1
|
Chauhan N, Kumar S, Chauhan T, Samanta AK. Screening of lactic acid bacteria from the milk of Sahiwal cows and characterization of their probiotic potential for preventing bovine mastitis. Int Microbiol 2024:10.1007/s10123-024-00623-6. [PMID: 39661222 DOI: 10.1007/s10123-024-00623-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
Antibiotic therapy has been the most popular line of treatment for the control of mastitis worldwide during the last few decades. Alternative and sustainable treatments must be developed because pathogens are becoming more resistant to antibiotics, leading to the development and spread of antimicrobial resistance (AMR). The aim of the current investigation was to isolate lactic acid bacteria (LAB) with probiotic potential that can inhibit mastitis-causing pathogens to prevent bovine mastitis. Milk samples were collected from Sahiwal cows, and a total of 150 bacteria were isolated, of which 76 were found to be catalase negative, and resistant to vancomycin. Twenty-three isolates displayed greater acid and bile tolerance, with > 90% survivability, and were molecularly characterized by 16S rRNA partial sequencing. The autoaggregation percentages for SML7 and SML41 were greater (p<0·05) 80.38±0.19% and 80.28±0.04%, respectively. SML10 (92.04±0.26 μmol/mL) had the highest (p<0.05) ferric-reducing antioxidant power (FRAP) activity, while SML20 (52.1±0.99%) had the highest 1,1 diphenyl 2 picrylhydrazyl (DPPH) scavenging activity. All the strains were nonhemolytic or nonmucinolytic. The highest antimicrobial activity was observed in several strains (SML41, SML63, SML76, and SML60) against common mastitis-causing pathogens, namely, E. coli ATCC25922, Staphylococcus aureus ATCC25923, Enterococcus faecalis NCDC114, Streptococcus agalactiae NCDC208, and Enterococcus faecium NCDC124. The coaggregation efficacy of SML20 with S. aureus was the highest (67.69±1.21%), while SML41 showed the highest (69.75±0.29%) coaggregation efficacy with E. faecalis NCDC114 and SML63 (68.078±0.26) with S. agalactiae NCDC208. Overall, seven distinct lactic acid bacterial clusters were identified by cluster analysis of the phylogenetic tree as follows: Enterococcus hirae (1), Limosilactobacillus reuteri (1), Pediococcus acidilactici (4), Weissella confusa (11), Lactobacillus helveticus (3), Limosilactobacillus balticus (2), and Lacticaseibacillus rhamnosus (1). The Lactobacillus helveticus SML41, Lactobacillus helveticus SML60, Weissella confusa SML61, Lacticaseibacillus rhamnosus SML63, Weissella confusa SML64, and Pediococcus acidilactici SML76 isolates were found to possess the most desirable characteristics of potential probiotics based on principal component analysis (PCA). Therefore, the strains chosen in the current investigation demonstrated techno-functional characteristics that rendered them appropriate for probiotic use to treat and prevent intramammary infections in dairy cattle in a sustainable manner.
Collapse
Affiliation(s)
- Nutan Chauhan
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sachin Kumar
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Tejshi Chauhan
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ashis Kumar Samanta
- Rumen Biotechnology Lab, Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
2
|
Li Y, Zhang Y, Zhao J, Zhang X, Liu S, Qi H, Qiao F, Yao H. Isolation and evaluation of Pediococcus acidilactici YH-15 from cat milk: Potential probiotic effects and antimicrobial properties. Heliyon 2024; 10:e39539. [PMID: 39498095 PMCID: PMC11533615 DOI: 10.1016/j.heliyon.2024.e39539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
The study aimed to screen for the possible presence of lactic acid bacteria (LAB) in cat milk in order to evaluate their probiotic properties. The isolates were characterized by biochemical identification, morphological tests and 16S rDNA sequencing. Afterward, gastrointestinal passage, in vitro safety and probiotic properties were evaluated. The results showed that the isolates had 10 strains of Pediococcus acidilactici permitted in the feed additive catalog. The high survival rate in the acid and bile salt resistance test reflected the good strain tolerance of the isolates to the simulated gastrointestinal conditions of the host in vitro. The mean inhibitory diameters of the 10 strains against chloramphenicol and tetracycline were 23.6 mm and 17.4 mm, respectively; none of the hemolytic tests showed α/β hemolytic ring. The bacteriostatic test showed that P. acidilactici YH-9, YH-14 and YH-15 had inhibitory effects on four common pathogenic bacteria, including Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Streptococcus. The adhesion test showed that P. acidilactici YH-15 had good adhesion to HT-29 cells. Based on these results, we concluded that P. acidilactici YH-15 extracted from cat milk has potential application as a clinical probiotic therapy and health care product.
Collapse
Affiliation(s)
- Yahui Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yiwen Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Junxin Zhao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuan Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Shiwei Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Hanmeng Qi
- Chinese Academy of Sciences Beijing Institute for Stem Cell and Regenerative Medicine, China
| | - Fuqiang Qiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Hua Yao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
3
|
Wang T, Zhang X, Fan L, Zhao Y, Zhang Z, Cao Z, Xu Y, Lee S, Lim C, Zhang S. Complete genome sequence and anti-obesity potential of Lactiplantibacillus plantarum HOM2217 in 3T3-L1 cells and high-fat diet-fed rats. Front Microbiol 2024; 15:1436378. [PMID: 39323881 PMCID: PMC11422070 DOI: 10.3389/fmicb.2024.1436378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
The global prevalence of obesity is rising year by year, which has become a public health problem worldwide. Many animal and clinical studies have shown that Lactiplantibacillus plantarum is considered an ideal probiotic and potential supplement for the treatment of obesity. In this study, we aimed to complete the genome sequence of L. plantarum HOM2217, which was isolated from human milk, and study its physiological characteristics and anti-obesity effects in 3T3-L1 cells and rats fed a high-fat diet (HFD) to determine its potential as a starter for functional food products. Whole-genome analysis demonstrated that HOM2217 contained a single circular chromosome of 3,267,529 bp with a GC content of 44.5% and one plasmid (62,350 bp) with a GC content of 38.5%. Compared to the reference strains, HOM2217 demonstrated superior tolerance to gastrointestinal conditions, higher adhesion to intestinal epithelial cell lines, potent antimicrobial activity against Enterobacter cloacae ATCC 13047, and effective cholesterol removal ability in vitro. Treatment with heat-killed HOM2217 significantly reduced lipid accumulation and intracellular triglyceride production in 3T3-L1 adipocytes. Daily treatment of HFD-fed rats with HOM2217 for 7 weeks decreased body weight, body weight gain, and body fat without changes in food intake. HOM2217 also significantly increased the serum high-density lipoprotein cholesterol (HDL-C) level, decreased the serum tumor necrosis factor (TNF-α) and increased short-chain fatty acid (SCFA) (formic acid, acetic acid, and butyric acid) levels in the cecum. Thus, HOM2217 could potentially prevent obesity in rats by inhibiting inflammatory responses and regulating lipid metabolism and SCFAs expression. Therefore, HOM2217 has potential as an alternative treatment for obesity.
Collapse
Affiliation(s)
- Tingting Wang
- Research Center, Beijing Hanmi Pharmaceutical Co., Ltd., Beijing, China
| | - Xiao Zhang
- Research Center, Beijing Hanmi Pharmaceutical Co., Ltd., Beijing, China
| | - Linlin Fan
- Research Center, Beijing Hanmi Pharmaceutical Co., Ltd., Beijing, China
| | - Ying Zhao
- Research Center, Beijing Hanmi Pharmaceutical Co., Ltd., Beijing, China
| | - Zhengwen Zhang
- Research Center, Beijing Hanmi Pharmaceutical Co., Ltd., Beijing, China
| | - Zhonghua Cao
- Research Center, Beijing Hanmi Pharmaceutical Co., Ltd., Beijing, China
| | - Ying Xu
- Food & Biotech R&D Center, Coree Beijing Co., Ltd., Beijing, China
| | - Suwon Lee
- Food & Biotech R&D Center, Coree Beijing Co., Ltd., Beijing, China
| | - Chongyoon Lim
- Food & Biotech R&D Center, Coree Beijing Co., Ltd., Beijing, China
| | - Shiqi Zhang
- Food & Biotech R&D Center, Coree Beijing Co., Ltd., Beijing, China
| |
Collapse
|
4
|
Kemal S, Koricha AD. The Art, Microbial Quality, Safety, and Physicochemical Characteristics of Jikita: A Traditional Ethiopian Fermented Beverage. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6698831. [PMID: 39044801 PMCID: PMC11265947 DOI: 10.1155/2024/6698831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
Jikita is a traditional fermented beverage popular among the Oromo ethnic groups in Ethiopia. It is made from cereal and has a high alcohol content and thick texture. Jikita is widely consumed in the Western Oromia region of Ethiopia and holds significant socioeconomic and cultural importance. However, there is limited knowledge regarding the microbial quality and safety of Jikita, as well as its physicochemical and proximate composition. This study is aimed at assessing the current state of Jikita production and consumption. Samples were collected from two districts in the West Shewa Zone, where Jikita is most prevalent. A survey was conducted to gather information on production methods, sanitary conditions, ingredient composition, and the socioeconomic importance of Jikita. The samples were then analyzed for microbial counts, identification, and dynamics, as well as for pH, titratable acidity (TA), moisture, total solid, alcohol, carbohydrate, fat, and protein contents. The results showed that the majority of producers and sellers were middle-aged women who did not use protective clothing. Microbial counts revealed that the levels of aerobic mesophilic bacteria, yeasts, and lactic acid bacteria (LAB) were below the WHO/FDA standards, and no Salmonella spp. were detected. The samples exhibited varying pH, TA, moisture, total solid, alcohol, carbohydrate, fat, and protein contents. The microbial dynamics during fermentation showed that different groups of bacteria and yeasts dominated different stages. The overall microbial quality of Jikita was indicative of spoilage microorganisms. However, the duration of fermentation inhibited the growth of pathogenic microorganisms and extended the shelf life of the product to more than 2 months. This study provides valuable insights into traditional fermented beverages and their implications for public health. It also suggests the need for improved hygiene practices and quality control measures in Jikita production and consumption.
Collapse
Affiliation(s)
- Semira Kemal
- College of Natural SciencesDepartment of BiologyJimma University, Jimma, Ethiopia
| | | |
Collapse
|
5
|
Hick E, Suárez M, Rey A, Mantecón L, Fernández N, Solís G, Gueimonde M, Arboleya S. Personalized Nutrition with Banked Human Milk for Early Gut Microbiota Development: In Pursuit of the Perfect Match. Nutrients 2024; 16:1976. [PMID: 38999725 PMCID: PMC11243202 DOI: 10.3390/nu16131976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The correct initial colonization and establishment of the gut microbiota during the early stages of life is a key step, with long-lasting consequences throughout the entire lifespan of the individual. This process is affected by several perinatal factors; among them, feeding mode is known to have a critical role. Breastfeeding is the optimal nutrition for neonates; however, it is not always possible, especially in cases of prematurity or early pathology. In such cases, most commonly babies are fed with infant formulas in spite of the official nutritional and health international organizations' recommendation on the use of donated human milk through milk banks for these cases. However, donated human milk still does not totally match maternal milk in terms of infant growth and gut microbiota development. The present review summarizes the practices of milk banks and hospitals regarding donated human milk, its safety and quality, and the health outcomes in infants fed with donated human milk. Additionally, we explore different alternatives to customize pasteurized donated human milk with the aim of finding the perfect match between each baby and banked milk for promoting the establishment of a beneficial gut microbiota from the early stages of life.
Collapse
Affiliation(s)
- Emilia Hick
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
| | - Marta Suárez
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Alejandra Rey
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
| | - Laura Mantecón
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Nuria Fernández
- Pediatrics Service, University Hospital of Cabueñes (CAB-SESPA), 33394 Gijón, Spain
| | - Gonzalo Solís
- Pediatrics Service, Central University Hospital of Asturias (HUCA-SESPA), 33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
6
|
Onur M, Önlü H. Isolation, characterization of Weissella confusa and Lactococcus lactis from different milk sources and determination of probiotic features. Braz J Microbiol 2024; 55:663-679. [PMID: 38158467 PMCID: PMC10920558 DOI: 10.1007/s42770-023-01208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/02/2023] [Indexed: 01/03/2024] Open
Abstract
This study aimed to investigate the probiotic properties of Lactic Acid Bacteria (LAB) isolates derived from various milk sources. These isolates identified based on their morphological characteristics and 16S rRNA gene sequencing. Four strains of Lactococcus lactis and two strains of Weissella confusa were identified with over 96% 16S rRNA gene similarity according to the NCBI-BLAST results. The survival of the isolates was determined in low pH, pepsin, bile salts, and pancreatin, and their adhesion ability was assessed by in vitro cell adhesion assay, hydrophobicity, auto- and co-aggregation, and safety criteria were determined by hemolytic, gelatinase activities, and DNAse production ability tests. The results showed that the LAB isolates had different levels of resistance to various stress factors. L. lactis subsp. cremoris MH31 showed the highest resistance to bile salt, while the highest pH resistance was observed in L. lactis MH31 at pH 3.0. All the isolates survived in pepsin exposure at pH 3.0 for 3 h. The auto-aggregation test results showed that all strains exhibited auto-aggregation ranging from 84.9 to 91.4%. Co-aggregation percentage ranged from 19 - 54% and 17 - 57% against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, respectively. The hydrophobicity capacity of the LAB isolated ranged from 35-61%. These isolates showed different adhesion abilities to Caco-2 cells (81.5% to 92.6%). None of the isolates exhibited DNase, gelatinase and hemolytic activity (γ-hemolysis). All results indicate that these LAB strains have the potential to be used as probiotics.
Collapse
Affiliation(s)
- Melda Onur
- Ministry of Agriculture and Forestry, Istanbul, Türkiye
| | - Harun Önlü
- Department of Food Processing, Vocational School of Technical Sciences, Muş Alparslan University, Muş, Türkiye.
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Türkiye.
| |
Collapse
|
7
|
Guo X, Li Z, He N, Zhang B, Liu X, Bao J. Detection and elimination of trace d-lactic acid in lignocellulose biorefining chain: Generation, flow, and impact on chiral lactide synthesis. Biotechnol Bioeng 2024; 121:670-682. [PMID: 37902776 DOI: 10.1002/bit.28583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/05/2023] [Accepted: 10/01/2023] [Indexed: 10/31/2023]
Abstract
High chiral purity of lactic acid is a crucial indicator for the synthesis of chiral lactide as the primary intermediate chemical for ring-open polymerization of high molecular weight polylactic acid (PLA). Lignocellulose biomass is the most promising carbohydrate feedstock for commercial production of PLA, but the presence of trace d-lactic acid in the biorefinery chain adversely affects the synthesis and quality of chiral lactide. This study analyzed the fingerprint of trace d-lactic acid in the biorefinery chain and found that the major source of d-lactic acid comes from lignocellulose feedstock. The naturally occurring lactic acid bacteria and water-soluble carbohydrates in lignocellulose feedstock provide the necessary conditions for d-lactic acid generation. Three strategies were proposed to eliminate the generation pathway of d-lactic acid, including reduction of moisture content, conversion of water-soluble carbohydrates to furan aldehydes in pretreatment, and conversion to l-lactic acid by inoculating engineered l-lactic acid bacteria. The natural reduction of lactic acid content in lignocellulose feedstock during storage was observed due to the lactate oxidase-catalyzed oxidation of l- and d-lactic acids. This study provided an important support for the production of cellulosic l-lactic acid with high chiral purity.
Collapse
Affiliation(s)
- Xiaomeng Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhibin Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Niling He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | | | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
8
|
Wu J, Li Q, Hu K, Li J, Durán-Guerrero E, Liu S, Guo M, Liu A. Microbial characterization of Sichuan Baoning vinegar: lactic acid bacteria, acetic acid bacteria and yeasts. Arch Microbiol 2024; 206:59. [PMID: 38191944 DOI: 10.1007/s00203-023-03784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Sichuan Baoning vinegar, a typical representative of Sichuan bran vinegar, is a famous traditional fermented food made from cereals in China. At present, there are few studies on microbial characterization of culturable microorganisms in solid-state fermentation of Sichuan bran vinegar. To comprehensively understand the diversity of lactic acid bacteria, acetic acid bacteria and yeasts, which play an important role in the fermentation of Sichuan bran vinegar, traditional culture-dependent methods combined with morphological, biochemical, and molecular identification techniques were employed to screen and identify these isolates. A total of 34 lactic acid bacteria isolates, 39 acetic acid bacteria isolates, and 48 yeast isolates were obtained. Lactic acid bacteria were dominated by Enterococcus durans, Leuconostoc citreum, Lactococcus lactis, and Lactiplantibacillus plantarum, respectively. Latilactobacillus sakei was the first discovery in cereal vinegar. Acetic acid bacteria were mainly Acetobacter pomorum and A. pasteurianus. The dominant yeast isolates were Saccharomyces cerevisiae, in addition to four non-Saccharomyces yeasts. DNA fingerprinting revealed that isolates belonging to the same species exhibited intraspecific diversity, and there were differences between phenotypic and genotypic classification results. This study further enriches studies on cereal vinegar and lays a foundation for the development of vinegar starters.
Collapse
Affiliation(s)
- Jie Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
- Key Laboratory of Agricultural Product Processing, Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Ya'an, 625014, Sichuan, People's Republic of China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
- Key Laboratory of Agricultural Product Processing, Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Ya'an, 625014, Sichuan, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
- Key Laboratory of Agricultural Product Processing, Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Ya'an, 625014, Sichuan, People's Republic of China
| | - Enrique Durán-Guerrero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agri-food Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510, Puerto Real, Cadiz, Spain
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China
- Key Laboratory of Agricultural Product Processing, Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Ya'an, 625014, Sichuan, People's Republic of China
| | - Mingye Guo
- Sichuan Baoning Vinegar Co., Ltd, Langzhong, 637400, Sichuan, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, People's Republic of China.
- Key Laboratory of Agricultural Product Processing, Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Ya'an, 625014, Sichuan, People's Republic of China.
| |
Collapse
|
9
|
Liu Q, Bian Y, Mu S, Chen M, Liu S, Yang G, Huang Y, Hou X, Fang Y. Genomic and phenotypic-based safety assessment and probiotic properties of Streptococcus thermophilus FUA329, a urolithin A-producing bacterium of human milk origin. Genomics 2023; 115:110724. [PMID: 37820823 DOI: 10.1016/j.ygeno.2023.110724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Streptococcus thermophilus FUA329, a urolithin A-producing bacterium, is isolated from human breast milk. The complete genome sequence of FUA329 did not contain any plasmids and at least 20 proteins were related to extreme environment resistance. Phenotypic assay results demonstrated that FUA329 was susceptible to 12 kinds of antibiotics and did not exhibit any hemolytic or nitrate reductase activity. Three free radical scavenging assays revealed that FUA329 have high antioxidant capability. FUA329 exhibited a cell surface hydrophobicity of 52.58 ± 1.17% and an auto-aggregation rate of 18.69 ± 2.48%. Moreover, FUA329 demonstrated a survival rate of over 60% in strong acid and bile salt environments, indicating that FUA329 may be stable colonization in the gastrointestinal tract. Additionally, we firstly found 3 potential proteins and 11 potential genes of transforming ellagic acid to urolithins in FUA329 genome. The above results indicate that FUA329 has credible safety and probiotic properties, as well as the potential to be developed as a new generation of urolithin A-producing probiotics.
Collapse
Affiliation(s)
- Qitong Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yingying Bian
- School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Shuting Mu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Meng Chen
- Lianyungang Inspection and Testing Center for Food and Drug Control, Lianyungang, Jiangsu 222005, PR China
| | - Shu Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Guang Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yichen Huang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xiaoyue Hou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| | - Yaowei Fang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
10
|
Remund B, Yilmaz B, Sokollik C. D-Lactate: Implications for Gastrointestinal Diseases. CHILDREN (BASEL, SWITZERLAND) 2023; 10:945. [PMID: 37371177 DOI: 10.3390/children10060945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
D-lactate is produced in very low amounts in human tissues. However, certain bacteria in the human intestine produce D-lactate. In some gastrointestinal diseases, increased bacterial D-lactate production and uptake from the gut into the bloodstream take place. In its extreme, excessive accumulation of D-lactate in humans can lead to potentially life-threatening D-lactic acidosis. This metabolic phenomenon is well described in pediatric patients with short bowel syndrome. Less is known about a subclinical rise in D-lactate. We discuss in this review the pathophysiology of D-lactate in the human body. We cover D-lactic acidosis in patients with short bowel syndrome as well as subclinical elevations of D-lactate in other diseases affecting the gastrointestinal tract. Furthermore, we argue for the potential of D-lactate as a marker of intestinal barrier integrity in the context of dysbiosis. Subsequently, we conclude that there is a research need to establish D-lactate as a minimally invasive biomarker in gastrointestinal diseases.
Collapse
Affiliation(s)
- Barblin Remund
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Christiane Sokollik
- Division of Paediatric Gastroenterology, Hepatology and Nutrition, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
11
|
Keddar K, Ziar H, Belmadani N, Monnoye M, Gérard P, Riazi A. Probiotic Bacteria from Human Milk Can Alleviate Oral Bovine Casein Sensitization in Juvenile Wistar Rats. Microorganisms 2023; 11:microorganisms11041030. [PMID: 37110453 PMCID: PMC10140966 DOI: 10.3390/microorganisms11041030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
This study aims to see if probiotic bacteria from human milk could ameliorate oral cow's milk sensitization. The probiotic potential of the SL42 strain isolated from the milk of a healthy young mother was first determined. Rats were then randomly gavaged with cow's milk casein without an adjuvant or assigned to the control group. Each group was further subdivided into three groups, with each receiving only Limosilactobacillus reuteri DSM 17938, SL42, or a phosphate-buffered saline solution. Body weight, temperature, eosinophils, serum milk casein-specific IgE (CAS-IgE), histamine, and serum S100A8/A9 and inflammatory cytokine concentrations were measured. The animals were sacrificed after 59 days; histological sections were prepared, and the spleen or thymus weights, as well as the diversity of the gut microbiota, were measured. On days 1 and 59, SL42 abridged systemic allergic responses to casein by dropping histamine levels (25.7%), CAS-specific IgE levels (53.6%), eosinophil numbers (17%), S100A8/9 (18.7%), and cytokine concentrations (25.4-48.5%). Analyses of histological sections of the jejunum confirmed the protective effect of probiotic bacteria in the CAS-challenged groups. Lactic acid bacteria and Clostridia species were also increased in all probiotic-treated groups. These findings suggest that probiotics derived from human milk could be used to alleviate cow's milk casein allergy.
Collapse
Affiliation(s)
- Kawtar Keddar
- Laboratoire des Micro-Organismes Bénéfiques, des Aliments Fonctionnels et de la Santé (LMBAFS), Abdelhamid Ibn Badis University, Hocine Hamadou Street, Mostaganem 27000, Algeria
- Laboratoire de Bio-Economie, Sécurité Alimentaire et Santé, Abdelhamid Ibn Badis University, Hocine Hamadou Street, Mostaganem 27000, Algeria
| | - Hasnia Ziar
- Laboratoire des Micro-Organismes Bénéfiques, des Aliments Fonctionnels et de la Santé (LMBAFS), Abdelhamid Ibn Badis University, Hocine Hamadou Street, Mostaganem 27000, Algeria
- Micalis Institute, INRAE, AgroParisTech, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - Noussaiba Belmadani
- Laboratoire des Micro-Organismes Bénéfiques, des Aliments Fonctionnels et de la Santé (LMBAFS), Abdelhamid Ibn Badis University, Hocine Hamadou Street, Mostaganem 27000, Algeria
- Laboratoire de Bio-Economie, Sécurité Alimentaire et Santé, Abdelhamid Ibn Badis University, Hocine Hamadou Street, Mostaganem 27000, Algeria
| | - Magali Monnoye
- Micalis Institute, INRAE, AgroParisTech, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - Philippe Gérard
- Micalis Institute, INRAE, AgroParisTech, Paris-Saclay University, 78350 Jouy-en-Josas, France
| | - Ali Riazi
- Laboratoire des Micro-Organismes Bénéfiques, des Aliments Fonctionnels et de la Santé (LMBAFS), Abdelhamid Ibn Badis University, Hocine Hamadou Street, Mostaganem 27000, Algeria
| |
Collapse
|
12
|
Cappello C, Acin-Albiac M, Pinto D, Polo A, Filannino P, Rinaldi F, Gobbetti M, Di Cagno R. Do nomadic lactobacilli fit as potential vaginal probiotics? The answer lies in a successful selective multi-step and scoring approach. Microb Cell Fact 2023; 22:27. [PMID: 36774510 PMCID: PMC9921609 DOI: 10.1186/s12934-023-02030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/21/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND The goal of this study was to create a multi-strain probiotic gel that would foster a lactobacilli-dominated vaginal microbiota in pregnant women and ensure appropriate eubiosis for the newborn. Nomadic lactobacilli (95 strains), mostly isolated from food sources, were preliminarily screened for functional traits before being characterized for their capability to inhibit the two vaginal pathogens Streptococcus agalactiae and Candida albicans, which may lead to adverse pregnancy-related outcomes. Eight best-performing strains were chosen and furtherly investigated for their ability to produce biofilm. Lastly, the two selected potential probiotic candidates were analyzed in vitro for their ability to reduce the inflammation caused by C. albicans infection on the reconstituted human vaginal epithelium (HVE). RESULTS Lactiplantibacillus plantarum produced both isomers of lactic acid, while Lacticaseibacillus paracasei produced only L-isomer. The production of hydrogen peroxide was strain-dependent, with the highest concentrations found within Lact. paracasei strains. The auto-aggregation capacity and hydrophobicity traits were species-independent. S. agalactiae 88II3 was strongly inhibited both at pH 7.0 and 4.0, whereas the inhibition of C. albicans UNIBZ54 was less frequent. Overall, L. plantarum strains had the highest pathogen inhibition and functional scoring. L. plantarum C5 and POM1, which were selected as potential probiotic candidates also based on their ability to form biofilms, were able to counteract the inflammation process caused by C. albicans infection in the HVE model. CONCLUSIONS Our multi-step and cumulative scoring-based approach was proven successful in mining and highlighting the probiotic potential of two nomadic lactobacilli strains (L. plantarum C5 and POM1), being applicable to preserve and improve human vaginal health.
Collapse
Affiliation(s)
- Claudia Cappello
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Marta Acin-Albiac
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project, Research & Development, Milan, Italy.
| | - Andrea Polo
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Fabio Rinaldi
- Human Microbiome Advanced Project, Research & Development, Milan, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| |
Collapse
|
13
|
Chishiki M, Nishiyama K, Suzutani T, Hiruta S, Ichikawa H, Haneda K, Maeda H, Shimizu H, Kanai Y, Ogasawara K, Go H, Sato M, Momoi N, Nollet KE, Ohto H, Hosoya M. Sterilization efficacy of a new water-free breast milk pasteurizer. Pediatr Int 2023; 65:e15574. [PMID: 37428826 DOI: 10.1111/ped.15574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Breast milk, nature's optimum source of nutrition for infants, can contain undesirable microorganisms that cause severe morbidity. After an outbreak of multidrug-resistant Escherichia coli among neonates receiving breast milk donated by another mother in our neonatal intensive care unit (NICU), we were motivated to develop a high-grade breast milk pasteurizer (BMP) designed to thaw and pasteurize breast milk at 63°C for 30 min in a sealed bag without having to open the bag or immerse it in water. METHODS Pre-existing bacteria and spiked cytomegalovirus (CMV) were measured pre- and post-pasteurization in frozen breast milk donated by mothers of children admitted to the NICU. RESULTS Among 48 breast milk samples (mean ± standard deviation [SD]), pre-existing bacterial counts of 5.1±1.1 × 104 colony forming units (cfu)/mL decreased to less than 10 cfu/mL (below detection level) in 45 samples after pasteurization for 30 min. In three samples, 10-110 cfu/mL persisted. As no CMV was detected in any of the 48 samples, CMV at ≥5 × 104 pfu/mL was spiked into 11 breast milk samples. After just 10 min of pasteurization, infectious CMV was not detected (threshold <50 pfu/mL) in any sample. CONCLUSION A new BMP was shown to pasteurize milk effectively with more than a 3-log reduction of microorganisms. Compared to conventional pasteurizers, this device reduces the effort involved in pasteurizing breast milk, avoids various contamination risks, and may reduce the risk of infectious disease transmission via breast milk.
Collapse
Affiliation(s)
- Mina Chishiki
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kyoko Nishiyama
- Department of Microbiology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tatsuo Suzutani
- Department of Microbiology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shun Hiruta
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirotaka Ichikawa
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kentaro Haneda
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hajime Maeda
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiromi Shimizu
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuji Kanai
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kei Ogasawara
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hayato Go
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Maki Sato
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Nobuo Momoi
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kenneth E Nollet
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hitoshi Ohto
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
14
|
Liu Q, Liu S, Ye Q, Hou X, Yang G, Lu J, Hai Y, Shen J, Fang Y. A Novel Streptococcus thermophilus FUA329 Isolated from Human Breast Milk Capable of Producing Urolithin A from Ellagic Acid. Foods 2022. [PMCID: PMC9601659 DOI: 10.3390/foods11203280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Urolithin A, a metabolite of ellagic acid, has many beneficial biological activities for people. Strains capable of producing urolithin A from ellagic acid have the hope of becoming the next-generation probiotics. However, only a few species of these strains have been reported. In this study, FUA329, a strain capable of converting ellagic acid to urolithin A in vitro, was isolated from the breast milk of healthy Chinese women. The results of morphological observation, physiological and biochemical tests, and 16S rRNA gene sequence analysis confirmed that the strain FUA329 was Streptococcus thermophilus. In addition, the S. thermophilus FUA329 growth phase is consistent with the degradation of ellagic acid, and urolithin A was produced in the stationary phase, with a maximum concentration of 7.38 μM at 50 h. The corresponding conversion efficiency of urolithin A from ellagic acid was 82%. In summary, S. thermophilus FUA329, a novel urolithin A-producing bacterium, would be useful for the industrial production of urolithin A and may be developed as a next-generation probiotic.
Collapse
Affiliation(s)
- Qitong Liu
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shu Liu
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qinwen Ye
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyue Hou
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guang Yang
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Lu
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yang Hai
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaowei Fang
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence:
| |
Collapse
|
15
|
Zawistowska-Rojek A, Kociszewska A, Zaręba T, Tyski S. New Potentially Probiotic Strains Isolated from Humans – Comparison of Properties with Strains from Probiotic Products and ATCC Collection. Pol J Microbiol 2022; 71:395-409. [DOI: 10.33073/pjm-2022-035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Lactic acid bacteria are used in various types of probiotic products. Due to the constantly growing probiotics market, new strains with pro-health properties are sought. The present study compared 39 strains of Lactobacillus, Lacticaseibacillus, and Lactiplantibacillus, isolated from probiotic products and healthy people. The current research aimed to search for new, potentially probiotic strains. For this purpose the relationship between Lactobacillaceae strains was carried out; moreover, the basic properties of probiotic microorganisms, such as survival at low pH and bile salt environment, antibiotic susceptibility, aggregation and antagonism were estimated. The properties of these isolates were also compared with the properties of probiotic strains from the ATCC collection. In comparing the genetic relationship (PFGE method) between the tested isolates, it was observed that some of them show a high degree of similarity. All tested strains tolerated an environment with a pH value of 3.0, and the addition of 0.3% bile salt; showed auto-aggregation properties and displayed antagonism against pathogenic microorganisms. In the present study, the bacteria were susceptible to tetracycline, chloramphenicol and ampicillin; the resistance to vancomycin
depended on the bacteria type. All the properties were strain-depended. Most of the tested strains had properties comparable to the reference strains. Three L. acidophilus strains isolated from cervical swabs seem to be promising candidates for probiotic strains.
Collapse
Affiliation(s)
- Anna Zawistowska-Rojek
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
- Department of Pharmaceutical Microbiology, Medical University of Warsaw , Warsaw , Poland
| | - Agnieszka Kociszewska
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
| | - Tomasz Zaręba
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute , Warsaw , Poland
- Department of Pharmaceutical Microbiology, Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
16
|
Yang MF, Yan W, Li Y, Li SQ, Chen HY, Yin QQ, Dang XW, Zhang HY. The Probiotic Attributes and Anti-pseudorabies Virus Evaluation of Lactobacillus Isolates. Front Vet Sci 2022; 9:902052. [PMID: 35795786 PMCID: PMC9252522 DOI: 10.3389/fvets.2022.902052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of pseudorabies virus (PRV) variants brings serious harm to the swine industry, and its effective treatments are limited at present. As one of the probiotics, the Lactobacillus species have beneficial characteristics of regulating the balance of intestinal flora, inhibiting the growth of pathogenic bacteria and viruses' proliferation, and improving self-immunity. In this study, Lactobacillus plantarum HN-11 and Lactobacillus casei HN-12 were selected and identified through morphology observation, Gram stain microscopy, 16S rRNA sequencing analysis, and specific amplification of the recA gene and pheS gene. All tested isolates exhibited rapid adaptation to the different conditions, excellent acid, and bile tolerance, and sensitivity to Salmonella, Staphylococcus aureus, and Escherichia coli. The antibiotic susceptibility assay displayed the isolates sensitive to most antibiotics and resistant to Lincomycin and Norfloxacin. Moreover, the supernatants of HN-11 and HN-12 inhibited PRV proliferation in ST cells. The results of animal experiments showed that supplementing the challenged mice with the supernatants of Lactobacillus isolates in advance delayed the course of the disease. PRV was detected in the heart, liver, spleen, lung, kidney, and brain tissues of dead mice in the test groups, and its copies in the lungs were significantly decreased compared with the control mice (P < 0.05). These findings proved the advantages of L. plantarum and L. casei as potential probiotic cultures, which could provide a basis for its application in microecological preparations and functional formulations.
Collapse
Affiliation(s)
- Ming-Fan Yang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Wei Yan
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yan Li
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shuai-Qi Li
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hong-Ying Chen
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Qing-Qiang Yin
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Wei Dang
- Henan Delin Biological Products Co., Ltd., Zhengzhou, China
| | - Hong-Ying Zhang
- Zhengzhou Key Laboratory for Pig Disease Prevention and Control, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Hong-Ying Zhang
| |
Collapse
|
17
|
Rajoka MSR, Mehwish HM, Kitazawa H, Barba FJ, Berthelot L, Umair M, Zhu Q, He Z, Zhao L. Techno-functional properties and immunomodulatory potential of exopolysaccharide from Lactiplantibacillus plantarum MM89 isolated from human breast milk. Food Chem 2022; 377:131954. [PMID: 34973591 DOI: 10.1016/j.foodchem.2021.131954] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022]
Abstract
An exopolysaccharide, designated as MM89-EPS, was isolated from Lactiplantibacillus plantarum MM89. It was comprised of glucose and mannose molecules with an average molecular weight of 138 kDa. FTIR and NMR spectra showed that MM89-EPS had characteristic polysaccharide functional groups. MM89-EPS displayed excellent water solubility and capacities to retain water and oil due to its porous structure. MM89-EPS exhibited no significant cytotoxicity on RAW264.7 cells and showed strong immunomodulatory activity by increasing phagocytosis, acid phosphatase activity, and cytokine production in RAW264.7 cells. Furthermore, an in vivo study revealed that splenic indices, intestinal IgA levels, serum cytokine levels, and lymphocyte proliferation were increased in an MM89-EPS-treated cyclophosphamide-induced immunosuppressed mouse model. To summarize, our results indicate that MM89-EPS can efficiently enhance the immunostimulatory activity of immune cells and an immunosuppressed mouse model. Hence, MM89-EPS may be use as a potential source of immunomodulatory agent in various food products.
Collapse
Affiliation(s)
- Muhammad Shahid Riaz Rajoka
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen 518060, PR China; Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hafiza Mahreen Mehwish
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen 518060, PR China; Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan.
| | - Francisco J Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain.
| | - Laureline Berthelot
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.
| | - Muhammad Umair
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Qinchang Zhu
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen 518060, PR China.
| | - Zhendan He
- School of Pharmaceutical Science, Health Science Center, Shenzhen University, Shenzhen 518060, PR China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China.
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
18
|
An Assessment of the Lactic Acid-Producing Potential of Bacterial Strains Isolated from Food Waste. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lactic acid (LA) is widely used in many industries as a crucial starting material in food products, bio-based materials, and biodegradable polymers. The goals of this research were to isolate LA bacteria from food wastes, assess their potential for LA production, and study their growth characteristics. In this study, six bacterial strains were isolated from food waste and identified using 16S rRNA gene sequencing; namely, Weissella viridescens WJ39, Leuconostoc lactis YS33, Leuconostoc citreum KD42, Leuconostoc mesenteroides VN60, Macrococcus caseolyticus FCI29, and Weissella confusa RG41. W. viridescens WJ39 showed the highest potential for lactic acid production (17.56 g L−1day−1), and the lowest potential was found in L. lactis YS33 (14.09 g L−1day−1). There were significant differences (p < 0.05) in the LA production rates among Weissella spp., Leuconostoc spp., and Macrococcus spp. Moreover, dramatic differences in growth rate were observed among the six strains. W. viridescens WJ39 exhibited the highest growth rate (0.80 h−1), while M. caseolyticus FCI29 exhibited the lowest growth rate (0.57 h−1). W. viridescens WJ39 also exhibited lactic acid production (at a rate around 2 g L−1day−1) in a lab incubation experiment with food waste as a nutrient source. The draft genome of W. viridescens WJ39 with 16 contigs was constructed with an N50 of 215217 bp. The genome size was approximately 1.54 Mb, with a GC content of 41%. A hicD gene, known to catalyze the conversion of pyruvate to D-lactate, was discovered in the genome. This study illustrated the potential for the production of lactic acid from food waste with lactic acid bacteria.
Collapse
|
19
|
Qu A, Zhang Y, Shi H, Wang H, Ding K, Pan ZH, Zhao G, Hadiatullah H. Investigation of gas-producing bacteria in sufu and its effective method to control their growth. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Zheng J, Du M, Jiang W, Zhang J, Shen W, Ma X, Liang Z, Shen J, Wu X, Ding X. In Vitro Probiotic Characteristics and Whole Genome Sequence Analysis of Lactobacillus Strains Isolated from Cattle-Yak Milk. BIOLOGY 2021; 11:44. [PMID: 35053042 PMCID: PMC8772927 DOI: 10.3390/biology11010044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022]
Abstract
Cattle-yak milk is an important raw material and an indispensable source of high-quality food for local farmers and herdsmen to produce ghee, milk residue, yogurt, and other dairy products. In this study, Lactobacillus strains were isolated from cattle-yak milk for potential probiotic candidates using a series of in vitro tests, including probiotic characterization and safety evaluation (antibiotic susceptibility and hemolytic ability). The results found that the Lactobacillus rhamnosus CY12 strain showed a high survival rate in bile salts, under acid conditions, and in the gastrointestinal juice environment, as well as showing high antimicrobial activity and adhesive potential. The safety evaluation showed that all strains were considered non-hemolytic. In addition, the whole-genome sequencing indicated that the strain CY12 spanned 2,506,167 bp, with an average length of 881 bp; the GC content in the gene region (%) was 47.35, contained 1347 protein-coding sequences, and accounted for 85.72% of the genome. The genome annotation showed that genes mainly focused on the immune system process, metabolic process, carbohydrate utilization, carbon metabolism, galactose metabolism, and biological adhesion, etc. This study revealed that the Lactobacillus rhamnosus CY12 strain might be an excellent potential probiotic in the development of feed additives for animals and has the ability to promote health.
Collapse
Affiliation(s)
- Juanshan Zheng
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (J.Z.); (M.D.); (J.Z.); (Z.L.); (J.S.)
| | - Mei Du
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (J.Z.); (M.D.); (J.Z.); (Z.L.); (J.S.)
| | - Wei Jiang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.J.); (W.S.); (X.M.)
| | - Jianbo Zhang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (J.Z.); (M.D.); (J.Z.); (Z.L.); (J.S.)
| | - Wenxiang Shen
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.J.); (W.S.); (X.M.)
| | - Xiaoyu Ma
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.J.); (W.S.); (X.M.)
| | - Zeyi Liang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (J.Z.); (M.D.); (J.Z.); (Z.L.); (J.S.)
| | - Jiahao Shen
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (J.Z.); (M.D.); (J.Z.); (Z.L.); (J.S.)
| | - Xiaohu Wu
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.J.); (W.S.); (X.M.)
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (J.Z.); (M.D.); (J.Z.); (Z.L.); (J.S.)
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.J.); (W.S.); (X.M.)
| |
Collapse
|
21
|
Mirashrafi S, Moravejolahkami AR, Balouch Zehi Z, Hojjati Kermani MA, Bahreini-Esfahani N, Haratian M, Ganjali Dashti M, Pourhossein M. The efficacy of probiotics on virus titres and antibody production in virus diseases: A systematic review on recent evidence for COVID-19 treatment. Clin Nutr ESPEN 2021; 46:1-8. [PMID: 34857182 PMCID: PMC8539817 DOI: 10.1016/j.clnesp.2021.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/14/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS There are some studies indicating the effects of probiotic-containing foods or supplements on viral diseases. We aimed to conduct a rapid review of probiotics with specific emphasis on their potential for early administration in patients at greater risk of SARS-CoV-2 infection. METHODS We searched on PubMed, EMBASE, Google Scholar, Science Direct, Scopus and Web of Science up to February 2021 to identify interventional and observational studies documenting the effects of probiotics strains on interleukins, virus titers, and antibody production with a focus on probiotic-containing foods (PROSPERO Registration ID. CRD42020181453) RESULTS: From a total of 163 records, 21 studies were classified into three domains based on the efficacy of probiotics on 1) the level of interleukins (n = 7), 2) virus titers (n = 2), and 3) interferon (IFN) and antibody production (n = 12). The suppuration of pro-inflammatory interleukins and type I INF production seemed to be the main anti-viral effect of probiotics. Nine studies also indicated the beneficial effects of probiotics and fermented foods on viral diseases. CONCLUSION Based on evidence, some probiotic strains may be useful in viral infections; randomized trials are needed to confirm these findings.
Collapse
Affiliation(s)
- Shahrzad Mirashrafi
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Moravejolahkami
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author. Department of Clinical Nutrition, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Hezar-Jerib Ave, Isfahan, Iran. P.O. Box 81746-73461. Fax: +98(31)36681378
| | - Zakiyeh Balouch Zehi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nimah Bahreini-Esfahani
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Haratian
- Department of Nutrition, Vice Chancellor of Health, Hamadan University of Medical Sciences, Hamedan, Iran
| | - Marjan Ganjali Dashti
- Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX, USA
| | - Meraj Pourhossein
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author. Department of Food Science and Technology, Food Security Research Center, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Hezar-Jerib Ave, Isfahan, Iran. P.O. Box 81746-73461. Fax: +1 519 721. 7430
| |
Collapse
|
22
|
Short- and Long-Term Implications of Human Milk Microbiota on Maternal and Child Health. Int J Mol Sci 2021; 22:ijms222111866. [PMID: 34769296 PMCID: PMC8584477 DOI: 10.3390/ijms222111866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Human milk (HM) is considered the most complete food for infants as its nutritional composition is specifically designed to meet infant nutritional requirements during early life. HM also provides numerous biologically active components, such as polyunsaturated fatty acids, milk fat globules, IgA, gangliosides or polyamines, among others; in addition, HM has a “bifidogenic effect”, a prebiotic effect, as a result of the low concentration of proteins and phosphates, as well as the presence of lactoferrin, lactose, nucleotides and oligosaccharides. Recently, has been a growing interest in HM as a potential source of probiotics and commensal bacteria to the infant gut, which might, in turn, influence both the gut colonization and maturation of infant immune system. Our review aims to address practical approaches to the detection of microbial communities in human breast milk samples, delving into their origin, composition and functions. Furthermore, we will summarize the current knowledge of how HM microbiota dysbiosis acts as a short- and long-term predictor of maternal and infant health. Finally, we also provide a critical view of the role of breast milk-related bacteria as a novel probiotic strategy in the prevention and treatment of maternal and offspring diseases.
Collapse
|
23
|
Si X, Liu N, Jia H, Wang J, Pan L, Dong L, Rong Z, Yang Y, Wu Z. Gut relief formula attenuates dextran sulfate sodium-induced colitis by regulating NF-κB signaling and the intestinal microbiota in mice. Food Funct 2021; 12:10983-10993. [PMID: 34652352 DOI: 10.1039/d1fo01477c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background. Inflammatory bowel disease (IBD) is a chronic relapsing disorder of the gastrointestinal tract. The nutrition care gut relief formula (GR), a combination of natural products and nutrients, has been shown to benefit gastrointestinal health. However, the underlying mechanism responsible for this effect is incompletely defined. Objective. This study was conducted to evaluate the hypothesis that GR could attenuate dextran sulfate sodium (DSS)-induced colitis by enhancing intestinal mucosal immunity and regulating intestinal microflora in mice. Methods. Six-week-old C57BL/6J mice orally administered with GR (7.5 mg per mouse per day) or an equal volume of vehicle were treated with sterile water or 2.5% DSS for 6 days to induce colitis. Histological damage, inflammatory cell infiltration, and colonic microbiome community were analyzed to evaluate the beneficial effect of GR. Results. GR administration ameliorated the severity of colitis as evidenced by reduced body weight loss, decreased colon shortening, reduced myeloperoxidase (MPO) activity, inhibited proinflammatory cytokine secretion, and decreased histological damage in DSS-challenged mice. Additionally, enhancement of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in response to DSS was attenuated by GR administration. Meanwhile, DSS treatment resulted in reduction of the glutathione (GSH) level and tight junction protein abundance, as compared with the controls. Of note, these adverse effects were remarkably eliminated by GR administration. Further study showed that the protective effect of GR was associated with the inhibited activation of STAT3 and NF-κB signaling pathways, as well as upregulated abundances of Lactobacillus in the colon tissues of mice. Conclusion. Collectively, the data provided herein demonstrated that GR administration alleviated intestinal mucosal inflammation and mucosal barrier dysfunction. These beneficial effects were associated with inhibited activation of STAT3 and NF-κB signaling pathways, as well as upregulated abundances of Lactobacillus in the colon tissues of mice.
Collapse
Affiliation(s)
- Xuemeng Si
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| | - Jiaqi Wang
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd, Changsha 410200, Hunan, China
| | - Lina Pan
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd, Changsha 410200, Hunan, China
| | - Ling Dong
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd, Changsha 410200, Hunan, China
| | - Zhixing Rong
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd, Changsha 410200, Hunan, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|