1
|
Shen T, Xia S, Usman M, Xu X, Loor JJ, Xu C. Nuclear factor erythroid 2-related factor 1 regulates the expression of proteasomal genes in ketotic cows and protects mammary cells against free fatty acid-induced endoplasmic reticulum stress. J Dairy Sci 2025; 108:1050-1061. [PMID: 39343197 DOI: 10.3168/jds.2024-25369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Ketosis is a common metabolic disorder in high-yielding cows and is characterized by high concentrations of BHB and free fatty acids (FFA). High concentrations of FFA induce endoplasmic reticulum (ER) stress in multiple organs including mammary tissue, and result in reduced milk production and lower milk quality. In nonruminants, loss of nuclear factor erythroid 2-related factor 1 (NFE2L1) results in ER stress. The physiological functions and molecular mechanisms controlled by NFE2L1 in bovine mammary tissue are poorly understood. Thus, the present study aimed to elucidate the role of the NFE2L1 on proteasomal homeostasis and ER stress in mammary tissue from early lactation (DIM 6-14) healthy cows (CON, blood concentration of BHB <1.2 mM, n = 10) and cows with clinical ketosis (CK blood concentration of BHB >3 mM, n = 10). Compared with CON, serum concentration of glucose was lower due to CK, while serum concentrations of BHB and FFA were greater. Protein and mRNA abundance of NFE2L1 along with abundance of proteasomal subunits (PSMD1, PSMD14, PSMA1, PSMB1, and PSMB5 genes and PSMB4 and PSMB6 proteins) were lower in cows with CK, indicating that expression of NFE2L1 and proteasomal homeostasis was impaired by ketosis. In vitro, primary bovine mammary epithelial cells were exposed to various concentrations of FFA (0, 0.3, 0.6, or 1.2 mM). Compared with the 0 mM FFA, the ratio of phosphorylated (p)-protein kinase R-like ER kinase (PERK)/PERK along with the expression of inositol-requiring enzyme 1 (IRE1) α, activating transcription factor 6 (ATF6), glucose regulated protein 78 (GRP78), and C/EBP homologous protein (CHOP) was higher with 1.2 mM FFA. A similar response was observed for ER stress-associated genes (CHOP, GRP78, and XBP1) indicating that high concentrations of FFA-induced ER stress. In line with in vivo results, 1.2 mM FFA downregulated the protein and mRNA abundance of NFE2L1, the abundance of PSMB6 protein, and proteasome subunit (PSM) genes (PSMC1, PSMC3, and PSMD1), and increased the accumulation of ubiquitin. This suggested a marked negative effect of high FFA on NFE2L1 and proteasomal homeostasis. Silencing of NFE2L1 triggered upregulation of ER stress-associated genes as well as protein abundance of GRP78 and CHOP. Further, compared with CON-siRNA, the abundance of PSM genes was downregulated in the NFE2L1-siRNA group. In contrast, abundance of markers of ER stress and PSM genes and proteins indicated that overexpression of NFE2L1 relieved the FFA-induced ER stress and improved 26S proteasome homeostasis. Our data suggested that the mammary gland experiences ER stress during ketosis partly due to disruption of proteasomal homeostasis from the excess FFA. As such, NFE2L1 could represent a target for potential therapeutic applications in the field to alleviate the accumulation of malformed proteins that may impair the long-term lactogenic capacity of the udder.
Collapse
Affiliation(s)
- Taiyu Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijie Xia
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Muhammad Usman
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Xinyi Xu
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
| | - Chuang Xu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Habib MR, Tokutake Y, Yonekura S. Palmitic acid-induced cell death: impact of endoplasmic reticulum and oxidative stress, mitigated by L-citrulline. Anim Biosci 2025; 38:54-66. [PMID: 39210805 PMCID: PMC11725730 DOI: 10.5713/ab.24.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Palmitic acid (PA), the most abundant saturated free fatty acids, induces apoptosis in bovine mammary epithelial cells (MECs). It is suggested that oxidative stress and endoplasmic reticulum (ER) stress are key mechanisms underlying PA-induced cell death. This study aimed to investigate the interaction between ER stress and oxidative stress during PA-induced cell death in mammary alveolar cell-T (MAC-T) cells. Additionally, we examined whether L-citrulline can protect against PA-induced damage of MAC-T cells. METHODS MAC-T cells were treated with 4-phenyl butyric acid (4-PBA) or N-acetyl-Lcysteine (NAC) to inhibit PA-induced ER stress and oxidative stress, respectively. MAC-T cells were pretreated with or without L-citrulline for 48 h followed by PA treatment. Cell viability was measured with MTT assays. Intracellular reactive oxygen species (ROS) levels in MAC-T cells were assessed using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluores cein diacetate acetyl ester dye. Real-time quantitative polymerase chain reaction was used to explore the regulation of genes associated with oxidative stress, and ER stress genes. Western blotting analysis was also carried out. RESULTS 4-PBA significantly reduced PA-induced mRNA expressions of activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), nuclear factor (erythroid-derived 2)-like 2 (NRF2), and intracellular ROS levels. Furthermore, NAC dramatically reduced PA-induced ROS levels and the mRNA expressions of NRF2, ATF4, and CHOP. L-citrulline pretreatment effectively rescued cell viability decreased by PA. Moreover, L-citrulline pretreatment significantly downregulated the PA-induced upregulation of GRP78, ATF4, and CHOP mRNA expression, and protein expression of p-PERK and cleaved caspase-3. PA increased intracellular ROS levels and NRF2 mRNA expression, whereas L-citrulline pretreatment remarkably reduced these levels. CONCLUSION Both ER and oxidative stresses interact during PA-induced cell death in MAC-T cells, and L-citrulline could attenuate this cell death by inhibiting ER and oxidative stresses. Therefore, L-citrulline may be a promising supplement for protecting against PA-induced cell death in bovine MECs during the lactation period of dairy cows.
Collapse
Affiliation(s)
- Md. Rezwanul Habib
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 399-4598,
Japan
| | - Yukako Tokutake
- Institute of Agriculture, Academic Assembly, Shinshu University, Nagano 399-4598,
Japan
| | - Shinichi Yonekura
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 399-4598,
Japan
- Institute of Agriculture, Academic Assembly, Shinshu University, Nagano 399-4598,
Japan
| |
Collapse
|
3
|
Toral PG, Hervás G, Frutos P. Invited review: Research on ruminal biohydrogenation-Achievements, gaps in knowledge, and future approaches from the perspective of dairy science. J Dairy Sci 2024; 107:10115-10140. [PMID: 39154717 DOI: 10.3168/jds.2023-24591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Scientific knowledge about ruminal biohydrogenation (BH) has improved greatly since this metabolic process was empirically confirmed in 1951. For years, BH had mostly been perceived as a process to be avoided to increase the postruminal flow of UFA from the diet. Two milestones changed this perception and stimulated great interest in BH intermediates themselves: In 1987, the in vitro anticarcinogenic properties of CLA were described, and in 2000, the inhibition of milk fat synthesis by trans-10,cis-12 CLA was confirmed. Since then, numerous BH metabolites have been described in small and large ruminants, and the major deviation from the common BH pathway (i.e., the trans-10 shift) has been reasonably well established. However, there are some less well-characterized alterations, and the comprehensive description of new BH intermediates (e.g., using isotopic tracers) has not been coupled with research on their biological effects. In this regard, the low quality of some published fatty acid profiles may also be limiting the advance of knowledge in BH. Furthermore, although BH seems to no longer be considered a metabolic niche inhabited by a few bacterial species with a highly specific metabolic capability, researchers have failed to elucidate which specific microbial groups are involved in the process and the basis for alterations in BH pathways (i.e., changes in microbial populations or their activity). Unraveling both issues may be beneficial for the description of new microbial enzymes involved in ruminal lipid metabolism that have industrial interest. From the perspective of dairy science, other knowledge gaps that require additional research in the coming years are evaluation of the relationship between BH and feed efficiency and enteric methane emissions, as well as improving our understanding of how alterations in BH are involved in milk fat depression. Addressing these issues will have relevant practical implications in dairy science.
Collapse
Affiliation(s)
- P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - G Hervás
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - P Frutos
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| |
Collapse
|
4
|
Yan Y, Huang J, Chen X, Li Y, Zhao W, Li C. UFL1 regulates cellular homeostasis by targeting endoplasmic reticulum and mitochondria in NEFA-stimulated bovine mammary epithelial cells via the IRE1α/XBP1 pathway. Free Radic Biol Med 2024; 222:16-26. [PMID: 38821134 DOI: 10.1016/j.freeradbiomed.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Elevated levels of NEFA caused by negative energy balance in transition cows induce cellular dyshomeostasis. Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1) can maintain cellular homeostasis and act as a critical regulator of stress responses besides functioning in the ubiquitin-like system. The objective of this study was to elucidate the UFL1 working mechanism on promoting cellular adaptations in bovine mammary epithelial cells (BMECs) in response to NEFA challenge, with an emphasis on the ER and mitochondrial function. The results showed that exogenous NEFA and UFL1 depletion resulted in the disorder of ER and mitochondrial homeostasis and the damage of BMEC integrity, overexpression of UFL1 effectively alleviated the NEFA-induced cellular dyshomeostasis. Mechanistically, our study found that UFL1 had a strong interaction with IRE1α and could modulate the IRE1α/XBP1 pathway of unfolded protein response in NEFA-stimulated BMECs, thereby contributing to the modulation of cellular homeostasis. These findings imply that targeting UFL1 may be a therapeutic alternative to relieve NEB-induced metabolic changes in perinatal dairy cows.
Collapse
Affiliation(s)
- Yexiao Yan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Junpeng Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Xiangxing Chen
- Zibo Service Center for Animal Husbandry and Fishery, Zibo, 255000, China
| | - Yuan Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China
| | - Chengmin Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212100, China.
| |
Collapse
|
5
|
Tang J, Li X, Li W, Cao C. The Protective Effect of Octanoic Acid on Sepsis: A Review. Nutr Rev 2024:nuae106. [PMID: 39101596 DOI: 10.1093/nutrit/nuae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Sepsis, a systemic inflammation that occurs in response to a bacterial infection, is a significant medical challenge. Research conducted over the past decade has indicated strong associations among a patient's nutritional status, the composition of their gut microbiome, and the risk, severity, and prognosis of sepsis. Octanoic acid (OA) plays a vital role in combating sepsis and has a protective effect on both animal models and human patients. In this discussion, the potential protective mechanisms of OA in sepsis, focusing on its regulation of the inflammatory response, immune system, oxidative stress, gastrointestinal microbiome and barrier function, metabolic disorders and malnutrition, as well as organ dysfunction are explored. A comprehensive understanding of the mechanisms by which OA act may pave the way for new preventive and therapeutic approaches to sepsis.
Collapse
Affiliation(s)
- Jiabao Tang
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xiaohua Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou 215004, China
| | - Wei Li
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chun Cao
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| |
Collapse
|
6
|
Liu F, Liang L, Luo Z, Zhang G, Zuo F, Wang L. Effects of taurine on metabolomics of bovine mammary epithelial cells under high temperature conditions. Front Vet Sci 2024; 11:1393276. [PMID: 38915889 PMCID: PMC11194699 DOI: 10.3389/fvets.2024.1393276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
High temperature induces heat stress, adversely affecting the growth and lactation performance of cows. Research has shown the protective effect of taurine against hepatotoxicity both in vivo and in vitro. This study aimed to investigate the effect of taurine on the metabolomics of mammary epithelial cells of dairy cows under high-temperature conditions. Mammary epithelial cells were exposed to 0 mmol/L (HS, control), 8 mmol/L (HT-8), and 32 mmol/L (HT-32) of taurine, then incubated at 42°C for 6 h. Metabolomics analysis was conducted using Liquid Chromatograph Mass Spectrometer (LC-MS). Compared with the HS group, 2,873 and 3,243 metabolites were detected in the HT-8 group in positive and negative ion modes. Among these, 108 and 97 metabolites were significantly upregulated in positive and negative ion modes, while 60 and 166 metabolites were downregulated. Notably, 15 different metabolites such as palmitic acid, adenine and hypoxanthine were screened out in the HT-8 group. Compared with the HS group, 2,873 and 3,243 metabolites were, respectively, detected in the HT-32 group in the positive and negative ion modes. Among those metabolites, 206 metabolites were significantly up-regulated, while 206 metabolites were significantly downregulated in the positive mode. On the other hand, 497 metabolites were significantly upregulated in the negative mode, while 517 metabolites were reported to be downregulated. Noteworthy, 30 distinct metabolites, such as palmitic acid, phytosphingosine, hypoxanthine, nonanoic acid, and octanoic acid, were screened out in the HT-32 group. KEGG enrichment analysis showed that these metabolites were mainly involved in lipid metabolism, purine metabolism and other biological processes. Overall, our study indicates that taurine supplementation alters the metabolites primarily associated with purine metabolism, lipid metabolism and other pathways to alleviate heat stress in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Feifei Liu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
| | - Liang Liang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
| | - Zonggang Luo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
| | - Gongwei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China
| | - Ling Wang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing, China
| |
Collapse
|
7
|
Tsugami Y, Suzuki N, Nii T, Isobe N. Effect of sodium butyrate treatment at the basolateral membranes on the tight junction barrier function via a monocarboxylate transporter in goat mammary epithelial cells. Exp Cell Res 2024; 436:113944. [PMID: 38296017 DOI: 10.1016/j.yexcr.2024.113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
In lactating mammary glands, tight junctions (TJs) prevent blood from mixing with milk and maintain epithelial cell polarity, which is important for milk production. This study aimed to investigate the effect of sodium acetate and sodium butyrate (SB) stimulation direction on the TJ barrier function, which is measured with regard to transepithelial electrical resistance and fluorescein flux, in goat mammary epithelial cells. The expression and localization of the TJ proteins claudin-3 and claudin-4 were examined using Western blotting and immunofluorescence. SB treatment in the lower chamber of cell culture inserts adversely affected the TJ barrier function, whereas sodium acetate barely had any effect, regardless of stimulation direction. In addition, SB treatment in the lower chamber significantly upregulated claudin-3 and claudin-4, whereas TJ proteins showed intermittent localization. Moreover, SB induced endoplasmic reticulum (ER) stress. ARC155858, a monocarboxylate transporter-1 inhibitor, alleviated the adverse impact of SB on TJs and the associated ER stress. Interestingly, sodium β-hydroxybutyrate, a butyrate metabolite, did not affect the TJ barrier function. Our findings indicate that sodium acetate and SB influence the TJ barrier function differently, and excessive cellular uptake of SB can disrupt TJs and induce ER stress.
Collapse
Affiliation(s)
- Yusaku Tsugami
- National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| | - Naoki Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| |
Collapse
|
8
|
Tzirkel-Hancock N, Sharabi L, Argov-Argaman N. Milk fat globule size: Unraveling the intricate relationship between metabolism, homeostasis, and stress signaling. Biochimie 2023; 215:4-11. [PMID: 37802210 DOI: 10.1016/j.biochi.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Fat is an important component of milk which delivers energy, nutrients, and bioactive molecules from the lactating mother to the suckling neonate. Milk fat consists of a complex mixture of different types of lipids; hundreds of fatty acids, triglycerides, phospholipids, sphingolipids, cholesterol and cholesteryl ester, and glycoconjugates, secreted by the mammary gland epithelial cells (MEC) in the form of a lipid-protein assembly termed the milk fat globule (MFG). The mammary gland in general, and specifically that of modern dairy cows, faces metabolic stress once lactation commences, which changes the lipogenic capacity of MECs directly by reducing available energy and reducing factors required for both lipid synthesis and secretion or indirectly by activating a proinflammatory response. Both processes have the capacity to change the morphometric features (e.g., number and size) of the secreted MFG and its precursor-the intracellular lipid droplet (LD). The MFG size is tightly associated with its lipidome and proteome and also affects the bioavailability of milk fat and protein. Thus, MFG size has the potential to regulate the bioactivity of milk and dairy products. MFG size also plays a central role in the functional properties of milk and dairy products such as texture and stability. To understand how stress affects the structure-function of the MFG, we cover: (i) The mechanism of production and secretion of the MFG and the implications of MFG size, (ii) How the response mechanisms to stress can change the morphometric features of MFGs, and (iii) The possible consequences of such modifications.
Collapse
Affiliation(s)
- Noam Tzirkel-Hancock
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Lior Sharabi
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel
| | - Nurit Argov-Argaman
- Department of Animal Science, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
9
|
Yuan C, Tan D, Meng Z, Jiang M, Lin M, Zhao G, Zhan K. The Effects of Sodium Acetate on the Immune Functions of Peripheral Mononuclear Cells and Polymorphonuclear Granulocytes in Postpartum Dairy Cows. Animals (Basel) 2023; 13:2721. [PMID: 37684984 PMCID: PMC10486917 DOI: 10.3390/ani13172721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Excessive lipid mobilization will snatch cell membrane lipids in postpartum dairy cows, which may impair the function of immune cells, including peripheral mononuclear cells (PBMCs) and polymorphonuclear granulocytes (PMNs). Acetate, as a precursor and the energy source of milk fat synthesis, plays a key role in lipid synthesis and the energy supply of dairy cows. However, there is little information about the effect of sodium acetate (NaAc) on the immune function of PBMC and PMN in postpartum dairy cows. Therefore, this study aimed to evaluate the effects of NaAc on the immune functions of PBMCs and PMNs in postpartum dairy cows. In this experiment, twenty-four postpartum multiparous Holstein cows were randomly selected and divided into a NaAc treatment group and a control group. Our results demonstrated that the dietary addition of NaAc increased (p < 0.05) the number of monocytes and the monocyte ratio, suggesting that these postpartum cows fed with NaAc may have better immunity. These expressions of genes (LAP, XBP1, and TAP) involved in the antimicrobial activity in PBMCs were elevated (p < 0.05), suggesting that postpartum dairy cows supplemented with NaAc had the ability of antimicrobial activity. In addition, the mRNA expression of the monocarboxylate transporters MCT1 and MCT4 in PBMCs was increased (p < 0.05) in diets supplemented with NaAc in comparison to the control. Notably, the expression of the XBP1 gene related to antimicrobial activity in PMN was upregulated with the addition of NaAc. The mRNA expression of genes (TLN1, ITGB2, and SELL) involved in adhesion was profoundly increased (p < 0.05) in the NaAc groups. In conclusion, our study provided a novel resolution strategy in which the use of NaAc can contribute to immunity in postpartum dairy cows by enhancing the ability of antimicrobial and adhesion in PBMCs and PMNs.
Collapse
Affiliation(s)
- Cong Yuan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
| | - Dejin Tan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
| | - Zitong Meng
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
| | - Maocheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
| | - Miao Lin
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (C.Y.); (Z.M.); (M.J.); (M.L.); (G.Z.)
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Li J, Zhao C, Liu M, Chen L, Zhu Y, Gao W, Du X, Song Y, Li X, Liu G, Lei L, Feng H. Nuciferine Ameliorates Nonesterified Fatty Acid-Induced Bovine Mammary Epithelial Cell Lipid Accumulation, Apoptosis, and Impaired Migration via Activating LKB1/AMPK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:443-456. [PMID: 36573646 DOI: 10.1021/acs.jafc.2c06133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High blood concentrations of nonesterified fatty acids (NEFAs) provoke various metabolic disorders and are associated with mammary tissue injury and decreased milk production in dairy cows. Nuciferine, an alkaloid found in Nelumbo nucifera leaves, has great potential for correcting lipid metabolism derangements and lipotoxicity. In this study, we evaluated the lipotoxicity induced by excessive NEFA in bovine mammary epithelial cells (bMECs) and investigated whether nuciferine alleviates NEFA-induced lipotoxicity and the underlying molecular mechanisms. We found that excessive NEFA (1.2 and 2.4 mM) induced lipid accumulation, apoptosis, and migration ability impairment in bMECs, whereas nuciferine could ameliorate these disarrangements, as indicated by decreasing triglyceride content, protein abundance of SREBP-1c, cytoplasmic cytochrome c, and cleaved caspase-3 and increasing protein abundance of PPARα and migration ability. Moreover, nuciferine could reverse NEFA-induced LKB1/AMPK signaling inhibition, and the protective effect of nuciferine on lipotoxicity caused by NEFA was abrogated by AMPK inhibitor dorsomorphin. Furthermore, transfection with LKB1 siRNA (si-LKB1) largely abolished the activation effect of nuciferine on AMPK. Overall, nuciferine can protect bMECs from excessive NEFA-induced lipid accumulation, apoptosis, and impaired migration by activating LKB1/AMPK signaling pathway.
Collapse
Affiliation(s)
- Jinxia Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Chenchen Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Menglin Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Linfang Chen
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Yiwei Zhu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Wenwen Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Lin Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| | - Haihua Feng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062 Jilin, China
| |
Collapse
|
11
|
KRAS Affects the Lipid Composition by Regulating Mitochondrial Functions and MAPK Activation in Bovine Mammary Epithelial Cells. Animals (Basel) 2022; 12:ani12223070. [PMID: 36428301 PMCID: PMC9686882 DOI: 10.3390/ani12223070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS), or guanosine triphosphatase KRAS, is a proto-oncogene that encodes the small guanosine triphosphatase transductor protein. Previous studies have found that KRAS can promote cytokine secretion, cell chemotaxis, and survival. However, its effects on milk fat synthesis in bovine mammary epithelial cells are unclear. In this study, the effects of KRAS inhibition on cell metabolism, autophagy, oxidative stress, endoplasmic reticulum stress, mitochondrial function, and lipid composition as well as the potential mechanisms were detected in an immortalized dairy cow mammary epithelial cell line (MAC-T). The results showed that inhibition of KRAS changed the lipid composition (especially the triglyceride level), mitochondrial functions, autophagy, and endoplasmic reticulum stress in cells. Moreover, KRAS inhibition regulated the levels of the mammalian target of rapamycin and mitogen-activated protein kinase (extracellular regulated protein kinases, c-Jun N-terminal kinases, p38) activation. These results indicated that regulation of KRAS would affect the synthesis and composition of milk fat. These results are also helpful for exploring the synthesis and secretion of milk fat at the molecular level and provide a theoretical basis for improving the percentage of fat in milk and the yield of milk from cows.
Collapse
|
12
|
Natrus L, Osadchuk Y, Lisakovska O, Roch T, Babel N, Klys Y, Labudzynskyi D, Chaikovsky Y. Regulation of the apoptosis/autophagy switch by propionic acid in ventromedial hypothalamus of rats with type 2 diabetes mellitus. Heliyon 2022; 8:e11529. [PMID: 36439719 PMCID: PMC9681650 DOI: 10.1016/j.heliyon.2022.e11529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/07/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Hypothalamic dysregulation may cause abnormal glucose metabolism and type 2 diabetes mellitus (T2DM). The balance between autophagy and apoptosis is important for maintaining cellular/tissue homeostasis and may be disrupted in T2DM. Objectives Since propionic acid (PA) exerts neuroprotective effects, the aim was to investigate its effects on apoptosis/autophagy switch in the ventromedial hypothalamus (VMH) of T2DM rats. Materials and methods Male Wistar rats were divided: 1) control; 2) T2DM; groups that received (14 days, orally): 3) metformin (60 mg/kg); 4) sodium salt of PA (60 mg/kg); 5) PA + metformin. Western blotting (Bax, Bcl-xl, LC3, Beclin-1, caspase-3), RT-PCR (Bax, Bcl-xl, LC3, Beclin-1), transmission electron microscopy and immunohistochemical staining (Bax, Bcl-xl) were performed on the VMH samples. Results T2DM-induced apoptosis and mitoptosis, enlarged endoplasmic reticulum (ER) tubules/cisterns were observed in VMH, and accompanied by an imbalance of pro- and anti-apoptotic factors: elevation of pro-apoptotic markers Bax and caspase-3, decrease in autophagy protein LC3 and anti-apoptotic Bcl-xl. Metformin and PA administration partially improved VMH ultrastructural changes by reducing mitochondrial swelling and diminishing the number of apoptotic neurons. Metformin inhibited neuronal apoptosis, however, caused reactive astrogliosis and accumulation of lipofuscin granules. Elevated number of autophagosomes was associated with the LC3, Beclin-1 and Bcl-xl increase and decrease in Bax and caspase-3 vs. T2DM. PA switched cell fate from apoptosis to autophagy by elevating LC3 and Beclin-1 levels, increasing Bcl-xl content that altogether may represent adaptive response to T2DM-induced apoptosis. PA + metformin administration lowered relative area of ER membranes/cisterns vs. control, T2DM and metformin, and was optimal considering ratio between the pro-apoptotic, anti-apoptotic and autophagy markers. Conclusion T2DM was associated with apoptosis activation leading to impairments in VMH. PA in combination with metformin may be effective against diabetes-induced cell death by switching apoptosis to autophagy in VMH.
Collapse
Affiliation(s)
- Larysa Natrus
- Department of Modern Technologies of Medical Diagnostics & Treatment, Bogomolets National Medical University, 34 Peremoha Avenue, Kyiv 03115, Ukraine
| | - Yuliia Osadchuk
- Department of Histology and Embryology, Bogomolets National Medical University, 34 Peremoha Avenue, Kyiv 03115, Ukraine
| | - Olha Lisakovska
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Toralf Roch
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Center for Advanced Therapies (BeCAT), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Yuliia Klys
- Department of Modern Technologies of Medical Diagnostics & Treatment, Bogomolets National Medical University, 34 Peremoha Avenue, Kyiv 03115, Ukraine
| | - Dmytro Labudzynskyi
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Yuri Chaikovsky
- Department of Histology and Embryology, Bogomolets National Medical University, 34 Peremoha Avenue, Kyiv 03115, Ukraine
| |
Collapse
|
13
|
Fang Z, Gao W, Jiang Q, Loor JJ, Zhao C, Du X, Zhang M, Song Y, Wang Z, Liu G, Li X, Lei L. Targeting IRE1α and PERK in the endoplasmic reticulum stress pathway attenuates fatty acid-induced insulin resistance in bovine hepatocytes. J Dairy Sci 2022; 105:6895-6908. [PMID: 35840398 DOI: 10.3168/jds.2021-21754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022]
Abstract
Endoplasmic reticulum (ER) stress can be induced by various stimuli and triggers the unfolded protein response to activate intracellular signaling pathways that are mediated by 3 ER-resident sensors: inositol requiring protein-1α (IRE1α), PKR-like ER kinase (PERK), and activating transcription factor-6 (ATF6). In nonruminants, ER stress plays a critical role in hepatic insulin resistance. However, whether ER stress plays a role in nonesterified fatty acid (NEFA)-induced hepatic insulin resistance in dairy cows is still unknown. Experiments were conducted using primary bovine hepatocytes isolated from 5 healthy calves (body weight: 30-40 kg; 1 d old). First, hepatocytes were treated with NEFA (1.2 mM) for 0.5, 1, 2, 3, 5, 7, 9, or 12 h. Treatment with NEFA elevated abundance of phosphorylated IRE1α and PERK, and cleavage of ATF6, along with the ER stress-associated genes XBP1, ATF4, and DNAJC3, resulting in both linear and quadratic effects. Furthermore, ER Tracker red staining and transmission electron microscopy results indicated that ER was dilated and degranulated in response to NEFA treatment, suggesting that ER stress was induced by NEFA treatment in bovine hepatocytes. Second, to assess the effect of ER stress on NEFA-induced insulin resistance, hepatocytes were treated with different concentrations of NEFA (0, 0.6, 1.2, or 2.4 mM) for 5 h with or without tauroursodeoxycholic acid (TUDCA, a canonical inhibitor of ER stress). Here, NEFA induced insulin resistance by increasing the abundance of insulin receptor substrate-1 (IRS1) phosphorylation at the inhibitory residue Ser 307 (S307) and decreasing the abundance of phosphorylated protein kinase B (AKT) and glycogen synthase kinase-3β (GSK3β) in a dose-dependent manner. This was accompanied by upregulation of an abundance of gluconeogenic genes [phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6-Pase)]. These detrimental effects of NEFA on insulin signaling could be reversed with TUDCA treatment, indicating a mechanistic link between ER stress and NEFA-induced insulin resistance. In a third experiment, pGPU6/GFP/Neo vectors containing short hairpin RNA targeting IRE1α were used to silence IRE1α transcription, and GSK2656157 (PERK phosphorylation inhibitor) and 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF; an inhibitor of ATF6) were used to block PERK and ATF6 branches, respectively. Notably, the silencing of the IRE1α branch improved NEFA-induced insulin resistance by decreasing phosphorylation of IRS1 (S307) and increasing phosphorylation of AKT and GSK3β, and reducing PEPCK and G6-Pase mRNA abundance, which was likely dependent on IRE1α kinase activity. Similarly, blockage of the PERK branch increased phosphorylation of AKT and GSK3β, and reduced PEPCK and G6-Pase mRNA abundance, but had no effect on phosphorylation of IRS1 (S307). However, results showed that inhibition of the ATF6 branch had no effects on phosphorylation of IRS1, AKT, and GSK3β, and instead found increasing PEPCK and G6-Pase mRNA abundance. Taken together, data in the present study found that impeding IRE1α and PERK signaling might aid in relieving hepatic insulin resistance. However, the more detailed mechanisms of how IRE1α and PERK signaling contribute to hepatic insulin resistance in dairy cows remain to be determined.
Collapse
Affiliation(s)
- Zhiyuan Fang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Wenwen Gao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Chenchen Zhao
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Min Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Zhe Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China
| | - Lin Lei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
14
|
Eo H, Valentine RJ. Saturated Fatty Acid-Induced Endoplasmic Reticulum Stress and Insulin Resistance Are Prevented by Imoxin in C2C12 Myotubes. Front Physiol 2022; 13:842819. [PMID: 35936891 PMCID: PMC9355746 DOI: 10.3389/fphys.2022.842819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
In obesity, plasma free fatty acids (FFAs) levels are elevated due to enlarged adipose tissue mass. Saturated fatty acids can induce prolonged ER stress and insulin resistance. Double-stranded RNA-dependent Protein Kinase (PKR) is activated under stress conditions in skeletal muscle. The current study aimed to investigate the effect of imoxin (IMX), a selective PKR inhibitor, on palmitate-induced ER stress and insulin resistance in C2C12 myotubes. Cells were treated with 5 μM imoxin and exposed to 0.5 mM bovine serum albumin (BSA)-conjugated PA for 24 h. A subset of cells was stimulated with 50 nM insulin for the last 15 min. Glucose uptake was monitored and protein levels involved in ER stress and insulin signaling were measured by Western blotting. Palmitate stimulated PKR phosphorylation, which was prevented by imoxin. Moreover, imoxin reduced protein levels of ER stress-related markers including glucose-regulating protein 78 (GRP78), CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6) and spliced X-box binding protein 1 (XBP-1s) which were induced by palmitate. Furthermore, imoxin ameliorated palmitate-induced suppression of phospho-insulin receptor beta (p-IRβ) and Akt phosphorylation in myotubes. In addition, imoxin promoted glucose uptake in response to insulin under palmitate exposure. Furthermore, imoxin reduced phospho-c-Jun N-terminal kinase (p-JNK) induced by palmitate treatment. These findings suggest that imoxin may protect against saturated fatty acid-induced ER stress and insulin resistance in skeletal muscle, which are potentially mediated by PKR.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Kinesiology, Iowa State University, Ames, IA, United States
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States
| | - Rudy J Valentine
- Department of Kinesiology, Iowa State University, Ames, IA, United States
- Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, United States
- *Correspondence: Rudy J Valentine,
| |
Collapse
|
15
|
Barros G, Duran P, Vera I, Bermúdez V. Exploring the Links between Obesity and Psoriasis: A Comprehensive Review. Int J Mol Sci 2022; 23:ijms23147499. [PMID: 35886846 PMCID: PMC9321445 DOI: 10.3390/ijms23147499] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a major public health issue worldwide since it is associated with the development of chronic comorbidities such as type 2 diabetes, dyslipidemias, atherosclerosis, some cancer forms and skin diseases, including psoriasis. Scientific evidence has indicated that the possible link between obesity and psoriasis may be multifactorial, highlighting dietary habits, lifestyle, certain genetic factors and the microbiome as leading factors in the progress of both pathologies because they are associated with a chronic pro-inflammatory state. Thus, inflammation management in obesity is a plausible target for psoriasis, not only because of the sick adipose tissue secretome profile but also due to the relationship of obesity with the rest of the immune derangements associated with psoriasis initiation and maintenance. Hence, this review will provide a general and molecular overview of the relationship between both pathologies and present recent therapeutic advances in treating this problem.
Collapse
Affiliation(s)
- Gabriela Barros
- Departamento de Post-Grado, Universidad Católica de Cuenca, Ciudad Cuenca 010109, Ecuador;
| | - Pablo Duran
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo 4004, Venezuela; (P.D.); (I.V.)
| | - Ivana Vera
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo 4004, Venezuela; (P.D.); (I.V.)
| | - Valmore Bermúdez
- Departamento de Post-Grado, Universidad Católica de Cuenca, Ciudad Cuenca 010109, Ecuador;
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Correspondence:
| |
Collapse
|
16
|
Tsugami Y, Suzuki N, Nii T, Isobe N. Sodium Acetate and Sodium Butyrate Differentially Upregulate Antimicrobial Component Production in Mammary Glands of Lactating Goats. J Mammary Gland Biol Neoplasia 2022; 27:133-144. [PMID: 35678903 DOI: 10.1007/s10911-022-09519-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 10/18/2022] Open
Abstract
Short-chain fatty acids activate antimicrobial component production in the intestine. However, their effects on mammary glands remain unclear. We investigated the effects of acetate and butyrate on antimicrobial component production in mammary epithelial cells (MECs) or leukocytes cultured in vitro and in mammary glands of lactating Tokara goats in vivo. Our results showed that butyrate enhanced the production of β-defensin-1 and S100A7 in MECs. Additionally, the infusion of butyrate into mammary glands through the teats enhanced β-defensin-1 and S100A7 concentrations in milk. The infusion of acetate also increased β-defensin-1 and S100A7 concentrations along with those of cathelicidin-2 and interleukin-8, which are produced by leukocytes. Furthermore, acetate promoted cathelicidin-2 and interleukin-8 secretion in leukocytes in vitro. These findings suggest that acetate and butyrate differentially upregulate antimicrobial component production in mammary glands, which could help to develop appropriate treatment for mastitis, thereby reducing economic losses and improving animal welfare in farming environments.
Collapse
Affiliation(s)
- Yusaku Tsugami
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, 739-8528, Hiroshima, Japan
| | - Naoki Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, 739-8528, Hiroshima, Japan
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, 739-8528, Hiroshima, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama Higashi-Hiroshima, 739-8528, Hiroshima, Japan.
| |
Collapse
|
17
|
Lipke K, Kubis-Kubiak A, Piwowar A. Molecular Mechanism of Lipotoxicity as an Interesting Aspect in the Development of Pathological States-Current View of Knowledge. Cells 2022; 11:cells11050844. [PMID: 35269467 PMCID: PMC8909283 DOI: 10.3390/cells11050844] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Free fatty acids (FFAs) play numerous vital roles in the organism, such as contribution to energy generation and reserve, serving as an essential component of the cell membrane, or as ligands for nuclear receptors. However, the disturbance in fatty acid homeostasis, such as inefficient metabolism or intensified release from the site of storage, may result in increased serum FFA levels and eventually result in ectopic fat deposition, which is unfavorable for the organism. The cells are adjusted for the accumulation of FFA to a limited extent and so prolonged exposure to elevated FFA levels results in deleterious effects referred to as lipotoxicity. Lipotoxicity contributes to the development of diseases such as insulin resistance, diabetes, cardiovascular diseases, metabolic syndrome, and inflammation. The nonobvious organs recognized as the main lipotoxic goal of action are the pancreas, liver, skeletal muscles, cardiac muscle, and kidneys. However, lipotoxic effects to a significant extent are not organ-specific but affect fundamental cellular processes occurring in most cells. Therefore, the wider perception of cellular lipotoxic mechanisms and their interrelation may be beneficial for a better understanding of various diseases’ pathogenesis and seeking new pharmacological treatment approaches.
Collapse
|
18
|
Effect of Propionic Acid on Diabetes-Induced Impairment of Unfolded Protein Response Signaling and Astrocyte/Microglia Crosstalk in Rat Ventromedial Nucleus of the Hypothalamus. Neural Plast 2022; 2022:6404964. [PMID: 35103058 PMCID: PMC8800605 DOI: 10.1155/2022/6404964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background The aim was to investigate the influence of propionic acid (PA) on the endoplasmic reticulum (ER), unfolded protein response (UPR) state, and astrocyte/microglia markers in rat ventromedial hypothalamus (VMH) after type 2 diabetes mellitus (T2DM). Methods Male Wistar rats were divided: (1) control, (2) T2DM, and groups that received the following (14 days, orally): (3) metformin (60 mg/kg), (4) PA (60 mg/kg), and (5) PA+metformin. Western blotting, RT-PCR, transmission electron microscopy, and immunohistochemical staining were performed. Results We found T2DM-associated enlargement of ER cisterns, while drug administration slightly improved VMH ultrastructural signs of damage. GRP78 level was 2.1-fold lower in T2DM vs. control. Metformin restored GRP78 to control, while PA increased it by 2.56-fold and metformin+PA—by 3.28-fold vs. T2DM. PERK was elevated by 3.61-fold in T2DM, after metformin—by 4.98-fold, PA—5.64-fold, and metformin+PA—3.01-fold vs. control. A 2.45-fold increase in ATF6 was observed in T2DM. Metformin decreased ATF6 content vs. T2DM. Interestingly, PA exerted a more pronounced lowering effect on ATF6, while combined treatment restored ATF6 to control. IRE1 increased in T2DM (2.4-fold), metformin (1.99-fold), and PA (1.45-fold) groups vs. control, while metformin+PA fully normalized its content. The Iba1 level was upregulated in T2DM (5.44-fold) and metformin groups (6.88-fold). Despite PA treatment leading to a further 8.9-fold Iba1 elevation, PA+metformin caused the Iba1 decline vs. metformin and PA treatment. GFAP level did not change in T2DM but rose in metformin and PA groups vs. control. PA+metformin administration diminished GFAP vs. PA. T2DM-induced changes were associated with dramatically decreased ZO-1 levels, while PA treatment increased it almost to control values. Conclusions T2DM-induced UPR imbalance, activation of microglia, and impairments in cell integrity may trigger VMH dysfunction. Drug administration slightly improved ultrastructural changes in VMH, normalized UPR, and caused an astrocyte activation. PA and metformin exerted beneficial effects for counteracting diabetes-induced ER stress in VMH.
Collapse
|
19
|
Walker RE, Ma L, Li C, Ying Y, Harvatine KJ. TRB3 Deletion Has a Limited Effect on Milk Fat Synthesis and Milk Fat Depression in C57BL/6N Mice. Curr Dev Nutr 2022; 6:nzab142. [PMID: 35098004 PMCID: PMC8791759 DOI: 10.1093/cdn/nzab142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Regulation of the endoplasmic reticulum (ER) stress pathway is critical to mammary epithelial cell function throughout pregnancy, lactation, and involution. Treatment with trans-10, cis-12 conjugated linoleic acid (t10c12CLA) suppresses mammary lipogenesis and stimulates the ER stress pathway. The ER stress pathway includes tribbles pseudokinase 3 (TRB3), a protein that regulates cellular energy and insulin signaling. OBJECTIVES Our objective was to describe the effect of TRB3 deficiency on milk fat synthesis and determine if TRB3 deficiency protects against suppression of mammary lipogenesis. METHODS First, mammary Trb3 expression was observed throughout pregnancy and lactation using ancillary microarray data (n = 4/time point). Second, intake, litter growth, and milk clot fatty acid (FA) profile of Trb3 knockout (KO) C57BL/6N mice were compared with wild-type (WT) and heterozygous (HET) mice throughout first (n ≥ 8/group) and second (n ≥ 6/group) lactation. Lastly, the interaction between Trb3 genotype and 2 treatments that suppress mammary lipogenesis, t10c12CLA and high safflower oil (HO) diet, was investigated in a 2 × 2 factorial design (n ≥ 6/group). RESULTS Trb3 expression was higher during late pregnancy and lactation. Trb3 KO and HET mice had lower feed intake, dam weight, and litter growth throughout first, but not second, lactation than WT mice. Treatment with t10c12CLA decreased litter growth (28%; P < 0.0001) and feed intake (8%; P < 0.0001) regardless of Trb3 genotype. When fed the HO diet, Trb3 KO mice had 17% higher mammary de novo synthesized FAs (<16 carbons; P int = 0.002) than WT mice. Mammary ER stress and lipogenic genes were mostly unaltered by Trb3 deficiency. CONCLUSIONS Overall, TRB3 plays a minor role in regulating mammary lipogenesis, because Trb3 deficiency had only a limited protective effect against diet-induced suppression of lipogenesis.
Collapse
Affiliation(s)
- Rachel E Walker
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Liying Ma
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Chengmin Li
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Yun Ying
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kevin J Harvatine
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
20
|
Islam MA, Adachi S, Shiiba Y, Takeda KI, Haga S, Yonekura S. Effects of starvation-induced negative energy balance on endoplasmic reticulum stress in the liver of cows. Anim Biosci 2021; 35:22-28. [PMID: 34237916 PMCID: PMC8738926 DOI: 10.5713/ab.21.0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Objective Endoplasmic reticulum (ER) stress engages the unfolded protein response (UPR) that serves as an important mechanism for modulating hepatic fatty acid oxidation and lipogenesis. Chronic fasting in mice induced the UPR activation to regulate lipid metabolism. However, there is no direct evidence of whether negative energy balance (NEB) induces ER stress in the liver of cows. This study aimed to elucidate the relationship between the NEB attributed to feed deprivation and ER stress in bovine hepatocytes. Methods Blood samples and liver biopsy tissues were collected from 6 non-lactating cows before and after their starvation for 48 h. The blood non-esterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA) and glucose level were analyzed. Real-time quantitative polymerase chain reaction and Western blotting were used to explore the regulation of genes associated with UPR and lipid metabolism. Results The starvation increased the plasma BHBA and NEFA levels and decreased the glucose level. Additionally, the starvation caused significant increases in the mRNA expression level of spliced X-box binding protein 1 (XBP1s) and the protein level of phosphorylated inositol-requiring kinase 1 alpha (p-IRE1α; an upstream protein of XBP1) in the liver. The mRNA expression levels of peroxisome proliferator-activated receptor alpha and its target fatty acid oxidation- and ketogenesis-related genes were significantly upregulated by the starvation-mediated NEB. Furthermore, we found that the mRNA expression levels of lipogenic genes were not significantly changed after starvation. Conclusion These findings suggest that in the initial stage of NEB in dairy cows, the liver coordinates an adaptive response by activating the IRE1 arm of the UPR to enhance ketogenesis, thereby avoiding a fatty liver status.
Collapse
Affiliation(s)
- Md Aminul Islam
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Kamiina, Nagano 399-4598, Japan
| | - Shuya Adachi
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Kamiina, Nagano 399- 4598, Japan
| | - Yuichiroh Shiiba
- Faculty of Agriculture, Shinshu University, Kamiina, Nagano 399-4598, Japan
| | - Ken-Ichi Takeda
- Faculty of Agriculture, Shinshu University, Kamiina, Nagano 399-4598, Japan
| | - Satoshi Haga
- Grazing Animal Unit, Division of Grassland Farming, Institute of Livestock and Grassland Science, NARO, Nasushiobara, Tochigi 329-2793, Japan
| | - Shinichi Yonekura
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Kamiina, Nagano 399-4598, Japan.,Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Kamiina, Nagano 399- 4598, Japan.,Faculty of Agriculture, Shinshu University, Kamiina, Nagano 399-4598, Japan.,Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Kamiina, Nagano 399-4598, Japan
| |
Collapse
|
21
|
Sharmin MM, Islam MA, Yamamoto I, Taniguchi S, Yonekura S. 5-ALA Attenuates the Palmitic Acid-Induced ER Stress and Apoptosis in Bovine Mammary Epithelial Cells. Molecules 2021; 26:molecules26041183. [PMID: 33672109 PMCID: PMC7926617 DOI: 10.3390/molecules26041183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 11/24/2022] Open
Abstract
The conservation of mammary gland physiology by maintaining the maximum number of mammary epithelial cells (MECs) is of the utmost importance for the optimum amount of milk production. In a state of negative energy balance, palmitic acid (PA) reduces the number of bovine MECs. However, there is no effective strategy against PA-induced apoptosis of MECs. In the present study, 5-aminolevulinic acid (5-ALA) was established as a remedial agent against PA-induced apoptosis of MAC-T cells (an established line of bovine MECs). In PA-treated cells, the apoptosis-related genes BCL2 and BAX were down- and upregulated, respectively. The elevated expression of major genes of the unfolded protein response (UPR), such as CHOP, a proapoptotic marker (C/EBP homologous protein), reduced the viability of PA-treated MAC-T cells. In contrast, 5-ALA pretreatment increased and decreased BCL2 and BAX expression, respectively. Moreover, cleaved caspase-3 protein expression was significantly reduced in the 5-ALA-pretreated group in comparison with the PA group. The downregulation of major UPR-related genes, including CHOP, extended the viability of MAC-T cells pretreated with 5-ALA and also reduced the enhanced intensity of the PA-induced expression of phospho-protein kinase R-like ER kinase. Moreover, the enhanced expression of HO-1 (antioxidant gene heme oxygenase) by 5-ALA reduced PA-induced oxidative stress (OxS). HO-1 is not only protective against OxS but also effective against ER stress. Collectively, these findings offer new insights into the protective effects of 5-ALA against PA-induced apoptosis of bovine MECs.
Collapse
Affiliation(s)
- Mst Mamuna Sharmin
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Minamiminowa, Kamiina-gun, Nagano 399-4598, Japan; (M.M.S.); (M.A.I.)
| | - Md Aminul Islam
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Minamiminowa, Kamiina-gun, Nagano 399-4598, Japan; (M.M.S.); (M.A.I.)
| | - Itsuki Yamamoto
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Minamiminowa, Kamiina, Nagano 399-4598, Japan;
| | - Shin Taniguchi
- Neopharma Japan Co., Ltd., Tokyo 102-0071, Japan;
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Shinichi Yonekura
- Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Minamiminowa, Kamiina-gun, Nagano 399-4598, Japan; (M.M.S.); (M.A.I.)
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Minamiminowa, Kamiina, Nagano 399-4598, Japan;
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
- Correspondence: ; Tel.: +81-265-77-1443
| |
Collapse
|
22
|
Islam MA, Noguchi Y, Taniguchi S, Yonekura S. Protective effects of 5-aminolevulinic acid on heat stress in bovine mammary epithelial cells. Anim Biosci 2020; 34:1006-1013. [PMID: 32898952 PMCID: PMC8100485 DOI: 10.5713/ajas.20.0349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Cells have increased susceptibility to activation of apoptosis when suffering heat stress (HS). An effective supplementation strategy to mimic heat-induced apoptosis of bovine mammary epithelial cells (MECs) is necessary to maintain optimal milk production. This study aimed to investigate possible protective effects of the anti-apoptotic activity of 5-aminolevulinic acid (5-ALA) against HS-induced damage of bovine MECs. METHODS Bovine MECs were pretreated with or without 5-ALA at concentrations of 10, 100, and 500 μM for 24 h followed by HS (42.5°C for 24 h and 48 h). Cell viability was measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Real-time quantitative polymerase chain reaction and Western blotting were used to explore the regulation of genes associated with apoptosis, oxidative stress, and endoplasmic reticulum (ER) stress genes. RESULTS We found that 5-ALA induces cytoprotection via inhibition of apoptosis markers after HS-induced damage. Pretreatment of bovine MECs with 5-ALA resulted in dramatic upregulation of mRNA for nuclear factor erythroid-derived 2-like factor 2, heme oxygenase-1, and NAD(P)H quinone oxidoreductase 1, all of which are antioxidant stress genes. Moreover, 5-ALA pretreatment significantly suppressed HS-induced ER stress-associated markers, glucose-regulated protein 78, and C/EBP homologous protein expression levels. CONCLUSION 5-ALA can ameliorate the ER stress in heat stressed bovine MEC via enhancing the expression of antioxidant gene.
Collapse
Affiliation(s)
- Md Aminul Islam
- Graduate School of Medicine, Science and Technology, Shinshu University, Kamiina, Nagano 399-4598, Japan
| | | | - Shin Taniguchi
- Neopharma Japan Co., Ltd. Tokyo 102-0071, Japan.,Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Shinichi Yonekura
- Graduate School of Medicine, Science and Technology, Shinshu University, Kamiina, Nagano 399-4598, Japan.,Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Kamiina, Nagano 399-4598, Japan
| |
Collapse
|