1
|
Bierworth RM, Ribeiro GO, Terry SA, Malmuthuge N, Penner GB, McKinnon JJ, Hucl P, Randhawa H, Beauchemin KA, Stanford K, Schwartzkopf-Genswein K, Yang WZ, Gruninger R, Guan LL, Gibb D, McAllister TA. High deoxynivalenol and ergot alkaloid levels in wheat grain: effects on growth performance, carcass traits, rumen fermentation, and blood parameters of feedlot cattle. Mycotoxin Res 2024; 40:401-417. [PMID: 38698149 PMCID: PMC11258187 DOI: 10.1007/s12550-024-00534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024]
Abstract
This study was designed to assess the impacts of a mixture of deoxynivalenol (DON) and ergot alkaloids (EAs) on growth performance, rumen function, blood parameters, and carcass traits of feedlot cattle. Forty steers (450 ± 6.0 kg) were stratified by weight and randomly allocated to 1 of 4 treatments; control-low (CON-L), control-high (CON-H) which contained low or high wheat screenings that lacked mycotoxins at the same level as the mycotoxin-low (MYC-L; 5.0 mg/kg DON, 2.1 mg/kg EA), and mycotoxin-high (MYC-H: 10 mg/kg DON, 4.2 mg/kg EA) diets that included wheat screening with mycotoxins. Steers were housed in individual pens for a 112-day finishing trial. Intake was 24.8% lower (P < 0.001) for MYC steers compared to CON steers. As a result, average daily gains of MYC steers were 42.1% lower (P < 0.001) than CON steers. Gain to feed ratio was also lower (P < 0.001) for MYC steers compared to CON steers. Platelets, alanine aminotransferase, globulins, and blood urea nitrogen were lower (P ≤ 0.008), and lymphocytes, glutathione peroxidase activity (GPx), and interleukin-10 (IL-10) were elevated (P ≤ 0.002) in MYC steers compared to CON steers. Hot carcass weights and backfat thickness were reduced (P < 0.001) in MYC steers, resulting in leaner (P < 0.001) carcasses and higher (P < 0.007) meat yield compared to CON steers. Results suggest that a mixture of DON and EAs negatively impacted health, performance, and carcass traits of feedlot steers, with the majority of this response likely attributable to EAs. However, more research is needed to distinguish the relative contribution of each mycotoxin to the specific responses observed.
Collapse
Affiliation(s)
- R M Bierworth
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - G O Ribeiro
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - S A Terry
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - N Malmuthuge
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - G B Penner
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - J J McKinnon
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - P Hucl
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - H Randhawa
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - K A Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - K Stanford
- Department of Biological Sciences, University of Lethbridge, Alberta, T1K 3M4, Canada
| | - K Schwartzkopf-Genswein
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - W Z Yang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - R Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada
| | - L L Guan
- Department of Agricultural Food and Nutritional Science, Faculty of Agricultural, Life, and Environmental Sciences, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - D Gibb
- Gowan's Feed Consulting, Raymond, AB, T0K 2S0, Canada
| | - T A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, T1K 4B1, Canada.
| |
Collapse
|
2
|
Llada IM, Mote RS, Hill NS, Lourenco JM, Jones DP, Suen G, Ross MK, Filipov NM. Ruminal ergovaline and volatile fatty acid dynamics: Association with poor performance and a key growth regulator in steers grazing toxic tall fescue. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104354. [PMID: 38151218 DOI: 10.1016/j.etap.2023.104354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
Fescue toxicosis (FT) is produced by an ergot alkaloid (i.e., ergovaline [EV])-producing fungus residing in toxic fescue plants. Associations between EV, decreased weight gain and ruminal volatile fatty acids are unclear. Feces, rumen fluid, and blood were collected from 12 steers that grazed non-toxic (NT) or toxic (E +) fescue for 28 days. The E + group exhibited decreased propionate (P), increased acetate (A), and increased ruminal A:P ratio, with similar trends in feces. Plasma GASP-1 (G-Protein-Coupled-Receptor-Associated-Sorting-Protein), a myostatin inhibitor, decreased (day 14) only in E + steers. Ergovaline was present only in E + ruminal fluid and peaked on day 14. The lower ruminal propionate and higher A:P ratio might contribute to FT while reduced GASP-1 might be a new mechanism linked to E + -related weight gain reduction. Day 14 ergovaline zenith likely reflects ruminal adaptations favoring EV breakdown and its presence only in rumen points to local, rather than systemic effects.
Collapse
Affiliation(s)
- I M Llada
- Interdisciplinary Toxicology Program, United States; Department of Physiology and Pharmacology, United States
| | - R S Mote
- Interdisciplinary Toxicology Program, United States; Department of Physiology and Pharmacology, United States
| | - N S Hill
- Department of Crop and Soil Sciences, United States
| | - J M Lourenco
- Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - D P Jones
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, GA, United States
| | - G Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - M K Ross
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - N M Filipov
- Interdisciplinary Toxicology Program, United States; Department of Physiology and Pharmacology, United States.
| |
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Gropp J, Mulder P, Oswald IP, Woutersen R, Gómez Ruiz JÁ, Rovesti E, Hoogenboom L(R. Risks for animal health related to the presence of ergot alkaloids in feed. EFSA J 2024; 22:e8496. [PMID: 38264299 PMCID: PMC10804272 DOI: 10.2903/j.efsa.2024.8496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
The European Commission requested EFSA to provide an update of the 2012 Scientific Opinion of the Panel on Contaminants in the Food Chain (CONTAM) on the risks for animal health related to the presence of ergot alkaloids (EAs) in feed. EAs are produced by several fungi of the Claviceps and Epichloë genera. This Opinion focussed on the 14 EAs produced by C. purpurea (ergocristine, ergotamine, ergocornine, α- and β-ergocryptine, ergometrine, ergosine and their corresponding 'inine' epimers). Effects observed with EAs from C. africana (mainly dihydroergosine) and Epichloë (ergovaline/-inine) were also evaluated. There is limited information on toxicokinetics in food and non-food producing animals. However, transfer from feed to food of animal origin is negligible. The major effects of EAs are related to vasoconstriction and are exaggerated during extreme temperatures. In addition, EAs cause a decrease in prolactin, resulting in a reduced milk production. Based on the sum of the EAs, the Panel considered the following as Reference Points (RPs) in complete feed for adverse animal health effects: for pigs and piglets 0.6 mg/kg, for chickens for fattening and hens 2.1 and 3.7 mg/kg, respectively, for ducks 0.2 mg/kg, bovines 0.1 mg/kg and sheep 0.3 mg/kg. A total of 19,023 analytical results on EAs (only from C. purpurea) in feed materials and compound feeds were available for the exposure assessment (1580 samples). Dietary exposure was assessed using two feeding scenarios (model diets and compound feeds). Risk characterisation was done for the animals for which an RP could be identified. The CONTAM Panel considers that, based on exposure from model diets, the presence of EAs in feed raises a health concern in piglets, pigs for fattening, sows and bovines, while for chickens for fattening, laying hens, ducks, ovines and caprines, the health concern related to EAs in feed is low.
Collapse
|
4
|
Ferguson TD, Vanzant ES, McLeod KR. Endophyte Infected Tall Fescue: Plant Symbiosis to Animal Toxicosis. Front Vet Sci 2022; 8:774287. [PMID: 35004925 PMCID: PMC8740028 DOI: 10.3389/fvets.2021.774287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Endophyte-infected fescue is a major cool season forage used for livestock production in the United States and through other areas of the world. A unique aspect of this forage resource is the symbiotic relationship with an endophytic fungus (Epichloë coenophiala) that has detrimental impact on herbivores due to toxic ergot alkaloids. Research over the past 50 years has unveiled details regarding this symbiotic relationship. This review focuses on the origin of tall fescue in the United States and the consequences of its wide-spread utilization as a livestock forage, along with the discovery and toxicodynamics of ergot alkaloids produced by E. coenophiala. The majority of past ergot alkaloid research has focused on observing phenotypic changes that occur in livestock affected by ergot alkaloids, but recent investigation of the metabolome, transcriptome, and proteome have shown that fescue toxicity-related illnesses are much more complex than previous research suggests.
Collapse
Affiliation(s)
- Taylor D Ferguson
- Ruminant Nutrition Laboratory, Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Eric S Vanzant
- Ruminant Nutrition Laboratory, Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Kyle R McLeod
- Ruminant Nutrition Laboratory, Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
5
|
Antifeedant Effects and Repellent Activity of Loline Alkaloids from Endophyte-Infected Tall Fescue against Horn Flies, Haematobia irritans (Diptera: Muscidae). Molecules 2021; 26:molecules26040817. [PMID: 33557353 PMCID: PMC7915221 DOI: 10.3390/molecules26040817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
Haematobia irritans is an obligate bloodsucking ectoparasite of cattle and is the global major pest of livestock production. Currently, H. irritans management is largely dependent upon broad-spectrum pesticides, which lately has led to the development of insecticide resistance. Thus, alternative control methods are necessary. Endophyte-infected grasses have been studied as an alternative due to their capability to biosynthesize alkaloids associated with anti-insect activities. Thus, the main aim of this study was to evaluate the antifeedant and repellent activity of lolines obtained from endophyte-infected tall fescue against H. irritans adults in laboratory conditions. The alkaloid extract (ALKE) was obtained by acid–base extraction. N-formyl loline (NFL) and N-acetyl loline (NAL) were isolated by preparative thin layer chromatography (pTLC) and column chromatography (CC), and the loline was prepared by acid hydrolysis of a NFL/NAL mixture. Loline identification was performed by gas chromatography coupled to mass spectrometry (GC/MS). Feeding behavior was evaluated by a non-choice test, and olfactory response was evaluated using a Y-tube olfactometer. Accordingly, all samples showed antifeedant activities. NFL was the most antifeedant compound at 0.5 µg/µL and 1.0 µg/µL, and it was statistically equal to NAL but different to loline; however, NAL was not statistically different to loline. NFL and NAL at 0.25 µg/µL were more active than loline. All samples except loline exhibited spatial repellency in the olfactometer. Thus, the little or non-adverse effects for cattle and beneficial activities of those lolines make them suitable candidates for horn fly management.
Collapse
|
6
|
Mote RS, Filipov NM. Use of Integrative Interactomics for Improvement of Farm Animal Health and Welfare: An Example with Fescue Toxicosis. Toxins (Basel) 2020; 12:toxins12100633. [PMID: 33019560 PMCID: PMC7600642 DOI: 10.3390/toxins12100633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Rapid scientific advances are increasing our understanding of the way complex biological interactions integrate to maintain homeostatic balance and how seemingly small, localized perturbations can lead to systemic effects. The ‘omics movement, alongside increased throughput resulting from statistical and computational advances, has transformed our understanding of disease mechanisms and the multi-dimensional interaction between environmental stressors and host physiology through data integration into multi-dimensional analyses, i.e., integrative interactomics. This review focuses on the use of high-throughput technologies in farm animal research, including health- and toxicology-related papers. Although limited, we highlight recent animal agriculture-centered reports from the integrative multi-‘omics movement. We provide an example with fescue toxicosis, an economically costly disease affecting grazing livestock, and describe how integrative interactomics can be applied to a disease with a complex pathophysiology in the pursuit of novel treatment and management approaches. We outline how ‘omics techniques have been used thus far to understand fescue toxicosis pathophysiology, lay out a framework for the fescue toxicosis integrome, identify some challenges we foresee, and offer possible means for addressing these challenges. Finally, we briefly discuss how the example with fescue toxicosis could be used for other agriculturally important animal health and welfare problems.
Collapse
|
7
|
Trotta RJ, Harmon DL, Klotz JL. Interaction of ergovaline with serotonin receptor 5-HT2A in bovine ruminal and mesenteric vasculature. J Anim Sci 2019; 96:4912-4922. [PMID: 30476153 DOI: 10.1093/jas/sky346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/21/2018] [Indexed: 11/13/2022] Open
Abstract
Ergot alkaloids from endophyte-infected (Epichloë coenophiala) tall fescue (Lolium arundinaceum) induce vasoconstriction. Previous work has shown that serotonin receptor subtype, 5HT2A, is present in bovine ruminal (R) and mesenteric (M) vasculature, plays a role in vasoconstriction, and could be influenced by ergot alkaloids. To determine the influence of ergot alkaloids on 5HT2A, the vasoactivity of an agonist selective for 5HT2A, (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl) methylamine HCl (TCB-2), was evaluated using bovine ruminal and mesenteric arteries and veins (RA, RV, MA, MV) that were exposed to ergovaline (ERV) prior to or during the TCB-2 additions. Ruminal and mesenteric blood vessel segments were collected, cleaned, and cut into 2- to 3-mm cross-sections. Vessel segments were incubated in Krebs-Henseleit buffer containing 0, 0.01 or 1 µM ERV for 2 h prior to TCB-2 dose response or exposed to ERV concentrations simultaneously during TCB-2 dose response. For the dose response portion of the study, vessels were suspended in a multimyograph containing 5 mL of continuously oxygenated Krebs-Henseleit buffer and equilibrated to 1 g tension for 90 min. Vessels were exposed to increasing concentrations of TCB-2 every 15 min and contractile response data were normalized as a percentage of the maximum contractile response induced by 120 mM KCl reference. Analysis of variance was evaluated separately for each vessel and each ERV exposure experiment using the mixed models procedure of SAS for effects of TCB-2 and ERV concentrations. All blood vessels with previous ERV exposure had significantly lower contractile responses to TCB-2 (P < 0.01). All blood vessels with simultaneous exposure to 1 µM ERV had higher (P < 0.01) contractile responses at lower concentrations of TCB-2. Simultaneous ERV addition at 1 × 10-4 M TCB-2 did not affect contractility of RV, MA, MV (P > 0.05), but decreased contractility of RA (P < 0.01). These results indicate that ergopeptine alkaloid exposure influences contractility of bovine ruminal and mesenteric blood vessels through serotonin receptor subtype 5HT2A by acting as both an agonist and antagonist. Additional work is needed to determine if ergot alkaloids like ERV simply occupy receptor binding sites competitively, or influence receptor internalization to cause the observed divergent responses.
Collapse
Affiliation(s)
- Ronald J Trotta
- Department of Animal and Food Science, University of Kentucky, Lexington
| | - David L Harmon
- Department of Animal and Food Science, University of Kentucky, Lexington
| | - James L Klotz
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY
| |
Collapse
|
8
|
Stanford K, Swift ML, Wang Y, McAllister TA, McKinnon J, Blakley B, Chaves AV. Effects of Feeding a Mycotoxin Binder on Nutrient Digestibility, Alkaloid Recovery in Feces, and Performance of Lambs Fed Diets Contaminated with Cereal Ergot. Toxins (Basel) 2018; 10:toxins10080312. [PMID: 30071666 PMCID: PMC6115947 DOI: 10.3390/toxins10080312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/05/2018] [Accepted: 07/30/2018] [Indexed: 11/16/2022] Open
Abstract
As contamination with cereal ergot has been increasing in western Canada, this study evaluated impacts of feeding a mycotoxin binder (Biomin® II; BB) on nutrient digestibility, alkaloid recovery in feces, and lamb growth performance. Forty-eight ram lambs (25.9 ± 1.4 kg) were randomly assigned to one of four barley-based diets: Control (C), no added alkaloids, Control + BB fed at 30 g/head per day (CBB); Ergot, 2564 ppb total R + S epimers (E); Ergot + BB, 2534 ppb R + S epimers (EBB). Lambs were fed ab libitum for up to 11 weeks until slaughter at >46 kg live weight. Both average daily gain (ADG) and gain/feed ratio were greater (p < 0.01) for lambs fed C and CBB diets as compared with those containing added ergot, although dry matter intake was not affected by dietary ergot or BB. Serum prolactin concentrations were two times higher in EBB- compared with E-fed lambs (p < 0.05), although both were lower than in C or CBB (p < 0.001) lambs. Rectal temperatures were greater in lambs receiving dietary ergot (p ≤ 0.001) than in C- and CBB-fed lambs. In a digestibility study using eight ram lambs, treatment with BB increased neutral detergent fiber (NDF) digestibility (p = 0.01). Nitrogen retention (g) was greater (p < 0.05) for lambs receiving C or CBB compared with ergot-contaminated diets. Feces of EBB lambs had 38.5% greater (p < 0.001) recovery of alkaloids compared with those fed E. Based on sparing of prolactin, BB may reduce impacts of ergot alkaloids by increasing their excretion in feces. Accordingly, concentrations of dietary alkaloids, which would not harm sheep, would be increased by feeding BB.
Collapse
Affiliation(s)
- Kim Stanford
- Livestock Research Section, Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada.
| | - Mary Lou Swift
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada.
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada.
| | - John McKinnon
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| | - Barry Blakley
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Alex V Chaves
- School of Life and Environmental Sciences, University of Sydney, Sydney 2006, NSW, Australia.
| |
Collapse
|
9
|
Coufal-Majewski S, Stanford K, McAllister T, Wang Y, Blakley B, McKinnon J, Chaves AV. Effects of pelleting diets containing cereal ergot alkaloids on nutrient digestibility, growth performance and carcass traits of lambs. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Harlow BE, Goodman JP, Lynn BC, Flythe MD, Ji H, Aiken GE. Ruminal tryptophan-utilizing bacteria degrade ergovaline from tall fescue seed extract. J Anim Sci 2017; 95:980-988. [PMID: 28380578 DOI: 10.2527/jas.2016.1128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objectives of this study were to evaluate degradation of ergovaline in a tall fescue [ (Schreb.) Darbysh.] seed extract by rumen microbiota ex vivo and to identify specific bacteria capable of ergovaline degradation in vitro. Rumen cell suspensions were prepared by harvesting rumen fluid from fistulated wether goats ( = 3), straining, and differential centrifugation. Suspensions were dispensed into anaerobic tubes with added Trypticase with or without extract (∼10 μg kg ergovaline). Suspensions were incubated for 48 h at 39°C. Samples were collected at 0, 24, and 48 h for ergovaline analysis and enumeration of hyper-ammonia producing (HAB) and tryptophan-utilizing bacteria. Ergovaline values were analyzed by repeated measures using the mixed procedure of SAS. Enumeration data were log transformed for statistical analysis. When suspensions were incubated with extract, 11 to 15% of ergovaline disappearance was observed over 48 h ( = 0.02). After 24 h, suspensions with added extract had 10-fold less HAB than controls ( = 0.04), but treatments were similar by 48 h ( = 1.00). However, after 24 h and 48 h, suspensions with extract had 10-fold more tryptophan-utilizing bacteria ( < 0.01) that were later isolated and identified by their 16S RNA gene sequence as . The isolates and other known rumen pure cultures ( JB1, B159, HD4, B, F, MD1, SR) were evaluated for the ability to degrade ergovaline in vitro. Pure culture cell suspensions were incubated as described above and samples were taken at 0 and 48 h for ergovaline analysis. Data were analyzed using the ANOVA procedure of SAS. All HAB, including the isolates, tested degraded ergovaline (54 to 75%; < 0.05). B14 was also able to degrade ergovaline but to a lesser capacity (12%; < 0.05), but all other bacteria tested did not degrade ergovaline. The results of this study indicate which rumen bacteria may play an important role in ergovaline degradation and that microbiological strategies for controlling their activity could have ramifications for fescue toxicosis and other forms of ergotism in ruminants.
Collapse
|
11
|
Klotz JL. BILL E. KUNKLE INTERDISCIPLINARY BEEF SYMPOSIUM: Physiologic effects of ergot alkaloids: What happens when excretion does not equal consumption? J Anim Sci 2016; 93:5512-21. [PMID: 26641161 DOI: 10.2527/jas.2015-9261] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Increased persistence of tall fescue () infested with an endophytic fungus, (formerly ), in forage-based agriculture has led to increased effort in understanding the negative effects caused by consumption of ergot alkaloids by animals consuming this forage. Ergot alkaloids have been shown to have an extremely short plasma half-life, but this does not necessarily equate to total clearance. Studies that measured consumption and excretion of alkaloids have demonstrated that in the case of ergovaline, less is excreted than is consumed. The fate of ergot alkaloids that leave circulation but are not excreted is not well understood. Consequently, these "alkaloid balance studies" have led to speculation that ergovaline might bioaccumulate in the animal. Unfortunately, few data indisputably support this outcome. Progress has been slowed by the fact that the fungus produces a multitude of different ergot alkaloids that can bind to a variety of different receptors. Binding studies have shown that ergot alkaloids have unusually slow receptor dissociation rates that have been described as irreversible and contribute to a persistent signaling effect. In vitro analyses have revealed a potential for accumulation of ergot alkaloids through repetitive exposures to low concentrations creating a "depot" of alkaloids available to interact with receptors. The specific high binding affinity of ergot alkaloids combined with the potential turnover of alkaloids bound nonspecifically could extend residual effects of these compounds. Interestingly, cattle exposed to ergot alkaloids in vivo have a consistently lower vascular response to agonists that target receptors known to bind ergot alkaloids. If these same receptors are blocked with an antagonist, contractile response to ergopeptine alkaloids is also reduced significantly (>60% reduction). This observation that alkaloid exposure interrupts normal function of a receptor can persist 5 to 6 wk after animals have been removed from an ergot alkaloid source (and prolactin levels have long since returned to normal). Thus, clearance of ergot alkaloids from cattle grazing pasture with ergot alkaloid-producing endophytes may occur in a similar gradual manner. Studies that improve the understanding of how cattle process ergot alkaloids will help answer the question of whether ergot alkaloids bioaccumulate.
Collapse
|
12
|
Coufal-Majewski S, Stanford K, McAllister T, Blakley B, McKinnon J, Chaves AV, Wang Y. Impacts of Cereal Ergot in Food Animal Production. Front Vet Sci 2016; 3:15. [PMID: 26942186 PMCID: PMC4766294 DOI: 10.3389/fvets.2016.00015] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/09/2016] [Indexed: 11/25/2022] Open
Abstract
The negative impacts of ergot contamination of grain on the health of humans and animals were first documented during the fifth century AD. Although ergotism is now rare in humans, cleaning contaminated grain concentrates ergot bodies in screenings which are used as livestock feed. Ergot is found worldwide, with even low concentrations of alkaloids in the diet (<100 ppb total), reducing the growth efficiency of livestock. Extended periods of increased moisture and cold during flowering promote the development of ergot in cereal crops. Furthermore, the unpredictability of climate change may have detrimental impacts to important cereal crops, such as wheat, barley, and rye, favoring ergot production. Allowable limits for ergot in livestock feed are confusing as they may be determined by proportions of ergot bodies or by total levels of alkaloids, measurements that may differ widely in their estimation of toxicity. The proportion of individual alkaloids, including ergotamine, ergocristine, ergosine, ergocornine, and ergocryptine is extremely variable within ergot bodies and the relative toxicity of these alkaloids has yet to be determined. This raises concerns that current recommendations on safe levels of ergot in feeds may be unreliable. Furthermore, the total ergot alkaloid content is greatly dependent on the geographic region, harvest year, cereal species, variety, and genotype. Considerable animal-to-animal variation in the ability of the liver to detoxify ergot alkaloids also exists and the impacts of factors, such as pelleting of feeds or use of binders to reduce bioavailability of alkaloids require study. Accordingly, unknowns greatly outnumber the knowns for cereal ergot and further study to help better define allowable limits for livestock would be welcome.
Collapse
Affiliation(s)
- Stephanie Coufal-Majewski
- Faculty of Veterinary Science, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kim Stanford
- Agriculture Centre, Alberta Agriculture and Forestry , Lethbridge, AB , Canada
| | - Tim McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada , Lethbridge, AB , Canada
| | - Barry Blakley
- Department of Veterinary Biomedical Sciences, University of Saskatchewan , Saskatchewan, SK , Canada
| | - John McKinnon
- Department of Animal and Poultry Science, University of Saskatchewan , Saskatchewan, SK , Canada
| | - Alexandre Vieira Chaves
- Faculty of Veterinary Science, School of Life and Environmental Sciences, University of Sydney , Sydney, NSW , Australia
| | - Yuxi Wang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada , Lethbridge, AB , Canada
| |
Collapse
|
13
|
Klotz JL, Nicol AM. Ergovaline, an endophytic alkaloid. 1. Animal physiology and metabolism. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an14962] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ergovaline is an ergot alkaloid found in some endophyte-infected ryegrasses and it has been implicated in the expression of ergotism-like symptoms of grazing livestock, as well as in the protection of the plant against invertebrate predation and abiotic stresses. These selection pressures have resulted in a conflict between the needs of the pasture for persistence and the needs of the animal for production. Ergovaline has not been well studied in terms of animal physiology until recently. There are several putative mechanisms that limit the bioavailability of ergovaline, ranging from microbial biotransformation to post-absorptive hepatic detoxification. Although there are mechanisms that protect the animal from ergovaline exposure, tissues are very sensitive to ergovaline, indicating that ergovaline is very potent and that small quantities have the potential to cause noticeable physiological effects. The range of physiological effects, including decreased circulating prolactin, vasoconstriction and increased susceptibility to heat stress are all linked to the interaction of ergovaline with biogenic amine receptors found throughout the body. This review will focus on understanding the variation of ergovaline concentration in terms of bioavailability, the myriad of hurdles a molecule of ergovaline must overcome to cause an effect, what the ergovaline-induced effects are in New Zealand livestock and how this relates to the potency of ergovaline.
Collapse
|
14
|
Strickland JR, Aiken GE, Spiers DE, Fletcher LR, Oliver JW. Physiological Basis of Fescue Toxicosis. AGRONOMY MONOGRAPHS 2015. [DOI: 10.2134/agronmonogr53.c12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- J. R. Strickland
- USDA-ARS, Forage-Animal Production Research Unit; Lexington Kentucky
| | - G. E. Aiken
- USDA-ARS, Forage-Animal Production Research Unit; Lexington Kentucky
| | | | | | - J. W. Oliver
- Veterinary Teaching Hospital, University of Tennessee; Knoxville
| |
Collapse
|
15
|
Klotz JL. Activities and Effects of Ergot Alkaloids on Livestock Physiology and Production. Toxins (Basel) 2015; 7:2801-21. [PMID: 26226000 PMCID: PMC4549725 DOI: 10.3390/toxins7082801] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 11/16/2022] Open
Abstract
Consumption of feedstuffs contaminated with ergot alkaloids has a broad impact on many different physiological mechanisms that alters the homeostasis of livestock. This change in homeostasis causes an increased sensitivity in livestock to perturbations in the ambient environment, resulting in an increased sensitivity to such stressors. This ultimately results in large financial losses in the form of production losses to livestock producers around the world. This review will focus on the underlying physiological mechanisms that are affected by ergot alkaloids that lead to decreases in livestock production.
Collapse
Affiliation(s)
- James L Klotz
- Forage-Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, KY 40546, USA.
| |
Collapse
|
16
|
Koontz AF, Kim DH, McLeod KR, Klotz JL, Harmon DL. Effect of fescue toxicosis on whole body energy and nitrogen balance, in situ degradation and ruminal passage rates in Holstein steers. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an14037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was designed to examine alteration of ruminal kinetics, as well as N and energy balance during fescue toxicosis. Six ruminally cannulated Holstein steers (bodyweight (BW) = 217 ± 7 kg) were weight matched into pairs and pair fed throughout a crossover design experiment with a 2×2 factorial treatment structure. Factors were endophyte (infected, E+ vs. uninfected, E−) and feeding level (1100 (L) or 1800 (H) kJ/kG BW.75). During each period, after 8 days of feeding level adaptation, animals were ruminally dosed twice daily with ground fescue seed for the remainder of the period. One steer per pair was dosed with ground endophyte infected fescue seed (E+), the other with ground endophyte free fescue seed. In situ degradation of ground alfalfa was determined on Days 13–16. Total faecal and urinary collections were performed on Days 17–21, with animals placed into indirect calorimetry head-boxes during Days 20 and 21. Heat production (HP) was calculated using the Brower equation. Retained energy (RE) was calculated as intakeE – (faecalE + urinaryE + gaseousE + HP). Liquid and particulate passage rates were evaluated using Cr:EDTA and iADF respectively on Days 22 and 23. There was no difference (P > 0.9) in dry matter intake (DMI)/kg.75 between endophyte treatments, and DMI/kg.75 was different (P < 0.01) between H and L intake by design. Animals on H feeding had higher (P < 0.01) water, N and energy intakes. Energy and N excretion, as well as retained DE, ME, RE, and HP were higher (P < 0.03) for H versus L. There was no difference in retained N, DE, ME, or HP (P > 0.15) between endophyte treatments. Neither rate nor extent of in situ degradation was altered by intake level or endophyte treatment (P > 0.3). DM percentage and DM weight of rumen contents were increased (P < 0.01) by E+ dosing. Particulate passage increased (P = 0.0002) during H intake and decreased (P = 0.02) with E+ dosing. Ruminal liquid passage decreased (P < 0.03) with H feeding, while liquid flow rate tended to be reduced (P < 0.14) with E+ dosing. Total VFA concentration increased with both H feeding (P < 0.01) and E+ dosing (P < 0.0001). Despite these differences, the N and energy balance data indicate that the reductions in weight gain and productivity seen during fescue toxicosis are primarily due to reduced intake.
Collapse
|
17
|
Egert AM, Klotz JL, McLeod KR, Harmon DL. Development of a methodology to measure the effect of ergot alkaloids on forestomach motility using real-time wireless telemetry. Front Chem 2014; 2:90. [PMID: 25353021 PMCID: PMC4195290 DOI: 10.3389/fchem.2014.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/25/2014] [Indexed: 11/13/2022] Open
Abstract
The objectives of these experiments were to characterize rumen motility patterns of cattle fed once daily using a real-time wireless telemetry system, determine when to measure rumen motility with this system, and determine the effect of ruminal dosing of ergot alkaloids on rumen motility. Ruminally cannulated Holstein steers (n = 8) were fed a basal diet of alfalfa cubes once daily. Rumen motility was measured by monitoring real-time pressure changes within the rumen using wireless telemetry and pressure transducers. Experiment 1 consisted of three 24-h rumen pressure collections beginning immediately after feeding. Data were recorded, stored, and analyzed using iox2 software and the rhythmic analyzer. All motility variables differed (P < 0.01) between hours and thirds (8-h periods) of the day. There were no differences between days for most variables. The variance of the second 8-h period of the day was less than (P < 0.01) the first for area and less than the third for amplitude, frequency, duration, and area (P < 0.05). These data demonstrated that the second 8-h period of the day was the least variable for many measures of motility and would provide the best opportunity for testing differences in motility due to treatments. In Experiment 2, the steers (n = 8) were pair-fed the basal diet of Experiment 1 and dosed with endophyte-free (E−) or endophyte-infected (E+; 0 or 10 μg ergovaline + ergovalinine/kg BW; respectively) tall fescue seed before feeding for 15 d. Rumen motility was measured for 8 h beginning 8 h after feeding for the first 14 d of seed dosing. Blood samples were taken on d 1, 7, and 15, and rumen content samples were taken on d 15. Baseline (P = 0.06) and peak (P = 0.04) pressure were lower for E+ steers. Water intake tended (P = 0.10) to be less for E+ steers the first 8 h period after feeding. The E+ seed treatment at this dosage under thermoneutral conditions did not significantly affect rumen motility, ruminal fill, or dry matter of rumen contents.
Collapse
Affiliation(s)
- Amanda M Egert
- Ruminant Nutrition Laboratory, Department of Animal & Food Sciences, University of Kentucky Lexington, KY, USA
| | - James L Klotz
- Forage-Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture Lexington, KY, USA
| | - Kyle R McLeod
- Ruminant Nutrition Laboratory, Department of Animal & Food Sciences, University of Kentucky Lexington, KY, USA
| | - David L Harmon
- Ruminant Nutrition Laboratory, Department of Animal & Food Sciences, University of Kentucky Lexington, KY, USA
| |
Collapse
|
18
|
Klotz JL, Barnes AJ. Isolating and using sections of bovine mesenteric artery and vein as a bioassay to test for vasoactivity in the small intestine. J Vis Exp 2014:e52020. [PMID: 25350042 DOI: 10.3791/52020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Mammalian gastrointestinal systems are constantly exposed to compounds (desirable and undesirable) that can have an effect on blood flow to and from that system. Changes in blood flow to the small intestine can result in effects on the absorptive functions of the organ. Particular interest in toxins liberated from feedstuffs through fermentative and digestive processes has developed in ruminants as an area where productive efficiencies could be improved. The video associated with this article describes an in vitro bioassay developed to screen compounds for vasoactivity in isolated cross-sections of bovine mesenteric artery and vein using a multimyograph. Once the blood vessels are mounted and equilibrated in the myograph, the bioassay itself can be used: as a screening tool to evaluate the contractile response or vasoactivity of compounds of interest; determine the presence of receptor types by pharmacologically targeting receptors with specific agonists; determine the role of a receptor with the presence of one or more antagonists; or determine potential interactions of compounds of interest with antagonists. Through all of this, data are collected real-time, tissue collected from a single animal can be exposed to a large number of different experimental treatments (an in vitro advantage), and represents vasculature on either side of the capillary bed to provide an accurate picture of what could be happening in the afferent and efferent blood supply supporting the small intestine.
Collapse
Affiliation(s)
- James L Klotz
- Forage-Animal Production Research Unit, USDA-Agricultural Research Service;
| | - Adam J Barnes
- Forage-Animal Production Research Unit, USDA-Agricultural Research Service
| |
Collapse
|
19
|
Egert AM, Kim DH, Schrick FN, Harmon DL, Klotz JL. Dietary exposure to ergot alkaloids decreases contractility of bovine mesenteric vasculature. J Anim Sci 2014; 92:1768-79. [PMID: 24492572 DOI: 10.2527/jas.2013-7141] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ergot alkaloids are hypothesized to cause vasoconstriction in the midgut, and prior exposure may affect the vasoactivity of these compounds. The objectives of this study were to profile vasoactivity of ergot alkaloids in bovine mesenteric artery (MA) and vein (MV) and determine if previous exposure to endophyte-infected tall fescue seed affected vasoactivity of ergocryptine (ERP), ergotamine (ERT), ergocristine (ERS), ergocornine (ERO), ergonovine (ERN), lysergic acid (LSA), ergovaline-containing tall fescue seed extract (EXT), and 5-hydroxytryptamine (5HT; serotonin). Ruminally cannulated Angus steers (n = 12; BW = 547 ± 31 kg) were paired by weight and randomly assigned to 6 blocks. Steers were ruminally dosed daily with 1 kg of either endophyte-infected (E+; 4.45 mg ergovaline/kg DM) or endophyte-free (E-; 0 mg ergovaline/kg DM) tall fescue seed for 21 d before slaughter. Branches of MA and MV supporting the cranial portion of the ileum were collected after slaughter on d 22, placed in a modified Krebs-Henseleit buffer on ice, cleaned, sectioned, and mounted in a multimyograph chamber. Contractile response was normalized to a maximum KCl response. Inner diameter (P = 0.04) and outer diameter (P = 0.02) of MA were smaller for E+ steers than E- steers. Maximum contractile responses to 120 mM KCl were not different between seed treatments in MA (P = 0.33; E-: 2.67 ± 0.43 g; E+: 3.33 ± 0.43 g) or MV (P = 0.26; E-: 2.01 ± 0.18 g; E+: 1.81 ± 0.18 g). Steers receiving E+ had a smaller (P < 0.01) MA contractile response than E- steers to ERP, ERT, ERS, ERO, ERN, EXT, and 5HT. Steers receiving E+ had a smaller (P < 0.05) MV contractile response than E- steers to ERP, ERT, ERS, ERN, EXT, and 5HT. Lysergic acid failed to induce a contractile response in MA and MV. The contractile response in MA and MV of E- steers produced by 5HT was very large. The EXT was the most potent (P < 0.05) agonist in MV and MA of E+ steers. These data showed that ergot alkaloids were vasoactive in the bovine midgut, and steers exposed to E+ had diminished contractility to some ergot alkaloids in small intestinal vasculature. The findings of this study suggest that dietary exposure to ergot alkaloids has the potential to alter nutrient absorption from the midgut by decreasing blood flow to and from the midgut due to vasoconstriction.
Collapse
Affiliation(s)
- A M Egert
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40546
| | | | | | | | | |
Collapse
|
20
|
Effects of the level of feed intake and ergot contaminated concentrate on ruminal fermentation and on physiological parameters in cows. Mycotoxin Res 2013; 24:57-72. [PMID: 23604682 DOI: 10.1007/bf02985283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Accepted: 09/07/2008] [Indexed: 10/21/2022]
Abstract
The aim of the present study was to examine the effects of ergot contaminated feed concentrate at differing levels of feed intake on ruminal fermentation, and on various physiological parameters of dairy cows. Twelve double fistulated (in the rumen and the proximal duodenum) Holstein Friesian cows were fed either a control diet (on a dry matter (DM) base: 60% maize silage, 40% concentrate) or a diet containing ergot alkaloids (concentrate contained 2.25% ergot resulting in an ergot alkaloid concentration of the daily ration between 505 and 620 (μg/kg DM) over a period of four weeks. Daily feed amounts were adjusted to the current performance which resulted in a dry matter intake (DMI) variation between 6.0 and 18.5 kg/day. The resulting ergot alkaloid intake varied between 4.1 and 16.3 (μg/kg body weight when the ergot contaminated concentrate was fed.Concentrations of isovalerate, propionate and ammonia nitrogen in the rumen fluid were significantly influenced by ergot feeding, and the amount of ruminally undegraded protein, as well as the fermentation of neutral detergent fibre, tended to increase with the ergot supplementation at higher levels of feed intake, which might indicate a shift in the microbial population. Other parameters of ruminal fermentation such as ruminai pH, fermented organic matter as a percentage of intake, or the amount of non-ammonia nitrogen measured at the duodenum were not significantly influenced by ergot feeding. The activities of liver enzymes (aspartate aminotransferase, γ-glutamyltransferase, glutamate dehydrogenase, creatine kinase) in the serum were not affected by ergot feeding. The rectal measured body temperature of the cows significantly increased after ergot administration (p=0.019). Thus, body temperature can be regarded as a sensitive parameter to indicate ergot exposure of dairy cows.
Collapse
|
21
|
|
22
|
Cripps MG, Edwards GR. Fungal endophytes of a forage grass reduce faecal degradation rates. Basic Appl Ecol 2013. [DOI: 10.1016/j.baae.2012.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
|
24
|
Gooneratne SR, Patchett BJ, Wellby M, Fletcher LR. Excretion of loline alkaloids in urine and faeces of sheep dosed with meadow fescue (Festuca pratensis) seed containing high concentrations of loline alkaloids. N Z Vet J 2012; 60:176-82. [DOI: 10.1080/00480169.2011.644189] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Strickland JR, Looper ML, Matthews JC, Rosenkrans CF, Flythe MD, Brown KR. BOARD-INVITED REVIEW: St. Anthony's Fire in livestock: Causes, mechanisms, and potential solutions1,2. J Anim Sci 2011; 89:1603-26. [DOI: 10.2527/jas.2010-3478] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
26
|
Foote AP, Harmon DL, Strickland JR, Bush LP, Klotz JL. Effect of ergot alkaloids on contractility of bovine right ruminal artery and vein. J Anim Sci 2011; 89:2944-9. [PMID: 21512122 DOI: 10.2527/jas.2010-3626] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ergot alkaloids produced by the endophyte (Neotyphodium coenophialum) associated with tall fescue (Lolium arundinaceum) are implicated in the clinical signs of fescue toxicosis. These compounds were hypothesized to correspondingly affect foregut vasculature. The objective of this study was to determine vasoconstrictive potentials of ergovaline, ergotamine, ergocryptine, ergocristine, ergonovine, ergocornine, and lysergic acid on right ruminal artery and vein. Segments of right ruminal artery and vein were collected from the ventral coronary groove of predominantly Angus heifers (n = 10) shortly after slaughter and placed in a modified Krebs-Henseleit buffer on ice. Vessels were cleaned of excess connective tissue and fat, sliced into 2- to 3-mm segments, and suspended in a multi-myograph chamber with 5 mL of continuously oxygenated Krebs-Henseleit buffer (95%O(2)/5% CO(2); pH 7.4; 37°C). Arteries and veins were equilibrated to 1.0 and 0.5 g, respectively, for 90 min followed by the reference addition of 120 mM KCl. Increasing concentrations of each alkaloid were added to the respective chamber every 15 min after buffer replacement. Data were normalized as a percentage of the contractile response induced by KCl. Alkaloid (P < 0.0001), concentration (P < 0.0001), and vessel type (artery or vein; P = 0.004) affected contractility. No arterial response was observed until 10(-6) M for ergovaline and ergotamine; 10(-5) M for ergocryptine, ergocornine, and ergonovine; and 10(-4) M for ergocristine. Lysergic acid did not induce a contractile response in the ruminal artery. No venous contractile response was observed until concentrations of 10(-6) M for ergovaline, 10(-5) M for ergotamine, and 10(-4) M for ergocryptine and ergocristine were achieved. Lysergic acid, ergonovine, and ergocornine did not induce a contractile response in the ruminal vein. A greater arterial maximal response was observed for ergovaline (P < 0.0001), whereas the arterial and venous responses were not different for ergotamine (P = 0.16), ergocryptine (P = 0.218), and ergocristine (P = 0.425). These results indicate that ergot alkaloids associated with toxic endophyte-infected tall fescue are vasoactive and can potentially alter arterial blood supply and venous drainage from the bovine foregut.
Collapse
Affiliation(s)
- A P Foote
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40546-0215, USA
| | | | | | | | | |
Collapse
|
27
|
Klotz JL, Bush LP, Strickland JR. A vascular contractility bioassay using bovine right ruminal artery and vein. J Anim Sci 2011; 89:1944-51. [PMID: 21297058 DOI: 10.2527/jas.2010-3532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endophyte-infected (Neotyphodium coenophialum) tall fescue (Lolium arundinaceum) produces ergot alkaloids that are associated with peripheral vasoconstriction in grazing animals, and ingestion of these alkaloids may affect splanchnic vasculature. Peripheral effects of ergot alkaloids have been well documented previously in cattle using a lateral saphenous vein bioassay. Because of significant differences in morphological and functional characteristics between vasculature supporting digestive and peripheral tissues, the bovine foregut vascular model required validation. Experiments were conducted, using dose-responses to norepinephrine and serotonin that were normalized to either 0.12 M KCl, or 0.1 mM norepinephrine or serotonin, to compare responses of vessels equilibrated at different tensions on the day of collection or the day after collection. Segments of a branch of right ruminal artery and vein were collected from the ventral coronary groove of healthy cattle of mixed breed, age, and sex (n = 20) at local abattoirs. Cross-sections of the artery and vein were suspended on luminal supports in a chamber of a multimyograph containing continuously oxygenated Krebs-Henseleit buffer (95% O(2)/5% CO(2), pH 7.4; 37°C). Vessels were allowed to equilibrate at either 0.5 or 1.0 g of tension for 1.5 h before exposure to a reference compound. Increasing concentrations of each biogenic amine were administered in 15-min intervals after buffer replacement. Data were normalized as a percentage of the contractile response induced by the reference compound for each tension and day of analysis. The ruminal artery and vein were both more responsive to KCl as a reference compound (P < 0.05) than to norepinephrine or serotonin and did not differ between days when normalized with KCl. Ruminal arteries had greater contractile responses (P < 0.05) when tension was set to 1.0 g, compared with 0.5 g, during equilibration. The ruminal vein response had a more stable maintenance of baseline tension in vessels equilibrated at 0.5 g of resting tension. Development of this bioassay allows separation of the effects tall fescue alkaloids exert on both the right ruminal artery and vein as representative vessels that service tissues functioning in nutrient absorption.
Collapse
Affiliation(s)
- J L Klotz
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY 40546-0091, USA.
| | | | | |
Collapse
|
28
|
Schumann B, Lebzien P, Ueberschär KH, Dänicke S. Effects of the level of feed intake and ergot contaminated concentrate on ergot alkaloid metabolism and carry over into milk. Mol Nutr Food Res 2009; 53:931-8. [DOI: 10.1002/mnfr.200800319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Huntington GB, Magee K, Matthews A, Poore M, Burns J. Urea metabolism in beef steers fed tall fescue, orchardgrass, or gamagrass hays. J Anim Sci 2008; 87:1346-53. [PMID: 19098251 DOI: 10.2527/jas.2008-1444] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two experiments were conducted to assess effects of endophyte treatments (Exp. 1), forage species (Exp. 2), and supplementation (Exp. 2) on urea production, excretion, and recycling in beef steers. Infusion of (15,15)N-urea and enrichment of urea in urine samples were used to calculate urea-N entry and recycling to the gut. Acceptably stable enrichment of (15)N-urea in urine was obtained after 50 h of intrajugular infusion of (15,15)N-urea, indicating that valid data on urea metabolism can be obtained from steers fed forages twice daily. After adjustment by covariance for differences in N intake among treatments in Exp. 1, steers fed endophyte-infected tall fescue had less (P<0.10) urea-N entry, recycling to the gut, and return of recycled urea-N to the ornithine cycle than those fed endophyte-free or novel endophyte-infected tall fescue. However, urea-N urinary excretion or return to the gut was similar among endophyte treatments when expressed as a proportion of urea-N entry. Urea-N entry and return to the gut in Exp. 2 was similar in steers fed gamagrass or orchardgrass hay after adjustment by covariance for differences in N intake. Less (P<0.01) urinary excretion, expressed as grams per day or as a proportion of urea-N entry, with gamagrass than with orchardgrass was associated with faster in vitro NDF-N digestion with gamagrass. Supplementation of gamagrass or orchardgrass with 1.76 kg/d of readily fermentable fiber and starch decreased urea entry (P<0.06) and urinary excretion of urea (P<0.01). Interactions between hay source and supplement reflected a greater response to supplementation for steers fed orchardgrass than for those fed gamagrass. After adjustment for differences among treatments in N supply, results of both experiments support the concept of improved N use in response to increased carbohydrate fermentability in the rumen, due either to inherent differences in forage fiber or to supplementation with readily fermentable carbohydrate (starch or fiber). Closer coordination of ruminal fermentation of carbohydrate and N sources provided greater and more efficient capture of dietary N as tissue protein in forage-fed steers.
Collapse
Affiliation(s)
- G B Huntington
- Department of Animal Science, North Carolina State University, Raleigh 27695-7621, USA.
| | | | | | | | | |
Collapse
|
30
|
Vibart R, Washburn S, Fellner V, Poore M, Green J, Brownie C. Varying endophyte status and energy supplementation of fresh tall fescue in continuous culture. Anim Feed Sci Technol 2007. [DOI: 10.1016/j.anifeedsci.2006.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Schultz CL, Lodge-Ivey SL, Bush LP, Craig AM, Strickland JR. Effects of initial and extended exposure to an endophyte-infected tall fescue seed diet on faecal and urinary excretion of ergovaline and lysergic acid in mature geldings. N Z Vet J 2006; 54:178-84. [PMID: 16915339 DOI: 10.1080/00480169.2006.36692] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM To determine the amount of ergovaline and lysergic acid retained or excreted by geldings fed endophyte-infected seed containing known concentrations of these alkaloids, and the effects of exposure time on clinical expression of toxicosis. METHODS Mature geldings (n=10) received diets containing either endophyte-free (E-) or endophyte-infected (E+) tall fescue seed during three experimental phases. The first phase (Days -14 to -1) was an adaptation phase, to allow all horses to adapt to a diet containing E- tall fescue seed. The second (Days 0 to 3) was the initial exposure phase to E+ tall fescue seed, used for the delivery of ergovaline and lysergic acid at 0.5 and 0.3 mg/kg of diet, respectively, to test the initial effects of exposure on routes and amounts of elimination of alkaloid. During this phase, half the geldings were exposed to an E+ diet while the rest served as controls by remaining on the E- diet. Once assigned to treatments, geldings remained on the same diet through the third phase (Days 4 to 21), which served as the extended exposure phase. Total outputs of faeces and urine were collected within each phase, to determine retention of ergovaline and lysergic acid and nutrient digestibility. Serum was collected weekly and analysed for activities of enzymes and concentrations of prolactin. Bodyweights (BW) and rectal temperatures were recorded weekly. RESULTS BW, rectal temperature, enzyme activities and concentrations of prolactin in serum, and nutrient digestibility were not affected by treatment. Total intake of ergovaline by geldings on the E+ diet was 3.5 and 3.6 (SE 0.20) mg/day, and 2.1 and 2.3 (SE 0.11) mg/day were not accounted for in initial and extended phases, respectively. Lysergic acid was excreted in the urine (4.0 and 4.9 (SE 0.97) mg/day) and faeces (2.5 and 2.7 (SE 0.35) mg/day) at greater amounts than that consumed (2.0 and 1.9 (SE 0.09) mg/day) during the initial and extended exposure phases, respectively. Animals exposed to E+ seed for a period of 20 days appeared to excrete more (1.5 vs 1.2 mg/day; SE 0.08; p=0.03) ergovaline in the faeces than those exposed for only 4 days. CONCLUSIONS Exposure time to the ergot alkaloids had a limited effect on the route of elimination or the amounts of ergovaline or lysergic acid excreted by horses. The primary alkaloid excreted was lysergic acid, and urine was the major route of elimination. These data will aid future research to improve animals' tolerance to toxic endophyte-infected tall fescue.
Collapse
Affiliation(s)
- C L Schultz
- USDA, ARS Southern Plains Agricultural Center, 2881 F&B Road, College Station, TX 77845, USA
| | | | | | | | | |
Collapse
|
32
|
Matthews AK, Poore MH, Huntington GB, Green JT. Intake, digestion, and N metabolism in steers fed endophyte-free, ergot alkaloid-producing endophyte-infected, or nonergot alkaloid-producing endophyte-infected fescue hay1. J Anim Sci 2005; 83:1179-85. [PMID: 15827262 DOI: 10.2527/2005.8351179x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A digestion and N balance trial was conducted to compare effects of traditional endophyte-infected (E+), endophyte-free (E-), and nontoxic endophyte infected (NE; MaxQ; Pennington Seed, Inc., Madison, GA) Jesup tall fescue (Festuca arundinacea Schreb.) hay on digestion and N retention in steers. Hay composition (DM basis) was as follows: E+ (10.8% CP, 59.9% NDF, and 29.4% ADF), E- (11.8% CP, 58.5% NDF, and 28.4% ADF), and NE (11.6% CP, 58.6% NDF, and 28.3% ADF). Eight Polled Hereford steers (initial BW 240 +/- 9 kg) were used in a replicated, 3 x 3 Latin square design, with an extra steer allotted to each square. Steers were fed ad libitum for 14 d, followed by a 9-d adaptation to restricted intake (based on the animal with the lowest ad libitum intake for the square) and a 5-d fecal and urine collection. Water intake (20.2 L/d) and urine output (7.40 L/d) did not differ (P > 0.10) during the collection period. Plasma prolactin concentration was less (P < 0.05) for steers on the E+ hay (8.83 ng/mL) than for those on the E- hay (18.03 ng/mL) and intermediate for steers on the NE hay (12.65 ng/mL). Endophyte-infected hay differed (P < 0.05) from E- and NE in ad libitum DMI (5.02 vs. 5.62 and 5.61 kg/d, respectively) and ad libitum DMI as a percentage of BW (1.86 vs. 2.06 and 2.06%, respectively). Restricted DMI during the fecal and urine collection was lower (P < 0.05) for E+ hay than for E- (5.04 vs. 5.24 kg/d), and NE was intermediate (5.19 kg/d). Dry matter digestibility was lower (P < 0.05) for E+ compared with E- and NE (62.3 vs. 67.0 and 65.9%, respectively). Digestibility of ADF was lower (P < 0.05) for E+ than for E-, and was intermediate for NE (61.5, 66.0, and 63.9%, respectively). There were no differences for NDF, cellulose, or hemicellulose digestibilities among hay types. Crude protein digestibility was higher (P < 0.05) for E- and NE than for E+ (54.3 and 52.5 vs. 48.1%, respectively). Nitrogen retention was lower (P < 0.01) for E+ than for E- or NE (15.6 vs. 22.7 or 23.0 g/d, respectively). Hay type did not influence plasma urea N, urine urea N output, or urine urea N as a percentage of urinary N. Results from this study indicate that E+ tall fescue hay was lower in ad libitum DMI, DM digestibility, and N retention than NE or E- hays with similar chemical composition. Hay from NE and E- fescue had nearly identical composition, and did not differ for any variable measured.
Collapse
Affiliation(s)
- A K Matthews
- Department of Animal Science, North Carolina State University, Raleigh, 27695-7621, USA
| | | | | | | |
Collapse
|
33
|
McSweeney CS, Odenyo A, Krause DO. Rumen Microbial Responses to Antinutritive Factors in Fodder Trees and Shrub Legumes. JOURNAL OF APPLIED ANIMAL RESEARCH 2002. [DOI: 10.1080/09712119.2002.9706369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
34
|
Dougherty CT, Knapp FW, Bush LP. Mortality of horn fly larvae (Diptera: Muscidae) in bovine dung supplemented with ergotamine and N-formyl loline. JOURNAL OF MEDICAL ENTOMOLOGY 1999; 36:73-77. [PMID: 10071496 DOI: 10.1093/jmedent/36.1.73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Dung-dwelling larvae of ectoparasites of livestock such as the horn fly, Hematobia irritans (L.), may be exposed to > or = 1 different alkaloid species in dung from animals ingesting herbage of the tall fescue (Festuca arundinacea Schreb.)--endophyte association (Neotyphodium coenophialum (Morgan-Jones & W. Gams) Glenn, Bacon & Hanlin comb. nov.). First-instar horn flies were exposed to bovine dung supplemented with up to 50 microM each of N-formyl loline and ergotamine tartrate in factorial combination. In the absence of ergotamine tartrate, N-formyl loline caused a linear decline in the number of pupae recovered, and probit analysis indicated an LC50 of 36 microM. In the absence of N-formyl loline, significant quadratic responses of larvae to ergotamine tartrate were established, and probit analysis indicated a LC50 of 34 microM. An interaction (P < 0.001) was found between the 2 alkaloids for larval survival. This interaction showed that ergotamine tartrate moderated the toxicity of N-formyl loline and indicates that a membrane-bound receptor may be involved. There was no evidence of carryover of effects of alkaloids on subsequent stages of development or expressed as abnormalities of pupae or adults. Interactions between alkaloids probably are involved in other plant-herbivore relationships of endophyte-infected grasses.
Collapse
Affiliation(s)
- C T Dougherty
- Department of Agronomy, University of Kentucky, Lexington 40546-0091, USA
| | | | | |
Collapse
|
35
|
Simeone A, Westendorf ML, Tucker RE, Bush LP, Mitchell GE. Ammoniation to reduce the toxicity of endophyte-infected tall fescue seed fed to rats. Drug Chem Toxicol 1998; 21:373-85. [PMID: 9706467 DOI: 10.3109/01480549809002212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To assess the efficacy of ammoniation in the detoxification of endophyte-infected tall fescue (Festuca arundinacea Schreb), 40 male Harlan Sprague-Dawley rats were randomly assigned to the following four treatments for 28 d: endophyte-free (E-), endophyte-infected (E+), ammoniated (2% dry matter basis, 7 d) endophyte-free (AE-), and ammoniated endophyte-infected (AE+) tall fescue seed. Total pyrrolizidine alkaloid (N-acetyl and N-formyl loline) and ergovaline contents of endophyte-infected fescue seed were reduced 24 and 54%, respectively, by ammoniation. Endophyte-infected treatment groups had lower (P < 0.01) daily feed intakes (DFI), daily weight gains (DWG), feed efficiencies, and primary serum hemagglutination titers to sheep red blood cell (SRBC) immunization than endophyte-free treatment groups. Performance parameters were higher (P < 0.01) for ammoniated diets in comparison to non-ammoniated diets; however, anti-SRBC titers were not significantly different. When compared to the E+ diet, the AE+ diet increased (P < 0.01) DFI (24%), DWG (41%) and feed efficiency (13%).
Collapse
Affiliation(s)
- A Simeone
- Department of Animal Sciences, University of Kentucky, Lexington 40546, USA
| | | | | | | | | |
Collapse
|
36
|
Simeone A, Westendorf ML, Tucker RE, Bush LP, Mitchell GE. Ammoniation to reduce the toxicity of endophyte-infected tall fescue seed fed to rats. Drug Chem Toxicol 1998; 21:67-78. [PMID: 9530532 DOI: 10.3109/01480549809017852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To assess the efficacy of ammoniation in the detoxification of endophyte-infected tall fescue (Festuca arundinacea Schreb.), 40 male Harlan Sprague-Dawley rats were randomly assigned to the following four treatments for 28 d: endophyte-free (E-), endophyte-infected (E+), ammoniated (2% dry matter basis, 7 d) endophyte-free (AE-), and ammoniated endophyte-infected (AE+) tall fescue seed. Total pyrrolizidine alkaloid (N-acetyl and N-formyl loline) and ergovaline contents of endophyte-infected fescue seed were reduced 24 and 54%, respectively, by ammoniation. Endophyte-infected treatment groups had lower (P < 0.01) daily feed intakes (DFI), daily weight gains (DWG), feed effieiencies, and primary serum hemagglutination titers to sheep red blood cell (SRBC) immunization than endophyte-free treatment groups. Performance parameters were higher (P < 0.01) for ammoniated diets in comparison to non-ammoniated die [s; however, anti-SRBC titers were not significantly different. When compared to the E+ diet, the AIE+ diet increased (P < 0.01) DFI (24%), DWG (41%) and feed efficiency (13%).
Collapse
Affiliation(s)
- A Simeone
- Department of Animal Sciences, University of Kentucky, Lexington 40546, USA
| | | | | | | | | |
Collapse
|
37
|
Dougherty CT, Knapp FW. Oviposition and development of face flies in dung from cattle on herbage and supplemented herbage diets. Vet Parasitol 1994; 55:115-27. [PMID: 7886909 DOI: 10.1016/0304-4017(94)90061-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dung was collected from Angus cattle (Bos taurus L.) fed (ad libitum) hays of endophyte-free (EF) and endophyte (Acremonium coenophialum Morgan-Jones and Gams) infected (EI) tall fescue (Festuca arundinacea Schreb.), smooth bromegrass (Bromus inermis Leyss.), red clover (Trifolium pratense L.), alfalfa (Medicago sativa L.), and alfalfa-smooth bromegrass (1:1 w/w) and green-chopped Kentucky bluegrass (Poa pratensis L.). Samples of dung were subsequently collected from the same animals offered the same herbage diets supplemented each day with ground maize (Zea mays L.) kernels at 0.35 kg per body weight. Dung from both sources were used in bioassays to establish oviposition preferences of face flies (Musca autumnalis De Geer). When offered dung from herbage diets, face flies deposited 38.3% of their eggs on dung derived from EF tall fescue diets, 9.9% on dung from EI tall fescue diets, 21.0% on dung from alfalfa diets, 7.4% on dung from red clover diets and 22.8% on dung from alfalfa-bromegrass diets. Face flies avoided ovipositing in dung from cattle ingesting bromegrass hay and Kentucky bluegrass green-chop. Supplements increased oviposition preference of face flies for dung from cattle ingesting Kentucky bluegrass greenchop to 19.1% at the expense of oviposition on dung from cattle ingesting alfalfa hay diets (4.5%), otherwise, they had little effect on oviposition preference ranking. Growth and development of first instar larvae of face flies was also measured in bioassays of dung from cattle on herbage and supplemented herbage diets. The presence of endophyte reduced pupation in dung from cattle on tall fescue hay diets from 86.3 to 79.8% and from 90.1 to 73.2% in dung from cattle on supplemented tall fescue hay diets. Pupal liveweights averaged 27.5 mg on dung from cattle on EF tall fescue diets, 22.1 mg from dung of cattle on EI tall fescue diets, 22.2 mg from dung of cattle on supplemented EF tall fescue diets and 24.0 mg from dung of cattle on supplemented EI tall fescue diets. Eclosion and the sex ratio of adults were not affected by dung from cattle on different source diets.
Collapse
Affiliation(s)
- C T Dougherty
- Department of Agronomy, University of Kentucky, Lexington 40546-0091
| | | |
Collapse
|