1
|
Han B, Liu Y, Zhou Q, Yu Y, Liu X, Guo Y, Zheng X, Zhou M, Yu H, Wang W. The advance of ultrasound-enabled diagnostics and therapeutics. J Control Release 2024; 375:1-19. [PMID: 39208935 DOI: 10.1016/j.jconrel.2024.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/27/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Point-of-care ultrasound demonstrates significant potential in biomedical research due to its noninvasive, real-time visualization, cost-effectiveness, and other biological benefits. Ultrasound irradiation can precisely control the mechanical and physicochemical effects on pathogenic lesions, enabling real-time visualization, tunable tissue penetration depth, and therapeutic applications. This review summarizes recent advancements in ultrasound-enabled diagnostics and therapeutics, focusing on mechanochemical effects that can be directly integrated into biomedical applications. Additionally, the structure-functionality relationships of sonotheranostic nanoplatforms are systematically discussed, providing insights into the underlying biological effects. Finally, the limitations of current ultrasonic medicine are discussed, along with potential expansions to facilitate patient-centered translations.
Collapse
Affiliation(s)
- Biying Han
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qianqian Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xingxing Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yu Guo
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Haijun Yu
- State Key Laboratory of Chemical Biology & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
2
|
Colasurdo M, Ahmed AK, Gandhi D. MR-guided Focused Ultrasound Thalamotomy for Chronic Pain. Magn Reson Imaging Clin N Am 2024; 32:661-672. [PMID: 39322355 DOI: 10.1016/j.mric.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
MR-guided focused ultrasound (FUS) represents a promising alternative for patients with chronic neuropathic who have failed medical management and other treatment options. Early single-center experience with chronic neuropathic pain and trigeminal neuralgia has demonstrated favorable long-term outcomes. Excellent safety profile with low risk of motor and sensory complications and so far anecdotal permanent neurologic deficits make FUS a powerful tool to treat patients who are otherwise hopeless. Neuromodulation may be the most influential factor driving outcomes and studies devised to detect neuroplasticity will be critical to guide such therapies.
Collapse
Affiliation(s)
- Marco Colasurdo
- Department of Interventional Radiology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Dheeraj Gandhi
- Department of Neurosurgery, University of Maryland School of Medicine; Division of Neurointerventional Surgery, Department of Diagnostic Radiology, University of Maryland School of Medicine, University of Maryland, 22 South Green Street, Baltimore, MD 21201, USA; Department of Radiology, University of Maryland School of Medicine, 22 South Green Street, Baltimore, MD 21201, USA; Department of Neurology, University of Maryland School of Medicine, 22 South Green Street, Baltimore, MD 21201, USA; Department of Neurosurgery, University of Maryland School of Medicine, 22 South Green Street, Baltimore, MD 21201, USA.
| |
Collapse
|
3
|
Shah BR. When millimeters matter. Eur Radiol 2024; 34:5164-5166. [PMID: 38856783 DOI: 10.1007/s00330-024-10757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 06/11/2024]
Affiliation(s)
- Bhavya R Shah
- Transcranial Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX, USA.
- Department of Neurological Surgery, UTSW Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Newman M, Rasiah PK, Kusunose J, Rex TS, Mahadevan-Jansen A, Hardenburger J, Jansen ED, Millis B, Caskey CF. Ultrasound Modulates Calcium Activity in Cultured Neurons, Glial Cells, Endothelial Cells and Pericytes. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:341-351. [PMID: 38087717 DOI: 10.1016/j.ultrasmedbio.2023.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVE Ultrasound is being researched as a method to modulate the brain. Studies of the interaction of sound with neurons support the hypothesis that mechanosensitive ion channels play an important role in ultrasound neuromodulation. The response of cells other than neurons (e.g., astrocytes, pericytes and endothelial cells) have not been fully characterized, despite playing an important role in brain function. METHODS To address this gap in knowledge, we examined cultured murine primary cortical neurons, astrocytes, endothelial cells and pericytes in an in vitro widefield microscopy setup during application of a 500 ms burst of 250 kHz focused ultrasound over a pressure range known to elicit neuromodulation. We examined cell membrane health in response to a range of pulses and used optical calcium indicators in conjunction with pharmacological antagonists to selectively block different groups of thermo- and mechanosensitive ion channels known to be responsive to ultrasound. RESULTS All cell types experienced an increase in calcium fluorescence in response to ultrasound. Gadolinium (Gad), 2-aminoethoxydiphenyl borate (2-APB) and ruthenium red (RR) reduced the percentage of responding neurons and magnitude of response. The percentage of astrocytes responding was significantly lowered only by Gad, whereas both 2-APB and Gad decreased the amplitude of the fluorescence response. 2-APB decreased the percentage of responding endothelial cells, whereas only Gad reduced the magnitude of responses. Pericytes exposed to RR or Gad were less likely to respond to stimulation. RR had no detectable effect on the magnitude of the pericyte responses while 2-APB and Gad significantly decreased the fluorescence intensity, despite not affecting the percentage responding. CONCLUSION Our study highlights the role of non-neuronal cells during FUS neuromodulation. All of the investigated cell types are sensitive to mechanical ultrasound stimulation and rely on mechanosensitive ion channels to undergo ultrasound neuromodulation.
Collapse
Affiliation(s)
- Malachy Newman
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Pratheepa Kumari Rasiah
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt Biophotonics Center, Nashville, TN, USA
| | - Jiro Kusunose
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA; Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tonia S Rex
- Department of Opthalmology & Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt Biophotonics Center, Nashville, TN, USA
| | - Jacob Hardenburger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt Biophotonics Center, Nashville, TN, USA
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt Biophotonics Center, Nashville, TN, USA
| | - Bryan Millis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt Biophotonics Center, Nashville, TN, USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Yao S, Zheng X, Xie G, Zhang F. Multimodal Neuroimaging Computing: Basics and Applications in Neurosurgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:323-336. [PMID: 39523274 DOI: 10.1007/978-3-031-64892-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In neurosurgery, multimodal neuroimaging computing plays a critical role by providing a comprehensive and detailed understanding of the brain and its function. This integrated approach can unlock deeper insights into complex neurological diseases, as well as providing a big picture for image-guided neurosurgery and precision medicine. In this chapter, we will introduce the recent updates of neuroimaging techniques, their applications in neurosurgery scenarios, the difficulties of data processing and computing, and potential future perspectives.
Collapse
Affiliation(s)
- Shun Yao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuan Zheng
- Department of Neurosurgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guoqiang Xie
- Department of Neurosurgery, Nuclear Industry 215 Hospital of Shaanxi Province, Xianyang, China
| | - Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Thavarajasingam SG, Kilgallon JL, Ramsay DSC, Aval LM, Tewarie IA, Kramer A, Van Vuurden D, Broekman MLD. Methodological and ethical challenges in the use of focused ultrasound for blood-brain barrier disruption in neuro-oncology. Acta Neurochir (Wien) 2023; 165:4259-4277. [PMID: 37672093 PMCID: PMC10739192 DOI: 10.1007/s00701-023-05782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Focused ultrasound (FUS) shows promise for enhancing drug delivery to the brain by temporarily opening the blood-brain barrier (BBB), and it is increasingly used in the clinical setting to treat brain tumours. It remains however unclear whether FUS is being introduced in an ethically and methodologically sound manner. The IDEAL-D framework for the introduction of surgical innovations and the SYRCLE and ROBINS-I tools for assessing the risk of bias in animal studies and non-randomized trials, respectively, provide a comprehensive evaluation for this. OBJECTIVES AND METHODS A comprehensive literature review on FUS in neuro-oncology was conducted. Subsequently, the included studies were evaluated using the IDEAL-D framework, SYRCLE, and ROBINS-I tools. RESULTS In total, 19 published studies and 12 registered trials were identified. FUS demonstrated successful BBB disruption, increased drug delivery, and improved survival rates. However, the SYRCLE analysis revealed a high risk of bias in animal studies, while the ROBINS-I analysis found that most human studies had a high risk of bias due to a lack of blinding and heterogeneous samples. Of the 15 pre-clinical stage 0 studies, only six had formal ethical approval, and only five followed animal care policies. Both stage 1 studies and stage 1/2a studies failed to provide information on patient data confidentiality. Overall, no animal or human study reached the IDEAL-D stage endpoint. CONCLUSION FUS holds promise for enhancing drug delivery to the brain, but its development and implementation must adhere to rigorous safety standards using the established ethical and methodological frameworks. The complementary use of IDEAL-D, SYRCLE, and ROBINS-I tools indicates a high risk of bias and ethical limitations in both animal and human studies, highlighting the need for further improvements in study design for a safe implementation of FUS in neuro-oncology.
Collapse
Affiliation(s)
- Santhosh G Thavarajasingam
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Faculty of Medicine, Imperial College London, London, UK.
- Imperial Brain and Spine Initiative, Imperial College London, London, UK.
- Department of Neurosurgery, University Medical Centre Mainz, Mainz, Germany.
| | - John L Kilgallon
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniele S C Ramsay
- Faculty of Medicine, Imperial College London, London, UK
- Imperial Brain and Spine Initiative, Imperial College London, London, UK
| | - Leila Motedayen Aval
- Faculty of Medicine, Imperial College London, London, UK
- Imperial Brain and Spine Initiative, Imperial College London, London, UK
| | - Ishaan Ashwini Tewarie
- Computational Neurosciences Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, Netherlands
| | - Andreas Kramer
- Department of Neurosurgery, University Medical Centre Mainz, Mainz, Germany
| | | | - Marike L D Broekman
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, Netherlands
- Department of Neurosurgery, Leiden Medical Center, Leiden, Netherlands
| |
Collapse
|
7
|
Chua MMJ, Blitz SE, Ng PR, Segar DJ, McDannold NJ, White PJ, Christie S, Hayes MT, Rolston JD, Cosgrove GR. Focused Ultrasound Thalamotomy for Tremor in Parkinson's Disease: Outcomes in a Large, Prospective Cohort. Mov Disord 2023; 38:1962-1967. [PMID: 37539721 DOI: 10.1002/mds.29569] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Magnetic resonance guided focused ultrasound (MRgFUS) is United States Food and Drug Administration approved for the treatment of tremor-dominant Parkinson's disease (TdPD), but only limited studies have been described in practice. OBJECTIVES To report the largest prospective experience of unilateral MRgFUS thalamotomy for the treatment of medically refractory TdPD. METHODS Clinical outcomes of 48 patients with medically refractory TdPD who underwent MRgFUS thalamotomy were evaluated. Tremor outcomes were assessed using the Fahn-Tolosa-Marin scale and adverse effects were categorized using a structured questionnaire and clinical exam at 1 month (n = 44), 3 months (n = 34), 1 year (n = 22), 2 years (n = 5), and 3 years (n = 2). Patients underwent magnetic resonance imaging <24 hours post-procedure. RESULTS Significant tremor control persisted at all follow-ups (P < 0.001). All side effects were mild. At 3 months, these included gait imbalance (38.24%), sensory deficits (26.47%), motor weakness (17.65%), dysgeusia (5.88%), and dysarthria (5.88%), with some persisting at 1 year. CONCLUSIONS MRgFUS thalamotomy is an effective treatment for sustained tremor control in patients with TdPD. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Melissa M J Chua
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah E Blitz
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick R Ng
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David J Segar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathan J McDannold
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - P Jason White
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sarah Christie
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael T Hayes
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Barbero JA, Unadkat P, Choi YY, Eidelberg D. Functional Brain Networks to Evaluate Treatment Responses in Parkinson's Disease. Neurotherapeutics 2023; 20:1653-1668. [PMID: 37684533 PMCID: PMC10684458 DOI: 10.1007/s13311-023-01433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Network analysis of functional brain scans acquired with [18F]-fluorodeoxyglucose positron emission tomography (FDG PET, to map cerebral glucose metabolism), or resting-state functional magnetic resonance imaging (rs-fMRI, to map blood oxygen level-dependent brain activity) has increasingly been used to identify and validate reproducible circuit abnormalities associated with neurodegenerative disorders such as Parkinson's disease (PD). In addition to serving as imaging markers of the underlying disease process, these networks can be used singly or in combination as an adjunct to clinical diagnosis and as a screening tool for therapeutics trials. Disease networks can also be used to measure rates of progression in natural history studies and to assess treatment responses in individual subjects. Recent imaging studies in PD subjects scanned before and after treatment have revealed therapeutic effects beyond the modulation of established disease networks. Rather, other mechanisms of action may be at play, such as the induction of novel functional brain networks directly by treatment. To date, specific treatment-induced networks have been described in association with novel interventions for PD such as subthalamic adeno-associated virus glutamic acid decarboxylase (AAV2-GAD) gene therapy, as well as sham surgery or oral placebo under blinded conditions. Indeed, changes in the expression of these networks with treatment have been found to correlate consistently with clinical outcome. In aggregate, these attributes suggest a role for functional brain networks as biomarkers in future clinical trials.
Collapse
Affiliation(s)
- János A Barbero
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Prashin Unadkat
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
- Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, 11030, USA
| | - Yoon Young Choi
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Molecular Medicine and Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
9
|
Kondapavulur S, Silva AB, Molinaro AM, Wang DD. A Systematic Review Comparing Focused Ultrasound Surgery With Radiosurgery for Essential Tremor. Neurosurgery 2023; 93:524-538. [PMID: 37010324 PMCID: PMC10553193 DOI: 10.1227/neu.0000000000002462] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/26/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND Focused ultrasound (FUS-T) and stereotactic radiosurgery thalamotomy (SRS-T) targeting the ventral intermediate nucleus are effective incisionless surgeries for essential tremor (ET). However, their efficacy for tremor reduction and, importantly, adverse event incidence have not been directly compared. OBJECTIVE To present a comprehensive systematic review with network meta-analysis examining both efficacy and adverse events (AEs) of FUS-T vs SRS-T for treating medically refractory ET. METHODS We conducted a systematic review and network meta-analysis according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, using the PubMed and Embase databases. We included all primary FUS-T/SRS-T studies with approximately 1-year follow-up, with unilateral Fahn-Tolosa-Marin Tremor Rating Scale or Clinical Rating Scale for Tremor scores prethalamotomy/post-thalamotomy and/or AEs. The primary efficacy outcome was Fahn-Tolosa-Marin Tremor Rating Scale A+B score reduction. AEs were reported as an estimated incidence. RESULTS Fifteen studies of 464 patients and 3 studies of 62 patients met inclusion criteria for FUS-T/SRS-T efficacy comparison, respectively. Network meta-analysis demonstrated similar tremor reduction between modalities (absolute tremor reduction: FUS-T: -11.6 (95% CI: -13.3, -9.9); SRS-T: -10.3 (95% CI: -14.2, -6.0). FUS-T had a greater 1-year adverse event rate, particularly imbalance and gait disturbances (10.5%) and sensory disturbances (8.3%). Contralateral hemiparesis (2.7%) often accompanied by speech impairment (2.4%) were most common after SRS-T. There was no correlation between efficacy and lesion volume. CONCLUSION Our systematic review found similar efficacy between FUS-T and SRS-T for ET, with trend toward higher efficacy yet greater adverse event incidence with FUS-T. Smaller lesion volumes could mitigate FUS-T off-target effects for greater safety.
Collapse
Affiliation(s)
- Sravani Kondapavulur
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
- Medical Scientist Training Program, UCSF, San Francisco, California, USA
| | - Alexander B. Silva
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
- Medical Scientist Training Program, UCSF, San Francisco, California, USA
| | | | - Doris D. Wang
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| |
Collapse
|
10
|
Vallejo FA, Sigdel G, Veliz EA, Leblanc RM, Vanni S, Graham RM. Carbon Dots in Treatment of Pediatric Brain Tumors: Past, Present, and Future Directions. Int J Mol Sci 2023; 24:ijms24119562. [PMID: 37298513 DOI: 10.3390/ijms24119562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Pediatric brain tumors remain a significant source of morbidity and mortality. Though developments have been made in treating these malignancies, the blood-brain barrier, intra- and inter-tumoral heterogeneity, and therapeutic toxicity pose challenges to improving outcomes. Varying types of nanoparticles, including metallic, organic, and micellar molecules of varying structures and compositions, have been investigated as a potential therapy to circumvent some of these inherent challenges. Carbon dots (CDs) have recently gained popularity as a novel nanoparticle with theranostic properties. This carbon-based modality is highly modifiable, allowing for conjugation to drugs, as well as tumor-specific ligands in an effort to more effectively target cancerous cells and reduce peripheral toxicity. CDs are being studied pre-clinically. The ClinicalTrials.gov site was queried using the search terms: brain tumor and nanoparticle, liposome, micelle, dendrimer, quantum dot, or carbon dot. At the time of this review, 36 studies were found, 6 of which included pediatric patients. Two of the six studies investigated nanoparticle drug formulations, whereas the other four studies were on varying liposomal nanoparticle formulations for the treatment of pediatric brain tumors. Here, we reviewed the context of CDs within the broader realm of nanoparticles, their development, promising pre-clinical potential, and proposed future translational utility.
Collapse
Affiliation(s)
- Frederic A Vallejo
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Ganesh Sigdel
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Eduardo A Veliz
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Steven Vanni
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, USA
- HCA Florida University Hospital, 3476 S University Dr., Davie, FL 33328, USA
- Department of Medicine, Dr. Kiran C. Patel College of Allopathic Medicine, Davie, FL 33328, USA
| | - Regina M Graham
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL 33136, USA
| |
Collapse
|
11
|
Mehkri Y, Pierre K, Woodford SJ, Davidson CG, Urhie O, Sriram S, Hernandez J, Hanna C, Lucke-Wold B. Surgical Management of Brain Tumors with Focused Ultrasound. Curr Oncol 2023; 30:4990-5002. [PMID: 37232835 DOI: 10.3390/curroncol30050377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Focused ultrasound is a novel technique for the treatment of aggressive brain tumors that uses both mechanical and thermal mechanisms. This non-invasive technique can allow for both the thermal ablation of inoperable tumors and the delivery of chemotherapy and immunotherapy while minimizing the risk of infection and shortening the time to recovery. With recent advances, focused ultrasound has been increasingly effective for larger tumors without the need for a craniotomy and can be used with minimal surrounding soft tissue damage. Treatment efficacy is dependent on multiple variables, including blood-brain barrier permeability, patient anatomical features, and tumor-specific features. Currently, many clinical trials are currently underway for the treatment of non-neoplastic cranial pathologies and other non-cranial malignancies. In this article, we review the current state of surgical management of brain tumors using focused ultrasound.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Kevin Pierre
- Department of Radiology, College of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32608, USA
| | - Samuel Joel Woodford
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Caroline Grace Davidson
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Ogaga Urhie
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Sai Sriram
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Jairo Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Chadwin Hanna
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, 1505 SW Archer Rd, Gainesville, FL 32608, USA
| |
Collapse
|
12
|
Wu Q, Xia Y, Xiong X, Duan X, Pang X, Zhang F, Tang S, Su J, Wen S, Mei L, Cannon RD, Ji P, Ou Z. Focused ultrasound-mediated small-molecule delivery to potentiate immune checkpoint blockade in solid tumors. Front Pharmacol 2023; 14:1169608. [PMID: 37180717 PMCID: PMC10173311 DOI: 10.3389/fphar.2023.1169608] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
In the last decade, immune checkpoint blockade (ICB) has revolutionized the standard of treatment for solid tumors. Despite success in several immunogenic tumor types evidenced by improved survival, ICB remains largely unresponsive, especially in "cold tumors" with poor lymphocyte infiltration. In addition, side effects such as immune-related adverse events (irAEs) are also obstacles for the clinical translation of ICB. Recent studies have shown that focused ultrasound (FUS), a non-invasive technology proven to be effective and safe for tumor treatment in clinical settings, could boost the therapeutic effect of ICB while alleviating the potential side effects. Most importantly, the application of FUS to ultrasound-sensitive small particles, such as microbubbles (MBs) or nanoparticles (NPs), allows for precise delivery and release of genetic materials, catalysts and chemotherapeutic agents to tumor sites, thus enhancing the anti-tumor effects of ICB while minimizing toxicity. In this review, we provide an updated overview of the progress made in recent years concerning ICB therapy assisted by FUS-controlled small-molecule delivery systems. We highlight the value of different FUS-augmented small-molecules delivery systems to ICB and describe the synergetic effects and underlying mechanisms of these combination strategies. Furthermore, we discuss the limitations of the current strategies and the possible ways that FUS-mediated small-molecule delivery systems could boost novel personalized ICB treatments for solid tumors.
Collapse
Affiliation(s)
- Qiuyu Wu
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yuanhang Xia
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xiaohe Xiong
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Xinxing Duan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Fugui Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Song Tang
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Junlei Su
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Shuqiong Wen
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard D. Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| | - Zhanpeng Ou
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ping Ji, Zhanpeng Ou,
| |
Collapse
|
13
|
Serva SN, Bernstein J, Thompson JA, Kern DS, Ojemann SG. An update on advanced therapies for Parkinson's disease: From gene therapy to neuromodulation. Front Surg 2022; 9:863921. [PMID: 36211256 PMCID: PMC9537763 DOI: 10.3389/fsurg.2022.863921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Advanced Parkinson's disease (PD) is characterized by increasingly debilitating impaired movements that include motor fluctuations and dyskinesias. At this stage of the disease, pharmacological management can result in unsatisfactory clinical benefits and increase the occurrence of adverse effects, leading to the consideration of advanced therapies. The scope of this review is to provide an overview of currently available therapies for advanced PD, specifically levodopa–carbidopa intestinal gel, continuous subcutaneous apomorphine infusion, radiofrequency ablation, stereotactic radiosurgery, MRI-guided focused ultrasound, and deep brain stimulation. Therapies in clinical trials are also discussed, including novel formulations of subcutaneous carbidopa/levodopa, gene-implantation therapies, and cell-based therapies. This review focuses on the clinical outcomes and adverse effects of the various therapies and also considers patient-specific characteristics that may influence treatment choice. This review can equip providers with updated information on advanced therapies in PD to better counsel patients on the available options.
Collapse
Affiliation(s)
- Stephanie N. Serva
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jacob Bernstein
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - John A. Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Drew S. Kern
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Correspondence: Steven G. Ojemann Drew S. Kern
| | - Steven G. Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Correspondence: Steven G. Ojemann Drew S. Kern
| |
Collapse
|
14
|
Pérez-Neri I, González-Aguilar A, Sandoval H, Pineda C, Ríos C. Potential Goals, Challenges, and Safety of Focused Ultrasound Application for Central Nervous System Disorders. Curr Neuropharmacol 2022; 20:1807-1810. [PMID: 35105289 PMCID: PMC9886811 DOI: 10.2174/1570159x20666220201092908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/02/2022] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
| | | | | | | | - Camilo Ríos
- Address correspondence to this author at the Department of Neurochemistry of the National Institute of Neurology and Neurosurgery. Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269. Mexico; E-mail:
| |
Collapse
|
15
|
Power EA, Rechberger JS, Gupta S, Schwartz JD, Daniels DJ, Khatua S. Drug delivery across the blood-brain barrier for the treatment of pediatric brain tumors - An update. Adv Drug Deliv Rev 2022; 185:114303. [PMID: 35460714 DOI: 10.1016/j.addr.2022.114303] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022]
Abstract
Even though the last decade has seen a surge in the identification of molecular targets and targeted therapies in pediatric brain tumors, the blood brain barrier (BBB) remains a significant challenge in systemic drug delivery. This continues to undermine therapeutic efficacy. Recent efforts have identified several strategies that can facilitate enhanced drug delivery into pediatric brain tumors. These include invasive methods such as intra-arterial, intrathecal, and convection enhanced delivery and non-invasive technologies that allow for transient access across the BBB, including focused ultrasound and nanotechnology. This review discusses current strategies that are being used to enhance delivery of different therapies across the BBB to the tumor site - a major unmet need in pediatric neuro-oncology.
Collapse
Affiliation(s)
- Erica A Power
- Mayo Clinic Graduate School of Biomedical Sciences, 200 First Street SW, Rochester, MN 55905, United States; Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Julian S Rechberger
- Mayo Clinic Graduate School of Biomedical Sciences, 200 First Street SW, Rochester, MN 55905, United States; Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Sumit Gupta
- Department of Pediatric Hematology/Oncology, Roseman University of Health Sciences, Las Vegas, NV 89118, United States
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| |
Collapse
|
16
|
Brinker ST, Balchandani P, Seifert AC, Kim HJ, Yoon K. Feasibility of Upper Cranial Nerve Sonication in Human Application via Neuronavigated Single-Element Pulsed Focused Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1045-1057. [PMID: 35341621 DOI: 10.1016/j.ultrasmedbio.2022.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Sonicating deep brain regions with pulsed focused ultrasound using magnetic resonance imaging-guided neuronavigation single-element piezoelectric transducers is a new area of exploration for neuromodulation. Upper cranial nerves such as the trigeminal nerve and other nerves responsible for sensory/motor functions in the head may be potential targets for ultrasound pain therapy. The location of upper cranial nerves close to the skull base poses additional challenges when compared with conventional cortical or middle brain targets. In the work described here, a series of computational and empirical testing methods using human skull specimens were conducted to assess the feasibility of sonicating the trigeminal pathway near the sphenoid bone region. The results indicate a transducer with a focal length of 120 mm and diameter of 85 mm (350 kHz) can deliver sonication to upper cranial nerve regions with spatial accuracy comparable to that of focused ultrasound brain targets used in previous human studies. Temperature measurements in cortical bone and in the skull base with embedded thermocouples yield evidence of minimal bone heating. Conventional pulse parameters were found to cause reverberation interference patterns near the cranial floor; therefore, changes in pulse cycles and pulse repetition frequency were examined for reducing standing waves. Limitations and considerations for conducting ultradeep focal targeting in human applications are discussed.
Collapse
Affiliation(s)
- Spencer T Brinker
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA.
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute, Departments of Diagnostic, Molecular and Interventional Radiology, Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alan C Seifert
- Biomedical Engineering and Imaging Institute, Department of Diagnostic, Molecular and Interventional Radiology, and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hyo-Jin Kim
- Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul, South Korea
| | - Kyungho Yoon
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul, South Korea
| |
Collapse
|
17
|
Thombre R, Mess G, Kempski Leadingham KM, Kapoor S, Hersh A, Acord M, Kaovasia T, Theodore N, Tyler B, Manbachi A. Towards standardization of the parameters for opening the blood-brain barrier with focused ultrasound to treat glioblastoma multiforme: A systematic review of the devices, animal models, and therapeutic compounds used in rodent tumor models. Front Oncol 2022; 12:1072780. [PMID: 36873300 PMCID: PMC9978816 DOI: 10.3389/fonc.2022.1072780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/20/2022] [Indexed: 02/18/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a deadly and aggressive malignant brain cancer that is highly resistant to treatments. A particular challenge of treatment is caused by the blood-brain barrier (BBB), the relatively impermeable vasculature of the brain. The BBB prevents large molecules from entering the brain parenchyma. This protective characteristic of the BBB, however, also limits the delivery of therapeutic drugs for the treatment of brain tumors. To address this limitation, focused ultrasound (FUS) has been safely utilized to create transient openings in the BBB, allowing various high molecular weight drugs access to the brain. We performed a systematic review summarizing current research on treatment of GBMs using FUS-mediated BBB openings in in vivo mouse and rat models. The studies gathered here highlight how the treatment paradigm can allow for increased brain and tumor perfusion of drugs including chemotherapeutics, immunotherapeutics, gene therapeutics, nanoparticles, and more. Given the promising results detailed here, the aim of this review is to detail the commonly used parameters for FUS to open the BBB in rodent GBM models.
Collapse
Affiliation(s)
- Rasika Thombre
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Griffin Mess
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Kelley M Kempski Leadingham
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Shivani Kapoor
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Andrew Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Molly Acord
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Tarana Kaovasia
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,Department of Electrical Engineering and Computer Science, Johns Hopkins University, Baltimore, MD, United States.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
18
|
Schoen S, Kilinc MS, Lee H, Guo Y, Degertekin FL, Woodworth GF, Arvanitis C. Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound. Adv Drug Deliv Rev 2022; 180:114043. [PMID: 34801617 PMCID: PMC8724442 DOI: 10.1016/j.addr.2021.114043] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Brain tumors are particularly challenging malignancies, due to their location in a structurally and functionally distinct part of the human body - the central nervous system (CNS). The CNS is separated and protected by a unique system of brain and blood vessel cells which together prevent most bloodborne therapeutics from entering the brain tumor microenvironment (TME). Recently, great strides have been made through microbubble (MB) ultrasound contrast agents in conjunction with ultrasound energy to locally increase the permeability of brain vessels and modulate the brain TME. As we elaborate in this review, this physical method can effectively deliver a wide range of anticancer agents, including chemotherapeutics, antibodies, and nanoparticle drug conjugates across a range of preclinical brain tumors, including high grade glioma (glioblastoma), diffuse intrinsic pontine gliomas, and brain metastasis. Moreover, recent evidence suggests that this technology can promote the effective delivery of novel immunotherapeutic agents, including immune check-point inhibitors and chimeric antigen receptor T cells, among others. With early clinical studies demonstrating safety, and several Phase I/II trials testing the preclinical findings underway, this technology is making firm steps towards shaping the future treatments of primary and metastatic brain cancer. By elaborating on its key components, including ultrasound systems and MB technology, along with methods for closed-loop spatial and temporal control of MB activity, we highlight how this technology can be tuned to enable new, personalized treatment strategies for primary brain malignancies and brain metastases.
Collapse
Affiliation(s)
- Scott Schoen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M. Sait Kilinc
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hohyun Lee
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yutong Guo
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - F. Levent Degertekin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Graeme F. Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, College Park, MD 20742, USA,Fischell Department of Bioengineering A. James Clarke School of Engineering, University of Maryland
| | - Costas Arvanitis
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA,Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
19
|
Segar DJ, Lak AM, Lee S, Harary M, Chavakula V, Lauro P, McDannold N, White J, Cosgrove GR. Lesion location and lesion creation affect outcomes after focused ultrasound thalamotomy. Brain 2021; 144:3089-3100. [PMID: 34750621 DOI: 10.1093/brain/awab176] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/13/2021] [Accepted: 04/05/2021] [Indexed: 11/13/2022] Open
Abstract
MRI-guided focused ultrasound thalamotomy has been shown to be an effective treatment for medication refractory essential tremor. Here, we report a clinical-radiological analysis of 123 cases of MRI-guided focused ultrasound thalamotomy, and explore the relationships between treatment parameters, lesion characteristics and outcomes. All patients undergoing focused ultrasound thalamotomy by a single surgeon were included. The procedure was performed as previously described, and patients were followed for up to 1 year. MRI was performed 24 h post-treatment, and lesion locations and volumes were calculated. We retrospectively evaluated 118 essential tremor patients and five tremor-dominant Parkinson's disease patients who underwent thalamotomy. At 24 h post-procedure, tremor abated completely in the treated hand in 81 essential tremor patients. Imbalance, sensory disturbances and dysarthria were the most frequent acute adverse events. Patients with any adverse event had significantly larger lesions, while inferolateral lesion margins were associated with a higher incidence of motor-related adverse events. Twenty-three lesions were identified with irregular tails, often extending into the internal capsule; 22 of these patients experienced at least one adverse event. Treatment parameters and lesion characteristics changed with increasing surgeon experience. In later cases, treatments used higher maximum power (normalized to skull density ratio), accelerated more quickly to high power, and delivered energy over fewer sonications. Larger lesions were correlated with a rapid rise in both power delivery and temperature, while increased oedema was associated with rapid rise in temperature and the maximum power delivered. Total energy and total power did not significantly affect lesion size. A support vector regression was trained to predict lesion size and confirmed the most valuable predictors of increased lesion size as higher maximum power, rapid rise to high-power delivery, and rapid rise to high tissue temperatures. These findings may relate to a decrease in the energy efficiency of the treatment, potentially due to changes in acoustic properties of skull and tissue at higher powers and temperatures. We report the largest single surgeon series of focused ultrasound thalamotomy to date, demonstrating tremor relief and adverse events consistent with reported literature. Lesion location and volume impacted adverse events, and an irregular lesion tail was strongly associated with adverse events. High-power delivery early in the treatment course, rapid temperature rise, and maximum power were dominant predictors of lesion volume, while total power, total energy, maximum energy and maximum temperature did not improve prediction of lesion volume. These findings have critical implications for treatment planning in future patients.
Collapse
Affiliation(s)
- David J Segar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Asad M Lak
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shane Lee
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Maya Harary
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Vamsidhar Chavakula
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Lauro
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason White
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Stieglitz LH, Oertel MF, Accolla EA, Bally J, Bauer R, Baumann CR, Benninger D, Bohlhalter S, Büchele F, Hägele-Link S, Kägi G, Krack P, Krüger MT, Mahendran S, Möller JC, Mylius V, Piroth T, Werner B, Kaelin-Lang A. Consensus Statement on High-Intensity Focused Ultrasound for Functional Neurosurgery in Switzerland. Front Neurol 2021; 12:722762. [PMID: 34630296 PMCID: PMC8493868 DOI: 10.3389/fneur.2021.722762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Magnetic resonance-guided high-intensity focused ultrasound (MRgHiFUS) has evolved into a viable ablative treatment option for functional neurosurgery. However, it is not clear yet, how this new technology should be integrated into current and established clinical practice and a consensus should be found about recommended indications, stereotactic targets, patient selection, and outcome measurements. Objective: To sum up and unify current knowledge and clinical experience of Swiss neurological and neurosurgical communities regarding MRgHiFUS interventions for brain disorders to be published as a national consensus paper. Methods: Eighteen experienced neurosurgeons and neurologists practicing in Switzerland in the field of movement disorders and one health physicist representing 15 departments of 12 Swiss clinical centers and 5 medical societies participated in the workshop and contributed to the consensus paper. All experts have experience with current treatment modalities or with MRgHiFUS. They were invited to participate in two workshops and consensus meetings and one online meeting. As part of workshop preparations, a thorough literature review was undertaken and distributed among participants together with a list of relevant discussion topics. Special emphasis was put on current experience and practice, and areas of controversy regarding clinical application of MRgHiFUS for functional neurosurgery. Results: The recommendations addressed lesioning for treatment of brain disorders in general, and with respect to MRgHiFUS indications, stereotactic targets, treatment alternatives, patient selection and management, standardization of reporting and follow-up, and initialization of a national registry for interventional therapies of movement disorders. Good clinical evidence is presently only available for unilateral thalamic lesioning in treating essential tremor or tremor-dominant Parkinson's disease and, to a minor extent, for unilateral subthalamotomy for Parkinson's disease motor features. However, the workgroup unequivocally recommends further exploration and adaptation of MRgHiFUS-based functional lesioning interventions and confirms the need for outcome-based evaluation of these approaches based on a unified registry. MRgHiFUS and DBS should be evaluated by experts familiar with both methods, as they are mutually complementing therapy options to be appreciated for their distinct advantages and potential. Conclusion: This multidisciplinary consensus paper is a representative current recommendation for safe implementation and standardized practice of MRgHiFUS treatments for functional neurosurgery in Switzerland.
Collapse
Affiliation(s)
| | - Markus F Oertel
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Ettore A Accolla
- Neurology Unit, Department of Internal Medicine, Hôpital Fribourgeois (HFR)-Cantonal Hospital Fribourg, University of Fribourg, Fribourg, Switzerland
| | - Julien Bally
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Department of Neurology, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Roland Bauer
- Department of Neurosurgery, Cantonal Hospital Aarau, Aarau, Switzerland
| | | | - David Benninger
- Department of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stephan Bohlhalter
- Neurocenter, Lucerne Cantonal Hospital, University of Zurich, Zurich, Switzerland
| | - Fabian Büchele
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Stefan Hägele-Link
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Georg Kägi
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Paul Krack
- Department of Neurology, Inselspital, University Bern, Bern, Switzerland
| | - Marie T Krüger
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Sujitha Mahendran
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - J Carsten Möller
- Parkinson Center, Center for Neurological Rehabilitation, Zihlschlacht, Switzerland
| | - Veit Mylius
- Department of Neurology, Center for Neurorehabilitation, Valens, Switzerland
| | - Tobias Piroth
- Department of Neurology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Beat Werner
- Center for Magnetic Resonance (MR) Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Alain Kaelin-Lang
- Department of Neurology, Inselspital, University Bern, Bern, Switzerland.,Neurocenter of Southern Switzerland Ente Ospedaliero Cantonale (EOC), Regional Hospital Lugano, Lugano, Switzerland.,Faculty of Biomedical Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
21
|
Guglielmi G, Eschbach KL, Alexander AL. Smaller Knife, Fewer Seizures? Recent Advances in Minimally Invasive Techniques in Pediatric Epilepsy Surgery. Semin Pediatr Neurol 2021; 39:100913. [PMID: 34620456 DOI: 10.1016/j.spen.2021.100913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 02/02/2023]
Abstract
Children with drug-resistant epilepsy are at high risk for developmental delay, increased mortality, psychiatric comorbidities, and requiring assistance with activities of daily living. Despite the advent of new and effective pharmacologic therapies, about one in 5 children will develop drug-resistant epilepsy, and most of these children continue to have seizures despite trials of other medication. Epilepsy surgery is often a safe and effective option which may offer seizure freedom or at least a significant reduction in seizure burden in many children. However, despite published evidence of safety and efficacy, epilepsy surgery remains underutilized in the pediatric population. Patient and family fears about the risks of surgery may contribute to this gap. Less invasive surgical techniques may be more palatable to children with epilepsy and their caregivers. In this review, we present recent advances in minimally invasive techniques for the surgical treatment of epilepsy as well as intriguing possibilities for the future. We describe the indications for, benefits of, and limits to minimally-invasive techniques including Stereo-encephalography, laser interstitial thermal ablation, deep brain stimulation, focused ultrasound, stereo-encephalography-guided radiofrequency ablation, endoscopic disconnections, and responsive neurostimulation.
Collapse
Affiliation(s)
- Gina Guglielmi
- Graduate Medical Education, Neurological Surgery Residency, Carle BroMenn Medical Center, Normal IL; Section of Pediatric Neurology, Children's Hospital Colorado, Aurora CO; Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora CO; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora CO; Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora CO
| | - Krista L Eschbach
- Graduate Medical Education, Neurological Surgery Residency, Carle BroMenn Medical Center, Normal IL; Section of Pediatric Neurology, Children's Hospital Colorado, Aurora CO; Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora CO; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora CO; Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora CO
| | - Allyson L Alexander
- Graduate Medical Education, Neurological Surgery Residency, Carle BroMenn Medical Center, Normal IL; Section of Pediatric Neurology, Children's Hospital Colorado, Aurora CO; Department of Pediatrics, University of Colorado Anschutz School of Medicine, Aurora CO; Division of Pediatric Neurosurgery, Children's Hospital Colorado, Aurora CO; Department of Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora CO.
| |
Collapse
|
22
|
High-Intensity Focused Ultrasound: A Review of Mechanisms and Clinical Applications. Ann Biomed Eng 2021; 49:1975-1991. [PMID: 34374945 DOI: 10.1007/s10439-021-02833-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 01/20/2023]
Abstract
High Intensity Focused Ultrasound (HIFU) is an emerging and increasingly useful modality in the treatment of cancer and other diseases. Although traditional use of ultrasound at lower frequencies has primarily been for diagnostic imaging purposes, the development of HIFU has allowed this particular modality to expand into therapeutic use. This non-invasive and acoustic method involves the use of a piezoelectric transducer to deliver high-energy pulses in a spatially coordinated manner, while minimizing damage to tissue outside the target area. This review describes the history of the development of diagnostic and therapeutic ultrasound and explores the biomedical applications utilizing HIFU technology including thermally ablative treatment, therapeutic delivery mechanisms, and neuromodulatory phenomena. The application of HIFU across various tumor types in multiple organ systems is explored in depth, with particular attention to successful models of HIFU in the treatment of various medical conditions. Basic mechanisms, preclinical models, previous clinical use, and ongoing clinical trials are comparatively discussed. Recent advances in HIFU across multiple medical fields reveal the growing importance of this biomedical technology for the care of patients and for the development of possible pathways for the future use of HIFU as a commonplace treatment modality.
Collapse
|
23
|
Bruno F, Catalucci A, Varrassi M, Arrigoni F, Sucapane P, Cerone D, Pistoia F, Torlone S, Tommasino E, De Santis L, Barile A, Ricci A, Marini C, Splendiani A, Masciocchi C. Comparative evaluation of tractography-based direct targeting and atlas-based indirect targeting of the ventral intermediate (Vim) nucleus in MRgFUS thalamotomy. Sci Rep 2021; 11:13538. [PMID: 34188190 PMCID: PMC8241849 DOI: 10.1038/s41598-021-93058-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/08/2021] [Indexed: 11/12/2022] Open
Abstract
To analyze and compare direct and indirect targeting of the Vim for MRgFUS thalamotomy. We retrospectively evaluated 21 patients who underwent unilateral MRgFUS Vim ablation and required targeting repositioning during the procedures. For each patient, in the three spatial coordinates, we recorded: (i) indirect coordinates; (ii) the coordinates where we clinically observed tremor reduction during the verification stage sonications; (iii) direct coordinates, measured on the dentatorubrothalamic tract (DRTT) at the after postprocessing of DTI data. The agreement between direct and indirect coordinates compared to clinically effective coordinates was evaluated through the Bland–Altman test and intraclass correlation coefficient. The median absolute percentage error was also calculated. Compared to indirect targeting, direct targeting showed inferior error values on the RL and AP coordinates (0.019 vs. 0.079 and 0.207 vs. 0.221, respectively) and higher error values on the SI coordinates (0.263 vs. 0.021). The agreement between measurements was higher for tractography along the AP and SI planes and lower along the RL planes. Indirect atlas-based targeting represents a valid approach for MRgFUS thalamotomy. The direct tractography approach is a valuable aid in assessing the possible deviation of the error in cases where no immediate clinical response is achieved.
Collapse
Affiliation(s)
- Federico Bruno
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy. .,Italian Society of Medical and Interventional Radiology, SIRM Foundation, Milan, Italy.
| | - Alessia Catalucci
- Neuroradiology and Interventional Radiology, San Salvatore Hospital, L'Aquila, Italy
| | - Marco Varrassi
- Neuroradiology and Interventional Radiology, San Salvatore Hospital, L'Aquila, Italy
| | - Francesco Arrigoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | | | | | - Francesca Pistoia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Silvia Torlone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Emanuele Tommasino
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Luca De Santis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | | | - Carmine Marini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Carlo Masciocchi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| |
Collapse
|
24
|
Abstract
Deep brain stimulation (DBS) is the most commonly used surgical treatment for drug-refractory movement disorders such as tremor and dystonia. Appropriate patient selection along with target selection is important to ensure optimal outcome without complications. This review summarizes the recent literature regarding the mechanism of action, indications, outcome, and complications of DBS in tremor and dystonia. A comparison with other modalities of surgical interventions is discussed along with a note of the recent advances in technology. Future research needs to be directed to understand the underlying etiopathogenesis of the disease and the way in which DBS modulates the intracranial abnormal networks.
Collapse
Affiliation(s)
- Manmohan Singh
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Mohit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Agrawal M, Garg K, Samala R, Rajan R, Naik V, Singh M. Outcome and Complications of MR Guided Focused Ultrasound for Essential Tremor: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:654711. [PMID: 34025558 PMCID: PMC8137896 DOI: 10.3389/fneur.2021.654711] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Magnetic resonance guided focused ultrasound (MRgFUS) is a relatively novel technique to treat essential tremor (ET). The objective of this review was to analyze the efficacy and the safety profile of MRgFUS for ET. Methods: A systematic literature review was done. The post procedure changes in the Clinical Rating Scale for Tremor (CRST) score, hand score, disability and quality of life scores were analyzed. Results: We found 29 studies evaluating 617 patients. DTI based targeting was utilized in six cohorts. A significant difference was observed in the pooled standard mean difference between the pre and postoperative total CRST score (p-value < 0.001 and 0.0002), hand score (p-value 0.03 and 0.02); and the disability at 12 months (p-value 0.01). Head pain and dizziness were the most in procedure complications. The immediate pooled proportion of ataxia was 50%, while it was 20% for sensory complications, which, respectively, declined to 31 and 13% on long term follow up. A significant reduction (p = 0.03) in immediate ataxia related complications was seen with DTI targeting. Conclusion: MRgFUS for ET seems to be an effective procedure for relieving unilateral tremor. Use of DTI based targeting revealed a significant reduction in post procedure ataxia related complications as compared to traditional targeting techniques. Analysis of other complications further revealed a decreasing trend on follow up.
Collapse
Affiliation(s)
- Mohit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Kanwaljeet Garg
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Raghu Samala
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Vikas Naik
- Department of Neurosurgery, Bangalore Medical College, Bangalore, India
| | - Manmohan Singh
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
26
|
Pérez-Neri I, González-Aguilar A, Sandoval H, Pineda C, Ríos C. Therapeutic Potential of Ultrasound Neuromodulation in Decreasing Neuropathic Pain: Clinical and Experimental Evidence. Curr Neuropharmacol 2021; 19:334-348. [PMID: 32691714 PMCID: PMC8033967 DOI: 10.2174/1570159x18666200720175253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background For more than seven decades, ultrasound has been used as an imaging and diagnostic tool. Today, new technologies, such as focused ultrasound (FUS) neuromodulation, have revealed some innovative, potential applications. However, those applications have been barely studied to deal with neuropathic pain (NP), a cluster of chronic pain syndromes with a restricted response to conventional pharmaceuticals. Objective To analyze the therapeutic potential of low-intensity (LIFUS) and high-intensity (HIFUS) FUS for managing NP. Methods We performed a narrative review, including clinical and experimental ultrasound neuromodulation studies published in three main database repositories. Discussion Evidence shows that FUS may influence several mechanisms relevant for neuropathic pain management such as modulation of ion channels, glutamatergic neurotransmission, cerebral blood flow, inflammation and neurotoxicity, neuronal morphology and survival, nerve regeneration, and remyelination. Some experimental models have shown that LIFUS may reduce allodynia after peripheral nerve damage. At the same time, a few clinical studies support its beneficial effect on reducing pain in nerve compression syndromes. In turn, Thalamic HIFUS ablation can reduce NP from several etiologies with minor side-effects, but some neurological sequelae might be permanent. HIFUS is also useful in lowering non-neuropathic pain in several disorders. Conclusion Although an emerging set of studies brings new evidence on the therapeutic potential of both LIFUS and HIFUS for managing NP with minor side-effects, we need more controlled clinical trials to conclude about its safety and efficacy.
Collapse
Affiliation(s)
- Iván Pérez-Neri
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - Alberto González-Aguilar
- Neuro-oncology Unit, Instituto Nacional de Neurología y Neurocirugia Manuel Velasco Suarez, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| | - Hugo Sandoval
- Sociomedical Research Unit, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Calzada México-Xochimilco 289, Col, Arenal de Guadalupe, Alcaldia Tlalpan, C.P. 14389, Mexico City, Mexico
| | - Carlos Pineda
- Division of Musculoskeletal and Rheumatic Disorders, Instituto Nacional de Rehabilitacion Luis Guillermo Ibarra Ibarra, Calzada Mexico-Xochimilco 289, Col, Arenal de Guadalupe, Alcaldia Tlalpan, C.P.14389, Mexico City, Mexico
| | - Camilo Ríos
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery, Insurgentes Sur 3877, La Fama, Tlalpan, Mexico City, 14269, Mexico
| |
Collapse
|
27
|
Ntetsika T, Papathoma PE, Markaki I. Novel targeted therapies for Parkinson's disease. Mol Med 2021; 27:17. [PMID: 33632120 PMCID: PMC7905684 DOI: 10.1186/s10020-021-00279-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease (PD) is the second more common neurodegenerative disease with increasing incidence worldwide associated to the population ageing. Despite increasing awareness and significant research advancements, treatment options comprise dopamine repleting, symptomatic therapies that have significantly increased quality of life and life expectancy, but no therapies that halt or reverse disease progression, which remain a great, unmet goal in PD research. Large biomarker development programs are undertaken to identify disease signatures that will improve patient selection and outcome measures in clinical trials. In this review, we summarize PD-related mechanisms that can serve as targets of therapeutic interventions aiming to slow or modify disease progression, as well as previous and ongoing clinical trials in each field, and discuss future perspectives.
Collapse
Affiliation(s)
- Theodora Ntetsika
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center of Neurology, Academic Specialist Center, Solnavägen 1E, 113 65, Stockholm, Sweden
| | - Paraskevi-Evita Papathoma
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Danderyd Hospital Stockholm, Stockholm, Sweden
| | - Ioanna Markaki
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. .,Center of Neurology, Academic Specialist Center, Solnavägen 1E, 113 65, Stockholm, Sweden.
| |
Collapse
|
28
|
Fiani B, Lissak IA, Soula M, Sarhadi K, Shaikh ES, Baig A, Farooqui M, Quadri SA. The Emerging Role of Magnetic Resonance Imaging-Guided Focused Ultrasound in Functional Neurosurgery. Cureus 2020; 12:e9820. [PMID: 32953330 PMCID: PMC7496034 DOI: 10.7759/cureus.9820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Functional disorders of the central nervous system (CNS) are diverse in terms of their etiology and symptoms, however, they can be quite debilitating. Many functional neurological disorders can progress to a level where pharmaceuticals and other early lines of treatment can no longer optimally treat the condition, therefore requiring surgical intervention. A variety of stereotactic and functional neurosurgical approaches exist, including deep brain stimulation, implantation, stereotaxic lesions, and radiosurgery, among others. Most techniques are invasive or minimally invasive forms of surgical intervention and require immense precision to effectively modulate CNS circuitry. Focused ultrasound (FUS) is a relatively new, safe, non-invasive neurosurgical approach that has demonstrated efficacy in treating a range of functional neurological diseases. It can function reversibly, through mechanical stimulation causing circuitry changes, or irreversibly, through thermal ablation at low and high frequencies respectively. In preliminary studies, magnetic resonance imaging-guided high-intensity focused ultrasound (MRgHIFU) has been shown to have long-lasting treatment effects in several disease types. The technology has been approved by the FDA and internationally for a number of treatment-resistant neurological disorders and currently clinical trials are underway for several other neurological conditions. In this review, the authors discuss the potential applications and emerging role of MRgHIFU in functional neurosurgery in the coming years.
Collapse
Affiliation(s)
- Brian Fiani
- Neurosurgery, Desert Regional Medical Center, Palm Springs, USA
| | - India A Lissak
- Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | | | | | - Emad Salman Shaikh
- Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, USA
| | - Aqsa Baig
- Neurology, Liaquat National Hospital and Medical College, Karachi, PAK
| | | | - Syed A Quadri
- Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
29
|
Todd N, McDannold N, Borsook D. Targeted manipulation of pain neural networks: The potential of focused ultrasound for treatment of chronic pain. Neurosci Biobehav Rev 2020; 115:238-250. [PMID: 32534900 PMCID: PMC7483565 DOI: 10.1016/j.neubiorev.2020.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/24/2020] [Accepted: 06/04/2020] [Indexed: 12/29/2022]
Abstract
Focused ultrasound (FUS) is a promising technology for facilitating treatment of brain diseases including chronic pain. Focused ultrasound is a unique modality for delivering therapeutic levels of energy into the body, including the central nervous system (CNS). It is non-invasive and can target spatially localized effects through the intact skull to cortical or subcortical regions of the brain. FUS can achieve three different mechanisms of action in the brain that are relevant for chronic pain treatment: (1) localized thermal ablation of neural tissue; (2) localized and transient disruption of the blood-brain barrier for targeted drug delivery to CNS structures; and (3) inhibition or stimulation of neuronal activity in targeted regions. This review provides an in-depth look at the technology of FUS with emphasis placed on applications to CNS-based treatments of chronic pain. While still in the early stages of clinical translation and with some technical challenges remaining, we suggest that FUS has great potential as a novel approach for manipulating CNS networks involved in pain treatment.
Collapse
Affiliation(s)
- Nick Todd
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston, MA, 02115, United States.
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Center for Pain and the Brain, 1 Autumn Street, Boston Children's Hospital, Boston, MA, 02115, United States; Department of Anesthesia, Perioperative, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
30
|
Faraji AH, Jaquins-Gerstl AS, Valenta AC, Ou Y, Weber SG. Electrokinetic Convection-Enhanced Delivery of Solutes to the Brain. ACS Chem Neurosci 2020; 11:2085-2093. [PMID: 32559365 PMCID: PMC11059855 DOI: 10.1021/acschemneuro.0c00037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pressure-induced infusion of solutions into brain tissue is used both in research and in medicine. In medicine, convection enhanced delivery (CED) may be used to deliver agents to localized areas of the brain, such as with gene therapy to functional targets or with deep tumors not readily amenable to resection. However, clinical trials have demonstrated mixed results from CED. CED is limited by a lack of control of the infusion flow path and may cause damage or even neurological deficits due to neuronal distortion. In laboratory research, infusions may be achieved using pressure or using brief bursts of electrical current in iontophoresis. Electrokinetic convection enhanced delivery (ECED) has the potential to deliver drugs and other bioactive substances to local regions in the brain with improved control and lower applied pressures than pressure-based CED. ECED improves control over the infusion profile because the fluid follows the electrical current path and thus can be directed. Both small molecules and macromolecules can be delivered. Here we demonstrate proof-of-principal that electrokinetic (electroosmosis and electrophoresis) convection-enhanced delivery is a viable means for delivering solutes to the brain. We assessed the volume of tissue exposed to the infusates tris(2,2'-bipyridine)ruthenium(II) and fluorescent dextrans. Control of the direction of the transport was also achieved over distances ranging from several hundred micrometers to more than 4 mm. Electrokinetic delivery has the potential to improve control over infusions.
Collapse
Affiliation(s)
- Amir H Faraji
- Department of Chemistry, Department of Clinical Translational Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Andrea S Jaquins-Gerstl
- Department of Chemistry, Department of Clinical Translational Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Alec C Valenta
- Department of Chemistry, Department of Clinical Translational Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Yanguang Ou
- Department of Chemistry, Department of Clinical Translational Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Stephen G Weber
- Department of Chemistry, Department of Clinical Translational Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
31
|
Kinfe T, Stadlbauer A, Winder K, Hurlemann R, Buchfelder M. Incisionless MR-guided focused ultrasound: technical considerations and current therapeutic approaches in psychiatric disorders. Expert Rev Neurother 2020; 20:687-696. [PMID: 32511043 DOI: 10.1080/14737175.2020.1779590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION MR-guided focused ultrasound operating at higher intensities have been reported to effectively and precisely ablate deeper brain structures like the basal ganglia or the thalamic nuclei for the treatment of refractory movement disorders, neuropathic pain and most recently neuropsychiatric disorders, while low-intensity focused ultrasound represents an approach promoting mechanical blood-brain-barrier opening and neuromodulation. This narrative review summarizes the technical development and the therapeutic potential of incisionless MRgFUS in order to treat neuropsychiatric disorders. AREAS COVERED A narrative review of clinical trials assessing the safety and efficacy of MRgFUS. A literature review was performed using the following search terms: MR-guided focused ultrasound, psychiatric disorders, noninvasive and invasive brain modulation/stimulation techniques. EXPERT OPINION MRgFUS ablation is under clinical investigation (unblinded study design) for obsessive-compulsive disorders (OCDs) [capsulotomy; ALIC] and depression/anxiety disorders [capsulotomy] and has demonstrated an improvement in OCD and depression, although of preliminary character. Low-intensity ultrasound applications have been explored in Alzheimer´s disease (phase 1 study) and healthy subjects. Currently, limited evidence hinders comparison and selection between MRgFUS and noninvasive/invasive brain modulation therapies. However, comparative, sham-controlled trials are needed to reexamine the preliminary findings for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Thomas Kinfe
- Department of Neurosurgery, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg , Germany.,Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg , Germany.,Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Stadlbauer
- Department of Neurosurgery, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg , Germany.,Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Winder
- Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurology, Erlangen, Germany
| | - Rene Hurlemann
- Department of Psychiatry, University Oldenburg , Oldenburg, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg , Germany.,Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
32
|
Bhansali AP, Gwinn RP. Ablation: Radiofrequency, Laser, and HIFU. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Xu Y, He Q, Wang M, Gao Y, Liu X, Li D, Xiong B, Wang W. Safety and efficacy of magnetic resonance imaging-guided focused ultrasound neurosurgery for Parkinson's disease: a systematic review. Neurosurg Rev 2019; 44:115-127. [PMID: 31814058 DOI: 10.1007/s10143-019-01216-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/06/2019] [Accepted: 11/20/2019] [Indexed: 02/05/2023]
Abstract
Magnetic resonance imaging-guided focused ultrasound (MRgFUS) neurosurgery is a new option for medication-resistant Parkinson's disease (PD), but its safety and efficacy remain elusive. This study aimed to investigate the safety and efficacy of MRgFUS for PD by systematically reviewing related literature. PubMed and EMBASE were searched to identify related studies. Inclusion criteria were (1) reported the efficacy or safety of MRgFUS for PD and (2) published in English. Exclusion criteria were (1) nonhuman study, (2) review or meta-analysis or other literature types without original data, and (3) conference abstract without full text. Data on study characteristics, treatment parameters, efficacy, and adverse events were collected. Descriptive synthesis of data was performed. Eleven studies containing 80 patients were included. Nine studies were observational studies with no controls. Two studies included a randomized and controlled phase. Most studies included tremor-dominant PD. Ten studies reported decline of UPDRS-III scores after MRgFUS, and five reported a statistically significant decline. Nine studies evaluated the quality of life (QOL). Significant improvement of QOL was reported by four studies using the 39-item Parkinson's disease questionnaire. Four studies investigated the impact of MRgFUS on non-motor symptoms. Most tests indicated that MRgFUS had no significant effect on neuropsychological outcomes. Most adverse events were mild and transient. MRgFUS is a potential treatment for PD with satisfying efficacy and safety. Studies in this field are still limited. More studies with strict design, larger sample size, and longer follow-up are needed to further investigate its efficacy and safety for PD.
Collapse
Affiliation(s)
- Yangyang Xu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qi He
- Department of Neonatology, West China Second University Hospital Sichuan University, Chengdu, 610041, China
| | - Mengqi Wang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yuan Gao
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaowei Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Denghui Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Botao Xiong
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
34
|
Longitudinal analysis of structural changes following unilateral focused ultrasound thalamotomy. NEUROIMAGE-CLINICAL 2019; 22:101754. [PMID: 30921612 PMCID: PMC6439211 DOI: 10.1016/j.nicl.2019.101754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/13/2019] [Accepted: 03/09/2019] [Indexed: 11/30/2022]
Abstract
Objective Focused ultrasound thalamotomy is an emerging treatment for essential tremor, and it is ideal for studying reorganization in the human brain after acute injury because it creates a controlled thalamic ablation without breaching the cortex. However, there is not yet a metric capable of detecting microstructural changes in the presence of acute phase edema with good sensitivity in the chronic phase, when the lesion boundaries become inconspicuous. Methods We prospectively studied microstructural changes at the lesion site using generalized q-sampling imaging with restricted diffusion imaging. We obtained diffusion-weighted MRI scans preoperatively, 1 day after (n = 18), and 1 year after (n = 9) focused ultrasound thalamotomy. The restricted diffusion imaging maps were compared at the group level, controlling for improvement in contralateral hand tremor. Results The restricted diffusion imaging metric significantly increased in the 1 day post images, and the area with restricted diffusivity extended beyond the lesion boundaries identified on T2-weighted imaging. Two distinct zones of microstructural changes were identified, and the lesion area was identifiable at 1 year. The anterior and medial aspects of the lesion had a significant changes in RDI at 1 year, potentially signifying reorganization. The voxels with significant changes in restricted diffusion imaging values extend beyond the VIM into the surrounding white matter. Interpretation Correcting for free water contamination with restricted diffusion imaging allowed us to study microstructural changes after focused ultrasound thalamotomy. We observed statistically significant changes in RDI in the anterior and medial aspect of the lesion at 1 year. Whether these changes represent tissue reorganization remains to be confirmed in future studies. These findings may support performing additional ablations antero-medially for durable efficacy. Focused ultrasound thalamotomy is an emerging treatment for essential tremor, but challenges remain in determining microstructural changes in the ablated tissue. We prospectively studied microstructural changes at the lesion site using generalized q-sampling imaging with restrictyed diffusion imaging (RDI) in 18 patients with ET. The RDI metric significantly increased after focused ultrasound, and the area with restricted diffusivity extended beyond the lesion boundaries identified on T2-weighted imaging. Two distinct zones of microstructural changes were identified, and the lesion area was also identifiable at 1 year. The anterior and medial aspects of the lesion had a significant RDI change at 1 year, potentially signifying reorganization.
Collapse
|
35
|
Abstract
For more than 70 years, the promise of noninvasive neuromodulation using focused ultrasound has been growing while diagnostic ultrasound established itself as a foundation of clinical imaging. Significant technical challenges have been overcome to allow transcranial focused ultrasound to deliver spatially restricted energy into the nervous system at a wide range of intensities. High-intensity focused ultrasound produces reliable permanent lesions within the brain, and low-intensity focused ultrasound has been reported to both excite and inhibit neural activity reversibly. Despite intense interest in this promising new platform for noninvasive, highly focused neuromodulation, the underlying mechanism remains elusive, though recent studies provide further insight. Despite the barriers, the potential of focused ultrasound to deliver a range of permanent and reversible neuromodulation with seamless translation from bench to the bedside warrants unparalleled attention and scientific investment. Focused ultrasound boasts a number of key features such as multimodal compatibility, submillimeter steerable focusing, multifocal, high temporal resolution, coregistration, and the ability to monitor delivered therapy and temperatures in real time. Despite the technical complexity, the future of noninvasive focused ultrasound for neuromodulation as a neuroscience and clinical platform remains bright.
Collapse
Affiliation(s)
- David P Darrow
- Department of Neurosurgery, University of Minnesota, 420 Delaware St SE, MMC 96, Room D-429, Minneapolis, MN, 55455, USA.
| |
Collapse
|
36
|
Jung NY, Chang JW. Magnetic Resonance-Guided Focused Ultrasound in Neurosurgery: Taking Lessons from the Past to Inform the Future. J Korean Med Sci 2018; 33:e279. [PMID: 30369860 PMCID: PMC6200905 DOI: 10.3346/jkms.2018.33.e279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/13/2018] [Indexed: 11/20/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) is a new emerging neurosurgical procedure applied in a wide range of clinical fields. It can generate high-intensity energy at the focal zone in deep body areas without requiring incision of soft tissues. Although the effectiveness of the focused ultrasound technique had not been recognized because of the skull being a main barrier in the transmission of acoustic energy, the development of hemispheric distribution of ultrasound transducer phased arrays has solved this issue and enabled the performance of true transcranial procedures. Advanced imaging technologies such as magnetic resonance thermometry could enhance the safety of MRgFUS. The current clinical applications of MRgFUS in neurosurgery involve stereotactic ablative treatments for patients with essential tremor, Parkinson's disease, obsessive-compulsive disorder, major depressive disorder, or neuropathic pain. Other potential treatment candidates being examined in ongoing clinical trials include brain tumors, Alzheimer's disease, and epilepsy, based on MRgFUS abilities of thermal ablation and opening the blood-brain barrier. With the development of ultrasound technology to overcome the limitations, MRgFUS is gradually expanding the therapeutic field for intractable neurological disorders and serving as a trail for a promising future in noninvasive and safe neurosurgical care.
Collapse
Affiliation(s)
- Na Young Jung
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|