1
|
Schmitt R, Staufenbiel R. Discrepancies of bovine haptoglobin concentrations between serum and plasma using two different anticoagulants and a colorimetric assay based on peroxidase activity. Vet Clin Pathol 2024; 53:409-419. [PMID: 39432023 PMCID: PMC11735647 DOI: 10.1111/vcp.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Haptoglobin (Hp) is an emerging diagnostic marker in cattle, and knowledge of suitable sample types and measurement methods is important. OBJECTIVES The aims of this study were to compare the results of a colorimetric assay (CA) and an ELISA for bovine Hp using serum, EDTA plasma, and lithium-heparinized (LH) plasma, respectively, and to assess the diagnostic potential for puerperal metritis. METHODS In experiment 1, Hp was measured in pooled aliquots of serum (n = 10), EDTA plasma (n = 10), and LH plasma (n = 10) of 100 healthy fresh lactating dairy cows from 10 farms using both the CA and the ELISA. In experiment 2, five healthy and five cows with acute puerperal metritis were sampled, and Hp was determined using both assays for all three sample types. In experiment 3, aliquots of serum and LH plasma from cows in different lactation stages were transferred into plain, EDTA-coated, and LH-coated tubes and mixed before colorimetric analyses. Distilled water was also placed into each tube type and treated similarly. RESULTS Plasma samples measured with the CA showed on average 2.3 (EDTA) and 2.5 (LH) times higher Hp concentrations compared with serum, whereas no differences were seen with the ELISA results between sample types. Based on a clinical cut-off value, both methods differentiated sick from healthy cows. Haptoglobin measurements with the ELISA were less precise compared with CA measurements due to high dilutions. No influence of the anticoagulants on the CA was observed. CONCLUSIONS Due to measurement discrepancies between serum and plasma, CAs for bovine Hp based on peroxidase activity should be performed with serum, or specific reference ranges for plasma samples should be established. In this study, CA results obtained with LH plasma were more precise than results obtained with EDTA plasma. Both the CA and the ELISA are suitable diagnostic tools for the diagnosis of puerperal metritis, but CA measurements were more precise in this study.
Collapse
Affiliation(s)
- R. Schmitt
- Ruminant and Swine ClinicFree University of BerlinBerlinGermany
| | - R. Staufenbiel
- Ruminant and Swine ClinicFree University of BerlinBerlinGermany
| |
Collapse
|
2
|
Yang K, Li Y, Liu W, Zhang J, Guo W, Zhu X. Dielectric relaxation parameters combing raw milk compositions to improve the prediction performance of milk somatic cell count. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9277-9286. [PMID: 39030961 DOI: 10.1002/jsfa.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Milk somatic cell count (SCC) is an international standard for identifying mastitis in dairy cows and measuring raw milk quality. Milk SCC can be predicted based on dielectric relaxation parameters (DRPs). We noted a high correlation between DRPs and the milk composition content (MCC), and so we hypothesized that combining DRPs with MCC could improve the prediction accuracy of milk SCC. The present study aimed to analyze the relationship between milk SCC, DRPs and MCC, as well as to investigate the potential of combining DRPs with MCC to improve the prediction accuracy of milk SCC. RESULTS The dielectric spectra (20-4500 MHz) of 276 milk samples were measured, and their DRPs (εl, εh, Δε, τ and σ) were solved by the modified Debye equation. The SCC prediction models were developed using dielectric full spectra, DRPs and DRPs combined with MCC. The results showed the correlations between DRPs (εl, εh, Δε and σ) and MCC (fat, protein, lactose and total solids) were high, and SCC exhibited a non-linear relationship with DRPs and MCC. The 5DRPs + MCC-generalized regression neural network model had the best prediction, with a standard error of prediction for prediction of 0.143 log SCC mL-1 and residual of the prediction bias of 2.870, which was superior to the models based on full spectra, DRPs and near-infrared or visible/near-infrared. CONCLUSION The present study has improved the prediction accuracy of milk SCC based on the DRPs combing MCC and provides a new method for dairy farming and milk quality assessment. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ke Yang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Yue Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Wei Liu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Jiahui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Wenchuan Guo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Xinhua Zhu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
- Shaanxi Research Center of Agricultural Equipment Engineering Technology, Yangling, China
| |
Collapse
|
3
|
Du C, Zhao X, Zhang S, Chu C, Zhang X, Teng Z. Milk metabolite profiling of dairy cows as influenced by mastitis. Front Vet Sci 2024; 11:1475397. [PMID: 39606657 PMCID: PMC11598933 DOI: 10.3389/fvets.2024.1475397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Mastitis is a disease with frequent incidence in dairy cows, causing huge financial losses to the dairy industry globally. The identification of certain biomarkers is crucial for the early diagnosis and management of mastitis. Metabolomics technology is a useful tool to accurately and efficiently analyze the changes of metabolites in biofluids in response to internal and external stimulations. Milk is the secreted by udder, and milk metabolites can directly reflect whether the udder are in the healthy or diseased state. The milk metabolomics analysis of mastitis can reveal the physiological and pathological changes of mammary gland and screen the related biomarkers, so as to offer useful reference for the prediction, diagnosis, and management of mastitis. Therefore, the aim of the present study was to comprehensively summarize milk metabolic change caused by naturally occurring or experimentally induced mastitis in dairy cows. In addition, comparative analysis and enrichment analysis were conducted to further discover potential biomarkers of mastitis and to identify the relevant pathways differentiating the healthy and mastitic cows. Multiple milk metabolites were identified to be altered during mastitis based on different metabolomics platforms. It was noteworthy that there were 28 metabolites not only identified by at least two different studies, but also showed consistent change tendency among the different studies. By comparison with literature, we further identified 12 milk metabolites, including acetate, arginine, β-hydroxybutyrate, carnitine, citrate, isoleucine, lactate, leucine, phenylalanine, proline, riboflavin, and valine that were linked with the occurrence of mastitis, which suggested that these 12 milk metabolites could be potential biomarkers of mastitis in dairy cows. Several pathways were revealed to explain the mechanisms of the variation of milk metabolites caused by mastitis, such as phenylalanine, tyrosine and tryptophan biosynthesis, arginine and proline metabolism, riboflavin metabolism, and tricarboxylic acid (TCA) cycle. These results offer a further understanding for the alteration of milk metabolites caused by mastitis, which have a potential significance in the development of more reliable biomarkers for mastitic diagnosis in dairy cows.
Collapse
Affiliation(s)
- Chao Du
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Xuehan Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shujun Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Chu Chu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhanwei Teng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
4
|
Addis MF, Maffioli EM, Gazzola A, Santandrea F, Tedeschi G, Piccinini R. Impact of a teat disinfectant based on Lactococcus cremoris on the cow milk proteome. BMC Vet Res 2024; 20:447. [PMID: 39363353 PMCID: PMC11448288 DOI: 10.1186/s12917-024-04014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/11/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Dairy cow milking practices require cleaning and disinfection of the teat skin before and after milking to ensure the safety and quality of milk and prevent intramammary infections. Antimicrobial proteins of natural origin can be valuable alternatives to traditional disinfectants. In a recent field trial, we demonstrated that a teat dip based on a nisin A-producing Lactococcus cremoris (L) had comparable efficacy to conventional iodophor dip (C) in preventing dairy cow mastitis. Here, we present the differential shotgun proteomics investigation of the milk collected during the trial. METHODS Four groups of quarter milk samples with low (LSCC) and high somatic cell count (HSCC) collected at the beginning (T0) and end (TF) of the trial were analyzed for a total of 28 LSCC (14 LSCC T0 and 14 LSCC TF) and 12 HSCC (6 HSCC T0 and 6 HSCC TF) samples. Milk proteins were digested into peptides, separated by nanoHPLC, and analyzed by tandem mass spectrometry (LC-MS/MS) on an Orbitrap Fusion Tribrid mass spectrometer. The proteins were identified with MaxQuant and interaction networks of the differential proteins were investigated with STRING. The proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD045030. RESULTS In healthy milk (LSCC), we detected 90 and 80 differential proteins at T0 and TF, respectively. At TF, the Lactococcus group showed higher levels of antimicrobial proteins. In mastitis milk (HSCC), we detected 88 and 106 differential proteins at T0 and TF, respectively. In the Lactococcus group, 14 proteins with antimicrobial and immune defense functions were enriched at TF vs. 4 proteins at T0. Cathelicidins were among the most relevant enriched proteins. Western immunoblotting validation confirmed the differential abundance. CONCLUSIONS At T0, the proteomic differences observed in healthy milk of the two groups were most likely dependent on physiological variation. On the other hand, antimicrobial and immune defense functions were higher in the milk of cows with mammary gland inflammation of the Lactococcus-treated group. Among other factors, the immunostimulatory action of nisin A might be considered as a contributor.
Collapse
Affiliation(s)
- Maria Filippa Addis
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy.
- Laboratory of Animal Infectious Diseases (MiLab), University of Milan, Lodi, Italy.
| | - Elisa Margherita Maffioli
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
- CRC "Innovation for Well-Being and Environment (I-WE)", University of Milan, Milan, Italy
| | - Alessandra Gazzola
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Lodi, 26900, Italy
| | - Federica Santandrea
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
- CRC "Innovation for Well-Being and Environment (I-WE)", University of Milan, Milan, Italy
| | - Renata Piccinini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
- Laboratory of Animal Infectious Diseases (MiLab), University of Milan, Lodi, Italy
| |
Collapse
|
5
|
Farkaš V, Beletić A, Kuleš J, Thomas FC, Rešetar Maslov D, Rubić I, Benić M, Bačić G, Mačešić N, Jović I, Eraghi V, Gelemanović A, Eckersall D, Mrljak V. Biomarkers for subclinical bovine mastitis: a high throughput TMT-based proteomic investigation. Vet Res Commun 2024; 48:2069-2082. [PMID: 38913241 DOI: 10.1007/s11259-024-10442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Mastitis represents the biggest threat to the health and productivity of dairy cows, leading to substantial economic losses in milk production. It manifests in two forms: clinical mastitis, easily diagnosed by visible symptoms, and subclinical mastitis (SCM), which lacks overt clinical signs. SCM's elusive nature often results in it going undetected, thus facilitating the spread of the disease-causing agent due to lack of treatment. Finding a reliable biomarker for early SCM would reduce the possibility of mastitis spreading in the herd, reduce the need for antibiotic use and ultimately reduce milk losses for producers. Utilizing state-of-the-art proteomics techniques, 138 milk samples from dairy cows in continental Croatia underwent analysis. These samples were categorized into four groups based on the Zagreb Mastitis Test (ZMT) and microbiological analysis: lowSCC- (n = 20), lowSCC + (n = 20), medSCC + (n = 79), and highSCC + (n = 19). A total of 386 proteins were identified and quantified, with 76 proteins showing significant differential abundances among the groups. Many of these proteins are linked to the innate immune system, as well as neutrophil and platelet degranulation processes. Through fold changes observed between groups, 15 proteins exhibiting biomarker characteristics for subclinical mastitis (SCM) were identified. Among these, five proteins-cathelicidins (-1, -4, and -7), lactoferrin, and haptoglobin-showed particular promise.
Collapse
Affiliation(s)
- Vladimir Farkaš
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia.
| | - Anđelo Beletić
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Josipa Kuleš
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Funmilola Clara Thomas
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dina Rešetar Maslov
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Miroslav Benić
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute Zagreb, Zagreb, Croatia
| | - Goran Bačić
- Reproduction and Obstetrics Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Nino Mačešić
- Reproduction and Obstetrics Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ines Jović
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Vida Eraghi
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - David Eckersall
- School of Bioaffiliationersity, One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, University of Murcia, Murcia, Spain
| | - Vladimir Mrljak
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
O'Reilly EL, Viora L, Malcata F, Pepler PT, Zadoks R, Brady N, Hanh HQ, McLaughlin M, Horvatic A, Gelemanovic A, Kules J, Mrljak V, Eckersall PD. Biomarker and proteome analysis of milk from dairy cows with clinical mastitis: Determining the effect of different bacterial pathogens on the response to infection. Res Vet Sci 2024; 172:105240. [PMID: 38608347 DOI: 10.1016/j.rvsc.2024.105240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024]
Abstract
Antimicrobial usage (AMU) could be reduced by differentiating the causative bacteria in cases of clinical mastitis (CM) as either Gram-positive or Gram-negative bacteria or identifying whether the case is culture-negative (no growth, NG) mastitis. Immunoassays for biomarker analysis and a Tandem Mass Tag (TMT) proteomic investigation were employed to identify differences between samples of milk from cows with CM caused by different bacteria. A total of 94 milk samples were collected from cows diagnosed with CM across seven farms in Scotland, categorized by severity as mild (score 1), moderate (score 2), or severe (score 3). Bovine haptoglobin (Hp), milk amyloid A (MAA), C-reactive protein (CRP), lactoferrin (LF), α-lactalbumin (LA) and cathelicidin (CATHL) were significantly higher in milk from cows with CM, regardless of culture results, than in milk from healthy cows (all P-values <0.001). Milk cathelicidin (CATHL) was evaluated using a novel ELISA technique that utilises an antibody to a peptide sequence of SSEANLYRLLELD (aa49-61) common to CATHL 1-7 isoforms. A classification tree was fitted on the six biomarkers to predict Gram-positive bacteria within mastitis severity scores 1 or 2, revealing that compared to the rest of the samples, Gram-positive samples were associated with CRP < 9.5 μg/ml and LF ≥ 325 μg/ml and MAA < 16 μg/ml. Sensitivity of the tree model was 64%, the specificity was 91%, and the overall misclassification rate was 18%. The area under the ROC curve for this tree model was 0.836 (95% bootstrap confidence interval: 0.742; 0.917). TMT proteomic analysis revealed little difference between the groups in protein abundance when the three groups (Gram-positive, Gram-negative and no growth) were compared, however when each group was compared against the entirety of the remaining samples, 28 differentially abundant protein were identified including β-lactoglobulin and ribonuclease. Whilst further research is required to draw together and refine a suitable biomarker panel and diagnostic algorithm for differentiating Gram- positive/negative and NG CM, these results have highlighted a potential panel and diagnostic decision tree. Host-derived milk biomarkers offer significant potential to refine and reduce AMU and circumvent the many challenges associated with microbiological culture, both within the lab and on the farm, while providing the added benefit of reducing turnaround time from 14 to 16 h of microbiological culture to just 15 min with a lateral flow device (LFD).
Collapse
Affiliation(s)
- Emily L O'Reilly
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, United Kingdom; Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, 1 George Square, Edinburgh EH8 9LD, United Kingdom. Emily.O'
| | - Lorenzo Viora
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, United Kingdom.
| | - Francisco Malcata
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, United Kingdom; School of Veterinary Medicine, Oniris, Nantes, France.
| | - P Theo Pepler
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, United Kingdom.
| | - Ruth Zadoks
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, United Kingdom; School of Veterinary Science, University of Sydney, Sydney, Australia.
| | - Nicola Brady
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, United Kingdom.
| | - Han Quang Hanh
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, United Kingdom; Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Viet Nam.
| | - Mark McLaughlin
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, United Kingdom.
| | - Anita Horvatic
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia; Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Andrea Gelemanovic
- Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia.
| | - Josipa Kules
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - Vladimir Mrljak
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| | - P David Eckersall
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow G61 1QH, United Kingdom; Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia.
| |
Collapse
|
7
|
Plattner S, Kammer M, Walleser E, Plattner S, Panne N, Baumgartner C, Döpfer D, Mansfeld R. [Use of milk haptoglobin concentration as an indicator in animal health monitoring of dairy cows]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2023; 51:346-357. [PMID: 38056469 DOI: 10.1055/a-2199-1754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate relationships between elevated haptoglobin concentrations in milk and clinical as well as laboratory parameters in early lactating dairy cows. Furthermore, cut-off values should be identified for the differentiation of healthy and affected animals. MATERIAL AND METHODS 1462 dairy cows between 5.-65. days in milk were examined on 68 Bavarian farms. Milk and blood samples were taken once a week for a 7-week period per farm and body-condition-scoring, backfat thickness measurement and Metricheck examination, to evaluate uterine health, were performed. Milk samples were analysed for milk fat, milk protein, lactose, urea, ß-hydroxybutyrate and non-esterified fatty acids (indirect measurement, based on IR spectra), cell count, and milk haptoglobin. Blood samples were analysed for creatinine, aspartate aminotransferase, gamma-glutamyl transferase, glutamate dehydrogenase, total protein, albumin, creatine kinase, ß-hydroxybutyrate, non-esterified fatty acids, and blood haptoglobin.Cluster analyses were performed to determine cut-off values for haptoglobin. RESULTS Besides milk haptoglobin (µg/ml) and blood haptoglobin (µg/ml), cell count (cells/ml milk), milk fat (%), milk protein (%), non-esterified fatty acids in blood (mmol/l), lactation number, days in milk, breed, season, and milk yield (kg) were included as significant input variables (p<0.005) in the cluster analyses. Cluster analysis, using k-means resp. k-prototypes algorithms, resulted in 5 (clusters 1-5 M1) resp. 4 different clusters (clusters 0-3 M2 and 0-3 B).A cut-off value of 0.5 µg/ml haptoglobin in milk was determined for the differentiation of healthy and affected animals. CONCLUSION AND CLINICAL RELEVANCE As milk is an easily available substrate, routine determination of haptoglobin in milk might be a suitable parameter for animal health monitoring. Using the detected cut-off value, apparently healthy animals with subclinical inflammatory diseases can be identified more quickly.
Collapse
Affiliation(s)
- Sarah Plattner
- Klinik für Wiederkäuer mit Ambulanz und Bestandsbetreuung, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München
| | - Martin Kammer
- Landeskuratorium der Erzeugerringe für tierische Veredelung Bayern e. V., München
| | - Emil Walleser
- University of Wisconsin - Madison, School of Veterinary Medicine, Department of Medical Science, USA
| | - Stefan Plattner
- Klinik für Wiederkäuer mit Ambulanz und Bestandsbetreuung, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München
| | - Nicola Panne
- Klinik für Wiederkäuer mit Ambulanz und Bestandsbetreuung, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München
| | | | - Dörte Döpfer
- University of Wisconsin - Madison, School of Veterinary Medicine, Department of Medical Science, USA
| | - Rolf Mansfeld
- Klinik für Wiederkäuer mit Ambulanz und Bestandsbetreuung, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München
| |
Collapse
|
8
|
Jermann PM, Wagner LA, Fritsche D, Gross JJ, Wellnitz O, Bruckmaier RM. Acute phase reaction to lipopolysaccharide-induced mastitis in early lactation dairy cows fed nitrogenic, glucogenic, or lipogenic diets. J Dairy Sci 2023; 106:9879-9891. [PMID: 37678770 DOI: 10.3168/jds.2023-23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023]
Abstract
The availability of certain macronutrients is likely to influence the capacity of the immune system. Therefore, we investigated the acute phase response to intramammary (i.mam.) lipopolysaccharide (LPS) in dairy cows fed a nitrogenic diet (n = 10) high in crude protein, a glucogenic diet (n = 11) high in carbohydrates and glucogenic precursors, or a lipogenic diet (n = 11) high in lipids. Thirty-two dairy cows were fed one of the dietary concentrates directly after calving until the end of trial at 27 ± 3 days in milk (mean ± standard deviation). In wk 3 of lactation, 20 µg of LPS was i.mam. injected in one quarter, and sterile NaCl (0.9%) in the contralateral quarter. Milk samples of the LPS-challenged and control quarter were taken hourly from before (0 h) until 9 h after LPS challenge and analyzed for milk amyloid A (MAA), haptoglobin (HP), and IL-8. In addition, blood samples were taken in the morning, and composite milk samples at morning and evening milkings, from 1 d before until 3 d after LPS challenge, and again on d 9, to determine serum amyloid A (SAA) and HP in blood, and MAA and HP in milk. The mRNA abundance of various immunological and metabolic factors in blood leukocytes was quantified by quantitative reverse-transcription PCR from samples taken at -18, -1, 6, 9, and 23 h relative to LPS application. The dietary concentrates did not affect any of the parameters in blood, milk, and leukocytes. The IL-8 was increased from 2 h, HP from 2 to 3 h, and MAA from 6 h relative to the LPS administration in the milk of the challenged quarter and remained elevated until 9 h. The MAA and HP were also increased at 9 h after LPS challenge in whole-udder composite milk, whereas HP and SAA in blood were increased only after 23 h. All 4 parameters were decreased again on d 9. Similar for all groups, the mRNA abundance of HP and the heat shock protein family A increased after the LPS challenge, whereas the mRNA expression of the tumor necrosis factor α and the leukocyte integrin β 2 subunit (CD18) were decreased at 6 h after LPS challenge. The glucose transporter (GLUT)1 mRNA abundance decreased after LPS, whereas that of the GLUT3 increased, and that of the GLUT4 was not detectable. The mRNA abundance of GAPDH was increased at 9 h after LPS and remained elevated. The acute phase protein response was detected earlier in milk compared with blood indicating mammary production. However, immunological responses to LPS were not affected by the availability of specific macronutrients provided by the different diets.
Collapse
Affiliation(s)
- P M Jermann
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - L A Wagner
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - D Fritsche
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - J J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - O Wellnitz
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
9
|
Hiller S, Kowalewska I, Czerniawska-Piątkowska E, Banaszewska D. Analysis of the effect of polymorphisms within the CATHL7 gene on dairy performance parameters. J Vet Res 2023; 67:123-129. [PMID: 37008775 PMCID: PMC10062051 DOI: 10.2478/jvetres-2023-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Abstract
Introduction
Antimicrobial peptides, including cathelicidins, play a significant role in farm animals, influencing animal welfare, immunity, and thus the quality of animal products.
Material and Methods
The study used amplification-created restriction site and PCR-restriction fragment length polymorphism to analyse single nucleotide polymorphisms of the CATHL7 gene encoding the BMAP-34 protein in cattle, at positions 2,383 G > C and 2,468 G > C. The material was collected from 279 Polish Black-and-White Holstein-Friesian dairy cows.
Results
There were statistically significant differences between milk performance parameters in cows with the CATHL7/HhaI and CATHL7/HinfI genotypes. In the case of the CATHL7/HhaI polymorphism, the highest milk yield and protein and lactose content and the lowest somatic cell count in milk were observed for the CC genotype, while the fat content was the highest in milk from cows with the GG genotype. In the case of the CATHL7/HinfI polymorphism, the highest protein and lactose content in milk was observed for the CC genotype.
Conclusion
The results were statistically significant, which suggests that the search for relationships can be continued, and that the results can be used to improve selection programmes supporting dairy farming.
Collapse
|
10
|
Botía M, López-Arjona M, Escribano D, Contreras-Aguilar MD, Vallejo-Mateo PJ, Cerón JJ, Martínez-Subiela S. Measurement of haptoglobin in saliva of cows: Validation of an assay and a pilot study of its potential application. Res Vet Sci 2023; 158:44-49. [PMID: 36924634 DOI: 10.1016/j.rvsc.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
In recent years, the use of saliva as a matrix for the measurement of biomarkers of health and welfare is gaining importance due to its non-invasive collection. Haptoglobin (Hp) is an acute-phase protein involved in the inflammatory response and changes in its concentration can provide information about the health status of the animals. This study aimed to develop and validate an assay based on luminescent amplification (AlphaLISA technology) for the measurement of Hp in bovine saliva and to study the possible changes in different inflammatory situations such as peripartum period and lameness. The assay proved to be accurate, reliable, and sensitive for the measurement of Hp in cow saliva (coefficient of variation (CV) 7.57%; coefficient of determination (R2) 0.992; recovery test 105.15%; lower limit of quantification (LLQ) 7.9 ng/ml). Significant differences were observed between Hp levels in saliva of cows before (13 days before) and after (7 and 20 days after) calving and at the moment of calving (p < 0.0001), and between lame and healthy cows (p < 0.008). In conclusion, this assay can detect Hp in a precise, sensitive, and accurate way in saliva of cows. Future studies with a larger population and different disease conditions should be conducted to determine the potential of Hp as an inflammatory biomarker in cow saliva.
Collapse
Affiliation(s)
- M Botía
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - M López-Arjona
- Department of Animal and Food Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - D Escribano
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; Department of Animal Production, Veterinary School, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - M D Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - P J Vallejo-Mateo
- Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - J J Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - S Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
11
|
Regulatory Role of microRNA of Milk Exosomes in Mastitis of Dairy Cows. Animals (Basel) 2023; 13:ani13050821. [PMID: 36899678 PMCID: PMC10000098 DOI: 10.3390/ani13050821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
The aim of this study was to compare the cargos of miRNA in exosomes isolated from the milk of healthy (H) cows, cows at risk of mastitis (ARM), and cows with subclinical mastitis (SCM). Based on the number of somatic cells and the percentage of polymorphonuclear cells, 10 cows were assigned to group H, 11 to group ARM, and 11 to group SCM. After isolating exosomes in milk by isoelectric precipitation and ultracentrifugation, the extracted RNA was sequenced to 50 bp long single reads, and these were mapped against Btau_5.0.1. The resulting 225 miRNAs were uploaded to the miRNet suite, and target genes for Bos taurus were identified based on the miRTarBase and miRanda databases. The list of differentially expressed target genes resulting from the comparisons of the three groups was enriched using the Function Explorer of the Kyoto Encyclopedia of Genes and Genomes. A total of 38, 18, and 12 miRNAs were differentially expressed (DE, p < 0.05) in the comparisons of H vs. ARM, ARM vs. SCM, and H vs. SCM, respectively. Only 1 DE miRNA was shared among the three groups (bta-mir-221), 1 DE miRNA in the H vs. SCM comparison, 9 DE miRNAs in the ARM vs. SCM comparison, and 21 DE miRNAs in the H vs. ARM comparison. A comparison of the enriched pathways of target genes from the H, SCM, and ARM samples showed that 19 pathways were differentially expressed in the three groups, while 56 were expressed in the H vs. SCM comparison and 57 in the H vs. ARM comparison. Analyzing milk exosome miRNA cargos can be considered as a promising approach to study the complex molecular machinery set in motion in response to mastitis in dairy cows.
Collapse
|
12
|
Saco Y, Bassols A. Acute phase proteins in cattle and swine: A review. Vet Clin Pathol 2023; 52 Suppl 1:50-63. [PMID: 36526287 DOI: 10.1111/vcp.13220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
The major acute phase proteins (APPs) in cattle are haptoglobin (Hp) and serum amyloid A (SAA), and in swine, are Hp, SAA, C-reactive protein (CRP), and Pig major acute phase protein (Pig-MAP). Many methodologic assays are presently available to measure these parameters, which are still being improved to increase their specificity, sensitivity, user-friendliness, and economic availability. In cattle, the main applications are the diagnosis and monitoring of frequent diseases such as mastitis and metritis in dairy cows and respiratory problems in young calves. In pigs, APPs are useful in the control of bacterial and viral infections, and they may be used at the slaughterhouse to monitor subclinical pathologies and improve food safety. The utility of APP in animal production must not be forgotten; optimization of protocols to improve performance, welfare, and nutrition may benefit from the use of APPs. Other sample types besides serum or plasma have potential uses; APP determination in milk is a powerful tool in the control of mastitis, saliva is a non-invasive sample type, and meat juice is easily obtained at the slaughterhouse. Increasing our knowledge of reference intervals and the influence of variables such as age, breed, sex, and the season is important. Finally, worldwide harmonization and standardization of analytical procedures will help to expand the use of APPs.
Collapse
Affiliation(s)
- Yolanda Saco
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Servei de Bioquímica Clínica Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
13
|
Shen LH, Zhang Y, Shen Y, Su ZT, Yu SM, Cao SZ, Zong XL. Effect of anemoside B4 on milk whey in clinical mastitis-affected cows elucidated using tandem mass tag (TMT)-based quantitative proteomics. Sci Rep 2022; 12:18829. [PMID: 36335251 PMCID: PMC9637092 DOI: 10.1038/s41598-022-23749-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
Abstract
Intramuscular injection of anemoside B4 (AB4) has a superior therapeutic effect on clinical mastitis in lactating cows. Here, we explored AB4's effect on milk whey in clinical mastitis-affected cows using proteomics. Among fifty clinical mastitis cows received AB4 administration (0.05 ml/kg/day, for 7 days), twelve healed cows were selected and marked as group T. Twelve clinically heathy cows received the same dose of saline for 7 days, marked as group C. Collected milk whey of group T before and after AB4 administration marked as T1 and T2, respectively. The milk whey of group C after saline injection marked as C1. Milk whey protein changes were detected using tandem mass tag-based quantitative proteomic. We identified 872 quantifiable proteins in the samples. Among them, 511 proteins between T1 and C1, and 361 proteins between T2 and T1 were significantly altered. T1 than C1 had significantly more proteins associated with inflammatory damage and trans-endothelial migration of leukocytes, whereas these proteins were reduced in T2 treated with AB4. Compared with C, proteins associated with fibrin clot degradation and complement system activation were downregulated in T1 but upregulated in T2. In summary, AB4 can exert its therapeutic effect on clinical mastitis in cows mainly by reducing inflammatory damage, activating the complement system, inhibiting trans-endothelial migration of leukocytes, and promoting degradation of milk fibrin clots.
Collapse
Affiliation(s)
- Liu-hong Shen
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yue Zhang
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yu Shen
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Zhe-tong Su
- Guangxi Innovates Medical Technology Co., Ltd., Lipu, 546600 Guangxi China
| | - Shu-min Yu
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Sui-zhong Cao
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xiao-lan Zong
- grid.80510.3c0000 0001 0185 3134The Key Laboratory of Animal Disease and Human Health of Sichuan Province, The Medical Research Center for Cow Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| |
Collapse
|
14
|
Giagu A, Penati M, Traini S, Dore S, Addis MF. Milk proteins as mastitis markers in dairy ruminants - a systematic review. Vet Res Commun 2022; 46:329-351. [PMID: 35195874 PMCID: PMC9165246 DOI: 10.1007/s11259-022-09901-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
Abstract
Mastitis is one of the most impacting diseases in dairy farming, and its sensitive and specific detection is therefore of the greatest importance. The clinical evaluation of udder and mammary secretions is typically combined with the milk Somatic Cell Count (SCC) and often accompanied by its bacteriological culture to identify the causative microorganism. In a constant search for improvement, several non-enzymatic milk proteins, including milk amyloid A (M-SAA), haptoglobin (HP), cathelicidin (CATH), and lactoferrin (LF), have been investigated as alternative biomarkers of mastitis for their relationship with mammary gland inflammation, and immunoassay techniques have been developed for detection with varying degrees of success. To provide a general overview of their implementation in the different dairy species, we carried out a systematic review of the scientific literature using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. Our review question falls within the type “Diagnostic test accuracy questions” and aims at answering the diagnostic question: “Which are the diagnostic performances of mastitis protein biomarkers investigated by immunoassays in ruminant milk?”. Based on 13 keywords combined into 42 searches, 523 manuscripts were extracted from three scientific databases. Of these, 33 passed the duplicate removal, title, abstract, and full-text screening for conformity to the review question and document type: 78.8% investigated cows, 12.1% sheep, 9.1% goats, and 6.1% buffaloes (some included more than one dairy species). The most frequently mentioned protein was M-SAA (48.5%), followed by HP (27.3%), CATH (24.2%) and LF (21.2%). However, the large amount of heterogeneity among studies in terms of animal selection criteria (45.5%), index test (87.9%), and standard reference test (27.3%) resulted in a collection of data not amenable to meta-analysis, a common finding illustrating how important it is for case definitions and other criteria to be standardized between studies. Therefore, results are presented according to the SWiM (Synthesis Without Meta-analysis) guidelines. We summarize the main findings reported in the 33 selected articles for the different markers and report their results in form of comparative tables including sample selection criteria, marker values, and diagnostic performances, where available. Finally, we report the study limitations and bias assessment findings.
Collapse
Affiliation(s)
- Anna Giagu
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
- Istituto Zooprofilattico Sperimentale della Sardegna, Centro di Referenza Nazionale per le Mastopatie degli Ovini e dei Caprini, Sassari, Italy
- ARES Sardegna, ASL, Nuoro, Italy
| | - Martina Penati
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università di Milano, Lodi, Italy
| | - Sara Traini
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università di Milano, Lodi, Italy
| | - Simone Dore
- Istituto Zooprofilattico Sperimentale della Sardegna, Centro di Referenza Nazionale per le Mastopatie degli Ovini e dei Caprini, Sassari, Italy
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università di Milano, Lodi, Italy.
| |
Collapse
|
15
|
Greguła-Kania M, Kosior-Korzecka U, Grochowska E, Longo V, Pozzo L. Effects of fetal number on acute phase proteins, cortisol, and hematological parameters in ewes during the periparturient period. Anim Reprod Sci 2021; 231:106793. [PMID: 34126541 DOI: 10.1016/j.anireprosci.2021.106793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/15/2022]
Abstract
Many subclinical diseases associated with inflammation occur in sheep during the periparturient period. Clinical symptoms are usually detected at an advanced stage of the disease; therefore, there are considerable risks of permanent health disorders in fetuses or dams. Determination of acute phase proteins (APPs) as markers of inflammation may allow for an earlier diagnosis and effective treatment. Furthermore, multi-fetus pregnancies are often associated with hematological disturbances. The study objective was to compare plasma concentrations of serum amyloid A (SAA), haptoglobin (Hp), fibrinogen (Fb), and cortisol in ewes bearing one and two fetuses in the period from 2 weeks before to 2 weeks after parturition as well as to determine hematological parameters in peripheral blood. There was an important effect of fetal number on APP and cortisol concentrations in periparturient ewes. There was a greater concentration of SAA, Hp, Fb, and cortisol in ewes bearing two fetuses compared with those bearing one fetus. Profiles for APP and cortisol concentrations and hematological parameters were similar for ewes bearing one and two fetuses, and trends were within normal reference ranges for the periparturient period. Furthermore, there were no differences in values for hematological variables between ewes bearing one and two fetuses. with there being no ewes with anemia. In summary, separate determination of the previously undefined physiological ranges of APPs and cortisol for ewes bearing one and two fetuses may facilitate diagnosis of subclinical disorders and enable comparison of laboratory test results with different reference values for ewes bearing different numbers of fetuses.
Collapse
Affiliation(s)
- Monika Greguła-Kania
- Institute of Animal Breeding and Biodiversity Conservation, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950, Lublin, Akademicka 13, Poland
| | - Urszula Kosior-Korzecka
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033, Lublin, Akademicka 12, Poland.
| | - Ewa Grochowska
- Department of Biotechnology and Animal Genetics, Faculty of Animal Breeding and Biology, UTP University of Science and Technology, Mazowiecka 28, 85-084, Bydgoszcz, Poland
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), 56124, Pisa, Italy
| | - Luisa Pozzo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), 56124, Pisa, Italy
| |
Collapse
|