1
|
Veshkini A, Hammon HM, Vogel L, Viala D, Delosière M, Tröscher A, Déjean S, Ceciliani F, Sauerwein H, Bonnet M. The skimmed milk proteome of dairy cows is affected by the stage of lactation and by supplementation with polyunsaturated fatty acids. Sci Rep 2024; 14:23990. [PMID: 39402117 PMCID: PMC11473731 DOI: 10.1038/s41598-024-74978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/30/2024] [Indexed: 10/17/2024] Open
Abstract
The impact of nutritional modification to increase functional polyunsaturated fatty acids (PUFA), such as n-3 and n-6 fatty acids (FA) or conjugated linoleic acid (CLA), on milk proteome profile during early lactation remains largely unknown. We used an untargeted proteomics approach to investigate the impact of lactation day and PUFA supplementation on the proteome signature in skimmed milk over the course of early lactation. Sixteen Holstein dairy cows received abomasal infusion of saturated FA (CTRL) or a mixture of essential FA and CLA (EFA + CLA group) from - 63 to + 63 days relative to parturition. Using quantitative proteomics, 479 unique proteins were identified in skimmed milk at days 1, 28, and 63 postpartum. The top discriminating proteins between transition milk (day 1) and mature milk (days 28 and 63), including members of complements (i.e. C2 and C5), growth factor (TGFB2), lipoproteins (i.e. APOE and APOD), and chaperones (i.e. ST13 and CLU), are associated with calves' immune system and gut development. The EFA + CLA supplementation moderately affected a few proteins associated with regulating mammary glands' lipogenesis through the (re)assembly of lipoprotein particles, possibly under the PPAR signaling pathway. Collectively, skimmed milk proteome is dynamically regulated initially by cow's metabolic and physiological changes and to a lesser extent by nutritional PUFA modifications.
Collapse
Affiliation(s)
- Arash Veshkini
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany.
- Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France.
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy.
| | - Harald M Hammon
- Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Laura Vogel
- Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Didier Viala
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
| | - Mylène Delosière
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
| | | | - Sébastien Déjean
- Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
| |
Collapse
|
2
|
Ostendorf CS, Ghaffari MH, Cohrs I, Koch C, Sauerwein H. Long-term effects of transition milk feeding on feed intake, growth performance, feeding behavior, and oxidative status of Holstein calves. J Dairy Sci 2024:S0022-0302(24)01208-6. [PMID: 39389301 DOI: 10.3168/jds.2024-25435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
This study investigated the long-term effects of feeding 5-d transition milk (TRANS) compared with milk replacer (MR) on parameters, including intake, growth, feeding behavior and oxidative stress. Fifty Holstein calves (30 females and 20 males) were fed either 12 L/day TRANS or MR for the first 5 d after an initial colostrum feeding of 3.5 L. Thereafter, all calves were fed with 12 L of MR/d (140 g/L) and were gradually weaned starting in wk 8 until wk 14. Throughout the 14 wk the calves had unrestricted access to concentrate (up to 9.8 kg/calf/day), hay, and water. After weaning all heifers were fed a total mixed ration for young cows. Oxidative status was assessed in blood samples from birth to first insemination. Parameters assessed included the ferric reducing ability of plasma (FRAP) for antioxidant capacity and the concentration of reactive oxygen metabolites by the dROM (detection of reactive oxygen metabolites) assay. In addition, the activity of glutathione peroxidase (GSH-Px), oxidative damage in the form of lipid peroxidation as thiobarbituric acid reactive substances (TBARS) and as advanced oxidation protein products (AOPP) were measured. An oxidative stress index (OSi) was calculated: dROM/FRAP x 100. Total protein (TP) concentration was also quantified via the Bradford assay. The only significant difference in feeding behavior between the 2 treatment groups was a higher concentrate intake by the TRANS calves during the weaning phase. Body weight and ADG did not differ significantly between the TRANS and MR groups. TRANS calves showed a trend for fewer cases of health disorders. Markers of oxidative status, including TBARS, AOPP, GSHPx, FRAP and ROM, showed no treatment effects but varied significantly over time. Of note, the oxidative stress index as ratio between pro- and antioxidants in both groups peaked during weaning and then returned to baseline, suggesting an effective response to this transition phase Overall, the results indicate that feeding TRANS during the first 5 d of life had no long-term effect on the parameters studied as compared with MR feeding under the present rearing conditions. These results provide insight into the changes of oxidative status with age and confirm that the relatively high milk feeding level, slow and late weaning enables calves to adapt well to solely solid feed.
Collapse
Affiliation(s)
- C S Ostendorf
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany; Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, 67728 Münchweiler an der Alsenz, Germany
| | - M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - I Cohrs
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, 67728 Münchweiler an der Alsenz, Germany; Clinic for Ruminants, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, 67728 Münchweiler an der Alsenz, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
3
|
Brozić D, Starčević K, Vranić M, Bošnjak K, Maurić Maljković M, Mašek T. Effect of Dietary Eicosapentaenoic and Docosahexaenoic Fatty Acid Supplementation during the Last Month of Gestation on Fatty Acid Metabolism and Oxidative Status in Charolais Cows and Calves. Animals (Basel) 2024; 14:1273. [PMID: 38731277 PMCID: PMC11083410 DOI: 10.3390/ani14091273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Fatty acids (FAs) are of utmost importance in the peripartal period for the development of the central nervous and immune systems of the newborn. The transport of polyunsaturated fatty acids (PUFAs) through the placenta is considered to be minimal in ruminants. Nevertheless, the cow's FAs are the main source of FAs for the calf during gestation. This research aimed to investigate the influence of low-dose eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation during late gestation on the FA metabolism of cows and their calves. A total of 20 Charolais cows during the last month of their gestation were included in the feeding trial and were divided into a control group (CON) and an experimental group (EPA + DHA). The latter received a supplement in the amount of 100 g/day (9.1 and 7.8 g/cow/day of EPA and DHA, respectively). Supplementation of low-dose EPA and DHA alters colostrum and milk fatty acid composition through the elevation of n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) without affecting milk fat and protein concentrations and oxidative status. Plasma composition in cows was significantly altered, while the same effect was not detected in calf plasma. No significant change in mRNA expression was detected for the genes fatty acid synthase (FASN) and acetyl-CoA carboxylase alpha (ACACA).
Collapse
Affiliation(s)
- Diana Brozić
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Marina Vranić
- Department of Field Crops, Forage and Grassland Production, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (M.V.); (K.B.)
| | - Krešimir Bošnjak
- Department of Field Crops, Forage and Grassland Production, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (M.V.); (K.B.)
| | - Maja Maurić Maljković
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
4
|
Silva FG, Silva SR, Pereira AMF, Cerqueira JL, Conceição C. A Comprehensive Review of Bovine Colostrum Components and Selected Aspects Regarding Their Impact on Neonatal Calf Physiology. Animals (Basel) 2024; 14:1130. [PMID: 38612369 PMCID: PMC11010951 DOI: 10.3390/ani14071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Colostrum contains macro- and micronutrients necessary to meet the nutritional and energy requirements of the neonatal calf, bioactive components that intervene in several physiological aspects, and cells and microorganisms that modulate the calf's immune system and gut microbiome. Colostrum is sometimes mistaken as transition milk, which, although more nutritive than whole milk, has a distinct biochemical composition. Furthermore, most research about colostrum quality and colostrum management focuses on the transfer of maternal IgG to the newborn calf. The remaining components of colostrum and transition milk have not received the same attention, despite their importance to the newborn animal. In this narrative review, a large body of literature on the components of bovine colostrum was reviewed. The variability of these components was summarized, emphasizing specific components that warrant deeper exploration. In addition, the effects of each component present in colostrum and transition milk on several key physiological aspects of the newborn calf are discussed.
Collapse
Affiliation(s)
- Flávio G. Silva
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
- Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Agrarian School of Ponte de Lima, Rua D. Mendo Afonso, 147 Refóios do Lima, 4990-706 Ponte de Lima, Portugal
| | - Severiano R. Silva
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
| | - Alfredo M. F. Pereira
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
| | - Joaquim Lima Cerqueira
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory of Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal (J.L.C.)
- Center for Research and Development in Agrifood Systems and Sustainability, Polytechnic Institute of Viana do Castelo, Agrarian School of Ponte de Lima, Rua D. Mendo Afonso, 147 Refóios do Lima, 4990-706 Ponte de Lima, Portugal
| | - Cristina Conceição
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Department of Zootechnics, School of Science and Technology, University of Évora, Pólo da Mitra Apartado 94, 7006-554 Évora, Portugal; (A.M.F.P.); (C.C.)
| |
Collapse
|
5
|
Fabjanowska J, Kowalczuk-Vasilev E, Klebaniuk R, Milewski S, Gümüş H. N-3 Polyunsaturated Fatty Acids as a Nutritional Support of the Reproductive and Immune System of Cattle-A Review. Animals (Basel) 2023; 13:3589. [PMID: 38003206 PMCID: PMC10668692 DOI: 10.3390/ani13223589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
This paper focuses on the role of n-3 fatty acids as a nutrient crucial to the proper functioning of reproductive and immune systems in cattle. Emphasis was placed on the connection between maternal and offspring immunity. The summarized results confirm the importance and beneficial effect of n-3 family fatty acids on ruminant organisms. Meanwhile, dietary n-3 fatty acids supplementation, especially during the critical first week for dairy cows experiencing their peripartum period, in general, is expected to enhance reproductive performance, and the impact of its supplementation appears to be dependent on body condition scores of cows during the drying period, the severity of the negative energy balance, and the amount of fat in the basic feed ration. An unbalanced, insufficient, or excessive fatty acid supplementation of cows' diets in the early stages of pregnancy (during fetus development) may affect both the metabolic and nutritional programming of the offspring. The presence of the polyunsaturated fatty acids of the n-3 family in the calves' ration affects not only the performance of calves but also the immune response, antioxidant status, and overall metabolism of the future adult cow.
Collapse
Affiliation(s)
- Julia Fabjanowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Edyta Kowalczuk-Vasilev
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Renata Klebaniuk
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Szymon Milewski
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (J.F.); (R.K.); (S.M.)
| | - Hıdır Gümüş
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, 15030 Burdur, Türkiye;
| |
Collapse
|
6
|
Hare K, Fischer-Tlustos A, Wood K, Cant J, Steele M. Prepartum nutrient intake and colostrum yield and composition in ruminants. Anim Front 2023; 13:24-36. [PMID: 37324211 PMCID: PMC10266757 DOI: 10.1093/af/vfad031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Affiliation(s)
- Koryn S Hare
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College, University of Guelph, Guelph, ON, CanadaN1G 1Y2
| | - Amanda J Fischer-Tlustos
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College, University of Guelph, Guelph, ON, CanadaN1G 1Y2
| | - Katharine M Wood
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College, University of Guelph, Guelph, ON, CanadaN1G 1Y2
| | - John P Cant
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College, University of Guelph, Guelph, ON, CanadaN1G 1Y2
| | | |
Collapse
|
7
|
Zeng X, Li S, Liu L, Cai S, Ye Q, Xue B, Wang X, Zhang S, Chen F, Cai C, Wang F, Zeng X. Role of functional fatty acids in modulation of reproductive potential in livestock. J Anim Sci Biotechnol 2023; 14:24. [PMID: 36788613 PMCID: PMC9926833 DOI: 10.1186/s40104-022-00818-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/04/2022] [Indexed: 02/16/2023] Open
Abstract
Fatty acids are not only widely known as energy sources, but also play important roles in many metabolic pathways. The significance of fatty acids in modulating the reproductive potential of livestock has received greater recognition in recent years. Functional fatty acids and their metabolites improve follicular development, oocyte maturation and embryo development, as well as endometrial receptivity and placental vascular development, through enhancing energy supply and precursors for the synthesis of their productive hormones, such as steroid hormones and prostaglandins. However, many studies are focused on the impacts of individual functional fatty acids in the reproductive cycle, lacking studies involved in deeper mechanisms and optimal fatty acid requirements for specific physiological stages. Therefore, an overall consideration of the combination and synergy of functional fatty acids and the establishment of optimal fatty acid requirement for specific stages is needed to improve reproductive potential in livestock.
Collapse
Affiliation(s)
- Xiangzhou Zeng
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Siyu Li
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Lu Liu
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Shuang Cai
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Qianhong Ye
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei China
| | - Bangxin Xue
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Xinyu Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Shihai Zhang
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Fang Chen
- grid.20561.300000 0000 9546 5767Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, 510642 Guangzhou, China
| | - Chuanjiang Cai
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, 712100 Yangling, Shaanxi China
| | - Fenglai Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193 Beijing, P. R. China ,Beijing Key Laboratory of Bio feed Additives, 100193 Beijing, P. R. China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, 100193, Beijing, P. R. China. .,Beijing Key Laboratory of Bio feed Additives, 100193, Beijing, P. R. China.
| |
Collapse
|
8
|
Roque-Jiménez JA, Oviedo-Ojeda MF, Whalin M, Lee-Rangel HA, Relling AE. Ewe early gestation supplementation with eicosapentaenoic and docosahexaenoic acids affects the liver, muscle, and adipose tissue fatty acid profile and liver mRNA expression in the offspring. J Anim Sci 2023; 101:skad144. [PMID: 37158288 PMCID: PMC10263116 DOI: 10.1093/jas/skad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Our objectives were to assess the effects of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) supplementation to pregnant ewes during the first third of gestation on their offspring's liver, adipose, and muscle tissues fatty acid (FA) profile and liver mRNA expression after a finishing period receiving diets with different FA profiles. Twenty-four post-weaning lambs, blocked by sex and body weight, were used in a 2 × 2 factorial arrangement of treatments. The first factor was dam supplementation (DS) in the first third of gestation with 1.61% of Ca salts of palm fatty acid distillate (PFAD) or Ca salts enriched with EPA-DHA. Ewes were exposed to rams with marking paint harnesses during the breeding. Ewes started DS at the day of mating, considered day 1 of conception. Twenty-eight days after mating, ultrasonography was used to confirm pregnancy, and nonpregnant ewes were removed from the groups. After weaning, the offspring lambs were supplemented (LS, second main factor) with two different FA sources (1.48% of PFAD or 1.48% of EPA-DHA) during the growing and fattening phase. Lambs were fed the LS diet for 56 d and sent to slaughter, where the liver, muscle, and adipose tissue samples were collected for FA analysis. Liver samples were collected for relative mRNA expression for genes associated with FA transport and metabolism. The data were analyzed as a mixed model in SAS (9.4). In the liver, the amount of C20:5 and C22:6 (P < 0.01) increased in lambs with LS-EPA-DHA, while some C18:1 cis FA isomers were greater in the lambs from DS-PFAD. In muscle, amounts of C22:1, C20:5, and C22:5 increased (P < 0.05) in lambs born from DS-EPA-DHA. The adipose tissue amounts of C20:5, C22:5, and C22:6 were greater (P < 0.01) in lambs from LS-EPA-DHA. Interactions (DS × LS; P < 0.05) were observed for DNMT3β, FABP-1, FABP-5, SCD, and SREBP-1; having greater mRNA expression in liver tissue of LS-EPA-DHA, DS-PFAD and LS-PFAD, DS-EPA-DHA lambs compared with the lambs in the other two treatments. Liver ELOVL2 mRNA relative expression (P < 0.03) was greater in the offspring of DS-PFAD. Relative mRNA expression (P < 0.05) of GLUT1, IGF-1, LPL, and PPARγ increased in the liver from LS-EPA-DHA lambs. Dam supplementation during early gestation using with different FA sources changed the lipid FA profile in MT, LT, and SAT during the finishing period depending on the tissue and type of FA source administered during the growing phase.
Collapse
Affiliation(s)
- José A Roque-Jiménez
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Mario F Oviedo-Ojeda
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Megan Whalin
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| | - Héctor A Lee-Rangel
- Universidad Autónoma de San Luis Potosí, Facultad de Agronomía y Veterinaria, San Luis Potosí 78175, México
| | - Alejandro E Relling
- Department of Animal Sciences, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA
| |
Collapse
|
9
|
Sun X, Hou Y, Wang Y, Guo C, Wang Q, Zhang Y, Yang Z, Wang Z, Cao Z, Wang W, Li S. The Blood Immune Cell Count, Immunoglobulin, Inflammatory Factor, and Milk Trace Element in Transition Cows and Calves Were Altered by Increasing the Dietary n-3 or n-6 Polyunsaturated Fatty Acid Levels. Front Immunol 2022; 13:897660. [PMID: 35874736 PMCID: PMC9300944 DOI: 10.3389/fimmu.2022.897660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Transition dairy cows experience sudden changes in both metabolic and immune functions, which lead to many diseases in postpartum cows. Therefore, it is crucial to monitor and guarantee the nutritional and healthy status of transition cows. The objective of this study was to determine the effect of diet enriched in n-3 or n-6 polyunsaturated fatty acid (PUFA) on colostrum composition and blood immune index of multiparous Holstein cows and neonatal calves during the transition period. Forty-five multiparous Holstein dairy cows at 240 days of pregnancy were randomly assigned to receive 1 of 3 isoenergetic and isoprotein diets: 1) CON, hydrogenated fatty acid (control), 1% of hydrogenated fatty acid [diet dry matter (DM) basis] during prepartum and postpartum, respectively; 2) HN3, 3.5% of extruding flaxseed (diet DM basis, n-3 PUFA source); 3) HN6, 8% of extruding soybeans (diet DM basis, C18:2n-6 PUFA source). Diets containing n-3 and n-6 PUFA sources decreased colostrum immunoglobulin G (IgG) concentration but did not significantly change the colostrum IgG yield compared with those with CON. The commercial milk yield (from 14 to 28 days after calving) was higher in the HN3 and HN6 than that in the CON. Furthermore, the n-3 PUFA source increased neutrophil cell counts in blood during the prepartum period and increased neutrophil percentage during the postpartum period when compared with those with control treatment. Diets containing supplemental n-3 PUFA decreased the serum concentration of interleukin (IL)-1β in maternal cows compared with those in control and n-6 PUFA during prepartum and postpartum. In addition, the neonatal calf serum concentration of tumor necrosis factor (TNF) was decreased in HN3 compared with that in the HN6 treatment. The diet with the n-3 PUFA source could potentially increase the capacity of neutrophils to defend against pathogens in maternal cows by increasing the neutrophil numbers and percentage during the transition period. Meanwhile, the diet with n-3 PUFA source could decrease the pro-inflammatary cytokine IL-1β of maternal cows during the transition period and decline the content of pro-inflammatary cytokine TNF of neonatal calves. It suggested that the highest milk production in n-3 PUFA treatment may partially be due to these beneficial alterations.
Collapse
Affiliation(s)
- Xiaoge Sun
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuhuang Hou
- Laboratory for Animal Production and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Yue Wang
- Animal Production Systems group, Wageningen University & Research, Wageningen, Netherlands
| | - Cheng Guo
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Qianqian Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhantao Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhonghan Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Shengli Li, ; Wei Wang,
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Shengli Li, ; Wei Wang,
| |
Collapse
|
10
|
Buccioni A, Mannelli F, Daghio M, Rapaccini S, Scicutella F, Minieri S. Influence of milk quality and cheese-making procedure on functional fatty acid transfer in three Italian dairy products: Mozzarella, Raveggiolo and Ricotta. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Sats A, Yurchenko S, Kaart T, Tatar V, Lutter L, Jõudu I. Bovine colostrum: Postpartum changes in fat globule size distribution and fatty acid profile. J Dairy Sci 2022; 105:3846-3860. [DOI: 10.3168/jds.2021-20420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022]
|
12
|
Pereira G, Simões P, Bexiga R, Silva E, Mateus L, Fernandes T, Alves SP, Bessa RJB, Lopes-da-Costa L. Effects of feeding rumen-protected linseed fat to postpartum dairy cows on plasma n-3 polyunsaturated fatty acid concentrations and metabolic and reproductive parameters. J Dairy Sci 2021; 105:361-374. [PMID: 34635360 DOI: 10.3168/jds.2021-20674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/28/2021] [Indexed: 12/30/2022]
Abstract
High-yielding dairy cows experience a negative energy balance and inflammatory status during the transition period. Fat supplementation increases diet energy density, and plasma n-3 polyunsaturated fatty acids (PUFA) have been proposed to improve immune function. This study tested the hypothesis that dietary supplementation with a rumen-protected and n-3 PUFA-enriched fat could ameliorate both the energetic deficit and immune status of postpartum high-yielding dairy cows, improving overall health and reproductive efficiency. At 11 d in milk (DIM), cows were randomly allocated to groups (1) n-3 PUFA (n = 29), supplemented with encapsulated linseed oil supplying additional up to 64 g/d (mean 25 ± 4 g/d) of α-linolenic acid (ALA), or (2) control (n = 31), supplemented with hydrogenated palm oil without ALA content. Fat supplements of the n-3 PUFA and control groups were available through an automated, off-parlor feeding system, and intake depended on the cow's feeding behavior. Plasma ALA concentrations were higher in n-3 PUFA than control cows, following a linear relation with supplement ingestion, resulting in a lower n-6/n-3 ratio in plasma. Metabolic parameters (body condition score and glucose and β-hydroxybutyric acid blood concentrations) were unaffected, but milk yield improved with increased intake of fat supplements. Plasma total adiponectin concentrations were negatively correlated with ingestion of n-3 PUFA-enriched fat supplement, following a linear relation with intake. Conception rate to first AI increased with higher intake of both fats, but a decrease of calving-to-conception interval occurred only in n-3 PUFA cows. Postpartum ovarian activity and endometrial inflammatory status at 45 DIM were unaffected. In conclusion, this study evinced a positive linear relation between rumen-protected linseed fat intake and plasma n-3 PUFA concentrations, which modulated adiponectin expression and improved reproductive parameters.
Collapse
Affiliation(s)
- Gonçalo Pereira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Patrícia Simões
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Ricardo Bexiga
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Elisabete Silva
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Luisa Mateus
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Tatiane Fernandes
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Susana P Alves
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui J B Bessa
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Luis Lopes-da-Costa
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
| |
Collapse
|
13
|
Effects of a Maternal Essential Fatty Acid and Conjugated Linoleic Acid Supplementation during Late Pregnancy and Early Lactation on Hematologic and Immunological Traits and the Oxidative and Anti-Oxidative Status in Blood Plasma of Neonatal Calves. Animals (Basel) 2021; 11:ani11082168. [PMID: 34438626 PMCID: PMC8388434 DOI: 10.3390/ani11082168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/15/2023] Open
Abstract
Fatty acids are known for their regulatory role in inflammation and oxidative stress. The present study investigated 38 calves born from dams, abomasally supplemented with coconut oil, essential fatty acids (EFA), conjugated linoleic acid (CLA) or EFA + CLA, according to immunological traits and the oxidative and anti-oxidative status for the first 5 days of life. On day 2 of life, plasma total bilirubin, cholesterol, interleukin 1-β and ferric ion reducing anti-oxygen power (FRAP) were lower in calves with than without maternal EFA supplementation, and FRAP additionally on day 4. On day 3, the concentrations of reactive oxygen metabolites were higher in calves with than without maternal EFA supplementation and additionally on day 5 together of retinol. Total leucocyte counts were decreased in the EFA group compared to the CLA group on day 5. Lymphocyte proportions decreased from day 1 to 5 only in the EFA + CLA group. On day 2, plasma total protein was higher in CLA and EFA + CLA than in EFA calves. Similarly, CLA calves had higher interleukin 1-β concentrations compared to EFA + CLA calves. FRAP was decreased by CLA on day 4. Overall, the maternal fatty acid supply affected the inflammatory response and the oxidative and anti-oxidative status of the neonatal offspring.
Collapse
|