1
|
Becker GM, Thorne JW, Burke JM, Lewis RM, Notter DR, Morgan JLM, Schauer CS, Stewart WC, Redden RR, Murdoch BM. Genetic diversity of United States Rambouillet, Katahdin and Dorper sheep. Genet Sel Evol 2024; 56:56. [PMID: 39080565 PMCID: PMC11290166 DOI: 10.1186/s12711-024-00905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Managing genetic diversity is critically important for maintaining species fitness. Excessive homozygosity caused by the loss of genetic diversity can have detrimental effects on the reproduction and production performance of a breed. Analysis of genetic diversity can facilitate the identification of signatures of selection which may contribute to the specific characteristics regarding the health, production and physical appearance of a breed or population. In this study, breeds with well-characterized traits such as fine wool production (Rambouillet, N = 745), parasite resistance (Katahdin, N = 581) and environmental hardiness (Dorper, N = 265) were evaluated for inbreeding, effective population size (Ne), runs of homozygosity (ROH) and Wright's fixation index (FST) outlier approach to identify differential signatures of selection at 36,113 autosomal single nucleotide polymorphisms (SNPs). RESULTS Katahdin sheep had the largest current Ne at the most recent generation estimated with both the GONe and NeEstimator software. The most highly conserved ROH Island was identified in Rambouillet with a signature of selection on chromosome 6 containing 202 SNPs called in an ROH in 50 to 94% of the individuals. This region contained the DCAF16, LCORL and NCAPG genes that have been previously reported to be under selection and have biological roles related to milk production and growth traits. The outlier regions identified through the FST comparisons of Katahdin with Rambouillet and Dorper contained genes with known roles in milk production and mastitis resistance or susceptibility, and the FST comparisons of Rambouillet with Katahdin and Dorper identified genes related to wool growth, suggesting these traits have been under natural or artificial selection pressure in these populations. Genes involved in the cytokine-cytokine receptor interaction pathways were identified in all FST breed comparisons, which indicates the presence of allelic diversity between these breeds in genomic regions controlling cytokine signaling mechanisms. CONCLUSIONS In this paper, we describe signatures of selection within diverse and economically important U.S. sheep breeds. The genes contained within these signatures are proposed for further study to understand their relevance to biological traits and improve understanding of breed diversity.
Collapse
Affiliation(s)
- Gabrielle M Becker
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
| | - Jacob W Thorne
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA
- Texas A&M AgriLife Extension, Texas A&M University, San Angelo, TX, USA
| | - Joan M Burke
- USDA, ARS, Dale Bumpers Small Farms Research Center, Booneville, AR, USA
| | - Ronald M Lewis
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - David R Notter
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Christopher S Schauer
- Hettinger Research Extension Center, North Dakota State University, Hettinger, ND, USA
| | - Whit C Stewart
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - R R Redden
- Texas A&M AgriLife Extension, Texas A&M University, San Angelo, TX, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Science, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
2
|
Boschiero C, Neupane M, Yang L, Schroeder SG, Tuo W, Ma L, Baldwin RL, Van Tassell CP, Liu GE. A Pilot Detection and Associate Study of Gene Presence-Absence Variation in Holstein Cattle. Animals (Basel) 2024; 14:1921. [PMID: 38998033 PMCID: PMC11240624 DOI: 10.3390/ani14131921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Presence-absence variations (PAVs) are important structural variations, wherein a genomic segment containing one or more genes is present in some individuals but absent in others. While PAVs have been extensively studied in plants, research in cattle remains limited. This study identified PAVs in 173 Holstein bulls using whole-genome sequencing data and assessed their associations with 46 economically important traits. Out of 28,772 cattle genes (from the longest transcripts), a total of 26,979 (93.77%) core genes were identified (present in all individuals), while variable genes included 928 softcore (present in 95-99% of individuals), 494 shell (present in 5-94%), and 371 cloud genes (present in <5%). Cloud genes were enriched in functions associated with hormonal and antimicrobial activities, while shell genes were enriched in immune functions. PAV-based genome-wide association studies identified associations between gene PAVs and 16 traits including milk, fat, and protein yields, as well as traits related to health and reproduction. Associations were found on multiple chromosomes, illustrating important associations on cattle chromosomes 7 and 15, involving olfactory receptor and immune-related genes, respectively. By examining the PAVs at the population level, the results of this research provided crucial insights into the genetic structures underlying the complex traits of Holstein cattle.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Mahesh Neupane
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Liu Yang
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Steven G Schroeder
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Curtis P Van Tassell
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
3
|
Khazaei-Koohpar H, Gholizadeh M, Hafezian SH, Esmaeili-Fard SM. Weighted single-step genome-wide association study for direct and maternal genetic effects associated with birth and weaning weights in sheep. Sci Rep 2024; 14:13120. [PMID: 38849438 PMCID: PMC11161479 DOI: 10.1038/s41598-024-63974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Body weight is an important economic trait for sheep meat production, and its genetic improvement is considered one of the main goals in the sheep breeding program. Identifying genomic regions that are associated with growth-related traits accelerates the process of animal breeding through marker-assisted selection, which leads to increased response to selection. In this study, we conducted a weighted single-step genome-wide association study (WssGWAS) to identify potential candidate genes for direct and maternal genetic effects associated with birth weight (BW) and weaning weight (WW) in Baluchi sheep. The data used in this research included 13,408 birth and 13,170 weaning records collected at Abbas-Abad Baluchi Sheep Breeding Station, Mashhad-Iran. Genotypic data of 94 lambs genotyped by Illumina 50K SNP BeadChip for 54,241 markers were used. The proportion of variance explained by genomic windows was calculated by summing the variance of SNPs within 1 megabase (Mb). The top 10 window genomic regions explaining the highest percentages of additive and maternal genetic variances were selected as candidate window genomic regions associated with body weights. Our findings showed that for BW, the top-ranked genomic regions (1 Mb windows) explained 4.30 and 4.92% of the direct additive and maternal genetic variances, respectively. The direct additive genetic variance explained by the genomic window regions varied from 0.31 on chromosome 1 to 0.59 on chromosome 8. The highest (0.84%) and lowest (0.32%) maternal genetic variances were explained by genomic windows on chromosome 10 and 17, respectively. For WW, the top 10 genomic regions explained 6.38 and 5.76% of the direct additive and maternal genetic variances, respectively. The highest and lowest contribution of direct additive genetic variances were 1.37% and 0.42%, respectively, both explained by genomic regions on chromosome 2. For maternal effects on WW, the highest (1.38%) and lowest (0.41%) genetic variances were explained by genomic windows on chromosome 2. Further investigation of these regions identified several possible candidate genes associated with body weight. Gene ontology analysis using the DAVID database identified several functional terms, such as translation repressor activity, nucleic acid binding, dehydroascorbic acid transporter activity, growth factor activity and SH2 domain binding.
Collapse
Affiliation(s)
- Hava Khazaei-Koohpar
- Department of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Mohsen Gholizadeh
- Department of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.
| | - Seyed Hasan Hafezian
- Department of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | | |
Collapse
|
4
|
Qadri QR, Lai X, Zhao W, Zhang Z, Zhao Q, Ma P, Pan Y, Wang Q. Exploring the Interplay between the Hologenome and Complex Traits in Bovine and Porcine Animals Using Genome-Wide Association Analysis. Int J Mol Sci 2024; 25:6234. [PMID: 38892420 PMCID: PMC11172659 DOI: 10.3390/ijms25116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Genome-wide association studies (GWAS) significantly enhance our ability to identify trait-associated genomic variants by considering the host genome. Moreover, the hologenome refers to the host organism's collective genetic material and its associated microbiome. In this study, we utilized the hologenome framework, called Hologenome-wide association studies (HWAS), to dissect the architecture of complex traits, including milk yield, methane emissions, rumen physiology in cattle, and gut microbial composition in pigs. We employed four statistical models: (1) GWAS, (2) Microbial GWAS (M-GWAS), (3) HWAS-CG (hologenome interaction estimated using COvariance between Random Effects Genome-based restricted maximum likelihood (CORE-GREML)), and (4) HWAS-H (hologenome interaction estimated using the Hadamard product method). We applied Bonferroni correction to interpret the significant associations in the complex traits. The GWAS and M-GWAS detected one and sixteen significant SNPs for milk yield traits, respectively, whereas the HWAS-CG and HWAS-H each identified eight SNPs. Moreover, HWAS-CG revealed four, and the remaining models identified three SNPs each for methane emissions traits. The GWAS and HWAS-CG detected one and three SNPs for rumen physiology traits, respectively. For the pigs' gut microbial composition traits, the GWAS, M-GWAS, HWAS-CG, and HWAS-H identified 14, 16, 13, and 12 SNPs, respectively. We further explored these associations through SNP annotation and by analyzing biological processes and functional pathways. Additionally, we integrated our GWA results with expression quantitative trait locus (eQTL) data using transcriptome-wide association studies (TWAS) and summary-based Mendelian randomization (SMR) methods for a more comprehensive understanding of SNP-trait associations. Our study revealed hologenomic variability in agriculturally important traits, enhancing our understanding of host-microbiome interactions.
Collapse
Affiliation(s)
- Qamar Raza Qadri
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.R.Q.); (P.M.)
| | - Xueshuang Lai
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310030, China; (X.L.); (W.Z.); (Z.Z.); (Y.P.)
| | - Wei Zhao
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310030, China; (X.L.); (W.Z.); (Z.Z.); (Y.P.)
| | - Zhenyang Zhang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310030, China; (X.L.); (W.Z.); (Z.Z.); (Y.P.)
| | - Qingbo Zhao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Peipei Ma
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Q.R.Q.); (P.M.)
| | - Yuchun Pan
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310030, China; (X.L.); (W.Z.); (Z.Z.); (Y.P.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Qishan Wang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou 310030, China; (X.L.); (W.Z.); (Z.Z.); (Y.P.)
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| |
Collapse
|
5
|
Hosseinzadeh S, Rafat SA, Javanmard A, Fang L. Identification of candidate genes associated with milk production and mastitis based on transcriptome-wide association study. Anim Genet 2024; 55:430-439. [PMID: 38594914 DOI: 10.1111/age.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/10/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Genetic research for the assessment of mastitis and milk production traits simultaneously has a long history. The main issue that arises in this context is the known existence of a positive correlation between the risk of mastitis and lactation performance due to selection. The transcriptome-wide association study (TWAS) approach endeavors to combine the expression quantitative trait loci and genome-wide association study summary statistics to decode complex traits or diseases. Accordingly, we used the farmgtex project results as a complete bovine database for mastitis and milk production. The results of colocalization and TWAS approaches were used for the detection of functional associated candidate genes with milk production and mastitis traits on multiple tissue-based transcriptome records. Also, we used the david database for gene ontology to identify significant terms and associated genes. For the identification of interaction networks, the genemania and string databases were used. Also, the available z-scores in TWAS results were used for the calculation of the correlation between tissues. Therefore, the present results confirm that LYNX1, DGAT1, C14H8orf33, and LY6E were identified as significant genes associated with milk production in eight, six, five, and five tissues, respectively. Also, FBXL6 was detected as a significant gene associated with mastitis trait. CLN3 and ZNF34 genes emerged via both the colocalization and TWAS approaches as significant genes for milk production trait. It is expected that TWAS and colocalization can improve our perception of the potential health status control mechanism in high-yielding dairy cows.
Collapse
Affiliation(s)
- Sevda Hosseinzadeh
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Seyed Abbas Rafat
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Arash Javanmard
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Haque MA, Lee YM, Ha JJ, Jin S, Park B, Kim NY, Won JI, Kim JJ. Genome-wide association study identifies genomic regions associated with key reproductive traits in Korean Hanwoo cows. BMC Genomics 2024; 25:496. [PMID: 38778305 PMCID: PMC11112828 DOI: 10.1186/s12864-024-10401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Conducting genome-wide association studies (GWAS) for reproductive traits in Hanwoo cattle, including age at first calving (AFC), calving interval (CI), gestation length (GL), and number of artificial inseminations per conception (NAIPC), is of paramount significance. These analyses provided a thorough exploration of the genetic basis of these traits, facilitating the identification of key markers for targeted trait improvement. Breeders can optimize their selection strategies, leading to more efficient and sustainable breeding programs, by incorporating genetic insights. This impact extends beyond individual traits and contributes to the overall productivity and profitability of the Hanwoo beef cattle industry. Ultimately, GWAS is essential in ensuring the long-term genetic resilience and adaptability of Hanwoo cattle populations. The primary goal of this study was to identify significant single nucleotide polymorphisms (SNPs) or quantitative trait loci (QTLs) associated with the studied reproductive traits and subsequently map the underlying genes that hold promise for trait improvement. RESULTS A genome-wide association study of reproductive traits identified 68 significant single nucleotide polymorphisms (SNPs) distributed across 29 Bos taurus autosomes (BTA). Among them, BTA14 exhibited the highest number of identified SNPs (25), whereas BTA6, BTA7, BTA8, BTA10, BTA13, BTA17, and BTA20 exhibited 8, 5, 5, 3, 8, 2, and 12 significant SNPs, respectively. Annotation of candidate genes within a 500 kb region surrounding the significant SNPs led to the identification of ten candidate genes relevant to age at first calving. These genes were: FANCG, UNC13B, TESK1, TLN1, and CREB3 on BTA8; FAM110B, UBXN2B, SDCBP, and TOX on BTA14; and MAP3K1 on BTA20. Additionally, APBA3, TCF12, and ZFR2, located on BTA7 and BTA10, were associated with the calving interval; PAX1, SGCD, and HAND1, located on BTA7 and BTA13, were linked to gestation length; and RBM47, UBE2K, and GPX8, located on BTA6 and BTA20, were linked to the number of artificial inseminations per conception in Hanwoo cows. CONCLUSIONS The findings of this study enhance our knowledge of the genetic factors that influence reproductive traits in Hanwoo cattle populations and provide a foundation for future breeding strategies focused on improving desirable traits in beef cattle. This research offers new evidence and insights into the genetic variants and genome regions associated with reproductive traits and contributes valuable information to guide future efforts in cattle breeding.
Collapse
Affiliation(s)
- Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea
| | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea
| | - Jae-Jung Ha
- Gyeongbuk Livestock Research Institute, Yeongju, 36052, Korea
| | - Shil Jin
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Byoungho Park
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Nam-Young Kim
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea
| | - Jeong-Il Won
- Hanwoo Research Institute, National Institute of Animal Science, Pyeongchang, 25340, Korea.
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea.
| |
Collapse
|
7
|
Zhang C, Asadollahpour Nanaei H, Jafarpour Negari N, Amiri Roudbar M, Amiri Ghanatsaman Z, Niyazbekova Z, Yang X. Genomic analysis uncovers novel candidate genes related to adaptation to tropical climates and milk production traits in native goats. BMC Genomics 2024; 25:477. [PMID: 38745140 PMCID: PMC11094986 DOI: 10.1186/s12864-024-10387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Since domestication, both evolutionary forces and human selection have played crucial roles in producing adaptive and economic traits, resulting in animal breeds that have been selected for specific climates and different breeding goals. Pakistani goat breeds have acquired genomic adaptations to their native climate conditions, such as tropical and hot climates. In this study, using next-generation sequencing data, we aimed to assess the signatures of positive selection in three native Pakistani goats, known as milk production breeds, that have been well adapted to their local climate. RESULTS To explore the genomic relationship between studied goat populations and their population structure, whole genome sequence data from native goat populations in Pakistan (n = 26) was merged with available worldwide goat genomic data (n = 184), resulting in a total dataset of 210 individuals. The results showed a high genetic correlation between Pakistani goats and samples from North-East Asia. Across all populations analyzed, a higher linkage disequilibrium (LD) level (- 0.59) was found in the Pakistani goat group at a genomic distance of 1 Kb. Our findings from admixture analysis (K = 5 and K = 6) showed no evidence of shared genomic ancestry between Pakistani goats and other goat populations from Asia. The results from genomic selection analysis revealed several candidate genes related to adaptation to tropical/hot climates (such as; KITLG, HSPB9, HSP70, HSPA12B, and HSPA12B) and milk production related-traits (such as IGFBP3, LPL, LEPR, TSHR, and ACACA) in Pakistani native goat breeds. CONCLUSIONS The results from this study shed light on the structural variation in the DNA of the three native Pakistani goat breeds. Several candidate genes were discovered for adaptation to tropical/hot climates, immune responses, and milk production traits. The identified genes could be exploited in goat breeding programs to select efficient breeds for tropical/hot climate regions.
Collapse
Affiliation(s)
- Chenxi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hojjat Asadollahpour Nanaei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran.
| | | | - Mahmoud Amiri Roudbar
- Department of Animal Science, Safiabad-Dezful Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful 333, Iran
| | - Zeinab Amiri Ghanatsaman
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Zhannur Niyazbekova
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Laodim T, Koonawootrittriron S, Elzo MA, Suwanasopee T, Jattawa D, Sarakul M. Genetic factors influencing milk and fat yields in tropically adapted dairy cattle: insights from quantitative trait loci analysis and gene associations. Anim Biosci 2024; 37:576-590. [PMID: 37946425 PMCID: PMC10915225 DOI: 10.5713/ab.23.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE The objective of this study was to identify genes associated with 305-day milk yield (MY) and fat yield (FY) that also influence the adaptability of the Thai multibreed dairy cattle population to tropical conditions. METHODS A total of 75,776 imputed and actual single nucleotide polymorphisms (SNPs) from 2,661 animals were used to identify genomic regions associated with MY and FY using the single-step genomic best linear unbiased predictions. Fixed effects included herd-yearseason, breed regression, heterosis regression and calving age regression effects. Random effects were animal additive genetic and residual. Individual SNPs with a p-value smaller than 0.05 were selected for gene mapping, function analysis, and quantitative trait loci (QTL) annotation analysis. RESULTS A substantial number of QTLs associated with MY (9,334) and FY (8,977) were identified by integrating SNP genotypes and QTL annotations. Notably, we discovered 17 annotated QTLs within the health and exterior QTL classes, corresponding to nine unique genes. Among these genes, Rho GTPase activating protein 15 (ARHGAP15) and catenin alpha 2 (CTNNA2) have previously been linked to physiological traits associated with tropical adaptation in various cattle breeds. Interestingly, these two genes also showed signs of positive selection, indicating their potential role in conferring tolerance to trypanosomiasis, a prevalent tropical disease. CONCLUSION Our findings provide valuable insights into the genetic basis of MY and FY in the Thai multibreed dairy cattle population, shedding light on the underlying mechanisms of tropical adaptation. The identified genes represent promising targets for future breeding strategies aimed at improving milk and fat production while ensuring resilience to tropical challenges. This study significantly contributes to our understanding of the genetic factors influencing milk production and adaptability in dairy cattle, facilitating the development of sustainable genetic selection strategies and breeding programs in tropical environments.
Collapse
Affiliation(s)
- Thawee Laodim
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140,
Thailand
- Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University, Bangkok, 10900,
Thailand
| | - Skorn Koonawootrittriron
- Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University, Bangkok, 10900,
Thailand
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, 10900,
Thailand
| | - Mauricio A. Elzo
- Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University, Bangkok, 10900,
Thailand
- Department of Animal Sciences, University of Florida, Gainesville, 32611-0910, FL,
USA
| | - Thanathip Suwanasopee
- Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University, Bangkok, 10900,
Thailand
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, 10900,
Thailand
| | - Danai Jattawa
- Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University, Bangkok, 10900,
Thailand
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, Bangkok, 10900,
Thailand
| | - Mattaneeya Sarakul
- Tropical Animal Genetic Special Research Unit (TAGU), Kasetsart University, Bangkok, 10900,
Thailand
- Department of Animal Science, Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom, 48000,
Thailand
| |
Collapse
|
9
|
Selionova M, Trukhachev V, Aibazov M, Sermyagin A, Belous A, Gladkikh M, Zinovieva N. Genome-Wide Association Study of Milk Composition in Karachai Goats. Animals (Basel) 2024; 14:327. [PMID: 38275787 PMCID: PMC10812594 DOI: 10.3390/ani14020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
This study is first to perform a genome-wide association study (GWAS) to investigate the milk quality traits in Karachai goats. The objective of the study was to identify candidate genes associated with milk composition traits based on the identification and subsequent analysis of all possible SNPs, both genome-wide (high-confidence) and suggestive (subthreshold significance). To estimate the milk components, 22 traits were determined, including several types of fatty acids. DNA was extracted from ear tissue or blood samples. A total of 167 Karachai goats were genotyped using an Illumina GoatSNP53K BeadChip panel (Illumina Inc., San Diego, CA, USA). Overall, we identified 167 highly significant and subthreshold SNPs associated with the milk components of Karachai goats. A total of 10 SNPs were located within protein-coding genes and 33 SNPs in close proximity to them (±0.2 Mb). The largest number of genome-wide significant SNPs was found on chromosomes 2 and 8 and some of them were associated with several traits. The greatest number of genome-wide significant SNPs was identified for crude protein and lactose (6), and the smallest number-only 1 SNP-for freezing point depression. No SNPs were identified for monounsaturated and polyunsaturated fatty acids. Functional annotation of all 43 SNPs allowed us to identify 66 significant candidate genes on chromosomes 1, 2, 3, 4, 5, 8, 10, 13, 16, 18, 21, 23, 25, 26, and 27. We considered these genes potential DNA markers of the fatty acid composition of Karachai goat milk. Also, we found 12 genes that had a polygenic effect: most of them were simultaneously associated with the dry matter content and fatty acids (METTL, SLC1A 8, PHACTR1, FMO2, ECI1, PGP, ABCA3, AMDHD2). Our results suggest that the genes identified in our study affecting the milk components in Karachai goats differed from those identified in other breeds of dairy goats.
Collapse
Affiliation(s)
- Marina Selionova
- Subdepartment of Animal Breeding, Genetics and Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 41, 127434 Moscow, Russia (M.G.)
| | - Vladimir Trukhachev
- Subdepartment of Animal Breeding, Genetics and Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 41, 127434 Moscow, Russia (M.G.)
| | - Magomet Aibazov
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Podolsk, Moscow Region, Russia; (M.A.); (A.S.); (A.B.); (N.Z.)
| | - Alexander Sermyagin
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Podolsk, Moscow Region, Russia; (M.A.); (A.S.); (A.B.); (N.Z.)
| | - Anna Belous
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Podolsk, Moscow Region, Russia; (M.A.); (A.S.); (A.B.); (N.Z.)
| | - Marianna Gladkikh
- Subdepartment of Animal Breeding, Genetics and Biotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 41, 127434 Moscow, Russia (M.G.)
| | - Natalia Zinovieva
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, 142132 Podolsk, Moscow Region, Russia; (M.A.); (A.S.); (A.B.); (N.Z.)
| |
Collapse
|
10
|
Velayudhan SM, Alam S, Yin T, Brügemann K, Buerkert A, Sejian V, Bhatta R, Schlecht E, König S. Selective Sweeps in Cattle Genomes in Response to the Influence of Urbanization and Environmental Contamination. Genes (Basel) 2023; 14:2083. [PMID: 38003026 PMCID: PMC10671461 DOI: 10.3390/genes14112083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
A genomic study was conducted to identify the effects of urbanization and environmental contaminants with heavy metals on selection footprints in dairy cattle populations reared in the megacity of Bengaluru, South India. Dairy cattle reared along the rural-urban interface of Bengaluru with/without access to roughage from public lakeshores were selected. The genotyped animals were subjected to the cross-population-extended haplotype homozygosity (XP-EHH) methodology to infer selection sweeps caused by urbanization (rural, mixed, and urban) and environmental contamination with cadmium and lead. We postulated that social-ecological challenges contribute to mechanisms of natural selection. A number of selection sweeps were identified when comparing the genomes of cattle located in rural, mixed, or urban regions. The largest effects were identified on BTA21, displaying pronounced peaks for selection sweeps for all three urbanization levels (urban_vs_rural, urban_vs_mixed and rural_vs_mixed). Selection sweeps are located in chromosomal segments in close proximity to the genes lrand rab interactor 3 (RIN3), solute carrier family 24 member 4 (SLC24A4), tetraspanin 3 (TSPAN3), and proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1). Functional enrichment analyses of the selection sweeps for all three comparisons revealed a number of gene ontology (GO) and KEGG terms, which were associated with reproduction, metabolism, and cell signaling-related functional mechanisms. Likewise, a number of the chromosomal segments under selection were observed when creating cattle groups according to cadmium and lead contaminations. Stronger and more intense positive selection sweeps were observed for the cadmium contaminated group, i.e., signals of selection on BTA 16 and BTA19 in close proximity to genes regulating the somatotropic axis (growth factor receptor bound protein 2 (GRB2) and cell ion exchange (chloride voltage-gated channel 6 (CLCN6)). A few novel, so far uncharacterized genes, mostly with effects on immune physiology, were identified. The lead contaminated group revealed sweeps which were annotated with genes involved in carcass traits (TNNC2, SLC12A5, and GABRA4), milk yield (HTR1D, SLCO3A1, TEK, and OPCML), reproduction (GABRA4), hypoxia/stress response (OPRD1 and KDR), cell adhesion (PCDHGC3), inflammatory response (ADORA2A), and immune defense mechanism (ALCAM). Thus, the findings from this study provide a deeper insight into the genomic regions under selection under the effects of urbanization and environmental contamination.
Collapse
Affiliation(s)
| | - Shahin Alam
- Animal Husbandry in the Tropics and Subtropics, University of Kassel and Georg-August-Universität Göttingen, Steinstr. 19, 37213 Witzenhausen, Germany
| | - Tong Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Ludwigstraße 21 b, 35390 Giessen, Germany
| | - Kerstin Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Ludwigstraße 21 b, 35390 Giessen, Germany
| | - Andreas Buerkert
- Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics, University of Kassel, 37213 Witzenhausen, Germany
| | - Veerasamy Sejian
- National Institute of Animal Nutrition and Physiology (NIANP), Hosur Rd, Chennakeshava Nagar, Adugodi, Bengaluru 560030, India
| | - Raghavendra Bhatta
- National Institute of Animal Nutrition and Physiology (NIANP), Hosur Rd, Chennakeshava Nagar, Adugodi, Bengaluru 560030, India
| | - Eva Schlecht
- Animal Husbandry in the Tropics and Subtropics, University of Kassel and Georg-August-Universität Göttingen, Steinstr. 19, 37213 Witzenhausen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, Ludwigstraße 21 b, 35390 Giessen, Germany
| |
Collapse
|
11
|
Saif R, Mahmood T, Zia S, Henkel J, Ejaz A. Genomic selection pressure discovery using site-frequency spectrum and reduced local variability statistics in Pakistani Dera-Din-Panah goat. Trop Anim Health Prod 2023; 55:331. [PMID: 37750990 DOI: 10.1007/s11250-023-03758-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Population geneticists have long sought to comprehend various selection traces accumulated in the goat genome due to natural or human driven artificial selection through breeding practices, which led the wild animals to domestication, so understanding evolutionary process may helpful to utilize the full genetic potential of goat genome. METHODS AND RESULTS As a step forward to pinpoint the selection signals in Pakistani Dera-Din-Panah (DDP) goat, whole-genome pooled sequencing (n = 12) was performed, and 618,236,192 clean paired-end reads were mapped against ARS1 reference goat assembly. Five different selection signature statistics were applied using four site-frequency spectrum (SFS) methods (Tajima's D ([Formula: see text]), Fay and Wu's H ([Formula: see text]), Zeng's E ([Formula: see text]), [Formula: see text]) and one reduced local variability approach named pooled heterozygosity ([Formula: see text]). The under-selection regions were annotated with significant threshold values of [Formula: see text]≥4.7, [Formula: see text]≥6, [Formula: see text]≥2.5, Pool-HMM ≥ 12, and [Formula: see text]≥5 that resulted in accumulative 364 candidate gene hits. The highest genomic selection signals were observed on Chr. 4, 6, 10, 12, 15, 16, 18, 20, and 27 and harbor ADAMTS6, CWC27, RELN, MYCBP2, FGF14, STIM1, CFAP74, GNB1, CALML6, TMEM52, FAM149A, NADK, MMP23B, OPN3, FH, MFHAS1, KLKB1, RRM1, KMO, SPEF2, F11, KIT, KMO, ERI1, ATP8B4, and RHOG genes. Next, the validation of our captured genomic hits was also performed by more than one applied statistics which harbor meat production, immunity, and reproduction associated genes to strengthen our hypothesis of under-selection traits in this Pakistani goat breed. Furthermore, common candidate genes captured by more than one statistical method were subjected to gene ontology and KEGG pathway analysis to get insights of particular biological processes associated with this goat breed. CONCLUSION Current perception of genomic architecture of DDP goat provides a better understanding to improve its genetic potential and other economically important traits of medium to large body size, milk, and fiber production by updating the genomic insight driven breeding strategies to boost the livestock and agriculture-based economy of the country.
Collapse
Affiliation(s)
- Rashid Saif
- Department of Biotechnology, Qarshi University, Lahore, Pakistan.
- Decode Genomics, Punjab University Employees Housing Scheme, Lahore, Pakistan.
| | - Tania Mahmood
- Decode Genomics, Punjab University Employees Housing Scheme, Lahore, Pakistan
| | - Saeeda Zia
- Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Lahore, Pakistan
| | - Jan Henkel
- MGZ-Medical Genetics Center, Munich, Germany
| | - Aniqa Ejaz
- Decode Genomics, Punjab University Employees Housing Scheme, Lahore, Pakistan
| |
Collapse
|
12
|
Baba T, Morota G, Kawakami J, Gotoh Y, Oka T, Masuda Y, Brito LF, Cockrum RR, Kawahara T. Longitudinal genome-wide association analysis using a single-step random regression model for height in Japanese Holstein cattle. JDS COMMUNICATIONS 2023; 4:363-368. [PMID: 37727246 PMCID: PMC10505781 DOI: 10.3168/jdsc.2022-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/22/2023] [Indexed: 09/21/2023]
Abstract
Growth traits, such as body weight and height, are essential in the design of genetic improvement programs of dairy cattle due to their relationship with feeding efficiency, longevity, and health. We investigated genomic regions influencing height across growth stages in Japanese Holstein cattle using a single-step random regression model. We used 72,921 records from birth to 60 mo of age with 4,111 animals born between 2000 and 2016. The analysis included 1,410 genotyped animals with 35,319 single nucleotide polymorphisms, consisting of 883 females with records and 527 bulls, and 30,745 animals with pedigree information. A single genomic region at the 58.4 megabase pair on chromosome 18 was consistently identified across 6 age points of 10, 20, 30, 40, 50, and 60 mo after multiple testing corrections for the significance threshold. Twelve candidate genes, previously reported for longevity and gestation length, were found near the identified genomic region. Another location near the identified region was also previously associated with body conformation, fertility, and calving difficulty. Functional Gene Ontology enrichment analysis suggested that the candidate genes regulate dephosphorylation and phosphatase activity. Our findings show that further study of the identified candidate genes will contribute to a better understanding of the genetic basis of height in Japanese Holstein cattle.
Collapse
Affiliation(s)
- Toshimi Baba
- Holstein Cattle Association of Japan, Hokkaido Branch, Sapporo, Hokkaido, Japan 001-8555
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Gota Morota
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Junpei Kawakami
- Holstein Cattle Association of Japan, Hokkaido Branch, Sapporo, Hokkaido, Japan 001-8555
| | - Yusaku Gotoh
- Holstein Cattle Association of Japan, Hokkaido Branch, Sapporo, Hokkaido, Japan 001-8555
| | - Taro Oka
- Holstein Cattle Association of Japan, Tokyo, Japan 164-0012
| | - Yutaka Masuda
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan 069-8501
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Rebbeca R. Cockrum
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Takayoshi Kawahara
- Holstein Cattle Association of Japan, Hokkaido Branch, Sapporo, Hokkaido, Japan 001-8555
| |
Collapse
|
13
|
Su M, Lin X, Xiao Z, She Y, Deng M, Liu G, Sun B, Guo Y, Liu D, Li Y. Genome-Wide Association Study of Lactation Traits in Chinese Holstein Cows in Southern China. Animals (Basel) 2023; 13:2545. [PMID: 37570353 PMCID: PMC10417049 DOI: 10.3390/ani13152545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023] Open
Abstract
Lactation traits are economically important for dairy cows. Southern China has a high-temperature and high-humidity climate, and environmental and genetic interactions greatly impact dairy cattle performance. The aim of this study was to identify novel single-nucleotide polymorphism sites and novel candidate genes associated with lactation traits in Chinese Holstein cows under high-temperature and humidity conditions in southern China. A genome-wide association study was performed for the lactation traits of 392 Chinese Holstein cows, using GGP Bovine 100 K SNP gene chips. Some 23 single nucleotide polymorphic loci significantly associated with lactation traits were screened. Among them, 16 were associated with milk fat rate, 7 with milk protein rate, and 3 with heat stress. A quantitative trait locus that significantly affects milk fat percentage in Chinese Holstein cows was identified within a window of approximately 0.5 Mb in the region of 0.4-0.9 Mb on Bos taurus autosome 14. According to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, ten genes (DGAT1, IDH2, CYP11B1, GFUS, CYC1, GPT, PYCR3, OPLAH, ALDH1A3, and NAPRT) associated with lactation fat percentage, milk yield, antioxidant activity, stress resistance, and inflammation and immune response were identified as key candidates for lactation traits. The results of this study will help in the development of an effective selection and breeding program for Chinese Holstein cows in high-temperature and humidity regions.
Collapse
Affiliation(s)
- Minqiang Su
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Xiaojue Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Zupeng Xiao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Yuanhang She
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
14
|
Bekele R, Taye M, Abebe G, Meseret S. Genomic Regions and Candidate Genes Associated with Milk Production Traits in Holstein and Its Crossbred Cattle: A Review. Int J Genomics 2023; 2023:8497453. [PMID: 37547753 PMCID: PMC10400298 DOI: 10.1155/2023/8497453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/09/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
Genome-wide association studies (GWAS) are a powerful tool for identifying genomic regions and causative genes associated with economically important traits in dairy cattle, particularly complex traits, such as milk production. This is possible due to advances in next-generation sequencing technology. This review summarized information on identified candidate genes and genomic regions associated with milk production traits in Holstein and its crossbreds from various regions of the world. Milk production traits are important in dairy cattle breeding programs because of their direct economic impact on the industry and their close relationship with nutritional requirements. GWAS has been used in a large number of studies to identify genomic regions and candidate genes associated with milk production traits in dairy cattle. Many genomic regions and candidate genes have already been identified in Holstein and its crossbreds. Genes and single nucleotide polymorphisms (SNPs) that significantly affect milk yield (MY) were found in all autosomal chromosomes except chromosomes 27 and 29. Half of the reported SNPs associated with fat yield and fat percentage were found on chromosome 14. However, a large number of significant SNPs for protein yield (PY) and protein percentage were found on chromosomes 1, 5, and 20. Approximately 155 SNPs with significant influence on multiple milk production traits have been identified. Several promising candidate genes, including diacylglycerol O-acyltransferase 1, plectin, Rho GTPase activating protein 39, protein phosphatase 1 regulatory subunit 16A, and sphingomyelin phosphodiesterase 5 were found to have pleiotropic effects on all five milk production traits. Thus, to improve milk production traits it is of practical relevance to focus on significant SNPs and pleiotropic genes frequently found to affect multiple milk production traits.
Collapse
Affiliation(s)
- R. Bekele
- School of Animal and Range Sciences, College of Agriculture, Hawassa University, P.O. Box 5, Hawassa, Ethiopia
- Department of Animal Science, College of Agriculture and Natural Resource Sciences, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia
| | - M. Taye
- School of Animal and Range Sciences, College of Agriculture, Hawassa University, P.O. Box 5, Hawassa, Ethiopia
| | - G. Abebe
- School of Animal and Range Sciences, College of Agriculture, Hawassa University, P.O. Box 5, Hawassa, Ethiopia
| | - S. Meseret
- Livestock Genetics, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Amiri Ghanatsaman Z, Ayatolahi Mehrgardi A, Asadollahpour Nanaei H, Esmailizadeh A. Comparative genomic analysis uncovers candidate genes related with milk production and adaptive traits in goat breeds. Sci Rep 2023; 13:8722. [PMID: 37253766 DOI: 10.1038/s41598-023-35973-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/26/2023] [Indexed: 06/01/2023] Open
Abstract
During the process of animal domestication, both natural and artificial selection cause variation in allele frequencies among populations. Identifying genomic areas of selection in domestic animals may aid in the detection of genomic areas linked to ecological and economic traits. We studied genomic variation in 140 worldwide goat individuals, including 75 Asian, 30 African and 35 European goats. We further carried out comparative population genomics to detect genomic regions under selection for adaptability to harsh conditions in local Asian ecotypes and also milk production traits in European commercial breeds. In addition, we estimated the genetic distances among 140 goat individuals. The results showed that among all studied goat groups, local breeds from West and South Asia emerged as an independent group. Our search for selection signatures in local goats from West and South Asia revealed candidate genes related to adaptation to hot climate (HSPB6, HSF4, VPS13A and NBEA genes) and immune response (IL7, IL5, IL23A and LRFN5) traits. Furthermore, selection signatures in European commercial goats involved several milk production related genes, such as VPS13C, NCAM2, TMPRSS15, CSN3 and ABCG2. The identified candidate genes could be the fundamental genetic resource for enhancement of goat production and environmental-adaptive traits, and as such they should be used in goat breeding programs to select more efficient breeds.
Collapse
Affiliation(s)
- Zeinab Amiri Ghanatsaman
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran
- Animal Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Ahmad Ayatolahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran.
| | - Hojjat Asadollahpour Nanaei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, PB, Iran.
| |
Collapse
|
16
|
George L, Alex R, Sukhija N, Jaglan K, Vohra V, Kumar R, Verma A. Genetic improvement of economic traits in Murrah buffalo using significant SNPs from genome-wide association study. Trop Anim Health Prod 2023; 55:199. [PMID: 37184817 DOI: 10.1007/s11250-023-03606-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
GWAS helps to identify QTL and candidate genes of specific traits. Buffalo breeding has primarily focused on milk production, but its negative correlation with reproduction traits resulted in unfavorable decline of reproductive performance among buffaloes. A genome wide scan was performed on a total of 120 Murrah buffaloes genotyped by ddRAD sequencing for 13 traits related to female fertility, production, and growth. The identified 25 significant single nucleotide polymorphisms (SNPs) (P <1×106) are associated with age at first calving (AFC), age at first service (AFS), period from calving to 1st Artifical Insemination (AI), service period (SP) and 6 month body weight (6M). Fifteen genetic variants overlapped with different QTL regions of reported studies. Among the associated loci, outstanding candidate genes for fertility, including AQP1, TRNAE-CUC, NRIP1, CPNE4, and VOPP1, have effect in different fertility traits. AQP1 gene is expressed in ovulatory phase and various stages of pregnancy. TRNAE-CUC gene is associated with AFC and number . of calvings after 4 years of age. Glycogen content-associated gene CPNE4 regulates muscle glycogen and is upregulated during early pregnancy. NRIP1 generegulates ovulation, corpus luteum at pregnancy, and mammary gland development. The objective is to identify potential genomic regions and genetic variants associated with economic traits and to select the most significant SNP which have positive effect on all the traits.
Collapse
Affiliation(s)
- Linda George
- Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India.
| | - Rani Alex
- Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Nidhi Sukhija
- Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Komal Jaglan
- Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Vikas Vohra
- Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ravi Kumar
- Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Archana Verma
- Division of Animal Genetics and Breeding, ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
17
|
Adhikari M, Kantar MB, Longman RJ, Lee CN, Oshiro M, Caires K, He Y. Genome-wide association study for carcass weight in pasture-finished beef cattle in Hawai'i. Front Genet 2023; 14:1168150. [PMID: 37229195 PMCID: PMC10203587 DOI: 10.3389/fgene.2023.1168150] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Genome-wide association studies (GWAS) have identified genetic markers for cattle production and reproduction traits. Several publications have reported Single Nucleotide Polymorphisms (SNPs) for carcass-related traits in cattle, but these studies were rarely conducted in pasture-finished beef cattle. Hawai'i, however, has a diverse climate, and 100% of its beef cattle are pasture-fed. Methods: Blood samples were collected from 400 cattle raised in Hawai'i islands at the commercial harvest facility. Genomic DNA was isolated, and 352 high-quality samples were genotyped using the Neogen GGP Bovine 100 K BeadChip. SNPs that did not meet the quality control standards were removed using PLINK 1.9, and 85 k high-quality SNPs from 351 cattle were used for association mapping with carcass weight using GAPIT (Version 3.0) in R 4.2. Four models were used for the GWAS analysis: General Linear Model (GLM), the Mixed Linear Model (MLM), the Fixed and Random Model Circulating Probability Unification (FarmCPU), the Bayesian-Information and Linkage-Disequilibrium Iteratively Nested Keyway (BLINK). Results and Discussion: Our results indicated that the two multi-locus models, FarmCPU and BLINK, outperformed single-locus models, GLM and MLM, in beef herds in this study. Specifically, five significant SNPs were identified using FarmCPU, while BLINK and GLM each identified the other three. Also, three of these eleven SNPs ("BTA-40510-no-rs", "BovineHD1400006853", and "BovineHD2100020346") were shared by multiple models. The significant SNPs were mapped to genes such as EIF5, RGS20, TCEA1, LYPLA1, and MRPL15, which were previously reported to be associated with carcass-related traits, growth, and feed intake in several tropical cattle breeds. This confirms that the genes identified in this study could be candidate genes for carcass weight in pasture-fed beef cattle and can be selected for further breeding programs to improve the carcass yield and productivity of pasture-finished beef cattle in Hawai'i and beyond.
Collapse
Affiliation(s)
- Mandeep Adhikari
- Department of Molecular Biosciences and Bioengineering, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Michael B. Kantar
- Department of Tropical Plant and Soil Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Ryan J. Longman
- East West Center, Honolulu, HI, United States
- Department of Geography and Environment, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - C. N. Lee
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Melelani Oshiro
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Kyle Caires
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Yanghua He
- Department of Molecular Biosciences and Bioengineering, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
18
|
Gutiérrez-Reinoso MA, Aponte PM, García-Herreros M. Genomic and Phenotypic Udder Evaluation for Dairy Cattle Selection: A Review. Animals (Basel) 2023; 13:ani13101588. [PMID: 37238017 DOI: 10.3390/ani13101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The traditional point of view regarding dairy cattle selection has been challenged by recent genomic studies indicating that livestock productivity prediction can be redefined based on the evaluation of genomic and phenotypic data. Several studies that included different genomic-derived traits only indicated that interactions among them or even with conventional phenotypic evaluation criteria require further elucidation. Unfortunately, certain genomic and phenotypic-derived traits have been shown to be secondary factors influencing dairy production. Thus, these factors, as well as evaluation criteria, need to be defined. Owing to the variety of genomic and phenotypic udder-derived traits which may affect the modern dairy cow functionality and conformation, a definition of currently important traits in the broad sense is indicated. This is essential for cattle productivity and dairy sustainability. The main objective of the present review is to elucidate the possible relationships among genomic and phenotypic udder evaluation characteristics to define the most relevant traits related to selection for function and conformation in dairy cattle. This review aims to examine the potential impact of various udder-related evaluation criteria on dairy cattle productivity and explore how to mitigate the adverse effects of compromised udder conformation and functionality. Specifically, we will consider the implications for udder health, welfare, longevity, and production-derived traits. Subsequently, we will address several concerns covering the application of genomic and phenotypic evaluation criteria with emphasis on udder-related traits in dairy cattle selection as well as its evolution from origins to the present and future prospects.
Collapse
Affiliation(s)
- Miguel A Gutiérrez-Reinoso
- Carrera de Medicina Veterinaria, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad Técnica de Cotopaxi (UTC), Latacunga 0501491, Ecuador
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile
| | - Pedro M Aponte
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
- Colegio de Ciencias de la Salud, Escuela de Medicina Veterinaria, Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
- Campus Cumbayá, Instituto de Investigaciones en Biomedicina "One-Health", Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
| | - Manuel García-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
| |
Collapse
|
19
|
Sadeghi H, Gharagozlou F, Vojgani M, Mobedi E, Bafandeh M, Akbarinejad V. Evidence that elevation of maternal somatic cell count could lead to production of offspring with inferior reproductive and productive performance in dairy cows during the first lactation period. Theriogenology 2023; 200:79-85. [PMID: 36773383 DOI: 10.1016/j.theriogenology.2023.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
Although the effect of mastitis on reproduction and production of lactating dairy cows has been vastly studied, little information is available about the association of maternal udder health status with offspring reproduction and production. Therefore, the present research was conducted to study the association between maternal average monthly somatic cell count (SCC) with reproduction, anti-Müllerian hormone (AMH) concentration, udder health status and milk production in the offspring. Based on maternal average monthly SCC (MSCC), offspring were classified into five categories including MSCC1 (SCC <200,000; n = 3005), MSCC2 (200,000 ≤ SCC <400,000; n = 252), MSCC3 (400,000 ≤ SCC <600,000; n = 103), MSCC4 (600,000 ≤ SCC <800,000; n = 40) and MSCC5 (SCC ≥800,000; n = 61). Data associated with reproduction, production and udder health status of offspring were retrieved from the herd database. In addition, blood samples were collected from a subset of offspring (n = 136) for measurement of serum AMH, as a reliable marker of ovarian reserves. Offspring in MSCC5 category had more services per conception and longer calving to conception interval than offspring in MSCC1 and MSCC2 categories (P < 0.05). The average number of SCC and risk of clinical mastitis in the offspring were not associated with MSCC (P > 0.05). But offspring in MSCC5 category produced less milk, fat and protein than offspring in MSCC1 category (P < 0.05). In addition, AMH concentration was lower in MSCC5 than MSCC1 category (P < 0.05). In conclusion, the present study showed that elevated maternal average monthly SCC could culminate in birth of offspring with inferior reproductive performance, smaller size of ovarian reserves and lower level of milk production during the first lactation period.
Collapse
Affiliation(s)
- Hafez Sadeghi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Faramarz Gharagozlou
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Vojgani
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Emadeddin Mobedi
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Bafandeh
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
20
|
Identification of Candidate Genes and Functional Pathways Associated with Body Size Traits in Chinese Holstein Cattle Based on GWAS Analysis. Animals (Basel) 2023; 13:ani13060992. [PMID: 36978532 PMCID: PMC10044097 DOI: 10.3390/ani13060992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Body size is one of the most economically important traits of dairy cattle, as it is significantly associated with cow longevity, production, health, fertility, and environmental adaptation. The identification and application of genetic variants using a novel genetic approach, such as genome-wide association studies (GWASs), may give more insights into the genetic architecture of complex traits. The identification of genes, single nucleotide polymorphisms (SNPs), and pathways associated with the body size traits may offer a contribution to genomic selection and long-term planning for selection in dairy cows. In this study, we performed GWAS analysis to identify the genetic markers and genes associated with four body size traits (body height, body depth, chest width, and angularity) in 1000 Chinese Holstein cows. We performed SNPs genotyping in 1000 individuals, based on the GeneSeek Genomic Profiler Bovine 100 K. In total, we identified 11 significant SNPs in association with body size traits at the threshold of Bonferroni correction (5.90 × 10−7) using the fixed and random model circulating probability unification (FarmCPU) model. Several genes within 200 kb distances (upstream or downstream) of the significant SNPs were identified as candidate genes, including MYH15, KHDRBS3, AIP, DCC, SQOR, and UBAP1L. Moreover, genes within 200 kb of the identified SNPs were significantly enriched (p ≤ 0.05) in 25 Gene Ontology terms and five Kyoto Encyclopedia of Genes and Genomes pathways. We anticipate that these results provide a foundation for understanding the genetic architecture of body size traits. They will also contribute to breeding programs and genomic selection work on Chinese Holstein cattle.
Collapse
|
21
|
Wan X, Jing JN, Wang DF, Lv FH. Whole-genome selective scans detect genes associated with important phenotypic traits in goat ( Capra hircus). Front Genet 2023; 14:1173017. [PMID: 37144124 PMCID: PMC10151485 DOI: 10.3389/fgene.2023.1173017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Goats with diverse economic phenotypic traits play an important role in animal husbandry. However, the genetic mechanisms underlying complex phenotypic traits are unclear in goats. Genomic studies of variations provided a lens to identify functional genes. In this study, we focused on the worldwide goat breeds with outstanding traits and used whole-genome resequencing data in 361 samples from 68 breeds to detect genomic selection sweep regions. We identified 210-531 genomic regions with six phenotypic traits, respectively. Further gene annotation analysis revealed 332, 203, 164, 300, 205, and 145 candidate genes corresponding with dairy, wool, high prolificacy, poll, big ear, and white coat color traits. Some of these genes have been reported previously (e.g., KIT, KITLG, NBEA, RELL1, AHCY, and EDNRA), while we also discovered novel genes, such as STIM1, NRXN1, LEP, that may be associated with agronomic traits like poll and big ear morphology. Our study found a set of new genetic markers for genetic improvement in goats and provided novel insights into the genetic mechanisms of complex traits.
Collapse
Affiliation(s)
- Xing Wan
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jia-Nan Jing
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dong-Feng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Feng-Hua Lv,
| |
Collapse
|
22
|
Čítek J, Brzáková M, Bauer J, Tichý L, Sztankóová Z, Vostrý L, Steyn Y. Genome-Wide Association Study for Body Conformation Traits and Fitness in Czech Holsteins. Animals (Basel) 2022; 12:ani12243522. [PMID: 36552441 PMCID: PMC10375906 DOI: 10.3390/ani12243522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was a genome-wide association study (GWAS) on conformation traits using 25,486 genotyped Czech Holsteins, with 35,227 common SNPs for each genotype. Linear trait records were collected between 1995 and 2020. The Interbull information from Multiple Across Country Evaluation (MACE) was included for bulls that mostly had daughter records in a foreign country. When using the Bonferroni correction, the number of SNPs that were either significant or approached the significance threshold was low-dairy capacity composite on BTA4, feet and legs composite BTA21, total score BTA10, stature BTA24, body depth BTA6, angularity BTA20, fore udder attachment BTA10. Without the Bonferroni correction, the total number of significant or near of significance SNPs was 32. The SNPs were localized on BTA1,2,4,5,6,7,8,18,22,25,26,28 for dairy capacity composite, BTA15,21 for feet and legs composite, BTA10 for total score, BTA24 stature, BTA6,23 body depth, BTA20 angularity, BTA2 rump angle, BTA9,10 rear legs rear view, BTA2,19 rear legs side view, BTA10 fore udder attachment, BTA2 udder depth, BTA10 rear udder height, BTA12 central alignment, BTA24 rear teat placement, BTA8,29 rear udder width. The results provide biological information for the improvement of body conformation and fitness in the Holstein population.
Collapse
Affiliation(s)
- Jindřich Čítek
- Department of Genetics and Agricultural Biotechnology, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic
- Veterinary Research Institute, Hudcova 296, 621 00 Brno, Czech Republic
| | - Michaela Brzáková
- Institute of Animal Science, Přátelství 815, 104 00 Praha, Czech Republic
| | - Jiří Bauer
- Czech Moravian Breeders' Corporation, Benešovská 123, 252 09 Hradištko, Czech Republic
| | - Ladislav Tichý
- Institute of Animal Science, Přátelství 815, 104 00 Praha, Czech Republic
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Czech Republic
| | - Zuzana Sztankóová
- Institute of Animal Science, Přátelství 815, 104 00 Praha, Czech Republic
| | - Luboš Vostrý
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Czech Republic
| | - Yvette Steyn
- Department of Animal and Dairy Science, University of Georgia, 425 River Road, Athens, GA 30602, USA
| |
Collapse
|
23
|
Brzáková M, Bauer J, Steyn Y, Šplíchal J, Fulínová D. The prediction accuracies of linear-type traits in Czech Holstein cattle when using ssGBLUP or wssGBLUP. J Anim Sci 2022; 100:skac369. [PMID: 36334266 PMCID: PMC9746800 DOI: 10.1093/jas/skac369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022] Open
Abstract
The aim of this study was to assess the contribution of the weighted single-step genomic best linear unbiased prediction (wssGBLUP) method compared to the single-step genomic best linear unbiased prediction (ssGBLUP) method for genomic evaluation of 25 linear-type traits in the Czech Holstein cattle population. The nationwide database of linear-type traits with 6,99,681 records combined with deregressed proofs from Interbull (MACE method) was used as the input data. Genomic breeding values (GEBVs) were predicted based on these phenotypes using ssGBLUP and wssGBLUP methods using the BLUPF90 software. The bull validation test was employed which was based on comparing GEBVs of young bulls (N = 334) with no progeny in 2016. A minimum of 50 daughters with their own performance in 2020 was chosen to verify the contribution to the GEBV prediction, GEBV reliability, validation reliabilities (R2), and regression coefficients (b1). The results showed that the differences between the two methods were negligible. The low benefit of wssGBLUP may be due to the inclusion of a small number of SNPs; therefore, most predictions rely on polygenic relationships between animals. Nevertheless, the benefits of wssGBLUP analysis should be assessed with respect to specific population structures and given traits.
Collapse
Affiliation(s)
- Michaela Brzáková
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, Prague-Uhříněves 104 00, Czech Republic
| | - Jiří Bauer
- Czech-Moravian Breeders’ Corporation, Hradištko 252 09, Czech Republic
| | - Yvette Steyn
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Jiří Šplíchal
- Czech-Moravian Breeders’ Corporation, Hradištko 252 09, Czech Republic
| | - Daniela Fulínová
- Czech-Moravian Breeders’ Corporation, Hradištko 252 09, Czech Republic
| |
Collapse
|
24
|
Tolone M, Sardina MT, Senczuk G, Chessari G, Criscione A, Moscarelli A, Riggio S, Rizzuto I, Di Gerlando R, Portolano B, Mastrangelo S. Genomic Tools for the Characterization of Local Animal Genetic Resources: Application in Mascaruna Goat. Animals (Basel) 2022; 12:2840. [PMID: 36290231 PMCID: PMC9597745 DOI: 10.3390/ani12202840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 02/06/2024] Open
Abstract
Italy contains a large number of local goat populations, some of which do not have a recognized genetic structure. The "Mascaruna" is a goat population reared for milk production in Sicily. In this study, a total of 72 individuals were genotyped with the Illumina Goat_IGGC_65K_v2 BeadChip with the aim to characterize the genetic diversity, population structure and relatedness with another 31 Italian goat populations. The results displayed a moderate level of genetic variability for Mascaruna, in concordance with the estimated values for Italian goats. Runs of homozygosity islands are linked to genes involved in milk production, immune response and local adaptation. Population structure analyses separated Mascaruna from the other goat populations, indicating a clear genetic differentiation. Although they are not conclusive, our current results represent a starting point for the creation of monitoring and conservation plans. Additional analyses and a wider sampling would contribute to refine and validate these results. Finally, our study describing the diversity and structure of Mascaruna confirms the usefulness of applied genomic analyses as valid tools for the study of the local uncharacterized genetic resources.
Collapse
Affiliation(s)
- Marco Tolone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy
| | - Giorgio Chessari
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, 95131 Catania, Italy
| | - Andrea Criscione
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, 95131 Catania, Italy
| | - Angelo Moscarelli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Silvia Riggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Ilaria Rizzuto
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
25
|
Li X, Yuan L, Wang W, Zhang D, Zhao Y, Chen J, Xu D, Zhao L, Li F, Zhang X. Whole genome re-sequencing reveals artificial and natural selection for milk traits in East Friesian sheep. Front Vet Sci 2022; 9:1034211. [PMID: 36330154 PMCID: PMC9623881 DOI: 10.3389/fvets.2022.1034211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/30/2022] [Indexed: 08/23/2023] Open
Abstract
The East Friesian sheep is one of the important high-yielding dairy sheep breeds, but still little is known about their genetic and genomic variation during domestication. Therefore, we analyzed the genomic data of 46 sheep with the aim of identifying candidate genes that are closely related to milk production traits. Our genomic data consisted of 20 East Friesian sheep and 26 Asian Mouflon wild sheep. Finally, a total of 32590241 SNPs were identified, of which 0.61% (198277) SNPs were located in exonic regions. After further screening, 122 shared genomic regions in the top 1% of F ST and top 1% of Nucleotide diversity ratio were obtained. After genome annotation, these 122 candidate genomic regions were found to contain a total of 184 candidate genes. Finally, the results of KEGG enrichment analysis showed four significantly enriched pathways (P < 0.05): beta-Alanine metabolism (SMOX, HIBCH), Pathways in cancer (GLI2, AR, TXNRD3, TRAF3, FGF16), Non-homologous end-joining (MRE11), Epstein-Barr virus infection (TRAF3, PSMD13, SIN3A). Finally, we identified four important KEGG enrichment pathways and 10 candidate genes that are closely related to milk production in East Friesian sheep. These results provide valuable candidate genes for the study of milk production traits in East Friesian sheep and lay an important foundation for the study of milk production traits.
Collapse
Affiliation(s)
- Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lvfeng Yuan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Weimin Wang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuan Zhao
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jiangbo Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
26
|
Nazar M, Abdalla IM, Chen Z, Ullah N, Liang Y, Chu S, Xu T, Mao Y, Yang Z, Lu X. Genome-Wide Association Study for Udder Conformation Traits in Chinese Holstein Cattle. Animals (Basel) 2022; 12:2542. [PMID: 36230283 PMCID: PMC9559277 DOI: 10.3390/ani12192542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Udder conformation traits are one of the most economic traits in dairy cows, greatly affecting animal health, milk production, and producer profitability in the dairy industry. Genetic analysis of udder structure and scores have been developed in Holstein cattle. In our research, we conducted a genome-wide association study for five udder traits, including anterior udder attachment (AUA), central suspensory ligament (CSL), posterior udder attachment height (PUAH), posterior udder attachment width (PUAW), and udder depth (UD), in which the fixed and random model circulating probability unification (FarmCPU) model was applied for the association analysis. The heritability and the standard errors of these five udder traits ranged from 0.04 ± 0.00 to 0.49 ± 0.03. Phenotype data were measured from 1000 Holstein cows, and the GeneSeek Genomic Profiler (GGP) Bovine 100 K SNP chip was used to analyze genotypic data in Holstein cattle. For GWAS analysis, 984 individual cows and 84,407 single-nucleotide polymorphisms (SNPs) remained after quality control; a total of 18 SNPs were found at the GW significant threshold (p < 5.90 × 10−7). Many candidate genes were identified within 200kb upstream or downstream of the significant SNPs, which include MGST1, MGST2, MTUS1, PRKN, STXBP6, GRID2, E2F8, CDH11, FOXP1, SLF1, TMEM117, SBF2, GC, ADGRB3, and GCLC. Pathway analysis revealed that 58 Gene Ontology (GO) terms and 18 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched with adjusted p values, and these GO terms and the KEGG pathway analysis were associated with biological information, metabolism, hormonal growth, and development processes. These results could give valuable biological information for the genetic architecture of udder conformation traits in dairy Holstein cattle.
Collapse
Affiliation(s)
- Mudasir Nazar
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | | | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Numan Ullah
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yan Liang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shuangfeng Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tianle Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
27
|
Liu D, Xu Z, Zhao W, Wang S, Li T, Zhu K, Liu G, Zhao X, Wang Q, Pan Y, Ma P. Genetic parameters and genome-wide association for milk production traits and somatic cell score in different lactation stages of Shanghai Holstein population. Front Genet 2022; 13:940650. [PMID: 36134029 PMCID: PMC9483179 DOI: 10.3389/fgene.2022.940650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate the genetic parameters and genetic architectures of six milk production traits in the Shanghai Holstein population. The data used to estimate the genetic parameters consisted of 1,968,589 test-day records for 305,031 primiparous cows. Among the cows with phenotypes, 3,016 cows were genotyped with Illumina Bovine SNP50K BeadChip, GeneSeek Bovine 50K BeadChip, GeneSeek Bovine LD BeadChip v4, GeneSeek Bovine 150K BeadChip, or low-depth whole-genome sequencing. A genome-wide association study was performed to identify quantitative trait loci and genes associated with milk production traits in the Shanghai Holstein population using genotypes imputed to whole-genome sequences and both fixed and random model circulating probability unification and a mixed linear model with rMVP software. Estimated heritabilities (h2) varied from 0.04 to 0.14 for somatic cell score (SCS), 0.07 to 0.22 for fat percentage (FP), 0.09 to 0.27 for milk yield (MY), 0.06 to 0.23 for fat yield (FY), 0.09 to 0.26 for protein yield (PY), and 0.07 to 0.35 for protein percentage (PP), respectively. Within lactation, genetic correlations for SCS, FP, MY, FY, PY, and PP at different stages of lactation estimated in random regression model were ranged from -0.02 to 0.99, 0.18 to 0.99, 0.04 to 0.99, 0.04 to 0.99, 0.01 to 0.99, and 0.33 to 0.99, respectively. The genetic correlations were highest between adjacent DIM but decreased as DIM got further apart. Candidate genes included those related to production traits (DGAT1, MGST1, PTK2, and SCRIB), disease-related (LY6K, COL22A1, TECPR2, and PLCB1), heat stress-related (ITGA9, NDST4, TECPR2, and HSF1), and reproduction-related (7SK and DOCK2) genes. This study has shown that there are differences in the genetic mechanisms of milk production traits at different stages of lactation. Therefore, it is necessary to conduct research on milk production traits at different stages of lactation as different traits. Our results can also provide a theoretical basis for subsequent molecular breeding, especially for the novel genetic loci.
Collapse
Affiliation(s)
- Dengying Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Wei Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyi Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tuowu Li
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhu
- Shanghai Dairy Cattle Breeding Centre Co, Ltd, Shanghai, China
| | - Guanglei Liu
- Shanghai Dairy Cattle Breeding Centre Co, Ltd, Shanghai, China
| | - Xiaoduo Zhao
- Shanghai Dairy Cattle Breeding Centre Co, Ltd, Shanghai, China
| | - Qishan Wang
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Peipei Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Mohammadi H, Farahani AHK, Moradi MH, Mastrangelo S, Di Gerlando R, Sardina MT, Scatassa ML, Portolano B, Tolone M. Weighted Single-Step Genome-Wide Association Study Uncovers Known and Novel Candidate Genomic Regions for Milk Production Traits and Somatic Cell Score in Valle del Belice Dairy Sheep. Animals (Basel) 2022; 12:ani12091155. [PMID: 35565582 PMCID: PMC9104502 DOI: 10.3390/ani12091155] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Milk production is the most economically crucial dairy sheep trait and constitutes the major genetic enhancement purpose via selective breeding. Also, mastitis is one of the most frequently encountered diseases, having a significant impact on animal welfare, milk yield, and quality. The aim of this study was to identify genomic region(s) associated with the milk production traits and somatic cell score (SCS) in Valle del Belice sheep using single-step genome-wide association (ssGWA) and genotyping data from medium density SNP panels. We identified several genomic regions (OAR1, OAR2, OAR3, OAR4, OAR6, OAR9, and OAR25) and candidate genes implicated in milk production traits and SCS. Our findings offer new insights into the genetic basis of milk production traits and SCS in dairy sheep. Abstract The objective of this study was to uncover genomic regions explaining a substantial proportion of the genetic variance in milk production traits and somatic cell score in a Valle del Belice dairy sheep. Weighted single-step genome-wide association studies (WssGWAS) were conducted for milk yield (MY), fat yield (FY), fat percentage (FAT%), protein yield (PY), protein percentage (PROT%), and somatic cell score (SCS). In addition, our aim was also to identify candidate genes within genomic regions that explained the highest proportions of genetic variance. Overall, the full pedigree consists of 5534 animals, of which 1813 ewes had milk data (15,008 records), and 481 ewes were genotyped with a 50 K single nucleotide polymorphism (SNP) array. The effects of markers and the genomic estimated breeding values (GEBV) of the animals were obtained by five iterations of WssGBLUP. We considered the top 10 genomic regions in terms of their explained genomic variants as candidate window regions for each trait. The results showed that top ranked genomic windows (1 Mb windows) explained 3.49, 4.04, 5.37, 4.09, 3.80, and 5.24% of the genetic variances for MY, FY, FAT%, PY, PROT%, and total SCS, respectively. Among the candidate genes found, some known associations were confirmed, while several novel candidate genes were also revealed, including PPARGC1A, LYPLA1, LEP, and MYH9 for MY; CACNA1C, PTPN1, ROBO2, CHRM3, and ERCC6 for FY and FAT%; PCSK5 and ANGPT1 for PY and PROT%; and IL26, IFNG, PEX26, NEGR1, LAP3, and MED28 for SCS. These findings increase our understanding of the genetic architecture of six examined traits and provide guidance for subsequent genetic improvement through genome selection.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
- Correspondence: ; Tel.: +98-9127584572
| | - Amir Hossein Khaltabadi Farahani
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
| | - Mohammad Hossein Moradi
- Department of Animal Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran; (A.H.K.F.); (M.H.M.)
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; (S.M.); (R.D.G.); (M.T.S.); (B.P.); (M.T.)
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; (S.M.); (R.D.G.); (M.T.S.); (B.P.); (M.T.)
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; (S.M.); (R.D.G.); (M.T.S.); (B.P.); (M.T.)
| | - Maria Luisa Scatassa
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy;
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; (S.M.); (R.D.G.); (M.T.S.); (B.P.); (M.T.)
| | - Marco Tolone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy; (S.M.); (R.D.G.); (M.T.S.); (B.P.); (M.T.)
| |
Collapse
|
29
|
Jin L, Qu K, Hanif Q, Zhang J, Liu J, Chen N, Suolang Q, Lei C, Huang B. Whole-Genome Sequencing of Endangered Dengchuan Cattle Reveals Its Genomic Diversity and Selection Signatures. Front Genet 2022; 13:833475. [PMID: 35422847 PMCID: PMC9001881 DOI: 10.3389/fgene.2022.833475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
Dengchuan cattle are the only dairy yellow cattle and endangered cattle among Yunnan native cattle breeds. However, its genetic background remains unclear. Here, we performed whole-genome sequencing of ten Dengchuan cattle. Integrating our data with the publicly available data, Dengchuan cattle were observed to be highly interbred than other cattle in the dataset. Furthermore, the positive selective signals were mainly manifested in candidate genes and pathways related to milk production, disease resistance, growth and development, and heat tolerance. Notably, five genes (KRT39, PGR, KRT40, ESR2, and PRKACB) were significantly enriched in the estrogen signaling pathway. Moreover, the missense mutation in the PGR gene (c.190T > C, p.Ser64Pro) showed a homozygous mutation pattern with higher frequency (83.3%) in Dengchuan cattle. In addition, a large number of strong candidate regions matched genes and QTLs related to milk yield and composition. Our research provides a theoretical basis for analyzing the genetic mechanism underlying Dengchuan cattle with excellent lactation and adaptability, crude feed tolerance, good immune performance, and small body size and also laid a foundation for genetic breeding research of Dengchuan cattle in the future.
Collapse
Affiliation(s)
- Liangliang Jin
- Yunnan Academy of Grassland and Animal Science, Kunming, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Quji Suolang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| |
Collapse
|
30
|
Determining Heat Stress Effects of Multiple Genetic Traits in Tropical Dairy Cattle Using Single-Step Genomic BLUP. Vet Sci 2022; 9:vetsci9020066. [PMID: 35202319 PMCID: PMC8877667 DOI: 10.3390/vetsci9020066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
Heat stress is becoming a significant problem in dairy farming, especially in tropical countries, making accurate genetic selection for heat tolerance a priority. This study investigated the effect of heat stress manifestation on genetics for milk yield, milk quality, and dairy health traits with and without genomic information using single-step genomic best linear unbiased prediction (ssGBLUP) and BLUP in Thai−Holstein crossbred cows. The dataset contained 104,150 test-day records from the first lactation of 15,380 Thai−Holstein crossbred cows. A multiple-trait random regression test-day model on a temperature−humidity index (THI) function was used to estimate the genetic parameters and genetic values. Heat stress started at a THI of 76, and the heritability estimates ranged from moderate to low. The genetic correlation between those traits and heat stress in both BLUP methods was negative. The accuracy of genomic predictions in the ssGBLUP method was higher than the BLUP method. In conclusion, heat stress negatively impacted milk production, increased the somatic cell score, and disrupted the energy balance. Therefore, in dairy cattle genetic improvement programs, heat tolerance is an important trait. The new genetic evaluation method (ssGBLUP) should replace the traditional method (BLUP) for more accurate genetic selection.
Collapse
|