1
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
2
|
Wu X, Ayalew W, Chu M, Pei J, Liang C, Bao P, Guo X, Yan P. Characterization of RNA Editome in the Mammary Gland of Yaks during the Lactation and Dry Periods. Animals (Basel) 2022; 12:ani12020207. [PMID: 35049829 PMCID: PMC8773173 DOI: 10.3390/ani12020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/01/2022] [Accepted: 01/14/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary In order to study the influence of RNA editing sites on lactation and mammary gland development process in yaks, we comprehensively characterized the RNA editome of the yak mammary gland during the lactation period and dry period by using the transcriptome and genome sequencing data. The results revealed 82,872 nonredundant RNA editing sites, 14,159 of which were differentially edited between the lactation period and dry period. Enrichment analysis showed that the genes harboring differential editing sites were mainly associated with mammary gland development-related pathways, such as MAPK pathway, PI3K-Akt pathway, FoxO signaling pathway, GnRH signaling pathway, and focal adhesion pathway. Our findings offer some novel insights into the RNA editing function in the mammary gland of yaks. Abstract The mammary gland is a complicated organ comprising several types of cells, and it undergoes extensive morphogenetic and metabolic changes during the female reproductive cycle. RNA editing is a posttranscriptional modification event occurring at the RNA nucleotide level, and it drives transcriptomic and proteomic diversities, with potential functional consequences. RNA editing in the mammary gland of yaks, however, remains poorly understood. Here, we used REDItools to identify RNA editing sites in mammary gland tissues in yaks during the lactation period (LP, n = 2) and dry period (DP, n = 3). Totally, 82,872 unique RNA editing sites were identified, most of which were detected in the noncoding regions with a low editing degree. In the coding regions (CDS), we detected 5235 editing sites, among which 1884 caused nonsynonymous amino acid changes. Of these RNA editing sites, 486 were found to generate novel possible miRNA target sites or interfere with the initial miRNA binding sites, indicating that RNA editing was related to gene regulation mediated by miRNA. A total of 14,159 RNA editing sites (involving 3238 common genes) showed a significant differential editing level in the LP when compared with that in the DP through Tukey’s Honest Significant Difference method (p < 0.05). According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, genes that showed different RNA editing levels mainly participated in pathways highly related to mammary gland development, including MAPK, PI3K-Akt, FoxO, and GnRH signaling pathways. Collectively, this work demonstrated for the first time the dynamic RNA editome profiles in the mammary gland of yaks and shed more light on the mechanism that regulates lactation together with mammary gland development.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (W.A.); (M.C.); (J.P.); (C.L.); (P.B.)
| | - Wondossen Ayalew
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (W.A.); (M.C.); (J.P.); (C.L.); (P.B.)
- Department of Animal Production and Technology, Wolkite University, Wolkite P.O. Box 07, Ethiopia
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (W.A.); (M.C.); (J.P.); (C.L.); (P.B.)
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (W.A.); (M.C.); (J.P.); (C.L.); (P.B.)
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (W.A.); (M.C.); (J.P.); (C.L.); (P.B.)
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (W.A.); (M.C.); (J.P.); (C.L.); (P.B.)
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (W.A.); (M.C.); (J.P.); (C.L.); (P.B.)
- Correspondence: (X.G.); (P.Y.)
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.W.); (W.A.); (M.C.); (J.P.); (C.L.); (P.B.)
- Correspondence: (X.G.); (P.Y.)
| |
Collapse
|
3
|
Ni Y, Chen Q, Cai J, Xiao L, Zhang J. Three lactation-related hormones: Regulation of hypothalamus-pituitary axis and function on lactation. Mol Cell Endocrinol 2021; 520:111084. [PMID: 33232781 DOI: 10.1016/j.mce.2020.111084] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/08/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023]
Abstract
The endocrine system plays a central role in many aspects of lactation, including mammogenesis (mammary gland development), lactogenesis (onset of lactation), and galactopoiesis (maintenance of milk secretion). Many hormones of the endocrine system directly or indirectly regulate lactation process. The secretion of prolactin (PRL), one of the most important lactation-related hormones, is inhibited by hypothalamus-pituitary dopaminergic system and stimulated by hypothalamus-pituitary oxytocinergic system. This hormone is essential in all stages of lactation. The growth hormone (GH) regulates metabolism and the distribution of nutrients between tissues mammary glands, and stimulates the production of IGF-I from the liver which binds to IGF-IR of mammary epithelial cells (MECs) to indirectly promote lactation. The synthesis and secretion of estrogen (E) are affected by the hypothalamus-pituitary axis. The hormone regulates duct morphogenesis and MECs proliferation. It also modulates the synthesis and secretion of PRL and GH, which together regulate the lactation in female animals. In this article, we reviewed the three main lactation-related hormones (PRL, GH, and E), summarize their regulation by the hypothalamus-pituitary axis and how they influence lactation.
Collapse
Affiliation(s)
- Yifan Ni
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiangqiang Chen
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianfeng Cai
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Lixia Xiao
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinzhi Zhang
- College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Wu X, Zhou X, Xiong L, Pei J, Yao X, Liang C, Bao P, Chu M, Guo X, Yan P. Transcriptome Analysis Reveals the Potential Role of Long Non-coding RNAs in Mammary Gland of Yak During Lactation and Dry Period. Front Cell Dev Biol 2020; 8:579708. [PMID: 33324637 PMCID: PMC7723986 DOI: 10.3389/fcell.2020.579708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
The mammary gland is a remarkably dynamic organ of milk synthesis and secretion, and it experiences drastic structural and metabolic changes during the transition from dry periods to lactation, which involves the expression and regulation of numerous genes and regulatory factors. Long non-coding RNA (lncRNA) has considered as a novel type of regulatory factors involved in a variety of biological processes. However, their role in the lactation cycle of yak is still poorly understood. To reveal the involved mechanism, Ribo-zero RNA sequencing was employed to profile the lncRNA transcriptome in mammary tissue samples from yak at two physiological stages, namely lactation (LP) and dry period (DP). Notably, 1,599 lncRNA transcripts were identified through four rigorous steps and filtered through protein-coding ability. A total of 59 lncRNAs showed significantly different expression between two stages. Accordingly, the results of qRT-PCR were consistent with that of the transcriptome data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that target genes of differentially expressed lncRNAs (DELs) were involved in pathways related to lactation, such as ECM-receptor interaction, PI3K-Akt signaling pathway, biosynthesis of amino acids and focal adhesion etc. Finally, we constructed a lncRNA-gene regulatory network containing some well known candidate genes for milk yield and quality traits. This is the first study to demonstrate a global profile of lncRNA expression in the mammary gland of yak. These results contribute to a valuable resource for future genetic and molecular studies on improving milk yield and quality, and help us to gain a better understanding of the molecular mechanisms underlying lactogenesis and mammary gland development of yak.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xian Guo
- Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Lab of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
5
|
Beckett L, Xie S, Thimmapuram J, Tucker HA, Donkin SS, Casey T. Mammary transcriptome reveals cell maintenance and protein turnover support milk synthesis in early-lactation cows. Physiol Genomics 2020; 52:435-450. [PMID: 32744883 DOI: 10.1152/physiolgenomics.00046.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A more complete understanding of the molecular mechanisms that support milk synthesis is needed to develop strategies to efficiently and sustainably meet the growing global demand for dairy products. With the postulate that coding gene transcript abundance reflects relative importance in supporting milk synthesis, we analyzed the global transcriptome of early lactation cows across magnitudes of normalized RNA-Seq read counts. Total RNA was isolated from milk samples collected from early-lactation cows (n = 6) following two treatment periods of postruminal lysine infusion of 0 or 63 g/day. Twelve libraries were prepared and sequenced on an Illumina NovaSeq6000 platform using paired end reads. Normalized read counts were averaged across both treatments, because EBseq analysis found no significant effect of lysine infusion. Approximately 10% of the total reads corresponded to 12,730 protein coding transcripts with a normalized read count mean ≥5. For functional annotation analysis, the protein coding transcripts were divided into nine categories by magnitude of reads. The 13 most abundant transcripts (≥50K reads) accounted for 67% of the 23M coding reads and included casein and whey proteins, regulators of fat synthesis and secretion, a ubiquitinating protein, and a tRNA transporter. Mammalian target of rapamycin, JAK/STAT, peroxisome proliferator-activated receptor alpha, and ubiquitin proteasome pathways were enriched with normalized reads ≥100 counts. Genes with ≤100 reads regulated tissue homeostasis and immune response. Enrichment in ontologies that reflect maintenance of translation, protein turnover, and amino acid recycling indicated that proteostatic mechanisms are central to supporting mammary function and primary milk component synthesis.
Collapse
Affiliation(s)
- L Beckett
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - S Xie
- Bioinformatics Core, Purdue University, West Lafayette, Indiana
| | - J Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, Indiana
| | - H A Tucker
- Novus International Incorporated, St. Charles, Missouri
| | - S S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - T Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
6
|
Farabaugh SM, Litzenburger BC, Elangovan A, Pecar G, Walheim L, Atkinson JM, Lee AV. IGF1R constitutive activation expands luminal progenitors and influences lineage differentiation during breast tumorigenesis. Dev Biol 2020; 463:77-87. [PMID: 32376245 DOI: 10.1016/j.ydbio.2020.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Breast tumors display tremendous heterogeneity in part due to varying molecular alterations, divergent cells of origin, and differentiation. Understanding where and how this heterogeneity develops is likely important for effective breast cancer eradication. Insulin-like growth factor (IGF) signaling is critical for normal mammary gland development and function, and has an established role in tumor development and resistance to therapy. Here we demonstrate that constitutive activation of the IGF1 receptor (IGF1R) influences lineage differentiation during mammary tumorigenesis. Transgenic IGF1R constitutive activation promotes tumors with mixed histologies, multiple cell lineages and an expanded bi-progenitor population. In these tumors, IGF1R expands the luminal-progenitor population while influencing myoepithelial differentiation. Mammary gland transplantation with IGF1R-infected mammary epithelial cells (MECs) resulted in hyperplastic, highly differentiated outgrowths and attenuated reconstitution. Restricting IGF1R constitutive activation to luminal versus myoepithelial lineage-sorted MECs resulted in ductal reconstitutions co-expressing high IGF1R levels in the opposite lineage of origin. Using in vitro models, IGF1R constitutively activated MCF10A cells showed increased mammosphere formation and CD44+/CD24-population, which was dependent upon Snail and NFκB signaling. These results suggest that IGF1R expands luminal progenitor populations while also stimulating myoepithelial cell differentiation. This ability to influence lineage differentiation may promote heterogeneous mammary tumors, and have implications for clinical treatment.
Collapse
Affiliation(s)
- Susan M Farabaugh
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Beate C Litzenburger
- Lester and Sue Smith Breast Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ashuvinee Elangovan
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Geoffrey Pecar
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Lauren Walheim
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Jennifer M Atkinson
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA
| | - Adrian V Lee
- Women's Cancer Research Center, Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, Magee Women's Research Institute, USA.
| |
Collapse
|
7
|
Borges VF, Lyons TR, Germain D, Schedin P. Postpartum Involution and Cancer: An Opportunity for Targeted Breast Cancer Prevention and Treatments? Cancer Res 2020; 80:1790-1798. [PMID: 32075799 PMCID: PMC8285071 DOI: 10.1158/0008-5472.can-19-3448] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/24/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022]
Abstract
Childbirth at any age confers a transient increased risk for breast cancer in the first decade postpartum and this window of adverse effect extends over two decades in women with late-age first childbirth (>35 years of age). Crossover to the protective effect of pregnancy is dependent on age at first pregnancy, with young mothers receiving the most benefit. Furthermore, breast cancer diagnosis during the 5- to 10-year postpartum window associates with high risk for subsequent metastatic disease. Notably, lactation has been shown to be protective against breast cancer incidence overall, with varying degrees of protection by race, multiparity, and lifetime duration of lactation. An effect for lactation on breast cancer outcome after diagnosis has not been described. We discuss the most recent data and mechanistic insights underlying these epidemiologic findings. Postpartum involution of the breast has been identified as a key mediator of the increased risk for metastasis in women diagnosed within 5-10 years of a completed pregnancy. During breast involution, immune avoidance, increased lymphatic network, extracellular matrix remodeling, and increased seeding to the liver and lymph node work as interconnected pathways, leading to the adverse effect of a postpartum diagnosis. We al discuss a novel mechanism underlying the protective effect of breastfeeding. Collectively, these mechanistic insights offer potential therapeutic avenues for the prevention and/or improved treatment of postpartum breast cancer.
Collapse
Affiliation(s)
- Virginia F Borges
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado.
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Traci R Lyons
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Doris Germain
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pepper Schedin
- Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, Aurora, Colorado.
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
8
|
Long noncoding RNA and mRNA profiling of hypothalamic-pituitary-mammary gland axis in lactating sows under heat stress. Genomics 2020; 112:3668-3676. [PMID: 32360888 DOI: 10.1016/j.ygeno.2020.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 11/23/2022]
Abstract
Heat stress (HS) seriously affects sow lactation performance and Long non-coding RNAs (lncRNAs) play vital roles in the regulation of transcription and post transcription. However, the mechanism of lncRNAs expression affecting lactation performance on the hypothalamus-pituitary-mammary axis of sows is still unclear. In this study, we performed RNA sequencing and bioinformatics analysis of the hypothalamus, pituitary, and mammary gland tissues of lactating sows under HS and thermal comfort. In total, the analysis identified 658, 6021, and 6745 differently expressed (DE) mRNAs, 26, 126, and 169 DE lncRNAs between comparison groups in the hypothalamus, pituitary, and mammary glands, respectively. The hormone genes and most DE mRNAs encoding heat shock protein were differently expressed in the HS group. In addition, 2, 60, and 86 pairs of DE lncRNAs and mRNAs correlation were observed in those tissues, respectively. Some lncRNAs may be involved in the regulation of lactation performance in the HS sows.
Collapse
|
9
|
Han J, Shao J, Chen Q, Sun H, Guan L, Li Y, Liu J, Liu H. Transcriptional changes in the hypothalamus, pituitary, and mammary gland underlying decreased lactation performance in mice under heat stress. FASEB J 2019; 33:12588-12601. [PMID: 31480864 DOI: 10.1096/fj.201901045r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Because of climate change, heat stress (HS) causes more and more impacts on dairy animals to decrease lactation performance. The neuroendocrine system is key in regulating systemic physiological processes and milk synthesis. However, the hypothalamic-pituitary axis response to HS is still unclear. In this study, a group of lactating mice underwent a daily 2-h heat treatment (36°C) for 14 d to explore possible cross-talk between the hypothalamic-pituitary axis and mammary gland under HS. Transcriptome analyses by multitissue RNA-Seq indicated the possible mechanisms of reduced lactation performance in animals under HS. In the hypothalamus, the cAMP signaling pathway was activated to resist neuronal death, and the expression of downstream genes was increased to promote cell survival under HS. Reduced food intake might be caused by down-regulated appetite-related peptide, whereas up-regulated neuropeptide Y acted to attenuate reduced food intake. In pituitary, energy stress from lower food intake might result in reduced secretion of prolactin and growth hormone. Under HS, the mammary gland may undergo hypoxic stress, causing mammary epithelial cell apoptosis. Together, these data showed systemic changes in tissues to accommodate the effects of HS on lactation.-Han, J., Shao, J., Chen, Q., Sun, H., Guan, L., Li, Y., Liu, J., Liu, H. Transcriptional changes in the hypothalamus, pituitary, and mammary gland underlying decreased lactation performance in mice under heat stress.
Collapse
Affiliation(s)
- Jialiang Han
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Juanjuan Shao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Qiong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Huizeng Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and.,Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Leluo Guan
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and.,Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Yongxin Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; and
| |
Collapse
|
10
|
Farmer C, Langendijk P. Exogenous porcine somatotropin stimulates mammary development in late-pregnant gilts. J Anim Sci 2019; 97:2433-2440. [PMID: 31066897 DOI: 10.1093/jas/skz136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022] Open
Abstract
The goal of this project was to determine if increasing insulin-like growth factor-1 (IGF-1) concentrations in late pregnancy can stimulate mammogenesis in gilts. Yorkshire × Landrace gilts of a similar body weight (BW; 196.2 ± 6.2 kg) on day 89 of gestation were separated in 2 groups, namely, controls (CTL, n = 17) that were injected with sterile water, and porcine somatotropin-treated (pST, n = 20) that received injections of 5 mg of pST (Reporcin). Injections were given daily from days 90 to 109 of gestation and gilts were slaughtered on day 110 to collect mammary glands for compositional analyses. Blood samples were obtained on days 89, 96, 103, and 109 of gestation to measure IGF-1, free fatty acids (FFA), urea, glucose, and insulin concentrations. Treated gilts gained more BW (22.7 vs. 18.2 kg, P < 0.05) and lost more backfat (P < 0.05) than CTL gilts during the treatment period. There was a treatment × day effect (P < 0.01) on IGF-1, glucose, and urea concentrations. Concentrations of IGF-1 increased 4-fold (P < 0.01) in pST compared with CTL gilts on days 96, 103, and 109 of gestation. Insulin values were also greater on days 96 (P < 0.01) and 103 (P = 0.01), and tended to be greater (P < 0.10) on day 109 of gestation in pST gilts. Glucose was greater in pST than CTL gilts on days 96 (P < 0.01), 103 (P < 0.01), and 109 (P = 0.01). Concentrations of urea were lower (P < 0.01) on days 96, 103, and 109 of gestation in gilts receiving pST injections, and FFA was not altered by treatment on any sampling day (P > 0.10). Injections of pST did not affect mammary extraparenchymal tissue weight (P > 0.10) but increased mammary parenchymal mass (1922 vs. 1576 ± 124 g, P < 0.05). The composition of parenchymal tissue was also altered by treatment. Mammary parenchyma from pST gilts contained more (P < 0.05) protein, DNA and RNA and less fat (P < 0.05) and dry matter (P < 0.01) than that from CTL gilts. These findings provide a clear demonstration that increasing circulating IGF-1 in late-pregnant gilts can stimulate mammary development both in terms of total parenchymal mass and of parenchymal tissue composition.
Collapse
Affiliation(s)
- Chantal Farmer
- Agriculture and Agri-Food Canada, Sherbrooke R & D Centre, 2000 College, Sherbrooke, Québec, Canada
| | - Pieter Langendijk
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
11
|
Pehlivan E. Relationship between insulin-like growth factor-1 (IGF-1) concentrations and body trait measurements and climatic factors in prepubertal goat kids. Arch Anim Breed 2019; 62:241-248. [PMID: 31807634 PMCID: PMC6853136 DOI: 10.5194/aab-62-241-2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 04/17/2019] [Indexed: 11/11/2022] Open
Abstract
This study aimed to investigate relations between insulin-like growth factor-1 (IGF-1) concentrations and some body trait measurements (body weight, withers height, rump height, body length, chest depth, chest width, chest girth and cannon bone circumference) and climatic factors in prepubertal male and female White (75 % Saanen and 25 % Kilis goat) and Angora goat kids. For this purpose, blood samples were regularly taken from the vena jugularis, and body trait measurements were regularly carried out (every 15 d for 5 months) on each kid. The IGF-1 analysis on the blood serum was performed using the enzyme immunoassay (EIA) method. Climatic values and the length of the photoperiod were obtained from the Turkish State Meteorological Service for the experimental period, and the temperature-humidity index (THI) was calculated using these values. Statistical analysis showed that the IGF-1 concentrations were higher ( P < 0.05 ) in female White goat kids. Furthermore, differences in IGF-1 concentrations were found ( P < 0.05 ) between periods and between the gender groups for both the White and the Angora goat kids. Moreover, the difference between the IGF-1 concentrations between genders was higher ( P < 0.05 ) in White goat kids. Additionally, positive and significant correlations were found between IGF-1 concentrations and some body trait measurements in prepubertal kids, except for in female White goat kids. In summary, it was found that there was a significant relationship between IGF-1 concentrations and growth characteristics of the goat kids. Furthermore, IGF-1 concentrations in the goat kids were significantly influenced by climatic factors such as photoperiod, temperature and the temperature-humidity index, with the release of IGF-1 increasing due to increases in the photoperiod and the environmental temperature.
Collapse
Affiliation(s)
- Erkan Pehlivan
- Department of Animal Science, Faculty of Agriculture, Ankara University, Ankara, 06110, Turkey
| |
Collapse
|
12
|
Akers RM. A 100-Year Review: Mammary development and lactation. J Dairy Sci 2017; 100:10332-10352. [DOI: 10.3168/jds.2017-12983] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/15/2017] [Indexed: 01/13/2023]
|
13
|
Lékó AH, Cservenák M, Dobolyi Á. Suckling induced insulin-like growth factor-1 (IGF-1) release in mother rats. Growth Horm IGF Res 2017; 37:7-12. [PMID: 29031906 DOI: 10.1016/j.ghir.2017.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Lactation involves significant neuroendocrine changes. The elevated prolactin (PRL) release from the pituitary, induced markedly by suckling, is the most relevant example. Suckling also causes a significant and rapid elevation in growth hormone (GH) levels. GH is necessary for milk synthesis as milk yield is stopped completely in the absence of PRL and GH, while the absence of PRL alone causes only a 50% reduction. Insulin-like growth factor-1 (IGF-1) plays an important role in the GH axis. GH exerts its effects through IGF-1 in the periphery, for example in the mammary gland. In addition, IGF-1 is responsible for the long-loop feedback control of GH secretion. DESIGN IGF-1 secretion has not been established yet in mothers. Therefore, in the present study, we investigated the effect of suckling on serum IGF-1 level in rat mothers and correlated it with serum PRL levels. We examined a potential mechanism of the regulation of IGF-1 level during suckling by administering IGF-1 into the lateral ventricle of rat mothers continuously for 12days, or acutely, right before the start of suckling. RESULTS We described that suckling affected IGF-1 release based on one-way repeated measures ANOVA (F=10.8 and p<0.001) and caused a marked increase of IGF-1 level 30min after the start of suckling (p<0.001). We demonstrated a significant (p<0.05; the correlation coefficient was 0.29) correlation to PRL level during suckling which supports that PRL could induce IGF-1 release. The prolonged central IGF-1 administration diminished the suckling-induced IGF-1 surge (F=9.19 and p<0.001) while the acute treatment did not have any effect compared to artificial cerebrospinal fluid injection, analysed with two-way repeated measures ANOVA. CONCLUSIONS In conclusion, suckling induces IGF-1 release either by elevating PRL or GH. Long-loop feedback via IGF-1 in the GH axis can diminish this action.
Collapse
Affiliation(s)
- András H Lékó
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest 1094, Hungary; MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest 1117, Hungary
| | - Melinda Cservenák
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest 1094, Hungary; MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest 1117, Hungary
| | - Árpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest 1094, Hungary; MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest 1117, Hungary; MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest 1117, Hungary.
| |
Collapse
|
14
|
Farmer C, Duarte CRA, Vignola M, Palin MF. Body condition of gilts at the end of gestation affects their mammary development1. J Anim Sci 2016; 94:1897-905. [DOI: 10.2527/jas.2016-0336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
15
|
Szewczuk M. Polymorphism of the Insulin-like growth factor 1 receptor gene (IGF1R/e10/MspI and IGF1R/e16/RsaI) in four dairy breeds and its association with milk traits. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Farabaugh SM, Boone DN, Lee AV. Role of IGF1R in Breast Cancer Subtypes, Stemness, and Lineage Differentiation. Front Endocrinol (Lausanne) 2015; 6:59. [PMID: 25964777 PMCID: PMC4408912 DOI: 10.3389/fendo.2015.00059] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/07/2015] [Indexed: 12/22/2022] Open
Abstract
Insulin-like growth factor (IGF) signaling is fundamental for growth and survival. A large body of evidence (laboratory, epidemiological, and clinical) implicates the exploitation of this pathway in cancer. Up to 50% of breast tumors express the activated form of the type 1 insulin-like growth factor receptor (IGF1R). Breast cancers are categorized into subtypes based upon hormone and ERRB2 receptor expression and/or gene expression profiling. Even though IGF1R influences tumorigenic phenotypes and drug resistance across all breast cancer subtypes, it has specific expression and function in each. In some subtypes, IGF1R levels correlate with a favorable prognosis, while in others it is associated with recurrence and poor prognosis, suggesting different actions based upon cellular and molecular contexts. In this review, we examine IGF1R expression and function as it relates to breast cancer subtype and therapy-acquired resistance. Additionally, we discuss the role of IGF1R in stem cell maintenance and lineage differentiation and how these cell fate influences may alter the differentiation potential and cellular composition of breast tumors.
Collapse
Affiliation(s)
- Susan M. Farabaugh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - David N. Boone
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian V. Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- *Correspondence: Adrian V. Lee, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, 204 Craft Avenue, Room A412, Pittsburgh, PA 15213, USA
| |
Collapse
|
17
|
Loss of Igfbp7 causes precocious involution in lactating mouse mammary gland. PLoS One 2014; 9:e87858. [PMID: 24505323 PMCID: PMC3913705 DOI: 10.1371/journal.pone.0087858] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/31/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Insulin like growth factors (IGFs) and their binding proteins (IGFBPs) are secreted peptides that play major roles in regulating the normal development and maturation of mammary gland. While Igfbp7 has been shown to decrease breast tumor growth, its role in regulating the normal mammary gland development has not been studied. To this end, we generated Igfbp7-null mice and examined the development and maturation of mammary glands in the virgin, pregnant and lactating animals. RESULTS We report here that loss of Igfbp7 significantly retards mammary gland development in the virgin animals. More significantly, the pregnant Igfpb7-null glands contained fewer alveolar structures and that during lactation these glands exhibit the morphological changes that are associated with involution. The transcriptome profile of the Igfbp7-null glands on the lactation day 3 revealed a distinct involution-related gene signature compared to the lactating WT glands. Interestingly, we found that the lactating Igfbp7-null glands exhibit increased expression of Stat3 and enhanced activation of (phosphorylated) Stat3, combined with decreased expression of Stat5 suggesting that the absence of Igfbp7 accelerates the onset of involution. We also found that in absence of Igfpb7, the lactating glands contain increased Igfbp5 protein along with decreased expression of IGF-1 Receptor and Akt activation. Finally, we show that during the normal course of involution, Igfbp7 expression is significantly decreased in the mammary gland. CONCLUSION Our data suggest that loss of Igfbp7 induces precocious involution possibly through diminished cell survival signals. Our findings identify Igfbp7 as major regulator of involution in the mammary gland.
Collapse
|
18
|
Gajewska M, Zielniok K, Debski B, Motyl T. IGF-I retards proper development of acinar structures formed by bovine mammary epithelial cells via sustained activation of Akt kinase. Domest Anim Endocrinol 2013; 45:111-21. [PMID: 23932581 DOI: 10.1016/j.domaniend.2013.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factor-I is involved in mammary gland development, promoting proliferation and inhibiting apoptosis of mammary epithelial cells (MECs). Mitogenic actions of IGF-I are mainly mediated by the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway. We have found that in the presence of IGF-I bovine BME-UV1 MECs cultured on reconstituted basement membrane form large spheroids with disrupted polarity and no cavity in the center. These cells showed enhanced phosphorylation of Akt, decreased level of cleaved caspase-3, and sustained proliferative activity throughout the 16-d period of 3-dimensional culture. Inhibition of the PI3K/Akt pathway by a specific inhibitor of PI3K, LY294002, resulted in the restoration of the normal acinar phenotype. However, this effect was noted only when LY294002 was added in the second week of 3-dimensional culture, which corresponded with the time of cell cycle arrest and polarity formation under control conditions. Normal development of acini was also obtained when BME-UV1 cells were treated simultaneously with IGF-I and 17β-estradiol. The addition of 17β-estradiol regulated Akt activation, enabling the subsequent initiation of polarization processes. 17β-Estradiol also increased the level of IGFBP-3 protein in MECs cultured on Matrigel in the presence of IGF-I. The presented results indicate important interactions between signaling pathways activated by estrogen and IGF-I, which regulate alveologenesis in bovine mammary gland.
Collapse
Affiliation(s)
- M Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | | | | | | |
Collapse
|
19
|
Barash I. Stat5 in breast cancer: potential oncogenic activity coincides with positive prognosis for the disease. Carcinogenesis 2012; 33:2320-5. [DOI: 10.1093/carcin/bgs362] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
20
|
Vicente J, Llobat L, Viudes-de-Castro M, Lavara R, Baselga M, Marco-Jiménez F. Gestational losses in a rabbit line selected for growth rate. Theriogenology 2012; 77:81-8. [DOI: 10.1016/j.theriogenology.2011.07.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 06/20/2011] [Accepted: 07/11/2011] [Indexed: 11/26/2022]
|
21
|
Role and regulation of autophagy in the development of acinar structures formed by bovine BME-UV1 mammary epithelial cells. Eur J Cell Biol 2011; 90:854-64. [DOI: 10.1016/j.ejcb.2011.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/30/2011] [Accepted: 06/11/2011] [Indexed: 11/18/2022] Open
|
22
|
Dessauge F, Lollivier V, Ponchon B, Bruckmaier R, Finot L, Wiart S, Cutullic E, Disenhaus C, Barbey S, Boutinaud M. Effects of nutrient restriction on mammary cell turnover and mammary gland remodeling in lactating dairy cows. J Dairy Sci 2011; 94:4623-35. [DOI: 10.3168/jds.2010-4012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 05/30/2011] [Indexed: 11/19/2022]
|
23
|
Bonakdar E, Rahmani HR, Edriss MA, Sayed Tabatabaei BE. IGF-I gene polymorphism, but not its blood concentration, is associated with milk fat and protein in Holstein dairy cows. GENETICS AND MOLECULAR RESEARCH 2010; 9:1726-34. [PMID: 20812193 DOI: 10.4238/vol9-3gmr874] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We estimated the allele and genotype frequencies of IGF-I/SnaBI gene polymorphism and the concentration of this protein in Holstein dairy cows. We also examined the association with milk yield (305-day milk yield) and milk components (fat and protein percentage, and 305-day milk protein and fat yield). Blood IGF-I levels were measured and genotyping was performed on 250 Holstein cows of four different herds. In the association studies, traits of interest were analyzed using the GLM procedure of SAS; means of the IGF-I level among genotypes were compared by the LSMeans test. The AB and AA genotypes were the most (0.583-0.661) and least (0.083-0.192) frequent in the herds, respectively; the frequency of the BB genotype ranged from 0.201 to 0.333. The frequency of the A allele ranged from 0.375 to 0.495, while the frequency of the B allele ranged from 0.504 to 0.625, being the dominant allele. The mean level of IGF-I was 107 +/- 22 ng/mL for all groups, without any significant correlation with the production traits. Association of IGF-I/SnaBI genotypes with percentage of fat and protein in the milk was relatively high (P < 0.1 and P < 0.05, respectively); the AB genotype was superior to AA and BB genotypes. We concluded that this marker should be considered for milk component selection in Holstein dairy cattle.
Collapse
Affiliation(s)
- E Bonakdar
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | | | | |
Collapse
|
24
|
Dearth RK, Delgado DA, Hiney JK, Pathiraja T, Oesterreich S, Medina D, Dees WL, Lee AV. Parity-induced decrease in systemic growth hormone alters mammary gland signaling: a potential role in pregnancy protection from breast cancer. Cancer Prev Res (Phila) 2010; 3:312-21. [PMID: 20145191 DOI: 10.1158/1940-6207.capr-09-0074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Early full-term pregnancy is an effective natural protection against breast cancer in both humans and experimental rodents. The protective effect of an early pregnancy is, in part, linked to changes in circulating hormones that are involved in both normal breast development and breast cancer. For example, a reduction in circulating growth hormone (GH) has been shown to protect rats from carcinogen-induced mammary tumors. We examined the ability of a full-term pregnancy to alter the endocrine GH/insulin-like growth factor-I (IGF-I) axis and how this change affected normal mammary gland function in two commonly used rat models (Sprague-Dawley and Wistar Furth). Circulating GH and IGF-I were measured in blood drawn every 30 minutes from parous and age-matched virgin female rats. Mean serum GH levels were significantly decreased (P < 0.01) in parous compared with age-matched virgin rats for both strains. Changes in GH levels were independent of estrous cycle, indicated by a significant (P < 0.05) reduction in circulating levels of GH during estrus and diestrus in both parous strains. Despite the decrease in circulating GH, pituitary GH mRNA levels were unaltered in parous rats. Circulating IGF-I and hepatic IGF-I mRNA were also unaltered by parity in either rat strain. Immunoblot analysis of mammary glands showed decreases in phosphorylation of signal transducer and activator of transcription 5A and Janus-activated kinase 2, suggesting reduced action of GH in the mammary gland. Therefore, although the parity reduction in circulating GH does not affect circulating IGF-I levels, it is possible that reduced GH acts directly at the mammary gland and may play a role in pregnancy protection from breast cancer.
Collapse
Affiliation(s)
- Robert K Dearth
- Breast Center, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Miranda SG, Wang YJ, Purdie NG, Osborne VR, Coomber BL, Cant JP. Selenomethionine stimulates expression of glutathione peroxidase 1 and 3 and growth of bovine mammary epithelial cells in primary culture. J Dairy Sci 2009; 92:2670-83. [PMID: 19448000 DOI: 10.3168/jds.2008-1901] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study examined the localization of cellular glutathione peroxidase (GPx1) and extracellular glutathione peroxidase (GPx3) in lactating mammary tissue and in primary cultures of bovine mammary epithelial cells (BMEC). The effect of selenium as selenomethionine (SeMet) on the growth and viability of BMEC and GPx protein expression and activity were also studied. Single mammary epithelial cells were recovered by serial collagenase/hyaluronidase digestion from lactating bovine mammary tissue and cultured in a low-serum collagen gel system enriched with lactogenic hormones and 0, 10, 20, or 50 nM SeMet. Positive immunostaining with anti-cytokeratin and bovine anti-casein confirmed the epithelial nature and differentiated state of BMEC. Addition of SeMet to media facilitated rapid confluence of BMEC and formation of dome structures. Immunohistochemical and immunocytochemical staining revealed that both GPx1 and GPx3 are synthesized by BMEC and localized in the cytoplasm and nucleus. Up to 50 nM SeMet linearly increased BMEC number and viability over 5 d of culture. Bovine mammary epithelial cells cultured in SeMet-supplemented medium also exhibited markedly elevated GPx activity and linear increases in abundance of GPx1 and GPx3 proteins. It is apparent that SeMet degradation to release Se for synthesis of selenoproteins is carried out by BMEC. Results indicate that bovine mammary epithelial cells express GPx1 and GPx3 in vivo and in vitro; SeMet enhances expression of these selenoproteins in vitro and the growth and viability of BMEC.
Collapse
Affiliation(s)
- S G Miranda
- Department of Animal Science, University of Zulia, Maracaibo, Venezuela 4005
| | | | | | | | | | | |
Collapse
|
26
|
Kleinberg DL, Wood TL, Furth PA, Lee AV. Growth hormone and insulin-like growth factor-I in the transition from normal mammary development to preneoplastic mammary lesions. Endocr Rev 2009; 30:51-74. [PMID: 19075184 PMCID: PMC5393153 DOI: 10.1210/er.2008-0022] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adult female mammary development starts at puberty and is controlled by tightly regulated cross-talk between a group of hormones and growth factors. Although estrogen is the initial driving force and is joined by luteal phase progesterone, both of these hormones require GH-induced IGF-I in the mammary gland in order to act. The same group of hormones, when experimentally perturbed, can lead to development of hyperplastic lesions and increase the chances, or be precursors, of mammary carcinoma. For example, systemic administration of GH or IGF-I causes mammary hyperplasia, and overproduction of IGF-I in transgenic animals can cause the development of usual or atypical hyperplasias and sometimes carcinoma. Although studies have clearly demonstrated the transforming potential of both GH and IGF-I receptor in cell culture and in animals, debate remains as to whether their main role is actually instructive or permissive in progression to cancer in vivo. Genetic imprinting has been shown to occur in precursor lesions as early as atypical hyperplasia in women. Thus, the concept of progression from normal development to cancer through precursor lesions sensitive to hormones and growth factors discussed above is gaining support in humans as well as in animal models. Indeed, elevation of estrogen receptor, GH, IGF-I, and IGF-I receptor during progression suggests a role for these pathways in this process. New agents targeting the GH/IGF-I axis may provide a novel means to block formation and progression of precursor lesions to overt carcinoma. A novel somatostatin analog has recently been shown to prevent mammary development in rats via targeted IGF-I action inhibition at the mammary gland. Similarly, pegvisomant, a GH antagonist, and other IGF-I antagonists such as IGF binding proteins 1 and 5 also block mammary gland development. It is, therefore, possible that inhibition of IGF-I action, or perhaps GH, in the mammary gland may eventually play a role in breast cancer chemoprevention by preventing actions of both estrogen and progesterone, especially in women at extremely high risk for developing breast cancer such as BRCA gene 1 or 2 mutations.
Collapse
Affiliation(s)
- David L Kleinberg
- Neuroendocrine Unit, Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA.
| | | | | | | |
Collapse
|
27
|
Silva LFP, Etchebarne BE, Nielsen MSW, Liesman JS, Kiupel M, VandeHaar MJ. Intramammary infusion of leptin decreases proliferation of mammary epithelial cells in prepubertal heifers. J Dairy Sci 2008; 91:3034-44. [PMID: 18650280 DOI: 10.3168/jds.2007-0761] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High energy intake and excessive body fatness impair mammogenesis in prepubertal ruminants. High energy intake and excessive fatness also increase serum leptin. Our objective was to determine if an infusion of leptin decreases proliferation of mammary epithelial cells of prepubertal heifers in vivo. Ovine leptin at 100 microg/ quarter per d with or without 10 microg of insulin-like growth factor (IGF)-I was infused via the teat canal into mammary glands of prepubertal dairy heifers; contralateral quarters were used as controls. After 7 d of treatment, bromodeoxyuridine was infused intravenously and heifers were slaughtered approximately 2 h later. Tissue from 3 regions of the mammary parenchyma was collected and immunostained for bromodeoxyuridine (BrdU), proliferating cell nuclear antigen (Ki-67), and caspase-3. Leptin decreased the number of mammary epithelial cells in the S-phase of the cell cycle by 48% in IGF-I-treated quarters and by 19% in saline-treated quarters. Leptin did not alter the number of mammary epithelial cells within the cell cycle, as indicated by Ki-67 labeling. Caspase-3 immunostaining within the mammary parenchyma was very low in these heifers, but leptin significantly increased labeling in saline-treated quarters. Leptin enhanced SOCS-3 expression in IGF-I-treated quarters but did not alter SOCS-1 or SOCS-5 expression. We conclude that a high concentration of leptin in the bovine mammary gland reduces proliferation of mammary epithelial cells. The reduced proliferation is accompanied by an increase in SOCS-3 expression, suggesting a possible mechanism for leptin inhibition of IGF-I action. Whether leptin might be a physiological regulator of mammogenesis remains to be determined.
Collapse
Affiliation(s)
- L F P Silva
- Department of Animal Nutrition and Production, University of São Paulo, Pirassununga, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Kleinberg DL, Ruan W. IGF-I, GH, and sex steroid effects in normal mammary gland development. J Mammary Gland Biol Neoplasia 2008; 13:353-60. [PMID: 19034633 DOI: 10.1007/s10911-008-9103-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 11/04/2008] [Indexed: 11/26/2022] Open
Abstract
Although the pubertal surge of estrogen is the immediate stimulus to mammary development, the action of estrogen depends upon the presence of pituitary growth hormone and the ability of GH to stimulate production of IGF-I in the mammary gland. Growth hormone binds to its receptor in the mammary fat pad, after which production of IGF-I mRNA and IGF-I protein occurs. It is likely that IGF-I then works through paracrine means to stimulate formation of TEBs, which then form ducts by bifurcating or trifurcating and extending through the mammary fat pad. By the time pubertal development is complete a tree-like structure of branching ducts fills the rodent mammary fat pad. In addition to requiring IGF-I in order to act, estradiol also directly synergizes with IGF-I to enhance formation of TEBs and ductal morphogenesis. Together they increase IRS-1 phosphorylation and cell proliferation, and inhibit apoptosis. In fact, the entire process of ductal morphogenesis, in oophorectomized IGF-I(-/-) knockout female mice, can occur as a result of the combined actions of estradiol and IGF-I. IGF-I also permits progesterone action in the mammary gland. Together they have been shown to stimulate a form of ductal morphogenesis, which is anatomically different from the kind induced by IGF-I and estradiol. Although both progesterone and estradiol synergize with IGF-I by increasing IGF-I action parameters, there must be other, as yet unknown mechanisms that account for the anatomical differences in the different forms of ductal morphogenesis observed (hyperplasia in response to IGF-I plus estradiol and single layered ducts in response to IGF-I plus progesterone).
Collapse
|
29
|
Annen EL, Fitzgerald AC, Gentry PC, McGuire MA, Capuco AV, Baumgard LH, Collier RJ. Effect of continuous milking and bovine somatotropin supplementation on mammary epithelial cell turnover. J Dairy Sci 2008; 90:165-83. [PMID: 17183085 DOI: 10.3168/jds.s0022-0302(07)72618-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Objectives were to determine effects of continuous milking (CM) and bovine somatotropin (bST) administration on 1) mammary epithelial cell (MEC) proliferation, apoptosis, and ultrastructure during late gestation and early lactation, 2) expression of genes associated with proliferation, and apoptosis in mammary epithelial cells, and 3) milk yield and composition. Second-gestation, first dry-period cows were randomly assigned to either continuous bST throughout late gestation and early lactation (+bST; n = 4) or no bST (-bST; n = 4) administration. Within each animal, udder halves were randomly assigned to CM or a 60-d dry period (control) treatment. Daily milk yield and weekly milk composition were measured during the last 60 d of gestation in CM halves and from 1 to 30 d postpartum for both halves. Mammary biopsies were obtained at -20 +/- 7, -8 +/- 3, +1 +/- 0, +7 +/- 0, and +20 +/- 0 d (mean +/- standard error) relative to parturition. Prepartum half-udder milk yield was greater in +bST cows than in -bST cows (9.9 vs. 8.2 kg/d) and postpartum half-udder milk yields were dramatically reduced in CM halves compared with control halves (10.6 vs. 22.2 kg/d), regardless of bST treatment. Proliferation of MEC was reduced in CM halves at -8 d (2.7 vs. 5.4%). Apoptosis of MEC was elevated during early lactation for d +1 and +7 in control halves, but was only increased at d +1 in CM halves. Turnover of MEC was not affected by bST. Ultrastructure data indicated complete involution of the control half and lactation maintenance in CM glands (d -20). By d -8, control tissue contained alveoli in an immature secretory state, but CM tissue contained both lactating and immature alveoli. Postpartum ultrastructure parameters were similar between halves until d 20 when control tissue was composed of a homogeneous population of lactating alveoli, but CM tissue contained lactating, engorged, and resting alveoli. Expression of CCAAT/enhancer binding protein-beta (CEBP-beta), cyclin D1, and bcl(2) were up-regulated during late gestation, but did not differ between control and CM halves. Expression of alpha-lactalbumin was increased in CM halves during late gestation, but was not different in CM and control tissue after parturition. Other genes evaluated (bax, insulin-like growth factor binding protein 5, ATP-binding cassette 1, and p27) were not differentially expressed at any timepoints evaluated. Results indicate that CM reduced subsequent half-udder milk yield in primiparous cows through altered MEC turnover and secretory capacity. Negative effects of CM on the subsequent lactation were not alleviated by bST supplementation.
Collapse
Affiliation(s)
- E L Annen
- Department of Animal Sciences, University of Arizona, Tucson 85721, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Akkiprik M, Feng Y, Wang H, Chen K, Hu L, Sahin A, Krishnamurthy S, Ozer A, Hao X, Zhang W. Multifunctional roles of insulin-like growth factor binding protein 5 in breast cancer. Breast Cancer Res 2008; 10:212. [PMID: 18710598 PMCID: PMC2575530 DOI: 10.1186/bcr2116] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The insulin-like growth factor axis, which has been shown to protect cells from apoptosis, plays an essential role in normal cell physiology and in cancer development. The family of insulin-like growth factor binding proteins (IGFBPs) has been shown to have a diverse spectrum of functions in cell growth, death, motility, and tissue remodeling. Among the six IGFBP family members, IGFBP-5 has recently been shown to play an important role in the biology of breast cancer, especially in breast cancer metastasis; however, the exact mechanisms of action remain obscure and sometimes paradoxical. An in-depth understanding of IGFBP-5 would shed light on its potential role as a target for breast cancer therapeutics.
Collapse
Affiliation(s)
- Mustafa Akkiprik
- Department of Medical Biology, Marmara University, School of Medicine, 34668 Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Carver KC, Schuler LA. Prolactin Does Not Require Insulin-Like Growth Factor Intermediates but Synergizes with Insulin-Like Growth Factor I in Human Breast Cancer Cells. Mol Cancer Res 2008; 6:634-43. [DOI: 10.1158/1541-7786.mcr-07-2069] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Hadsell D, George J, Torres D. The declining phase of lactation: peripheral or central, programmed or pathological? J Mammary Gland Biol Neoplasia 2007; 12:59-70. [PMID: 17286209 DOI: 10.1007/s10911-007-9038-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
In most species the functional activity of the mammary gland during lactation follows a biphasic developmental pattern. This pattern starts with a rapid increase in milk output that occurs with secretory activation and continues with a more gradual increase until the point of peak lactation is reached. Following this gain-of-function phase, the ability of the gland to produce milk decreases. This decrease occurs even if the lactation is prolonged by the presence of continued suckling stimulus and complete milk removal. This review describes the current state of our knowledge concerning the factors that regulate milk synthesis capacity by the mammary gland during the lactation cycle. The review describes four potential alternatives as mechanisms governing the process, which we refer to as secretory diminution. These alternatives are not presented as mutually exclusive of each other or other possible mechanisms, but are proposed as potential contributing mechanisms.
Collapse
Affiliation(s)
- Darryl Hadsell
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates St., Houston, TX 77030, USA.
| | | | | |
Collapse
|
33
|
Insulin-like growth factors and breast cancer therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 608:101-12. [PMID: 17993235 DOI: 10.1007/978-0-387-74039-3_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite improvements in breast cancer therapy in recent years, additional therapies need to be developed. New therapies may have activity by themselves or may have utility in combination with other agents. Population, preclinical, and basic data suggest the insulin-like growth factor (IGF) system functions to maintain the malignant phenotype in breast cancer. Since the IGFs act via transmembrane tyrosine kinase receptors, targeting of the key receptors could provide a new pathway in breast cancer. In addition, IGF action enhances cell survival, so combination of anti-IGF therapy with conventional cytotoxic drugs could lead to synergistic effects. In this review, we will discuss the rationale for targeting the IGF system, potential methods to disrupt IGF signaling, and identify potential interactions between IGF inhibitors and other anti-tumor strategies. We will also identify important issues to consider when designing clinical trials.
Collapse
|
34
|
Akers RM. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows. J Dairy Sci 2006; 89:1222-34. [PMID: 16537955 DOI: 10.3168/jds.s0022-0302(06)72191-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In recent years, the number of researchers interested in mammary development and mammary function in dairy animals has declined. More importantly this cadre of workers has come to rely more than ever on scientists focused on and funded by breast cancer interests to provide fundamental mechanistic and basic cellular insights. Philosophically and practically this is a risky path to better understand, manipulate, and control a national resource as important as the dairy cow. The efficiency, resourcefulness, and dedication of dairy scientists have mirrored the actions of many dairy producers but there are limits. Many of the applications of research, use of bovine somatotropin, management of transition cows, estrus synchronization techniques, and so on, are based on decades-old scientific principles. Specific to dairy, do rodents or breast cancer cell lines adequately represent the dairy cow? Will these results inspire the next series of lactation-related dairy improvements? These are key unanswered questions. Study of the classic mammogenic and lactogenic hormones has served dairy scientists well. But there is an exciting, and bewildering universe of growth factors, transcription factors, receptors, intracellular signaling intermediates, and extracellular molecules that must ultimately interact to determine the size of the mature udder and the functional capacity of mammary gland in the lactating cow. We can only hope that enough scientific, fiscal, and resource scraps fall from the biomedical research banquet table to allow dairy-focused mammary gland research to continue.
Collapse
Affiliation(s)
- R M Akers
- Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg, 24061, USA.
| |
Collapse
|
35
|
Beattie J, Allan GJ, Lochrie JD, Flint DJ. Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis. Biochem J 2006; 395:1-19. [PMID: 16526944 PMCID: PMC1409685 DOI: 10.1042/bj20060086] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 01/30/2006] [Indexed: 11/17/2022]
Abstract
The six members of the insulin-like growth factor-binding protein family (IGFBP-1-6) are important components of the IGF (insulin-like growth factor) axis. In this capacity, they serve to regulate the activity of both IGF-I and -II polypeptide growth factors. The IGFBPs are able to enhance or inhibit the activity of IGFs in a cell- and tissue-specific manner. One of these proteins, IGFBP-5, also has an important role in controlling cell survival, differentiation and apoptosis. In this review, we report on the structural and functional features of the protein which are important for these effects. We also examine the regulation of IGFBP-5 expression and comment on its potential role in tumour biology, with special reference to work with breast cancer cells.
Collapse
Key Words
- extracellular matrix (ecm)
- glycosaminoglycan
- insulin-like growth factor-i (igf-i)
- insulin-like growth factor-binding protein 5 (igfbp-5)
- mammary gland
- proteolysis
- adam, adisintegrin and metalloprotease
- ap-2, activator protein 2
- cat, chloramphenicol acetyltransferase
- cbp-4, c-terminus of insulin-like growth factor-binding protein 4 (residues 151–232)
- c/ebp, ccaat/enhancer-binding protein
- ecm, extracellular matrix
- er, oestrogen receptor
- erk1/2, extracellular-signal-regulated protein kinase 1/2
- fhl-2, four-and-a-half lim domain 2
- gag, glycosaminoglycan
- gh, growth hormone
- igf, insulin-like growth factor
- igfbp, igf-binding protein
- igf-ir, igf-i receptor
- igf-iir, igf-ii receptor
- ir, insulin receptor
- irs, ir substrate
- mapk, mitogen-activated protein kinase
- nbp-4, n-terminus of igfbp-4 (residues 3–82)
- oe2, oestradiol
- op-1, osteogenic protein-1
- opn, osteopontin
- pai-1, plasminogen activator inhibitor-1
- papp, pregnancy-associated plasma protease
- pge2, prostaglandin e2
- psmc, porcine smooth-muscle cell
- ra, retinoic acid
- rassf1c, isoform c of the ras association family 1 protein group
- rt, reverse transcription
- spr, surface plasmon resonance
- tpa, tissue plasminogen activator
- tsp-1, thrombospondin-1
- vn, vitronectin
Collapse
Affiliation(s)
- James Beattie
- Hannah Research Institute, Ayr KA6 5HL, Scotland, UK.
| | | | | | | |
Collapse
|
36
|
Monaco MH, Gronlund DE, Bleck GT, Hurley WL, Wheeler MB, Donovan SM. Mammary Specific Transgenic Over-expression of Insulin-like Growth Factor-I (IGF-I) Increases Pig Milk IGF-I and IGF Binding Proteins, with no Effect on Milk Composition or Yield. Transgenic Res 2005; 14:761-73. [PMID: 16245167 DOI: 10.1007/s11248-005-7219-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 05/11/2005] [Indexed: 10/25/2022]
Abstract
IGF-I regulates lactation by stimulating mammary mitogenesis, inhibiting apoptosis, and partially mediating the effects of growth hormone on lactogenesis. Herein, lactation performance during first and second parity was assessed in transgenic swine (TG) that over-expressed human IGF-I in milk under the control of the bovine alpha-lactalbumin promoter, regulatory regions and signal peptide coding sequence. Milk samples were collected throughout lactation (farrowing to d24) from TG sows and non-transgenic littermates (CON) and IGF-I, IGF-II, and IGFBP determined. Colostral (<24 h postpartum) IGF-I content was 26-fold greater (p<0.001) in TG sows (949+/- 107 microg/L; range 228-1,600 microg/L) than CON (36+/-17.8 microg/L) and was 50- to 90-fold greater (p< 0.001) in mature milk (d2-24 postpartum). There was no effect of parity on milk IGF-I content. Milk IGF-II concentration was unaffected by IGF-I over-expression. Low molecular weight IGFBP (IGFBP-2 and -5) in the milk of TG sows were higher (p=0.02) than CON in the early postpartum period, but did not differ in mature milk. Milk yield, determined by weigh-suckle-weigh, was similar in TG and CON as was litter weight gain. Milk nutrient composition was not significantly affected by IGF over-expression. Thus, mammary specific transgenic over-expression of IGF-I significantly increased milk IGF-I and IGFBP content, but did not impact lactation performance in swine.
Collapse
Affiliation(s)
- Marcia H Monaco
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hadsell DL, Torres DT, Lawrence NA, George J, Parlow AF, Lee AV, Fiorotto ML. Overexpression of des(1-3) insulin-like growth factor 1 in the mammary glands of transgenic mice delays the loss of milk production with prolonged lactation. Biol Reprod 2005; 73:1116-25. [PMID: 16079306 DOI: 10.1095/biolreprod.105.043992] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During prolonged lactation, the mammary gland gradually loses the capacity to produce milk. In agricultural species, this decline can be slowed by administration of exogenous growth hormone (GH), which is believed to act through insulin-like growth factor 1 (IGF1). Our previous work demonstrated delayed natural mammary gland involution in des(1-3)IGF1-overexpressing transgenic mice (Tg[Wap-des{1-3}IGF1]8266 Jmr), hereafter referred to as WAP-DES mice. The present study tested the hypothesis that overexpressed des(1-3)IGF1 would delay the loss of milk production during prolonged lactation. Accordingly, we examined lactational performance in WAP-DES mice by artificially prolonging lactation with continual litter cross-fostering. Over time, lactational capacity and mammary development declined in both WAP-DES and control mice. However, the rate of decline was 40% slower in WAP-DES mice. Mammary cell apoptosis increased by 3-fold in both groups during prolonged lactation but was not different between genotypes. Plasma concentrations of murine IGF1 were decreased in WAP-DES mice, while those of the transgenic human IGF1 were elevated during prolonged lactation. Phosphorylation of the mammary IGF1 receptor was increased in the WAP-DES mice, but only during prolonged lactation. Plasma prolactin decreased with prolonged lactation in nontransgenic mice but remained high in WAP-DES mice. The WAP-DES mice maintained a higher body mass and a greater lean body mass during prolonged lactation. These data support the conclusion that overexpressed des(1-3)IGF1 enhanced milk synthesis and mammary development during prolonged lactation through localized and direct activation of the mammary gland IGF1 receptor and through systemic effects on prolactin secretion and possibly nutrient balance.
Collapse
Affiliation(s)
- Darryl L Hadsell
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Vangroenweghe F, Lamote I, Burvenich C. Physiology of the periparturient period and its relation to severity of clinical mastitis. Domest Anim Endocrinol 2005; 29:283-93. [PMID: 15950428 DOI: 10.1016/j.domaniend.2005.02.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 02/16/2005] [Accepted: 02/19/2005] [Indexed: 10/25/2022]
Abstract
Incidence of clinical mastitis is highest at drying off and during the periparturient period. Intramammary Escherichia coli infection in high-yielding cows can show a severe clinical response during the early post-partum period. Severe clinical mastitis is mainly determined by cow factors, in particular the functionality of the circulating polymorphonuclear leukocytes (PMN) which are recruited to the mammary gland during the inflammatory reaction. There is a co-incidence between the periods of highest incidence of clinical mastitis and specific structural changes in the mammary gland. During the periparturient period, marked changes in various systemic and local hormones are related to the secretory state of the mammary gland epithelium (lactogenesis). Estrogen and progesterone induce proliferation of the mammary epithelium throughout gestation and act as survival factors in different tissues, although conflicting data have been reported on their effect on PMN oxidative burst. Somatotropin (STH), responsible for maintenance of lactation in ruminants, has been shown to positively influence innate immunity and a more rapid recovery in milk production of severely affected animals. The concentration of STH, and as a result also IGF-I levels is, however, quite low during early lactation. IGF-I and its regulating binding proteins are associated with cell survival, modulation of apoptosis and functionality of PMN in humans. During early lactation, bio-availability of IGF-I is decreased, which might reduce its stimulating effects on PMN quality and functionality. PRL, concomitantly known as a lactogenic hormone and an immunoregulatory cytokine, has also been associated with modulation of the immune system. It is expected that in periparturient animals, hormone changes could interfere with the immune response and the clinical response of mastitis.
Collapse
Affiliation(s)
- F Vangroenweghe
- Milk Secretion and Mastitis Research Center, Department of Physiology-Biochemistry-Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | |
Collapse
|
39
|
Abstract
More efficient and economical production systems are needed to improve the sustainability of dairy farms. One concept to consider is using perennial cows. Perennial cows are those that maintain a relatively high milk production for >or=2 yr without going through the typical dry period followed by calving. Farm records show that some cows have produced over 20 kg/d after 4 yr of continuous lactation. A farm simulation model was used to evaluate the long-term performance, environmental impact, and economics of a conceptual perennial cow production system on a typical dairy farm in Pennsylvania. Compared with a traditional 100-cow farm with replacement heifers produced on the farm, a perennial herd of 100 cows and purchased replacements provided environmental benefit but sustained a substantial economic loss. However, increasing the perennial herd to 128 cows better utilized the feed produced on the farm. Compared with the traditional 100-cow farm, use of the perennial 128-cow herd reduced supplemental protein and mineral feed purchases by 38%, increased annual milk sales by 21%, reduced nitrogen losses by 17%, maintained a phosphorus balance, and increased annual net return to farm management by 3200 dollars. A traditional 120-cow dairy farm with purchased replacements also used a similar amount of farm-produced feed. Compared with this option, the farm with 128 perennial cows reduced protein and mineral feed purchases by 36%, maintained similar annual milk sales, increased manure production by 7%, reduced N losses by 10%, and increased annual net return by 12,700 dollars. The economic feasibility of the perennial-cow dairy farm was very sensitive to the milk production maintained by the perennial herd and market prices for milk and perennial replacement animals. The analysis was relatively insensitive to the assumed useful life of perennial cows as long as they could be maintained in the herd for at least 3 yr. Thus, a perennial cow production system can improve the economic and environmental sustainability of a traditional dairy farm if a similar level in annual milk production per cow can be maintained.
Collapse
Affiliation(s)
- C A Rotz
- USDA/Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA 16802, USA.
| | | | | |
Collapse
|
40
|
Donovan S, Hartke J, Monaco M, Wheeler M. Insulin-like Growth Factor-I and Piglet Intestinal Development. J Dairy Sci 2004. [DOI: 10.3168/jds.s0022-0302(04)70060-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Hadsell DL. Genetic Manipulation of Mammary Gland Development and Lactation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 554:229-51. [PMID: 15384580 DOI: 10.1007/978-1-4757-4242-8_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The mammalian genome is believed to contain some 30,000 to 40,000 different genes. Of these an estimated 42% have no known function. Genetically engineered mouse models (GEMM) have been a powerful tool available for determining gene function in vivo. In the mammary gland, a variety of genetic engineering approaches have been applied successfully to understanding the importance of specific gene products to mammary gland development and lactation. Our own laboratory has applied genetically engineered mice to facilitate understanding of the regulation of mammary gland development and lactation by insulin-like growth factors (IGF) and by the transcription factor, upstream stimulatory factor (USF-2). Our studies on transgenic mice that overexpress IGF-I have demonstrated the importance of IGF-dependent signaling pathways to maintenance of mammary epithelial cells during the declining phase of lactation. Our analysis of early developmental processes in mammary tissue from mice that carry a targeted mutation in the IGF-I receptor gene suggests that IGF-dependent stimulation of cell cycle progression is more important to early mammary gland development than potential antiapoptotic effects. Lastly, our studies on mice that carry a targeted mutation of the Usf2 gene have demonstrated that this gene is necessary for normal lactation and have highlighted the importance of this gene to the maintenance of protein synthesis. These studies, as well as studies of others, have highlighted both the strengths and limitations inherent in the use of GEMM. Limitations serve as the driving force behind development of new experimental strategies and genetic engineering schemes that will allow for a full understanding of gene function within the mammary gland.
Collapse
Affiliation(s)
- Darryl L Hadsell
- The USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
42
|
Naylor MJ, Ginsburg E, Iismaa TP, Vonderhaar BK, Wynick D, Ormandy CJ. The neuropeptide galanin augments lobuloalveolar development. J Biol Chem 2003; 278:29145-52. [PMID: 12759342 DOI: 10.1074/jbc.m303746200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammary lobuloalveolar development during pregnancy is controlled by ovarian sex steroids and pituitary prolactin release. In organ culture these hormones are incapable of reproducing the density and size of lobuloalveoli seen in mice, suggesting the existence of other undiscovered factors. We showed previously that galanin knockout mice fail to lactate sufficiently for pup survival following their first pregnancy. Here we demonstrate that prolactin treatment of galanin knockout mice allows pup survival but does not completely rescue lobuloalveolar development or reduced milk protein expression. When galanin was used in combination with prolactin in mammary organ culture, larger and more numerous lobules were produced than with prolactin alone. Galanin alone produced sustained activation of STAT5a and the induction of milk protein expression but did not induce lobulogenesis. Examination of the transcriptional interaction between galanin and prolactin using oligonucleotide microarrays demonstrated synergistic and antagonistic modes of interaction between these hormones. These data establish a new role for galanin as a hormone augmenting mammary development during pregnancy in concert with prolactin.
Collapse
Affiliation(s)
- Matthew J Naylor
- Development Group, Cancer Research Program and Neurobiology Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Capuco AV, Ellis SE, Hale SA, Long E, Erdman RA, Zhao X, Paape MJ. Lactation persistency: Insights from mammary cell proliferation studies. J Anim Sci 2003; 81 Suppl 3:18-31. [PMID: 15000403 DOI: 10.2527/2003.81suppl_318x] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A persistent lactation is dependent on maintaining the number and activity of milk secreting cells with advancing lactation. When dairy cows are milked twice daily, the increase in milk yield from parturition to peak lactation is due to increased secretory activity per cell rather than to accretion of additional epithelial cells. After peak lactation, declining milk yield is due to loss of mammary epithelial cells by apoptosis. During lactation, only 0.3% of mammary cells proliferate in a 24-h period. Yet this proliferative rate is sufficient to replace most mammary epithelial cells by the end of lactation. Management practices can influence lactation persistency. Administration of bovine somatotropin may enhance persistency by increasing cell proliferation and turnover, or by reducing the rate of apoptosis. Increased photoperiod may also increase persistency of lactation by mechanisms that are as yet undefined. Increased milking frequency during the first weeks of lactation increases milk yield, even after return to less frequent milking, with increases of approximately 8% over the entire lactation. A mammary cell proliferation response to frequent milking during early lactation appears to be involved. Conversely, advanced pregnancy, infrequent milking, and mastitis increase death of epithelial cells by apoptosis. Regulation of mammary cell renewal provides a key to increasing persistency. Investigations to characterize epithelial cells that serve as the proliferative population in the bovine mammary gland have been initiated. Epithelial cells that stain lightly in histological sections are evident through all phases of mammary development and secretion and account for nearly all proliferation in the prepubertal gland. Characterization of these cells may provide a means to regulate mammary cell proliferation and thus to enhance persistency, reduce the effects of mastitis, and decrease the necessity for a dry period.
Collapse
Affiliation(s)
- A V Capuco
- Gene Evaluation and Mapping Laboratory, Animal and Natural Resources Institute, USDA, ARS, Beltsville, MD 20705, USA.
| | | | | | | | | | | | | |
Collapse
|