.L.)
| |
Collapse
|
3
|
Bogdanova LR, Nikiforova AA, Ziganshina SA, Zuev YF, Sedov IA. Influence of divalent metal cations on α-lactalbumin fibril formation. J Biol Inorg Chem 2024; 29:601-609. [PMID: 39126483 DOI: 10.1007/s00775-024-02071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The effect of binding of divalent metal cations (Ca2+, Cu2+, Mg2+, Mn2+, Zn2+) on the kinetics of fibril formation of bovine α-lactalbumin at acidic conditions is considered. The kinetic parameters of the process were determined using a thioflavin T fluorescence assay. The DSC thermograms of bovine α-lactalbumin in the presence and absence of cations were recorded. The duration of the lag period correlates with the changes in the thermal stability of the molten globule of the protein in the presence of cations. The final thioflavin T fluorescence intensity after formation of the mature fibrils decreases under the influence of calcium ions which strongly bind to the monomeric protein, and increases in solutions containing copper and especially zinc. These ions seem to accelerate secondary nucleation processes and change the fibril morphology, which was confirmed by atomic force microscopy imaging.
Collapse
Affiliation(s)
- L R Bogdanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - A A Nikiforova
- Department of Chemistry, Kazan Federal University, Kazan, Russia
| | - S A Ziganshina
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Yu F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - I A Sedov
- Department of Chemistry, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
4
|
Chen L, Zhang H, Shi H, Li Z, Xue C. Application of multi-omics combined with bioinformatics techniques to assess salinity stress response and tolerance mechanisms of Pacific oyster (Crassostrea gigas) during depuration. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108779. [PMID: 37120087 DOI: 10.1016/j.fsi.2023.108779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Depuration is a vital stage to ensure the safety of oyster consumption, and salinity had a great impact on the environmental adaptability of oysters, but the underlying molecular mechanism was poorly understood during depuration stage. Here, Crassostrea gigas was depurated for 72 h at different salinity (26, 29, 32, 35, 38 g/L, corresponding to ±20%, ±10% salinity fluctuation away from oyster's production area) and then analyzed by using transcriptome, proteome, and metabolome combined with bioinformatics techniques. The transcriptome showed that the salinity stress led to 3185 differentially expressed genes and mainly enriched in amino acid metabolism, carbohydrate metabolism, lipid metabolism, etc. A total of 464 differentially expressed proteins were screened by the proteome, and the number of up-regulated expression proteins was less than the down-regulated, indicating that the salinity stress would affect the regulation of metabolism and immunity in oysters. 248 metabolites significantly changed in response to depuration salinity stress in oysters, including phosphate organic acids and their derivatives, lipids, etc. The results of integrated omics analysis indicated that the depuration salinity stress induced abnormal metabolism of the citrate cycle (TCA cycle), lipid metabolism, glycolysis, nucleotide metabolism, ribosome, ATP-binding cassette (ABC) transport pathway, etc. By contrast with Pro-depuration, more radical responses were observed in the S38 group. Based on the results, we suggested that the 10% salinity fluctuation was suitable for oyster depuration and the combination of multi-omics analysis could provide a new perspective for the analysis of the mechanism changes.
Collapse
Affiliation(s)
- Lipin Chen
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China
| | - Hongwei Zhang
- Food and Agricultural Products Testing Agency, Technology Center of Qingdao Customs District, Qingdao, Shandong Province, 266237, PR China
| | - Haohao Shi
- College of Food Science and Technology, Hainan University, Hainan, 570228, PR China.
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province, 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| |
Collapse
|
5
|
The ‘Whey’ to good health: Whey protein and its beneficial effect on metabolism, gut microbiota and mental health. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Pei W, Cai L, Gong X, Zhang L, Zhang J, Zhu P, Jiang H, Wang C, Wang S, Chen J. Drug-loaded oleic-acid grafted mesoporous silica nanoparticles conjugated with α-lactalbumin resembling BAMLET-like anticancer agent with improved biocompatibility and therapeutic efficacy. Mater Today Bio 2022; 15:100272. [PMID: 35607417 PMCID: PMC9123267 DOI: 10.1016/j.mtbio.2022.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Despite its prominent therapeutic efficacy, chemotherapy has raised serious concerns due to the severe adverse effects and multidrug resistance evoked, which propels the search for safe and green therapeutic agents. BAMLET (bovine α-lactalbumin made lethal against tumor cell) is a well-known protein-based anticancer agent of selective tumoricidal activity. Here, we prepared oleic acid-modified mesoporous silica nanoparticles (OA-MSNs) conjugated with bovine α-lactalbumin, a lipoprotein complex resembling BAMLET formed on the surface of MSNs (MSN-BAMLET) to load the anticancer drug of docetaxel (DTX). Compared to that of OA-MSNs/DTX, the obtained MSN-BAMLET/DTX with a sustained and pH-responsive drug release behaviors exhibited good biocompatibility and enhanced cytotoxic effect against cancer cells. Moreover, the presence of lipoprotein complex in MSN-BAMLET contributed to the improved dispersion of the composite in solution and the inhibitory effect on the migration of cancer cells. Furthermore, the adsorption profiles of protein corona on the obtained nanoparticles were analyzed. It was found that the marked low amount and abundance of plasma proteins were adsorbed on the α-lactalbumin coated siliceous composite demonstrated its long circulation property. Finally, in vivo study showed that MSN-BAMLET/DTX contributed to the effective cancer ablation and the prolonged survival. Therefore, the constructed MSN-BAMLET of the mesoregular structure and peculiar tumoricidal effect provides a manipulable nanoplatform as drug nanocarrier for therapeutic applications.
Collapse
Affiliation(s)
- Wei Pei
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
| | - Ling Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xing Gong
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
| | - Li Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
| | - Jiarong Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
| | - Ping Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Chao Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
| | - Shoulin Wang
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
7
|
Yao Q, Li H, Fan L, Huang S, Wang J, Zheng N. The combination of lactoferrin and linolenic acid inhibits colorectal tumor growth through activating AMPK/JNK-related apoptosis pathway. PeerJ 2021; 9:e11072. [PMID: 34131514 PMCID: PMC8174148 DOI: 10.7717/peerj.11072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Colorectal cancer is a common cause of death with few available therapeutic strategies, and the preventative complexes in adjunctive therapy are urgently needed. Increasing evidences have shown that natural ingredients, including lactoferrin, oleic acid, docosahexaenoic acid (DHA) and linolenic acid, possess anti-inflammatory and anti-tumor activities. However, investigations and comparisons of their combinations in colorectal tumor model have not been reported, and the mechanism is still unrevealed. In the study, we examined the viability, migration, invasion and apoptosis of HT29 cells to choose the proper doses of these components and to select the effective combination in vitro. BALB/c nude mice bearing colorectal tumor were used to explore the role of selected combination in inhibiting tumor development in vivo. Additionally, metabonomic detection was performed to screen out the specific changed metabolitesand related pathway. The results demonstrated that lactoferrin at 6.25 μM, oleic acid at 0.18 mM, DHA at 0.18 mM, and linolenic acid at 0.15 mM significantly inhibited the viabilities of HT29 cells (p < 0.05). The combination of lactoferrin (6.25 μM) + linolenic acid (0.15 mM) exhibited the strongest activity in inhibiting the migration and invasion of HT29 cells in vivo and suppressing tumor development in vitro (p < 0.05). Furthermore, the lactoferrin + linolenic acid combination activated p-AMPK and p-JNK, thereby inducing apoptosis of HT29 cells (p < 0.05). The present study was the first to show that lactoferrin + linolenic acid combination inhibited HT29 tumor formation by activating AMPK/JNK related pathway.
Collapse
Affiliation(s)
- Qianqian Yao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linlin Fan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengnan Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Bashir S, Shamsi A, Ahmad F, Hassan MI, Kamal MA, Islam A. Biophysical Elucidation of Fibrillation Inhibition by Sugar Osmolytes in α-Lactalbumin: Multispectroscopic and Molecular Docking Approaches. ACS OMEGA 2020; 5:26871-26882. [PMID: 33111013 PMCID: PMC7581248 DOI: 10.1021/acsomega.0c04062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 09/25/2020] [Indexed: 05/02/2023]
Abstract
Protein aggregation is among the most challenging new frontiers in protein chemistry as well as in molecular medicine and has direct implications in protein misfolding. This study investigated the role of sugar molecules (glucose, fructose, sucrose, and the mixture of glucose and fructose) in protecting the structural integrity of α-lactalbumin (α-LA) against aggregation. The research focused here is the inhibitory capabilities of sugars against α-LA fibril formation investigated employing diverse multispectroscopic and microscopic techniques. The aggregation was induced in α-LA thermally with a change in concentration. UV-vis spectroscopy, ThT binding assay, Trp fluorescence, Rayleigh scattering, and turbidity assay depicted synchronized results. Further, transmission electron microscopy (TEM) complemented that a mixture of glucose and fructose was the best inhibitor of α-LA fibril formation. Inhibition of α-LA aggregation by sugar osmolytes is attributed to the formation of hydrogen bonds between these osmolytes, as evidenced by the molecular docking results. This hydrogen bonding is a key player that prevents aggregation in α-LA in the presence of sugar osmolytes. This study provides an insight into the ability of naturally occurring sugar osmolytes to inhibit fibril formation and can serve as a platform to treat protein misfolding and aggregation-oriented disorders.
Collapse
Affiliation(s)
- Sania Bashir
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Azhar Kamal
- Department
of Biochemistry, College of Science, University
of Jeddah, Jeddah 21589, Saudi Arabia
- University
of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University
of Jeddah, Jeddah 21589, Saudi Arabia
| | - Asimul Islam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Correspondence:
| |
Collapse
|
9
|
Liu J, Chen WM, Shao YH, Liu YP, Tu ZC. Improved antitumor activity and IgE/IgG-binding ability of α-Lactalbumin/β-lactoglobulin induced by ultrasonication prior to binding with oleic acid. J Food Biochem 2020; 44:e13502. [PMID: 33025647 DOI: 10.1111/jfbc.13502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022]
Abstract
Bovine α-lactalbumin (α-La)/β-lactoglobulin (β-Lg) was pretreated through ultrasonic treatment and subsequently binding with oleic acid (OA) by heat treatment. And, the antitumor activity, IgE/IgG-binding ability, and structural modifications were investigated. After α-La/β-Lg were treated by ultrasonic prior to binding with OA, the treated α-La/β-Lg showed high antitumor activity and IgE/IgG-binding ability, and significantly affected the structural modifications, which reflected by the reduction in α-helix content, the increase of molecular weight, intrinsic fluorescence intensity, and surface hydrophobicity. Molecular docking studies indicated that OA bound to α-La/β-Lg by hydrogen bonds and hydrophobic interaction. Therefore, ultrasonic prior to binding with OA could improve antitumor activity and IgE/IgG-binding ability of α-La/β-Lg as a result of structural modifications. And, ultrasonic prior to binding with fatty acid processing of milk products alone may increase the antitumor activity, this change may enhance the risk of an allergenic reaction in milk allergy patients to some extent. PRACTICAL APPLICATIONS: Fatty acids, natural ligands associated with the bovine milk proteins, and milk protein-fatty acid complex has a variety of functional applications in the food industry. This study revealed that antitumor activity, IgE/IgG-binding ability, and structural modifications of α-La/β-Lg induced by ultrasonic prior to binding with oleic acid. It will be beneficial to understand the mechanism of the functional changes of protein. Ultrasonic prior to binding with oleic acid will be more likely to develop a practical technology to improve the functional characteristics of milk protein and design the optimal nutritional performance of milk food.
Collapse
Affiliation(s)
- Jun Liu
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Nanchang, China
| | - Wen-Mei Chen
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Nanchang, China
| | - Yan-Hong Shao
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Nanchang, China
| | - Ying-Ping Liu
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Zong-Cai Tu
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Nanchang, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
α-Lactalbumin, Amazing Calcium-Binding Protein. Biomolecules 2020; 10:biom10091210. [PMID: 32825311 PMCID: PMC7565966 DOI: 10.3390/biom10091210] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
α-Lactalbumin (α-LA) is a small (Mr 14,200), acidic (pI 4–5), Ca2+-binding protein. α-LA is a regulatory component of lactose synthase enzyme system functioning in the lactating mammary gland. The protein possesses a single strong Ca2+-binding site, which can also bind Mg2+, Mn2+, Na+, K+, and some other metal cations. It contains several distinct Zn2+-binding sites. Physical properties of α-LA strongly depend on the occupation of its metal binding sites by metal ions. In the absence of bound metal ions, α-LA is in the molten globule-like state. The binding of metal ions, and especially of Ca2+, increases stability of α-LA against the action of heat, various denaturing agents and proteases, while the binding of Zn2+ to the Ca2+-loaded protein decreases its stability and causes its aggregation. At pH 2, the protein is in the classical molten globule state. α-LA can associate with membranes at neutral or slightly acidic pH at physiological temperatures. Depending on external conditions, α-LA can form amyloid fibrils, amorphous aggregates, nanoparticles, and nanotubes. Some of these aggregated states of α-LA can be used in practical applications such as drug delivery to tissues and organs. α-LA and some of its fragments possess bactericidal and antiviral activities. Complexes of partially unfolded α-LA with oleic acid are cytotoxic to various tumor and bacterial cells. α-LA in the cytotoxic complexes plays a role of a delivery carrier of cytotoxic fatty acid molecules into tumor and bacterial cells across the cell membrane. Perhaps in the future the complexes of α-LA with oleic acid will be used for development of new anti-cancer drugs.
Collapse
|
11
|
Fang B, Yang ZX, Ren FZ. The self-assembled α-lactalbumin-oleic acid complex inhibits ATP supply from both glycolysis and the TCA cycle in HepG2 cells and HepG2-bearing nude mice. Int J Biol Macromol 2020; 159:258-263. [PMID: 32389653 DOI: 10.1016/j.ijbiomac.2020.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/26/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023]
Abstract
Energy metabolism has been a predominant target for anti-cancer drug development. The self-assembled anti-tumor α-lactalbumin-oleic acid complex (α-LA-OA) affects the energy metabolism of tumor cells, however, the role of targeting energy metabolism in its anti-tumor mechanism still needs to be clarified. α-LA assembled with OA to form a complex with an average diameter of 144.1 ± 7.241 nm, which is 10-fold larger than α-LA alone. Furthermore, the self-assembled α-LA-OA inhibited the ATP supply from both glycolysis and oxidative phosphorylation in HepG2 cells and HepG2-bearing nude mice. The gene expression of enzymes involved in glycolysis (HK2, aldose, PKM2, LDHB) and oxidative phosphorylation (CS, ACO2, IDH2, SDHA) was inhibited. This inhibitory effect was also evident by increased phosphorylation of AMPKα. α-LA-OA also suppressed the expression of HIF-1α and increased the expression of activated caspase-3. These findings demonstrate that the anti-tumor mechanism of α-LA-OA may be related to its inhibitory effect on the ATP supply, which then activates programmed cell death pathways. This study also indicated that α-LA-OA is a potent anti-tumor agent that targets the energy metabolism of tumor cells.
Collapse
Affiliation(s)
- Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhi-Xuan Yang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fa-Zheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
12
|
Li J, Li J, Zhao WG, Sun HD, Guo ZG, Liu XY, Tang XY, She ZF, Yuan T, Liu SN, Liu Q, Fu Y, Sun W. Comprehensive proteomics and functional annotation of mouse brown adipose tissue. PLoS One 2020; 15:e0232084. [PMID: 32374735 PMCID: PMC7202602 DOI: 10.1371/journal.pone.0232084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge about the mouse brown adipose tissue (BAT) proteome can provide a deeper understanding of the function of mammalian BAT. Herein, a comprehensive analysis of interscapular BAT from C57BL/6J female mice was conducted by 2DLC and high-resolution mass spectrometry to construct a comprehensive proteome dataset of mouse BAT proteins. A total of 4949 nonredundant proteins were identified, and 4495 were quantified using the iBAQ method. According to the iBAQ values, the BAT proteome was divided into high-, middle- and low-abundance proteins. The functions of the high-abundance proteins were mainly related to glucose and fatty acid oxidation to produce heat for thermoregulation, while the functions of the middle- and low-abundance proteins were mainly related to protein synthesis and apoptosis, respectively. Additionally, 497 proteins were predicted to have signal peptides using SignalP4 software, and 75 were confirmed in previous studies. This study, for the first time, comprehensively profiled and functionally annotated the BAT proteome. This study will be helpful for future studies focused on biomarker identification and BAT molecular mechanisms.
Collapse
Affiliation(s)
- Jing Li
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Juan Li
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei-Gang Zhao
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- * E-mail: (WS); (W-GZ)
| | - Hai-Dan Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zheng-Guang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiao-Yan Liu
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiao-Yue Tang
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhu-Fang She
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Yuan
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shuai-Nan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Diabetes Research Center of Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Fu
- Key Laboratory of Endocrinology of Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
- * E-mail: (WS); (W-GZ)
| |
Collapse
|