1
|
He G, Long H, He J, Zhu C. The Immunomodulatory Effects and Applications of Probiotic Lactiplantibacillus plantarum in Vaccine Development. Probiotics Antimicrob Proteins 2024; 16:2229-2250. [PMID: 39101975 DOI: 10.1007/s12602-024-10338-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) is a lactic acid bacterium that exists in various niches. L. plantarum is a food-grade microorganism that is commonly considered a safe and beneficial microorganism. It is widely used in food fermentation, agricultural enhancement, and environmental protection. L. plantarum is also part of the normal flora that can regulate the intestinal microflora and promote intestinal health. Some strains of L. plantarum are powerful probiotics that induce and modulate the innate and adaptive immune responses. Due to its outstanding immunoregulatory capacities, an increasing number of studies have examined the use of probiotic L. plantarum strains as natural immune adjuvants or alternative live vaccine carriers. The present review summarizes the main immunomodulatory characteristics of L. plantarum and discusses the preliminary immunological effects of L. plantarum as a vaccine adjuvant and delivery carrier. Different methods for improving the immune capacities of recombinant vector vaccines are also discussed.
Collapse
Affiliation(s)
- Guiting He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Huanbing Long
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Jiarong He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Zhou Y, Kuerman M, Zhou Q, Hou B, Li B, Li Y, Zhang L, Liu T. Lacticaseibacillus casei K11 exerts immunomodulatory effects by enhancing natural killer cell cytotoxicity via the extracellular regulated-protein kinase pathway. Eur J Nutr 2024; 63:1867-1876. [PMID: 38592520 DOI: 10.1007/s00394-024-03390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE Probiotics can serve as immunomodulators that regulate the activation of immune cells. This study aimed to screen potential probiotic strains that can enhance NK cell toxicity to improve host immunity. METHODS In this investigation, we examined three potential probiotic strains, namely Lactiplantibacillus plantarum YZX21 (YZX21), Bifidobacterium bifidum FL-276.1 (FL-276.1) and Lacticaseibacillus casei K11 (K11), to assess their capacity in modulating NK cytotoxicity both in vitro and in vivo, while elucidating the underlying mechanisms involved. RESULTS The findings demonstrated that K11 exhibited superior efficacy in enhancing NK cytotoxicity. Subsequent analysis revealed that K11 significantly augmented the secretion of perforin and granzyme B by NK cells through activation of receptors NKp30 and NKp46 via the extracellular signal-regulated kinase (ERK) pathway. Furthermore, heat-inactivated K11 also enhanced NK cell activity to an extent comparable to live bacteria, with lipoteichoic acid from K11 identified as a crucial factor mediating the activation of NK cell cytotoxicity. CONCLUSION Our study suggests that K11 may have potential applications as probiotics or postbiotics for regulating NK cell cytotoxicity to enhance immunity.
Collapse
Affiliation(s)
- Yu Zhou
- College of Food Science and Engineering, Ocean University of China, N-O-1299 Sansha Road, Qingdao, 266003, China
| | - Malina Kuerman
- College of Food Science and Engineering, Ocean University of China, N-O-1299 Sansha Road, Qingdao, 266003, China
| | - Qi Zhou
- College of Food Science and Engineering, Ocean University of China, N-O-1299 Sansha Road, Qingdao, 266003, China
| | - Baochao Hou
- National Center of Technology Innovation for Dairy, Hohhot, 010000, China
| | - Baolei Li
- National Center of Technology Innovation for Dairy, Hohhot, 010000, China
| | - Yang Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, N-O-1299 Sansha Road, Qingdao, 266003, China.
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, N-O-1299 Sansha Road, Qingdao, 266003, China.
| |
Collapse
|
3
|
Hong GH, Lee SY, Kim IA, Suk J, Baeg C, Kim JY, Lee S, Kim KJ, Kim KT, Kim MG, Park KY. Effect of Heat-Treated Lactiplantibacillus plantarum nF1 on the Immune System Including Natural Killer Cell Activity: A Randomized, Placebo-Controlled, Double-Blind Study. Nutrients 2024; 16:1339. [PMID: 38732587 PMCID: PMC11085399 DOI: 10.3390/nu16091339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Heat-treated Lactiplantibacillus plantarum nF1 (HT-nF1) increases immune cell activation and the production of various immunomodulators (e.g., interleukin (IL)-12) as well as immunoglobulin (Ig) G, which plays an important role in humoral immunity, and IgA, which activates mucosal immunity. To determine the effect of HT-nF1 intake on improving immune function, a randomized, double-blind, placebo-controlled study was conducted on 100 subjects with normal white blood cell counts. The HT-nF1 group was administered capsules containing 5 × 1011 cells of HT-nF1 once a day for 8 weeks. After 8 weeks of HT-nF1 intake, significant changes in IL-12 were observed in the HT-nF1 group (p = 0.045). In particular, the change in natural killer (NK) cell activity significantly increased in subjects with low secretory (s) IgA (≤49.61 μg/mL) and low NK activity (E:T = 10:1) (≤3.59%). These results suggest that HT-nF1 has no safety issues and improves the innate immune function by regulating T helper (Th)1-related immune factors. Therefore, we confirmed that HT-nF1 not only has a positive effect on regulating the body's immunity, but it is also a safe material for the human body, which confirms its potential as a functional health food ingredient.
Collapse
Affiliation(s)
- Geun-Hye Hong
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - So-Young Lee
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - In Ah Kim
- Global Medical Research Center, Seoul 03737, Republic of Korea; (I.A.K.); (J.S.); (C.B.)
| | - Jangmi Suk
- Global Medical Research Center, Seoul 03737, Republic of Korea; (I.A.K.); (J.S.); (C.B.)
| | - Chaemin Baeg
- Global Medical Research Center, Seoul 03737, Republic of Korea; (I.A.K.); (J.S.); (C.B.)
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (J.Y.K.); (S.L.)
| | - Sehee Lee
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea; (J.Y.K.); (S.L.)
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Ki Tae Kim
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - Min Gee Kim
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| | - Kun-Young Park
- IMMUNOBIOTECH Corp., Seoul 06628, Republic of Korea; (G.-H.H.); (S.-Y.L.)
| |
Collapse
|
4
|
Adejumo SA, Oli AN, ROWAIYE AB, IGBOKWE NH, EZEJIEGU CK, YAHAYA ZS. Immunomodulatory Benefits of Probiotic Bacteria: A Review of Evidence. OBM GENETICS 2023; 07:1-73. [DOI: 10.21926/obm.genet.2304206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Over the past few decades, probiotics have emerged as a viable medical tool for preventing and/or treating diseases. This narrative review provides recent findings on Probiotics and their benefits on the host immune system. It also highlights the specific mechanisms through which probiotics mediate those benefits. The study also explores the topical or systemic probiotic administration method. Authors screened databases like Google Scholar, Web of Science, PubMed, Scopus, and China National Knowledge Infrastructure database, using various keyword combinations such as: “probiotic” AND “Immunomodulation” OR “probiotic” AND “Immunoregulation” OR “probiotic” AND “Immunostimulation”, for relevant literature written in English only. The review shows that probiotics can regulate the host immune system, including regulating T cells, dendritic cells, intestinal epithelial cells, and several signal pathways, and confer health benefits. Although several clinical trials also revealed the prospects and efficacy of probiotics as immunomodulators and treatment of diseases, there is a need for thorough future investigations on the effectiveness of specific strains of probiotics involved in immunomodulation.
Collapse
|
5
|
Vera-Santander VE, Hernández-Figueroa RH, Jiménez-Munguía MT, Mani-López E, López-Malo A. Health Benefits of Consuming Foods with Bacterial Probiotics, Postbiotics, and Their Metabolites: A Review. Molecules 2023; 28:molecules28031230. [PMID: 36770898 PMCID: PMC9920731 DOI: 10.3390/molecules28031230] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Over the years, probiotics have been extensively studied within the medical, pharmaceutical, and food fields, as it has been revealed that these microorganisms can provide health benefits from their consumption. Bacterial probiotics comprise species derived from lactic acid bacteria (LAB) (genus Lactobacillus, Leuconostoc, and Streptococcus), the genus Bifidobacterium, and strains of Bacillus and Escherichia coli, among others. The consumption of probiotic products is increasing due to the current situation derived from the pandemic caused by COVID-19. Foods with bacterial probiotics and postbiotics are premised on being healthier than those not incorporated with them. This review aims to present a bibliographic compilation related to the incorporation of bacterial probiotics in food and to demonstrate through in vitro and in vivo studies or clinical trials the health benefits obtained with their metabolites and the consumption of foods with bacterial probiotics/postbiotics. The health benefits that have been reported include effects on the digestive tract, metabolism, antioxidant, anti-inflammatory, anticancer, and psychobiotic properties, among others. Therefore, developing food products with bacterial probiotics and postbiotics is a great opportunity for research in food science, medicine, and nutrition, as well as in the food industry.
Collapse
|
6
|
Kageyama Y, Nishizaki Y, Aida K, Yayama K, Ebisui T, Akiyama T, Nakamura T. Lactobacillus plantarum induces innate cytokine responses that potentially provide a protective benefit against COVID-19: A single-arm, double-blind, prospective trial combined with an in vitro cytokine response assay. Exp Ther Med 2022; 23:20. [PMID: 34815772 PMCID: PMC8593926 DOI: 10.3892/etm.2021.10942] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Intestinal microbiota can indirectly modulate airway physiology and immunity through the gut-lung axis. Recent microbiome studies indicate that patients with coronavirus disease 2019 (COVID-19) exhibit a specific intestinal dysbiosis that is closely associated with the disease pathophysiology. Therefore, rebalancing the intestinal microbiome using probiotics may be effective for controlling COVID-19. However, the rationale for using probiotics in COVID-19 remains unclear. In the present study, an in vitro cytokine response assay was conducted, followed by a single-arm, double-blind, prospective trial to evaluate the immunological efficacy of probiotic lactic acid bacteria against COVID-19. The present study focused on Lactobacillus plantarum (L. plantarum), Bifidobacterium longum and Lactococcus lactis ssp. lactis, which exhibit robust protective effects against infection with respiratory RNA viruses. Considering the feasibility of long-term daily intake for prophylactic purposes, healthy uninfected individuals were enrolled as subjects. Our previous pilot trial demonstrated that oral Qingfei Paidu decoction (QFPD), a Chinese herbal medicine formulated specifically against COVID-19, upregulates plasma TNF-α, IL-1β, IL-18 and IL-8. Therefore, the present study utilized the cytokine changes induced by QFPD to define the innate cytokine index QICI [=(TNF-α) x (IL-1β) x (IL-18) x (IL-8)/(IL-6)] as an indicator of the anti-COVID-19 immunomodulatory potential of the lactic acid bacteria. A total of 20 eligible volunteers were enrolled, 18 of whom completed the intervention. L. plantarum demonstrated a strikingly high innate cytokine index in all subjects in the in vitro cytokine response assay. In the subsequent trial, oral intake of L. plantarum significantly increased the innate cytokine index (mean fold change, 17-fold; P=0.0138) and decreased the plasma level of IL-6 (P=0.0128), a key driver of complex immune dysregulation in COVID-19, as compared with the baseline. The cytokine index increased in 16 of 18 subjects (88.9%) with considerable individual differences in the fold change (1- to 128-fold). In line with these innate cytokine changes, L. plantarum ingestion significantly enhanced the activity of natural killer cells. By contrast, oral B. longum failed to induce a significant increase in the innate cytokine index (mean fold change, 2-fold; P=0.474) as compared with the baseline. In conclusion, L. plantarum demonstrated superior QFPD-like immunomodulatory ability and mimicked the blood cytokine environment produced by early immune responses to viral infection. Daily consumption of L. plantarum as an anti-COVID-19 probiotic may be a possible option for preventing COVID-19 during the pandemic. The present study was prospectively registered in the University Hospital Medical Information Network-Clinical Trials Registry under the trial number UMIN000040479 on 22 May 2020 (https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000046202).
Collapse
Affiliation(s)
- Yasunari Kageyama
- Takanawa Clinic, Tokyo 108-0074, Japan
- Tokai University Hospital, Isehara-shi, Kanagawa 259-1193, Japan
| | - Yasuhiro Nishizaki
- Tokai University Hospital, Isehara-shi, Kanagawa 259-1193, Japan
- Department of Clinical Health Science, Tokai University Tokyo Hospital, Tokai University School of Medicine, Tokyo 151-0053, Japan
| | | | | | | | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Tsutomu Nakamura
- Takanawa Clinic, Tokyo 108-0074, Japan
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| |
Collapse
|
7
|
Chun SH, Lee KW. Immune-enhancing effects of β-lactoglobulin glycated with lactose following in vitro digestion on cyclophosphamide-induced immunosuppressed mice. J Dairy Sci 2021; 105:623-636. [PMID: 34763913 DOI: 10.3168/jds.2021-20681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/16/2021] [Indexed: 11/19/2022]
Abstract
β-Lactoglobulin (β-LG) is a major milk protein, making up more than 53% of the total whey proteins, and is seen as a valuable ingredient in food processing because of its high essential amino acid content and diverse functional applications. The Maillard reaction can occur during the storage and processing of food and generate various beneficial effects, including anti-allergenicity, antioxidant, and immunomodulatory effects. The addition of an β-LG-lactose conjugate (LGL) produced by the Maillard reaction was shown to have a strong immune-enhancing effect, increasing both nitric oxide generation and cytokine expression through activation of RAW 264.7 cells, even after in vitro digestion. Furthermore, daily LGL administration resulted in the upregulation of several immune markers in a cyclophosphamide-induced immunosuppressive mouse model, indicating that this treatment stimulates multiple immune cells, including macrophages, natural killer cells, and lymphocytes, enhancing the proliferation and activation of both the innate and adaptive immune responses. Taken together, these findings indicate that consuming LGL on a regular basis can improve immunity by increasing the natural production of various immune cells.
Collapse
Affiliation(s)
- Su-Hyun Chun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; Institute of Biomedical Science and Food Safety, Korea University, Anam-dong, Sungbuk-Gu, Seoul 02841, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
|
9
|
Villena J, Li C, Vizoso-Pinto MG, Sacur J, Ren L, Kitazawa H. Lactiplantibacillus plantarum as a Potential Adjuvant and Delivery System for the Development of SARS-CoV-2 Oral Vaccines. Microorganisms 2021; 9:683. [PMID: 33810287 PMCID: PMC8067309 DOI: 10.3390/microorganisms9040683] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
The most important characteristics regarding the mucosal infection and immune responses against the Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) as well as the current vaccines against coronavirus disease 2019 (COVID-19) in development or use are revised to emphasize the opportunity for lactic acid bacteria (LAB)-based vaccines to offer a valid alternative in the fight against this disease. In addition, this article revises the knowledge on: (a) the cellular and molecular mechanisms involved in the improvement of mucosal antiviral defenses by beneficial Lactiplantibacillus plantarum strains, (b) the systems for the expression of heterologous proteins in L. plantarum and (c) the successful expressions of viral antigens in L. plantarum that were capable of inducing protective immune responses in the gut and the respiratory tract after their oral administration. The ability of L. plantarum to express viral antigens, including the spike protein of SARS-CoV-2 and its capacity to differentially modulate the innate and adaptive immune responses in both the intestinal and respiratory mucosa after its oral administration, indicates the potential of this LAB to be used in the development of a mucosal COVID-19 vaccine.
Collapse
Affiliation(s)
- Julio Villena
- Reference Centre for Lactobacilli (CERELA-CONICET), Laboratory of Immunobiotechnology, Tucuman CP4000, Argentina
- Laboratory of Animal Products Chemistry, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130122, China;
| | - Maria Guadalupe Vizoso-Pinto
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucuman CP4000, Argentina; (M.G.V.-P.); (J.S.)
| | - Jacinto Sacur
- Infection Biology Laboratory, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Tucuman CP4000, Argentina; (M.G.V.-P.); (J.S.)
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Haruki Kitazawa
- Laboratory of Animal Products Chemistry, Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- International Education and Research Center for Food Agricultural Immunology, Livestock Immunology Unit, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
10
|
A meta-analysis reveals the effectiveness of probiotics and prebiotics against respiratory viral infection. Biosci Rep 2021; 41:227885. [PMID: 33604601 PMCID: PMC7955103 DOI: 10.1042/bsr20203638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Experimental experience suggests that microbial agents including probiotics and prebiotics (representative microbial agents) play a critical role in defending against respiratory virus infection. We aim to systematically examine these agents' effect on respiratory viral infection and encourage research into clinical applications. An electronic literature search was conducted from published data with a combination of a microbial agents search component containing synonyms for microbial agents-related terms and a customized search component for respiratory virus infection. Hazard ratio (HR), risk ratio (RR) and standard deviation (SD) were employed as effect estimates. In 45 preclinical studies, the mortality rates decreased in the respiratory viral infection models that included prebiotics or prebiotics as interventions (HR: 0.70; 95% confidence interval (CI): 0.56-0.87; P=0.002). There was a significant decrease in viral load due to improved gut microbiota (SD: -1.22; 95% CI: -1.50 to -0.94; P<0.001). Concentrations of interferon (IFN)-α (SD: 1.05; 95% CI: 0.33-1.77; P=0.004), IFN-γ (SD: 0.83; 95% CI: 0.01-1.65; P=0.05) and interleukin (IL)-12 (SD: 2.42; 95% CI: 0.32-4.52; P=0.02), IL-1β (SD: 0.01; 95% CI: -0.37 to 0.40; P=0.94) increased, whereas those of TNF-α (SD: -0.58; 95% CI: -1.59 to 0.43; P=0.26) and IL-6 (SD: -0.59; 95% CI: -1.24 to 0.07; P=0.08) decreased. Six clinical studies had lower symptom scores (SD: -0.09; 95% CI: -0.44 to 0.26; P=0.61) and less incidence of infection (RR: 0.80; 95% CI: 0.64-1.01; P=0.06). Our research indicates that probiotics and prebiotics pose a defensive possibility on respiratory viral infection and may encourage the clinical application.
Collapse
|
11
|
Yoo HJ, You DJ, Lee KW. Characterization and Immunomodulatory Effects of High Molecular Weight Fucoidan Fraction from the Sporophyll of Undaria pinnatifida in Cyclophosphamide-Induced Immunosuppressed Mice. Mar Drugs 2019; 17:E447. [PMID: 31362412 PMCID: PMC6723532 DOI: 10.3390/md17080447] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022] Open
Abstract
Immunomodulation involves two mechanisms, immunostimulation and immunosuppression. It is a complex mechanism that regulates the pathophysiology and pathogenesis of various diseases affecting the immune system. Immunomodulators can be used as immunostimulators to reduce the side effects of drugs that induce immunosuppression. In this study, we characterized the chemical composition of high molecular weight fucoidan (HMWF) and low molecular weight fucoidan and compared their functions as natural killer (NK) cell-derived immunostimulators in vitro. We also tested the effectiveness of HMWF, which has a relatively high function in vitro, as an immunostimulator in immunosuppressed animal models. In these models, HWMF significantly restored NK cell cytotoxicity and granzyme B release to the control group level. In addition, the expression of interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-12, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α also increased in the spleen. This study suggests that HMWF acts as an effective immunostimulant under immunosuppressive conditions.
Collapse
Affiliation(s)
- Hee Joon Yoo
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
| | - Dong-Ju You
- Haerim Fucoidan, Wando-gun, Jeollanam-do 59108, Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea.
| |
Collapse
|
12
|
Choi SH, Lee SH, Kim MG, Lee HJ, Kim GB. Lactobacillus plantarum CAU1055 ameliorates inflammation in lipopolysaccharide-induced RAW264.7 cells and a dextran sulfate sodium-induced colitis animal model. J Dairy Sci 2019; 102:6718-6725. [PMID: 31155246 DOI: 10.3168/jds.2018-16197] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
This study aimed to screen lactic acid bacteria (LAB) for their anti-inflammatory activity by using RAW264.7 cells and dextran sulfate sodium (DSS)-induced colitis. In all, 192 LAB strains were isolated from healthy human feces, of which 8 strains showed excellent nitric oxide (NO) inhibitory activity. Peptidoglycan extracts of these 8 LAB strains were subjected to NO assay, Western blot, and ELISA. Among the 8 tested strains, extracts of 4 strains significantly inhibited the production of NO, related enzyme activities such as inducible nitric oxide synthase and cyclooxygenase 2, and key cytokines such as tumor necrosis factor-α and IL-6 in RAW264.7 cells. The 4 strains belonged to Lactobacillus (CAU1054, CAU1055, CAU1064, and CAU1301). Oral administration of the 4 strains inhibited DSS-induced body weight loss, colon shortening, and colon damage in ICR mice. The colon tissue of the mice treated with Lactobacillus plantarum strain CAU1055 had significantly reduced levels of inducible nitric oxide synthase, cyclooxygenase 2, tumor necrosis factor-α, and IL-6. We found that strain CAU1055 could be used as a candidate probiotic strain for the prevention and treatment of inflammatory bowel disease. Further studies are warranted to confirm the mechanisms of interaction between peptidoglycan of L. plantarum strain CAU1055 and upstream cellular signaling mediators.
Collapse
Affiliation(s)
- Sun-Hae Choi
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sun-Hee Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Min Gon Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hong Jin Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.
| |
Collapse
|
13
|
The Effect of Probiotic Yogurt on Glycemic Control in Type 2 Diabetes or Obesity: A Meta-Analysis of Nine Randomized Controlled Trials. Nutrients 2019; 11:nu11030671. [PMID: 30897796 PMCID: PMC6471569 DOI: 10.3390/nu11030671] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 01/04/2023] Open
Abstract
Probiotic yogurt is suggested as a nutritional approach in type 2 diabetes (T2D) and obesity. We performed a systematic review and meta-analysis of randomized controlled trials (RCTs) evaluating the effects of probiotic yogurt on glycemic outcomes in T2D or obesity. The databases used to search for RCTs included Medline and Scopus. The RCTs were eligible if outcomes included selected glycemic markers. In nine eligible trials, 237 and 235 subjects were in treatment (probiotic yogurt) and control (mostly conventional yogurt) groups, respectively. There was no significant difference for pooled unstandardized mean difference (USMD) hemoglobin A1c (HbA1c) by probiotic yogurt compared with the control in T2D (USMD: -0.366; 95% CI: -0.755, 0.024, p = 0.066) and obesity (USMD: 0.116, 95% CI: -0.007, 0.238, p = 0.065). Similarly, there were no effects of probiotic yogurt on fasting blood glucose, fasting insulin, or insulin resistance (estimated by homeostatic model assessment of insulin resistance (HOMA-IR)) in either T2D or obesity. In conclusion, the present meta-analysis has not demonstrated the benefits of consuming probiotic compared with conventional yogurt for improving glucose control in patients with diabetes or obesity. Larger trials are needed to verify the benefits of probiotic and/or conventional yogurt or other probiotic fermented milk (e.g., kefir) on glycemic markers in patients with diabetes and obesity.
Collapse
|