1
|
Wang S, Xiao Z, Wang J, Su T, Xu W, Hu X, Zhao J, Yang L, Wu Z, Li C, Wang S, Song D, Ma B, Cheng L. A novel online calculator based on inflammation-related endotypes and clinical features to predict postoperative pulmonary infection in patients with cervical spinal cord injury. Int Immunopharmacol 2024; 142:113246. [PMID: 39340987 DOI: 10.1016/j.intimp.2024.113246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/28/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Postoperative pulmonary infection (POI) of patients with cervical spinal cord injury (CSCI) is highly heterogeneous, while the potential endotypes and related risk factors remain unclear. METHODS A retrospective collection of 290 CSCI patients was conducted from January 2010 to July 2024 using 1:1 propensity score matching to compare POI (n = 145) and non-POI (n = 145) groups. We generated laboratory examination data from admission patients and identified endotypes using unsupervised consensus clustering and machine learning. CSCI patients were randomly assigned to the training set (n = 203) and internal validation set (n = 87). A separate cohort comprising 245 CSCI patients were used for external validation. Independent predictors for POI were identified using univariate and multivariate logistic regression. A nomogram and an online calculator were developed and validated, both internally and externally. RESULTS Two inflammation-related endotypes were identified: high inflammation endotype (endotype C1) and low inflammation endotype (endotype C2). Eight predictors for POI were identified (including age, operation duration, number of surgical segments, time between injury and surgery, preoperative steroid pulse, American Spinal Injury Association (ASIA) grade, smoking history, and inflammation-related endotype). A nomogram integrating the risk factors showed excellent discrimination in the training set (AUC, 0.976; 95% CI 0.956-0.996), internal validation set (AUC, 0.993; 95% CI 0.981-1.000), and external validation set (AUC, 0.799; 95%CI 0.744-0.854). Calibration curves demonstrated excellent fit, and decision curves highlighted its favorable clinical value. An online calculator (https://tjspine.shinyapps.io/dynnomapp/) was constructed to improve the convenience and efficiency of our prediction model. CONCLUSIONS We identified inflammation-related endotype and constructed a web-based calculator for predicting POI in patients with CSCI, exhibiting excellent clinical utility.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China
| | - Zhihui Xiao
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China
| | - Jianjie Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Tong Su
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Xiao Hu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Li Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Chen Li
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Shaoke Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Bei Ma
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai 200072, China; Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
2
|
Radler JB, McBride AR, Saha K, Nighot P, Holmes GM. Regional Heterogeneity in Intestinal Epithelial Barrier Permeability and Mesenteric Perfusion After Thoracic Spinal Cord Injury. Dig Dis Sci 2024; 69:3236-3248. [PMID: 39001959 DOI: 10.1007/s10620-024-08537-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) disrupts intestinal barrier function, thereby increasing antigen permeation and leading to poor outcomes. Despite the intestinal tract's anatomic and physiologic heterogeneity, studies following SCI have not comprehensively addressed intestinal pathophysiology with regional specificity. AIMS AND METHODS We used an experimental model of high thoracic SCI to investigate (1) regional mucosal oxidative stress using dihydroethidium labeling; (2) regional paracellular permeability to small- and large-molecular probes via Ussing chamber; (3) regional intestinal tight junction (TJ) protein expression; and (4) hindgut perfusion via the caudal mesenteric artery. RESULTS Dihydroethidium staining was significantly elevated within duodenal mucosa at 3-day post-SCI. Molar flux of [14C]-urea was significantly elevated in duodenum and proximal colon at 3-day post-SCI, while molar flux of [3H]-inulin was significantly elevated only in duodenum at 3-day post-SCI. Barrier permeability was mirrored by a significant increase in the expression of pore-forming TJ protein claudin-2 in duodenum and proximal colon at 3-day post-SCI. Claudin-2 expression remained significantly elevated in proximal colon at 3-week post-SCI. Expression of the barrier-forming TJ protein occludin was significantly reduced in duodenum at 3-day post-SCI. Caudal mesenteric artery flow was unchanged by SCI at 3 days or 3 weeks despite significant reductions in mean arterial pressure. CONCLUSION These data show that T3-SCI provokes elevated mucosal oxidative stress, altered expression of TJ proteins, and elevated intestinal barrier permeability in the proximal intestine. In contrast, mucosal oxidative stress and intestinal barrier permeability were unchanged in the hindgut after SCI. This regional heterogeneity may result from differential sensitivity to reduced mesenteric perfusion, though further studies are required to establish a causal link. Understanding regional differences in intestinal pathophysiology is essential for developing effective treatments and standards of care for individuals with SCI.
Collapse
Affiliation(s)
- Jackson B Radler
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Dr., H109, Hershey, PA, 17033, USA
| | - Amanda R McBride
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Dr., H109, Hershey, PA, 17033, USA
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Gregory M Holmes
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Dr., H109, Hershey, PA, 17033, USA.
| |
Collapse
|
3
|
Ortega MA, Fraile-Martinez O, García-Montero C, Haro S, Álvarez-Mon MÁ, De Leon-Oliva D, Gomez-Lahoz AM, Monserrat J, Atienza-Pérez M, Díaz D, Lopez-Dolado E, Álvarez-Mon M. A comprehensive look at the psychoneuroimmunoendocrinology of spinal cord injury and its progression: mechanisms and clinical opportunities. Mil Med Res 2023; 10:26. [PMID: 37291666 PMCID: PMC10251601 DOI: 10.1186/s40779-023-00461-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating and disabling medical condition generally caused by a traumatic event (primary injury). This initial trauma is accompanied by a set of biological mechanisms directed to ameliorate neural damage but also exacerbate initial damage (secondary injury). The alterations that occur in the spinal cord have not only local but also systemic consequences and virtually all organs and tissues of the body incur important changes after SCI, explaining the progression and detrimental consequences related to this condition. Psychoneuroimmunoendocrinology (PNIE) is a growing area of research aiming to integrate and explore the interactions among the different systems that compose the human organism, considering the mind and the body as a whole. The initial traumatic event and the consequent neurological disruption trigger immune, endocrine, and multisystem dysfunction, which in turn affect the patient's psyche and well-being. In the present review, we will explore the most important local and systemic consequences of SCI from a PNIE perspective, defining the changes occurring in each system and how all these mechanisms are interconnected. Finally, potential clinical approaches derived from this knowledge will also be collectively presented with the aim to develop integrative therapies to maximize the clinical management of these patients.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Sergio Haro
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Ana M. Gomez-Lahoz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Mar Atienza-Pérez
- Service of Rehabilitation, National Hospital for Paraplegic Patients, Carr. de la Peraleda, S/N, 45004 Toledo, Spain
| | - David Díaz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Elisa Lopez-Dolado
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology Service and Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), 28806 Alcala de Henares, Spain
| |
Collapse
|
4
|
Bigford GE, Garshick E. Systemic inflammation after spinal cord injury: A review of biological evidence, related health risks, and potential therapies. Curr Opin Pharmacol 2022; 67:102303. [PMID: 36206621 PMCID: PMC9929918 DOI: 10.1016/j.coph.2022.102303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
Individuals with chronic traumatic spinal cord injury (SCI) develop progressive multi-system health problems that result in clinical illness and disability. Systemic inflammation is associated with many of the common medical complications and acquired diseases that accompany chronic SCI, suggesting that it contributes to a number of comorbid pathological conditions. However, many of the mechanisms that promote persistent systemic inflammation and its consequences remain ill-defined. This review describes the significant biological factors that contribute to systemic inflammation, major organ systems affected, health risks, and the potential treatment strategies. We aim to highlight the need for a better understanding of inflammatory processes, and to establish appropriate strategies to address inflammation in SCI.
Collapse
Affiliation(s)
- Gregory E Bigford
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, VA Boston Healthcare System, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Esmorís-Arijón I, Galeiras R, Ferreiro Velasco ME, Pértega Díaz S. Predictors of Intensive Care Unit Stay in Patients with Acute Traumatic Spinal Cord Injury Above T6. World Neurosurg 2022; 166:e681-e691. [PMID: 35872126 DOI: 10.1016/j.wneu.2022.07.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The objective of this study was to identify factors associated with the intensive care unit (ICU) length of stay (LOS) of patients with an acute traumatic spinal cord injury above T6. METHODS We performed a retrospective, observational study of patients admitted to an ICU between 1998 and 2017 (n = 241). The LOS was calculated using a cumulative incidence function, with events of death being considered a competing event. Factors associated with the LOS were analyzed using both a cause-specific Cox proportional hazards regression model and a competing risk model. A multistate approach was also used to analyze the impact of nosocomial infections on the LOS. RESULTS A total of 211 patients (87.5%) were discharged alive from the ICU (median LOS = 23 days), and 30 (12.4%) died (median LOS = 11 days). In the multivariate analysis after adjusting for variables collected 4 days after the ICU admission, a higher American Spinal Injury Association motor score (subdistribution hazards ratio [sHR] = 1.01), neurological level C5-C8 (HR = 0,64), and lower Sequential Organ Failure Assessment score (sHR = 0.82) and fluid balance (sHR = 0.95) on day 4 were linked to a lower LOS in this unit. In the multivariate analysis, the onset of an infection was significantly associated with a longer LOS when adjusting for variables collected both at ICU admission (adjusted sHR = 0.62; 95% confidence interval = 0.50-0.77) and on day 4 (adjusted hazards ratio = 0.65; 95% confidence interval = 0.52-0.80). CONCLUSIONS After adjusting the data for conventional variables, we identified a lower American Spinal Injury Association motor score, injury level C5-C8, a higher Sequential Organ Failure Assessment score on day 4, a more positive fluid balance on day 4, and the onset of an infection as factors independently associated with a longer ICU LOS.
Collapse
Affiliation(s)
| | - Rita Galeiras
- Critical Care Unit, Complexo Hospitalario Universitario A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - María Elena Ferreiro Velasco
- Spinal Cord Injury Unit (SCIU), Complexo Hospitalario Universitario A Coruña, Sergas, Universidade de A Coruña, A Coruña, Spain
| | - Sonia Pértega Díaz
- Research Support Unit, Nursing and Healthcare Research Group, Rheumatology and Health Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña, A Coruña, Spain
| |
Collapse
|
6
|
Blythe EN, Weaver LC, Brown A, Dekaban GA. β2 Integrin CD11d/CD18: From Expression to an Emerging Role in Staged Leukocyte Migration. Front Immunol 2021; 12:775447. [PMID: 34858434 PMCID: PMC8630586 DOI: 10.3389/fimmu.2021.775447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
CD11d/CD18 is the most recently discovered and least understood β2 integrin. Known CD11d adhesive mechanisms contribute to both extravasation and mesenchymal migration – two key aspects for localizing peripheral leukocytes to sites of inflammation. Differential expression of CD11d induces differences in monocyte/macrophage mesenchymal migration including impacts on macrophage sub-set migration. The participation of CD11d/CD18 in leukocyte localization during atherosclerosis and following neurotrauma has sparked interest in the development of CD11d-targeted therapeutic agents. Whereas the adhesive properties of CD11d have undergone investigation, the signalling pathways induced by ligand binding remain largely undefined. Underlining each adhesive and signalling function, CD11d is under unique transcriptional control and expressed on a sub-set of predominately tissue-differentiated innate leukocytes. The following review is the first to capture the nearly three decades of CD11d research and discusses the emerging role of CD11d in leukocyte migration and retention during the progression of a staged immune response.
Collapse
Affiliation(s)
- Eoin N Blythe
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Lynne C Weaver
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Arthur Brown
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
7
|
Yates AG, Jogia T, Gillespie ER, Couch Y, Ruitenberg MJ, Anthony DC. Acute IL-1RA treatment suppresses the peripheral and central inflammatory response to spinal cord injury. J Neuroinflammation 2021; 18:15. [PMID: 33407641 PMCID: PMC7788822 DOI: 10.1186/s12974-020-02050-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The acute phase response (APR) to CNS insults contributes to the overall magnitude and nature of the systemic inflammatory response. Aspects of this response are thought to drive secondary inflammatory pathology at the lesion site, and suppression of the APR can therefore afford some neuroprotection. In this study, we examined the APR in a mouse model of traumatic spinal cord injury (SCI), along with its relationship to neutrophil recruitment during the immediate aftermath of the insult. We specifically investigated the effect of IL-1 receptor antagonist (IL-1RA) administration on the APR and leukocyte recruitment to the injured spinal cord. METHODS Adult female C57BL/6 mice underwent either a 70kD contusive SCI, or sham surgery, and tissue was collected at 2, 6, 12, and 24 hours post-operation. For IL-1RA experiments, SCI mice received two intraperitoneal injections of human IL-1RA (100mg/kg), or saline as control, immediately following, and 5 hours after impact, and animals were sacrificed 6 hours later. Blood, spleen, liver and spinal cord were collected to study markers of central and peripheral inflammation by flow cytometry, immunohistochemistry and qPCR. Results were analysed by two-way ANOVA or student's t-test, as appropriate. RESULTS SCI induced a robust APR, hallmarked by elevated hepatic expression of pro-inflammatory marker genes and a significantly increased neutrophil presence in the blood, liver and spleen of these animals, as early as 2 hours after injury. This peripheral response preceded significant neutrophil infiltration of the spinal cord, which peaked 24 hours post-SCI. Although expression of IL-1RA was also induced in the liver following SCI, its response was delayed compared to IL-1β. Exogenous administration of IL-1RA during this putative therapeutic window was able to suppress the hepatic APR, as evidenced by a reduction in CXCL1 and SAA-2 expression as well as a significant decrease in neutrophil infiltration in both the liver and the injured spinal cord itself. CONCLUSIONS Our data indicate that peripheral administration of IL-1RA can attenuate the APR which in turn reduces immune cell infiltration at the spinal cord lesion site. We propose IL-1RA treatment as a viable therapeutic strategy to minimise the harmful effects of SCI-induced inflammation.
Collapse
Affiliation(s)
- Abi G Yates
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Trisha Jogia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Ellen R Gillespie
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Yvonne Couch
- Acute Stroke Programme, RDM-Investigative Medicine, The University of Oxford, Oxford, UK
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel C Anthony
- Department of Pharmacology, The University of Oxford, Mansfield Road, Oxford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
8
|
Izumo T, Morofuji Y, Hayashi K, Ryu N, Matsuo T. Surgical Treatment of Ruptured Anterior Circulation Aneurysms: Comparative Analysis of Modified Mini-Pterional and Standard Pterional Craniotomies. Neurol India 2019; 67:1248-1253. [PMID: 31744952 DOI: 10.4103/0028-3886.271261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Minimally invasive surgical techniques for cerebral aneurysms have been developed. Aims To compare the efficacy and safety of modified mini-pterional (mMPT) and standard pterional (PT) craniotomies for ruptured anterior circulation aneurysms. Materials and Methods A total of 45 patients with ruptured anterior circulation aneurysms underwent surgical clipping; for 21 patients PT was used and for 24 patients mMPT was used. Initial clinical demographics and outcomes were retrospectively compared. A systemic inflammatory response syndrome (SIRS) score was derived by summing the number of variables meeting standard criteria for SIRS. Results The two groups were comparable with initial clinical demographics. Total operative time was significantly shorter in the mMPT (166.6 minutes, P = 0.001) compared with the PT (235 minutes). The rate of permanent operative morbidity were similar in both groups (P = 0.92). The mean SIRS score at 24 hours after the completion of the operation was significantly lower for patients in the mMPT group (0.96, P = 0.01) as compared to the patients in the PT group (1.81). The rate of postoperative symptomatic vasospasm was significantly lower in patients operated through the mMPT (8.3%, P = 0.03) than the PT (38.1%). Good outcome at discharge was more frequently seen in the mMPT (91.7%) than in the PT (70%), but this difference was not statistically significant (P = 0.11). Conclusion The mMPT craniotomy is a safe and less invasive approach for ruptured anterior circulation aneurysms, leading to a significant lower rate of postoperative symptomatic vasospasm and a marginally significant improvement in clinical outcomes.
Collapse
Affiliation(s)
- Tsuyoshi Izumo
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kentaro Hayashi
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Nobutoshi Ryu
- Department of Neurosurgery, Juzenkai Hospital, Nagasaki, Japan
| | - Takayuki Matsuo
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
9
|
Yates AG, Anthony DC, Ruitenberg MJ, Couch Y. Systemic Immune Response to Traumatic CNS Injuries-Are Extracellular Vesicles the Missing Link? Front Immunol 2019; 10:2723. [PMID: 31824504 PMCID: PMC6879545 DOI: 10.3389/fimmu.2019.02723] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/06/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation following traumatic injury to the central nervous system (CNS) persists long after the primary insult and is known to exacerbate cell death and worsen functional outcomes. Therapeutic interventions targeting this inflammation have been unsuccessful, which has been attributed to poor bioavailability owing to the presence of blood-CNS barrier. Recent studies have shown that the magnitude of the CNS inflammatory response is dependent on systemic inflammatory events. The acute phase response (APR) to CNS injury presents an alternative strategy to modulating the secondary phase of injury. However, the communication pathways between the CNS and the periphery remain poorly understood. Extracellular vesicles (EVs) are membrane bound nanoparticles that are regulators of intercellular communication. They are shed from cells of the CNS including microglia, astrocytes, neurons and endothelial cells, and are able to cross the blood-CNS barrier, thus providing an attractive candidate for initiating the APR after acute CNS injury. The purpose of this review is to summarize the current evidence that EVs play a critical role in the APR following CNS injuries.
Collapse
Affiliation(s)
- Abi G Yates
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Daniel C Anthony
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Yvonne Couch
- Acute Stroke Programme, RDM-Investigative Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
|
11
|
Metzger CE, Gong S, Aceves M, Bloomfield SA, Hook MA. Osteocytes reflect a pro-inflammatory state following spinal cord injury in a rodent model. Bone 2019; 120:465-475. [PMID: 30550849 DOI: 10.1016/j.bone.2018.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
Profound bone loss occurs following spinal cord injury (SCI) resulting in a high incidence of fractures. While likely caused in part by loss of weight-bearing, there is greater bone loss following SCI when compared to that observed in other disuse animal models. Patients with SCI have a protracted inflammatory response, with elevated circulating levels of pro-inflammatory markers. This chronic inflammation could compound the bone loss attributed to disuse and the loss of neural signaling. To assess this, we examined inflammatory markers and bone turnover regulators in osteocytes from rats with a moderate spinal contusion injury (SCI) and intact controls (CON). We counted osteocytes positive for cytokines [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-17 (IL-17), and interleukin-10 (IL-10)], osteoclastogenesis regulators RANKL and OPG, and the bone formation inhibitor sclerostin, 32 days after the spinal contusion. By day 9 post-injury, the majority of SCI rats had recovered significant locomotor function and were bearing weight on their hindlimbs. However, despite weight-bearing, peripheral QCT scans demonstrated lower bone mass due to SCI in the proximal tibia metaphysis compared to CON. SCI animals also had lower cancellous bone volume, lower bone formation rate (BFR), lower osteoid surface (OS), and higher osteoclast surface (Oc.S). Tibial mid-shaft periosteal BFR was also lower after SCI. Immunohistochemical staining of the distal femur bone revealed cancellous osteocytes positive for TNF-α, IL-6, IL-17, and IL-10 were elevated in SCI animals relative to intact controls. Protein expression of RANKL+, OPG+, and sclerostin+ osteocytes was also higher in SCI rats. At the cortical midshaft, osteocyte TNF-α, IL-6, and sclerostin were statistically higher in SCI vs. CON. With regression analysis, inflammatory factors were associated with changes in bone turnover. In conclusion, inflammatory factors as well as altered mechanical loading influence bone turnover following a moderate SCI. Treatments aimed at minimizing fracture risk after SCI may need to target both the chronically altered inflammatory state as well as disuse-induced bone loss.
Collapse
Affiliation(s)
- Corinne E Metzger
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States of America.
| | - Sammy Gong
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States of America
| | - Miriam Aceves
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States of America
| | - Susan A Bloomfield
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States of America
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States of America.
| |
Collapse
|
12
|
Systemic microcirculation dysfunction after low thoracic spinal cord injury in mice. Life Sci 2019; 221:47-55. [PMID: 30738044 DOI: 10.1016/j.lfs.2019.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/26/2019] [Accepted: 02/03/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) disturbs the autonomic nervous system and induces dysfunction or failure of multiple organs. The systemic microcirculation disturbance that contributes to the complications associated with SCI remains to be clarified. METHODS We used male mice (29-32 g) and modified weight-drop injury at T10 to evaluate the systemic microcirculation dysfunction during the first 2 weeks after SCI. We determined permeability and microvascular blood flow in several organs and evaluated their vasomotor function. We also measured circulating endothelial cells (CECs), circulating endothelial progenitor cells (CEPCs), circulating pericyte progenitor cells (CPPCs), and serum proinflammatory cytokines. RESULTS The endothelial permeability of almost all organs increased after SCI. Microvascular blood flow decreased in the bladder and kidney and increased in the spleen and was accompanied by endothelial vasomotor dysfunction. SCI also induced an increase in CECs, CEPCs, and CPPCs in peripheral blood. Finally, we confirmed changes in a systemic cytokine profile (interleukin [IL]-3, IL-6, IL-10, IL-13, granulocyte colony-stimulating factor, and regulated on activation normal T cell expressed and secreted) after SCI. CONCLUSIONS These data indicate that a systemic microcirculation disturbance occurs after SCI. This information may play a key role in the development of effective therapeutic strategies for SCI.
Collapse
|
13
|
Geremia NM, Hryciw T, Bao F, Streijger F, Okon E, Lee JHT, Weaver LC, Dekaban GA, Kwon BK, Brown A. The effectiveness of the anti-CD11d treatment is reduced in rat models of spinal cord injury that produce significant levels of intraspinal hemorrhage. Exp Neurol 2017; 295:125-134. [PMID: 28587875 DOI: 10.1016/j.expneurol.2017.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/11/2017] [Accepted: 06/01/2017] [Indexed: 11/30/2022]
Abstract
We have previously reported that administration of a CD11d monoclonal antibody (mAb) improves recovery in a clip-compression model of SCI. In this model the CD11d mAb reduces the infiltration of activated leukocytes into the injured spinal cord (as indicated by reduced intraspinal MPO). However not all anti-inflammatory strategies have reported beneficial results, suggesting that success of the CD11d mAb treatment may depend on the type or severity of the injury. We therefore tested the CD11d mAb treatment in a rat hemi-contusion model of cervical SCI. In contrast to its effects in the clip-compression model, the CD11d mAb treatment did not improve forelimb function nor did it significantly reduce MPO levels in the hemi-contused cord. To determine if the disparate results using the CD11d mAb were due to the biomechanical nature of the cord injury (compression SCI versus contusion SCI) or to the spinal level of the injury (12th thoracic level versus cervical) we further evaluated the CD11d mAb treatment after a T12 contusion SCI. In contrast to the T12 clip compression SCI, the CD11d mAb treatment did not improve locomotor recovery or significantly reduce MPO levels after T12 contusion SCI. Lesion analyses revealed increased levels of hemorrhage after contusion SCI compared to clip-compression SCI. SCI that is accompanied by increased intraspinal hemorrhage would be predicted to be refractory to the CD11d mAb therapy as this approach targets leukocyte diapedesis through the intact vasculature. These results suggest that the disparate results of the anti-CD11d treatment in contusion and clip-compression models of SCI are due to the different pathophysiological mechanisms that dominate these two types of spinal cord injuries.
Collapse
Affiliation(s)
- N M Geremia
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - T Hryciw
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - F Bao
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - F Streijger
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - E Okon
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - J H T Lee
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - L C Weaver
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - G A Dekaban
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada
| | - B K Kwon
- International Collaboration on Repair Discoveries (ICORD), Blusson Spinal Cord Centre, University of British Columbia, 818 West 10th Avenue, Vancouver, BC V5Z 1M9, Canada
| | - A Brown
- Molecular Medicine Research Group, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street North, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
14
|
Multiple organ dysfunction and systemic inflammation after spinal cord injury: a complex relationship. J Neuroinflammation 2016; 13:260. [PMID: 27716334 PMCID: PMC5053065 DOI: 10.1186/s12974-016-0736-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/28/2016] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating event that results in significant physical disabilities for affected individuals. Apart from local injury within the spinal cord, SCI patients develop a variety of complications characterized by multiple organ dysfunction or failure. These disorders, such as neurogenic pain, depression, lung injury, cardiovascular disease, liver damage, kidney dysfunction, urinary tract infection, and increased susceptibility to pathogen infection, are common in injured patients, hinder functional recovery, and can even be life threatening. Multiple lines of evidence point to pathological connections emanating from the injured spinal cord, post-injury systemic inflammation, and immune suppression as important multifactorial mechanisms underlying post-SCI complications. SCI triggers systemic inflammatory responses marked by increased circulation of immune cells and pro-inflammatory mediators, which result in the infiltration of inflammatory cells into secondary organs and persistence of an inflammatory microenvironment that contributes to organ dysfunction. SCI also induces immune deficiency through immune organ dysfunction, resulting in impaired responsiveness to pathogen infection. In this review, we summarize current evidence demonstrating the relevance of inflammatory conditions and immune suppression in several complications frequently seen following SCI. In addition, we highlight the potential pathways by which inflammatory and immune cues contribute to multiple organ failure and dysfunction and discuss current anti-inflammatory approaches used to alleviate post-SCI complications. A comprehensive review of this literature may provide new insights into therapeutic strategies against complications after SCI by targeting systemic inflammation.
Collapse
|