1
|
Huang H, Fu G, Lu S, Chen S, Huo J, Ran Y, Xiao C, Chen J, Pi D, Zhou F, Dang H, Liu C, Fu YQ. Plasma profiles of inflammatory cytokines in children with moderate to severe traumatic brain injury: a prospective cohort study. Eur J Pediatr 2024; 183:3359-3368. [PMID: 38748253 DOI: 10.1007/s00431-024-05604-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 07/23/2024]
Abstract
The role of inflammatory cytokines in children with moderate to severe TBI (m-sTBI) is still incompletely understood. We aimed to investigate the associations between early plasma expression profiles of inflammatory cytokines and clinical outcomes in children with m-sTBI. We prospectively recruited children admitted to the intensive care unit (ICU) of a tertiary pediatric hospital due to m-sTBI from November 2022 to May 2023. Plasma interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17A, interferon (IFN)-α, IFN-γ and tumor necrosis factor (TNF)-α concentrations were detected by flow cytometry on admission and on days 5 to 7. The primary outcome was in-hospital mortality. The secondary outcome was the 6-month functional outcome assessed by the Glasgow Outcome Scale Extended-Pediatrics (GOS-E Peds) score, dichotomized as favorable (1-4) or unfavorable (5-8). Fifty patients and 20 healthy controls were enrolled. Baseline IL-6, IL-8 and IL-10 levels were significantly higher in TBI patients than in healthy controls. Twelve patients died in the hospital. Compared with survivors, nonsurvivors had significantly increased baseline IL-6 and IL-8 levels. Baseline IL-5, IL-6 and IL-8 levels were also significantly greater in children with unfavorable versus favorable outcomes. The area under the receiver operating characteristic curve (AUC) of the IL-6 and IL-8 levels and motor Glasgow Coma Scale (GCS) score for predicting in-hospital mortality was 0.706, 0.754, and 0.776, respectively. Baseline IL-1β, IL-2, IL-4, IL-10, IL-12p70, IL-17A, IFN-γ, IFN-α and TNF-α levels were not associated with in-hospital mortality or an unfavorable 6-month outcome. On days 5 to 7, the IL-6 and IL-8 levels were significantly decreased in survivors but increased in nonsurvivors compared to their respective baselines. CONCLUSION After m-sTBI, the plasma profiles of inflammatory cytokines are markedly altered in children. The trends of IL-6 and IL-8 expression vary among m-sTBI children with different outcomes. Elevated plasma IL-6 and IL-8 levels are related to in-hospital mortality and unfavorable 6-month outcomes. TRIAL REGISTRATION This trial was registered in the Chinese Clinical Trial Registry (Registration number: ChiCTR2200065505). Registered November 7, 2022. WHAT IS KNOWN • Inflammation is an important secondary physiological response to TBI. WHAT IS NEW • The plasma profiles of inflammatory cytokines are markedly altered in children with m-sTBI. Elevated IL-6 and IL-8 levels are related to mortality and unfavorable outcomes.
Collapse
Affiliation(s)
- Haixin Huang
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Guo Fu
- Center for Clinical Molecular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Siwei Lu
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Song Chen
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Junming Huo
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Yunni Ran
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Changxue Xiao
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Jian Chen
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Dandan Pi
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Fang Zhou
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Hongxing Dang
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Chengjun Liu
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Yue-Qiang Fu
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China.
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.
| |
Collapse
|
2
|
Barea-Mendoza JA, Chico-Fernández M, Serviá-Goixart L, Quintana-Díaz M, García-Sáez I, Ballesteros-Sanz MÁ, Iglesias-Santiago A, Molina-Díaz I, González-Robledo J, Fernández-Cuervo A, Pérez-Bárcena J, Llompart-Pou JA. Associated Risk Factors and Impact in Clinical Outcomes of Multiorgan Failure in Patients with TBI. Neurocrit Care 2023; 39:411-418. [PMID: 36869209 DOI: 10.1007/s12028-023-01698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Individual extracerebral organ dysfunction is common after severe traumatic brain injury (TBI) and impacts outcomes. However, multiorgan failure (MOF) has received less attention in patients with isolated TBI. Our objective was to analyze the risk factors associated with the development of MOF and its impact in clinical outcomes in patients with TBI. METHODS This was an observational, prospective, multicenter study using data from a nationwide registry that currently includes 52 intensive care units (ICUs) in Spain (RETRAUCI). Isolated significant TBI was defined as Abbreviated Injury Scale (AIS) ≥ 3 in the head area with no AIS ≥ 3 in any other anatomical area. Multiorgan failure was defined using the Sequential-related Organ Failure Assessment as the alteration of two or more organs with a score of ≥ 3. We analyzed the contribution of MOF to crude and adjusted mortality (age and AIS head) by using logistic regression analysis. A multiple logistic regression analysis was performed to analyze the risk factors associated with the development of MOF in patients with isolated TBI. RESULTS A total of 9790 patients with trauma were admitted to the participating ICUs. Of them, 2964 (30.2%) had AIS head ≥ 3 and no AIS ≥ 3 in any other anatomical area, and these patients constituted the study cohort. Mean age was 54.7 (19.5) years, 76% of patients were men, and ground-level falls were the main mechanism of injury (49.1%). In-hospital mortality was 22.2%. Up to 185 patients with TBI (6.2%) developed MOF during their ICU stay. Crude and adjusted (age and AIS head) mortality was higher in patients who developed MOF (odds ratio 6.28 [95% confidence interval 4.58-8.60] and odds ratio 5.20 [95% confidence interval 3.53-7.45]), respectively. The logistic regression analysis showed that age, hemodynamic instability, the need of packed red blood cells concentrates in the initial 24 h, the severity of brain injury, and the need for invasive neuromonitoring were significantly associated with MOF development. CONCLUSIONS MOF occurred in 6.2% of patients with TBI admitted to the ICU and was associated with increased mortality. MOF was associated with age, hemodynamic instability, the need of packed red blood cells concentrates in the initial 24 h, the severity of brain injury, and the need for invasive neuromonitoring.
Collapse
Affiliation(s)
| | - Mario Chico-Fernández
- UCI Trauma y Emergencias, Servicio de Medicina Intensiva, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Lluís Serviá-Goixart
- Servei de Medicina Intensiva, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, Spain
| | | | - Iker García-Sáez
- Servicio de Medicina Intensiva, Hospital Universitario de Donostia, Donostia, Spain
| | | | - Alberto Iglesias-Santiago
- Servicio de Medicina Intensiva, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria, Granada, Spain
| | - Ismael Molina-Díaz
- Servicio de Medicina Intensiva, Hospital Universitario Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - Javier González-Robledo
- Servicio de Medicina Intensiva, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Ana Fernández-Cuervo
- Servicio de Medicina Intensiva, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Jon Pérez-Bárcena
- Servei de Medicina Intensiva, Hospital Universitari Son Espases, Institut d'Investigació Sanitària Illes Balears, Carretera Valldemossa, 79, 07120, Palma, Spain
| | - Juan Antonio Llompart-Pou
- Servei de Medicina Intensiva, Hospital Universitari Son Espases, Institut d'Investigació Sanitària Illes Balears, Carretera Valldemossa, 79, 07120, Palma, Spain.
| |
Collapse
|
3
|
Caceres E, Olivella JC, Yanez M, Viñan E, Estupiñan L, Boada N, Martin-Loeches I, Reyes LF. Risk factors and outcomes of lower respiratory tract infections after traumatic brain injury: a retrospective observational study. Front Med (Lausanne) 2023; 10:1077371. [PMID: 37138738 PMCID: PMC10150376 DOI: 10.3389/fmed.2023.1077371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
Background Traumatic brain injury (TBI) is a public health problem with a high burden in terms of disability and death. Infections are a common complication, with respiratory infections being the most frequent. Most available studies have addressed the impact of ventilator-associated pneumonia (VAP) after TBI; therefore, we aim to characterize the hospital impact of a broader entity, lower respiratory tract infections (LRTIs). Methods This observational, retrospective, single-center cohort study describes the clinical features and risk factors associated with LRTIs in patients with TBI admitted to an intensive care unit (ICU). We used bivariate and multivariate logistic regressions to identify the risk factors associated with developing LRTI and determine its impact on hospital mortality. Results We included 291 patients, of whom 77% (225/291) were men. The median (IQR) age was 38 years (28-52 years). The most common cause of injury was road traffic accidents 72% (210/291), followed by falls 18% (52/291) and assault at 3% (9/291). The median (IQR) Glasgow Coma Scale (GCS) score on admission was 9 (6-14), and 47% (136/291) were classified as severe TBI, 13% (37/291) as moderate TBI, and 40% (114/291) as mild TBI. The median (IQR) injury severity score (ISS) was 24 (16-30). Nearly 48% (141/291) of patients presented at least one infection during hospitalization, and from those, 77% (109/141) were classified as LRTIs, which included tracheitis 55% (61/109), ventilator-associated pneumonia (VAP) 34% (37/109), and hospital-acquired pneumoniae (HAP) 19% (21/109). After multivariable analysis, the following variables were significantly associated with LRTIs: age (OR 1.1, 95% CI 1.01-1.2), severe TBI (OR 2.7, 95% CI 1.1-6.9), AIS thorax (OR 1.4, 95 CI 1.1-1.8), and mechanical ventilation on admission (OR 3.7, 95% CI 1.1-13.5). At the same time, hospital mortality did not differ between groups (LRTI 18.6% vs. No LRTI 20.1%, p = 0.7), and ICU and hospital length of stay (LOS) were longer in the LRTI group (median [IQR] 12 [9-17] vs. 5 [3-9], p < 0.01) and (median [IQR] 21 [13-33] vs. 10 [5-18], p = 0.01), respectively. Time on the ventilator was longer for those with LRTIs. Conclusion The most common site/location of infection in patients with TBI admitted to ICU is respiratory. Age, severe TBI, thoracic trauma, and mechanical ventilation were identified as potential risk factors. LRTI was associated with prolonged ICU, hospital stay, and more days on a ventilator, but not with mortality.
Collapse
Affiliation(s)
- Eder Caceres
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Neurocritical Care Division, Critical Care Department, Clínica Universidad de La Sabana, Chía, Colombia
| | - Juan C. Olivella
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Miguel Yanez
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Emilio Viñan
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Laura Estupiñan
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Natalia Boada
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Ignacio Martin-Loeches
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Multidisciplinary Intensive Care Research Organization (MICRO), Department of Intensive Care Medicine, St. James's University Hospital, Dublin, Ireland
- Critical Care Department, Trinity Centre for Health Sciences, Dublin, Ireland
- Hospital Clínic, IDIBAPS, Universidad de Barcelona, Barcelona, Spain
| | - Luis Felipe Reyes
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
- Facultad de Medicina, Universidad de La Sabana, Chía, Colombia
- Pandemic Science Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
De Vlieger G, Meyfroidt G. Kidney Dysfunction After Traumatic Brain Injury: Pathophysiology and General Management. Neurocrit Care 2023; 38:504-516. [PMID: 36324003 PMCID: PMC9629888 DOI: 10.1007/s12028-022-01630-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Traumatic brain injury (TBI) remains a major cause of mortality and morbidity, and almost half of these patients are admitted to the intensive care unit. Of those, 10% develop acute kidney injury (AKI) and 2% even need kidney replacement therapy (KRT). Although clinical trials in patients with TBI who have AKI are lacking, some general principles in this population may apply. The present review is an overview on the epidemiology and pathophysiology of AKI in patients with TBI admitted to the intensive care unit who are at risk for or who have developed AKI. A cornerstone in severe TBI management is preventing secondary brain damage, in which reducing the intracranial pressure (ICP) and optimizing the cerebral perfusion pressure (CPP) remain important therapeutic targets. To treat episodes of elevated ICP, osmolar agents such as mannitol and hypertonic saline are frequently administered. Although we are currently awaiting the results of a prospective randomized controlled trial that compares both agents, it is important to realize that both agents have been associated with an increased risk of developing AKI which is probably higher for mannitol compared with hypertonic saline. For the brain, as well as for the kidney, targeting an adequate perfusion pressure is important. Hemodynamic management based on the combined use of intravascular fluids and vasopressors is ideally guided by hemodynamic monitoring. Hypotonic albumin or crystalloid resuscitation solutions may increase the risk of brain edema, and saline-based solutions are frequently used but have a risk of hyperchloremia, which might jeopardize kidney function. In patients at risk, frequent assessment of serum chloride might be advised. Maintenance of an adequate CPP involves the optimization of circulating blood volume, often combined with vasopressor agents. Whether individualized CPP targets based on cerebrovascular autoregulation monitoring are beneficial need to be further investigated. Interestingly, such individualized perfusion targets are also under investigation in patients as a strategy to mitigate the risk for AKI in patients with chronic hypertension. In the small proportion of patients with TBI who need KRT, continuous techniques are advised based on pathophysiology and expert opinion. The need for KRT is associated with a higher risk of intracranial hypertension, especially if osmolar clearance occurs fast, which can even occur in continuous techniques. Precise ICP and CPP monitoring is mandatory, especially at the initiation of KRT.
Collapse
Affiliation(s)
- Greet De Vlieger
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
- Clinical Division of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium.
| | - Geert Meyfroidt
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Clinical Division of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Maas AIR, Menon DK, Manley GT, Abrams M, Åkerlund C, Andelic N, Aries M, Bashford T, Bell MJ, Bodien YG, Brett BL, Büki A, Chesnut RM, Citerio G, Clark D, Clasby B, Cooper DJ, Czeiter E, Czosnyka M, Dams-O’Connor K, De Keyser V, Diaz-Arrastia R, Ercole A, van Essen TA, Falvey É, Ferguson AR, Figaji A, Fitzgerald M, Foreman B, Gantner D, Gao G, Giacino J, Gravesteijn B, Guiza F, Gupta D, Gurnell M, Haagsma JA, Hammond FM, Hawryluk G, Hutchinson P, van der Jagt M, Jain S, Jain S, Jiang JY, Kent H, Kolias A, Kompanje EJO, Lecky F, Lingsma HF, Maegele M, Majdan M, Markowitz A, McCrea M, Meyfroidt G, Mikolić A, Mondello S, Mukherjee P, Nelson D, Nelson LD, Newcombe V, Okonkwo D, Orešič M, Peul W, Pisică D, Polinder S, Ponsford J, Puybasset L, Raj R, Robba C, Røe C, Rosand J, Schueler P, Sharp DJ, Smielewski P, Stein MB, von Steinbüchel N, Stewart W, Steyerberg EW, Stocchetti N, Temkin N, Tenovuo O, Theadom A, Thomas I, Espin AT, Turgeon AF, Unterberg A, Van Praag D, van Veen E, Verheyden J, Vyvere TV, Wang KKW, Wiegers EJA, Williams WH, Wilson L, Wisniewski SR, Younsi A, Yue JK, Yuh EL, Zeiler FA, Zeldovich M, Zemek R. Traumatic brain injury: progress and challenges in prevention, clinical care, and research. Lancet Neurol 2022; 21:1004-1060. [PMID: 36183712 PMCID: PMC10427240 DOI: 10.1016/s1474-4422(22)00309-x] [Citation(s) in RCA: 289] [Impact Index Per Article: 144.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) has the highest incidence of all common neurological disorders, and poses a substantial public health burden. TBI is increasingly documented not only as an acute condition but also as a chronic disease with long-term consequences, including an increased risk of late-onset neurodegeneration. The first Lancet Neurology Commission on TBI, published in 2017, called for a concerted effort to tackle the global health problem posed by TBI. Since then, funding agencies have supported research both in high-income countries (HICs) and in low-income and middle-income countries (LMICs). In November 2020, the World Health Assembly, the decision-making body of WHO, passed resolution WHA73.10 for global actions on epilepsy and other neurological disorders, and WHO launched the Decade for Action on Road Safety plan in 2021. New knowledge has been generated by large observational studies, including those conducted under the umbrella of the International Traumatic Brain Injury Research (InTBIR) initiative, established as a collaboration of funding agencies in 2011. InTBIR has also provided a huge stimulus to collaborative research in TBI and has facilitated participation of global partners. The return on investment has been high, but many needs of patients with TBI remain unaddressed. This update to the 2017 Commission presents advances and discusses persisting and new challenges in prevention, clinical care, and research. In LMICs, the occurrence of TBI is driven by road traffic incidents, often involving vulnerable road users such as motorcyclists and pedestrians. In HICs, most TBI is caused by falls, particularly in older people (aged ≥65 years), who often have comorbidities. Risk factors such as frailty and alcohol misuse provide opportunities for targeted prevention actions. Little evidence exists to inform treatment of older patients, who have been commonly excluded from past clinical trials—consequently, appropriate evidence is urgently required. Although increasing age is associated with worse outcomes from TBI, age should not dictate limitations in therapy. However, patients injured by low-energy falls (who are mostly older people) are about 50% less likely to receive critical care or emergency interventions, compared with those injured by high-energy mechanisms, such as road traffic incidents. Mild TBI, defined as a Glasgow Coma sum score of 13–15, comprises most of the TBI cases (over 90%) presenting to hospital. Around 50% of adult patients with mild TBI presenting to hospital do not recover to pre-TBI levels of health by 6 months after their injury. Fewer than 10% of patients discharged after presenting to an emergency department for TBI in Europe currently receive follow-up. Structured follow-up after mild TBI should be considered good practice, and urgent research is needed to identify which patients with mild TBI are at risk for incomplete recovery. The selection of patients for CT is an important triage decision in mild TBI since it allows early identification of lesions that can trigger hospital admission or life-saving surgery. Current decision making for deciding on CT is inefficient, with 90–95% of scanned patients showing no intracranial injury but being subjected to radiation risks. InTBIR studies have shown that measurement of blood-based biomarkers adds value to previously proposed clinical decision rules, holding the potential to improve efficiency while reducing radiation exposure. Increased concentrations of biomarkers in the blood of patients with a normal presentation CT scan suggest structural brain damage, which is seen on MR scanning in up to 30% of patients with mild TBI. Advanced MRI, including diffusion tensor imaging and volumetric analyses, can identify additional injuries not detectable by visual inspection of standard clinical MR images. Thus, the absence of CT abnormalities does not exclude structural damage—an observation relevant to litigation procedures, to management of mild TBI, and when CT scans are insufficient to explain the severity of the clinical condition. Although blood-based protein biomarkers have been shown to have important roles in the evaluation of TBI, most available assays are for research use only. To date, there is only one vendor of such assays with regulatory clearance in Europe and the USA with an indication to rule out the need for CT imaging for patients with suspected TBI. Regulatory clearance is provided for a combination of biomarkers, although evidence is accumulating that a single biomarker can perform as well as a combination. Additional biomarkers and more clinical-use platforms are on the horizon, but cross-platform harmonisation of results is needed. Health-care efficiency would benefit from diversity in providers. In the intensive care setting, automated analysis of blood pressure and intracranial pressure with calculation of derived parameters can help individualise management of TBI. Interest in the identification of subgroups of patients who might benefit more from some specific therapeutic approaches than others represents a welcome shift towards precision medicine. Comparative-effectiveness research to identify best practice has delivered on expectations for providing evidence in support of best practices, both in adult and paediatric patients with TBI. Progress has also been made in improving outcome assessment after TBI. Key instruments have been translated into up to 20 languages and linguistically validated, and are now internationally available for clinical and research use. TBI affects multiple domains of functioning, and outcomes are affected by personal characteristics and life-course events, consistent with a multifactorial bio-psycho-socio-ecological model of TBI, as presented in the US National Academies of Sciences, Engineering, and Medicine (NASEM) 2022 report. Multidimensional assessment is desirable and might be best based on measurement of global functional impairment. More work is required to develop and implement recommendations for multidimensional assessment. Prediction of outcome is relevant to patients and their families, and can facilitate the benchmarking of quality of care. InTBIR studies have identified new building blocks (eg, blood biomarkers and quantitative CT analysis) to refine existing prognostic models. Further improvement in prognostication could come from MRI, genetics, and the integration of dynamic changes in patient status after presentation. Neurotrauma researchers traditionally seek translation of their research findings through publications, clinical guidelines, and industry collaborations. However, to effectively impact clinical care and outcome, interactions are also needed with research funders, regulators, and policy makers, and partnership with patient organisations. Such interactions are increasingly taking place, with exemplars including interactions with the All Party Parliamentary Group on Acquired Brain Injury in the UK, the production of the NASEM report in the USA, and interactions with the US Food and Drug Administration. More interactions should be encouraged, and future discussions with regulators should include debates around consent from patients with acute mental incapacity and data sharing. Data sharing is strongly advocated by funding agencies. From January 2023, the US National Institutes of Health will require upload of research data into public repositories, but the EU requires data controllers to safeguard data security and privacy regulation. The tension between open data-sharing and adherence to privacy regulation could be resolved by cross-dataset analyses on federated platforms, with the data remaining at their original safe location. Tools already exist for conventional statistical analyses on federated platforms, however federated machine learning requires further development. Support for further development of federated platforms, and neuroinformatics more generally, should be a priority. This update to the 2017 Commission presents new insights and challenges across a range of topics around TBI: epidemiology and prevention (section 1 ); system of care (section 2 ); clinical management (section 3 ); characterisation of TBI (section 4 ); outcome assessment (section 5 ); prognosis (Section 6 ); and new directions for acquiring and implementing evidence (section 7 ). Table 1 summarises key messages from this Commission and proposes recommendations for the way forward to advance research and clinical management of TBI.
Collapse
Affiliation(s)
- Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Mathew Abrams
- International Neuroinformatics Coordinating Facility, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Åkerlund
- Department of Physiology and Pharmacology, Section of Perioperative Medicine and Intensive Care, Karolinska Institutet, Stockholm, Sweden
| | - Nada Andelic
- Division of Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marcel Aries
- Department of Intensive Care, Maastricht UMC, Maastricht, Netherlands
| | - Tom Bashford
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Michael J Bell
- Critical Care Medicine, Neurological Surgery and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yelena G Bodien
- Department of Neurology and Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Benjamin L Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - András Büki
- Department of Neurosurgery, Faculty of Medicine and Health Örebro University, Örebro, Sweden
- Department of Neurosurgery, Medical School; ELKH-PTE Clinical Neuroscience MR Research Group; and Neurotrauma Research Group, Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Randall M Chesnut
- Department of Neurological Surgery and Department of Orthopaedics and Sports Medicine, University of Washington, Harborview Medical Center, Seattle, WA, USA
| | - Giuseppe Citerio
- School of Medicine and Surgery, Universita Milano Bicocca, Milan, Italy
- NeuroIntensive Care, San Gerardo Hospital, Azienda Socio Sanitaria Territoriale (ASST) Monza, Monza, Italy
| | - David Clark
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Betony Clasby
- Department of Sociological Studies, University of Sheffield, Sheffield, UK
| | - D Jamie Cooper
- School of Public Health and Preventive Medicine, Monash University and The Alfred Hospital, Melbourne, VIC, Australia
| | - Endre Czeiter
- Department of Neurosurgery, Medical School; ELKH-PTE Clinical Neuroscience MR Research Group; and Neurotrauma Research Group, Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Marek Czosnyka
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance and Department of Neurology, Brain Injury Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Véronique De Keyser
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Ramon Diaz-Arrastia
- Department of Neurology and Center for Brain Injury and Repair, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Thomas A van Essen
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
- Department of Neurosurgery, Medical Center Haaglanden, The Hague, Netherlands
| | - Éanna Falvey
- College of Medicine and Health, University College Cork, Cork, Ireland
| | - Adam R Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco and San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
| | - Anthony Figaji
- Division of Neurosurgery and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA, Australia
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Dashiell Gantner
- School of Public Health and Preventive Medicine, Monash University and The Alfred Hospital, Melbourne, VIC, Australia
| | - Guoyi Gao
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine
| | - Joseph Giacino
- Department of Physical Medicine and Rehabilitation, Harvard Medical School and Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Benjamin Gravesteijn
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fabian Guiza
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Deepak Gupta
- Department of Neurosurgery, Neurosciences Centre and JPN Apex Trauma Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Mark Gurnell
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Juanita A Haagsma
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Flora M Hammond
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Rehabilitation Hospital of Indiana, Indianapolis, IN, USA
| | - Gregory Hawryluk
- Section of Neurosurgery, GB1, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Hutchinson
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Mathieu van der Jagt
- Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health, University of California, San Diego, CA, USA
| | - Swati Jain
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Ji-yao Jiang
- Department of Neurosurgery, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hope Kent
- Department of Psychology, University of Exeter, Exeter, UK
| | - Angelos Kolias
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Erwin J O Kompanje
- Department of Intensive Care, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fiona Lecky
- Centre for Urgent and Emergency Care Research, Health Services Research Section, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Hester F Lingsma
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marc Maegele
- Cologne-Merheim Medical Center, Department of Trauma and Orthopedic Surgery, Witten/Herdecke University, Cologne, Germany
| | - Marek Majdan
- Institute for Global Health and Epidemiology, Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
| | - Amy Markowitz
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Michael McCrea
- Department of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Ana Mikolić
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - David Nelson
- Section for Anesthesiology and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lindsay D Nelson
- Department of Neurosurgery and Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Virginia Newcombe
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - David Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Wilco Peul
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
| | - Dana Pisică
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Suzanne Polinder
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Louis Puybasset
- Department of Anesthesiology and Intensive Care, APHP, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Rahul Raj
- Department of Neurosurgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico San Martino IRCCS for Oncology and Neuroscience, Genova, Italy, and Dipartimento di Scienze Chirurgiche e Diagnostiche, University of Genoa, Italy
| | - Cecilie Røe
- Division of Clinical Neuroscience, Department of Physical Medicine and Rehabilitation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jonathan Rosand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - David J Sharp
- Department of Brain Sciences, Imperial College London, London, UK
| | - Peter Smielewski
- Brain Physics Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Murray B Stein
- Department of Psychiatry and Department of Family Medicine and Public Health, UCSD School of Medicine, La Jolla, CA, USA
| | - Nicole von Steinbüchel
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Goettingen, Germany
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital and University of Glasgow, Glasgow, UK
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences Leiden University Medical Center, Leiden, Netherlands
| | - Nino Stocchetti
- Department of Pathophysiology and Transplantation, Milan University, and Neuroscience ICU, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nancy Temkin
- Departments of Neurological Surgery, and Biostatistics, University of Washington, Seattle, WA, USA
| | - Olli Tenovuo
- Department of Rehabilitation and Brain Trauma, Turku University Hospital, and Department of Neurology, University of Turku, Turku, Finland
| | - Alice Theadom
- National Institute for Stroke and Applied Neurosciences, Faculty of Health and Environmental Studies, Auckland University of Technology, Auckland, New Zealand
| | - Ilias Thomas
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Abel Torres Espin
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Alexis F Turgeon
- Department of Anesthesiology and Critical Care Medicine, Division of Critical Care Medicine, Université Laval, CHU de Québec-Université Laval Research Center, Québec City, QC, Canada
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominique Van Praag
- Departments of Clinical Psychology and Neurosurgery, Antwerp University Hospital, and University of Antwerp, Edegem, Belgium
| | - Ernest van Veen
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Thijs Vande Vyvere
- Department of Radiology, Faculty of Medicine and Health Sciences, Department of Rehabilitation Sciences (MOVANT), Antwerp University Hospital, and University of Antwerp, Edegem, Belgium
| | - Kevin K W Wang
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Eveline J A Wiegers
- Department of Public Health, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - W Huw Williams
- Centre for Clinical Neuropsychology Research, Department of Psychology, University of Exeter, Exeter, UK
| | - Lindsay Wilson
- Division of Psychology, University of Stirling, Stirling, UK
| | - Stephen R Wisniewski
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - John K Yue
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Esther L Yuh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Frederick A Zeiler
- Departments of Surgery, Human Anatomy and Cell Science, and Biomedical Engineering, Rady Faculty of Health Sciences and Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Marina Zeldovich
- Institute of Medical Psychology and Medical Sociology, University Medical Center Goettingen, Goettingen, Germany
| | - Roger Zemek
- Departments of Pediatrics and Emergency Medicine, University of Ottawa, Children’s Hospital of Eastern Ontario, ON, Canada
| | | |
Collapse
|
6
|
Toro C, Hatfield J, Temkin N, Barber J, Manley G, Ohnuma T, Komisarow J, Foreman B, Korley FK, Vavilala MS, Laskowitz DT, Mathew JP, Hernandez A, Sampson J, James ML, Raghunathan K, Goldstein BA, Markowitz AJ, Krishnamoorthy V. Risk Factors and Neurological Outcomes Associated With Circulatory Shock After Moderate-Severe Traumatic Brain Injury: A TRACK-TBI Study. Neurosurgery 2022; 91:427-436. [PMID: 35593705 PMCID: PMC10553078 DOI: 10.1227/neu.0000000000002042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/03/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Extracranial multisystem organ failure is a common sequela of severe traumatic brain injury (TBI). Risk factors for developing circulatory shock and long-term functional outcomes of this patient subset are poorly understood. OBJECTIVE To identify emergency department predictors of circulatory shock after moderate-severe TBI and examine long-term functional outcomes in patients with moderate-severe TBI who developed circulatory shock. METHODS We conducted a retrospective cohort study using the Transforming Clinical Research and Knowledge in TBI database for adult patients with moderate-severe TBI, defined as a Glasgow Coma Scale (GCS) score of <13 and stratified by the development of circulatory shock within 72 hours of hospital admission (Sequential Organ Failure Assessment score ≥2). Demographic and clinical data were assessed with descriptive statistics. A forward selection regression model examined risk factors for the development of circulatory shock. Functional outcomes were examined using multivariable regression models. RESULTS Of our moderate-severe TBI population (n = 407), 168 (41.2%) developed circulatory shock. Our predictive model suggested that race, computed tomography Rotterdam scores <3, GCS in the emergency department, and development of hypotension in the emergency department were associated with developing circulatory shock. Those who developed shock had less favorable 6-month functional outcomes measured by the 6-month GCS-Extended (odds ratio 0.36, P = .002) and 6-month Disability Rating Scale score (Diff. in means 3.86, P = .002) and a longer length of hospital stay (Diff. in means 11.0 days, P < .001). CONCLUSION We report potential risk factors for circulatory shock after moderate-severe TBI. Our study suggests that developing circulatory shock after moderate-severe TBI is associated with poor long-term functional outcomes.
Collapse
Affiliation(s)
- Camilo Toro
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Population Health Sciences, Duke University, Durham, North Carolina, USA
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Jordan Hatfield
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Population Health Sciences, Duke University, Durham, North Carolina, USA
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Nancy Temkin
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Jason Barber
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Geoffrey Manley
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, California, USA
| | - Tetsu Ohnuma
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| | - Jordan Komisarow
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Frederick K. Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Monica S. Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Daniel T. Laskowitz
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Department of Neurology, Duke University, Durham, North Carolina, USA
| | - Joseph P. Mathew
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| | - Adrian Hernandez
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - John Sampson
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Michael L. James
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Neurology, Duke University, Durham, North Carolina, USA
| | - Karthik Raghunathan
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Population Health Sciences, Duke University, Durham, North Carolina, USA
- Duke University School of Medicine, Durham, North Carolina, USA
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| | - Benjamin A. Goldstein
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Amy J. Markowitz
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, California, USA
| | - Vijay Krishnamoorthy
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
- Department of Population Health Sciences, Duke University, Durham, North Carolina, USA
- Duke University School of Medicine, Durham, North Carolina, USA
- Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
7
|
Wang R, Hua Y, He M, Xu J. Prognostic Value of Serum Procalcitonin Based Model in Moderate to Severe Traumatic Brain Injury Patients. J Inflamm Res 2022; 15:4981-4993. [PMID: 36065318 PMCID: PMC9440674 DOI: 10.2147/jir.s358621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Procalcitonin (PCT) is an acknowledged marker of systemic inflammatory response. Previous studies have not reached agreement on the association between serum PCT and outcome of traumatic brain injury (TBI) patients. We designed this study to confirm the prognostic value of PCT in isolated TBI and those with extracranial injury, respectively. Methods Patients hospitalized in our hospital for moderate-to-severe TBI between March 2015 and December 2019 were included. Logistic regression analysis was performed to validate the association between PCT and in-hospital mortality in these patients. AUC (area under the receiver operating characteristics curve) of PCT and constructed model were calculated and compared. Results Among the included 211 patients, 81 patients suffered a poor outcome, with a mortality rate of 38.4%. Non-survivors had a higher level of serum PCT (2.73 vs 0.72, p<0.001) and lower GCS (5 vs 7, p<0.001) on admission than survivors. AUC of single PCT for predicting mortality in isolated TBI and those with extracranial injury were 0.767 and 0.553, respectively. Multivariate logistic regression showed that GCS (OR=0.744, p=0.008), glucose (OR=1.236, p<0.001), cholesterol (OR=0.526, p=0.002), and PCT (OR=1.107, p=0.022) were independently associated with mortality of isolated TBI. The AUC of the prognostic model composed of GCS, glucose, cholesterol, and PCT was 0.868 in isolated TBI. Conclusion PCT is an efficient marker of outcome in isolated moderate-to-severe TBI but not those with extracranial injury. A prognostic model incorporating PCT is useful for clinicians to make early risk stratification for isolated TBI.
Collapse
Affiliation(s)
- Ruoran Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yusi Hua
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Min He
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Min He, Department of Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People’s Republic of China, Email
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Correspondence: Jianguo Xu, Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, People’s Republic of China, Email
| |
Collapse
|
8
|
Cole E, Aylwin C, Christie R, Dillane B, Farrah H, Hopkins P, Ryan C, Woodgate A, Brohi K. Multiple Organ Dysfunction in Older Major Trauma Critical Care Patients: A Multicenter Prospective Observational Study. ANNALS OF SURGERY OPEN 2022; 3:e174. [PMID: 36936724 PMCID: PMC10013163 DOI: 10.1097/as9.0000000000000174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022] Open
Abstract
The objective was to explore the characteristics and outcomes of multiple organ dysfunction syndrome (MODS) in older trauma patients. Background Severely injured older people present an increasing challenge for trauma systems. Recovery for those who require critical care may be complicated by MODS. In older trauma patients, MODS may not be predictable based on chronological age alone and factors associated with its development and resolution are unclear. Methods Consecutive adult patients (aged ≥16 years) admitted to 4 level 1 major trauma center critical care units were enrolled and reviewed daily until discharge or death. MODS was defined by a daily total sequential organ failure assessment score of >5. Results One thousand three hundred sixteen patients were enrolled over 18 months and one-third (434) were aged ≥65 years. Incidence of MODS was high for both age groups (<65 years: 64%, ≥65 years: 70%). There were few differences in severity, patterns, and duration of MODS between cohorts, except for older traumatic brain injury (TBI) patients who experienced a prolonged course of MODS recovery (TBI: 9 days vs no TBI: 5 days, P < 0.01). Frailty rather than chronological age had a strong association with MODS development (odds ratio [OR], 6.9; 95% confidence intervals [CI], 3.0-12.4; P < 0.001) and MODS mortality (OR, 2.1; 95% CI, 1.31-3.38; P = 0.02). Critical care resource utilization was not increased in older patients, but MODS had a substantial impact on mortality (<65 years: 17%; ≥65 years: 28%). The majority of older patients who did not develop MODS survived and had favorable discharge outcomes (home discharge ≥65 years NoMODS: 50% vs MODS: 15%; P < 0.01). Conclusions Frailty rather than chronological age appears to drive MODS development, recovery, and outcome in older cohorts. Early identification of frailty after trauma may help to predict MODS and plan care in older trauma.
Collapse
Affiliation(s)
- Elaine Cole
- From the Centre for Trauma Sciences, Blizard Institute, Queen Mary University, London, United Kingdom
| | - Chris Aylwin
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Robert Christie
- From the Centre for Trauma Sciences, Blizard Institute, Queen Mary University, London, United Kingdom
- Barts Health NHS Trust, London, United Kingdom
| | - Bebhinn Dillane
- From the Centre for Trauma Sciences, Blizard Institute, Queen Mary University, London, United Kingdom
| | - Helen Farrah
- St Georges University Hospital NHS Trust, London, United Kingdom
| | - Phillip Hopkins
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Chris Ryan
- St Georges University Hospital NHS Trust, London, United Kingdom
| | - Adam Woodgate
- St Georges University Hospital NHS Trust, London, United Kingdom
| | - Karim Brohi
- From the Centre for Trauma Sciences, Blizard Institute, Queen Mary University, London, United Kingdom
| |
Collapse
|
9
|
Krishnamoorthy V, Temkin N, Barber J, Foreman B, Komisarow J, Korley FK, Laskowitz DT, Mathew JP, Hernandez A, Sampson J, James ML, Bartz R, Raghunathan K, Goldstein BA, Markowitz AJ, Vavilala MS. Association of Early Multiple Organ Dysfunction With Clinical and Functional Outcomes Over the Year Following Traumatic Brain Injury: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study. Crit Care Med 2021; 49:1769-1778. [PMID: 33935162 PMCID: PMC8448900 DOI: 10.1097/ccm.0000000000005055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Traumatic brain injury is a leading cause of death and disability in the United States. While the impact of early multiple organ dysfunction syndrome has been studied in many critical care paradigms, the clinical impact of early multiple organ dysfunction syndrome in traumatic brain injury is poorly understood. We examined the incidence and impact of early multiple organ dysfunction syndrome on clinical, functional, and disability outcomes over the year following traumatic brain injury. DESIGN Retrospective cohort study. SETTING Patients enrolled in the Transforming Clinical Research and Knowledge in Traumatic Brain Injury study, an 18-center prospective cohort study of traumatic brain injury patients evaluated in participating level 1 trauma centers. SUBJECTS Adult (age > 17 yr) patients with moderate-severe traumatic brain injury (Glasgow Coma Scale < 13). We excluded patients with major extracranial injury (Abbreviated Injury Scale score ≥ 3). INTERVENTIONS Development of early multiple organ dysfunction syndrome, defined as a maximum modified Sequential Organ Failure Assessment score greater than 7 during the initial 72 hours following admission. MEASUREMENTS AND MAIN RESULTS The main outcomes were: hospital mortality, length of stay, 6-month functional and disability domains (Glasgow Outcome Scale-Extended and Disability Rating Scale), and 1-year mortality. Secondary outcomes included: ICU length of stay, 3-month Glasgow Outcome Scale-Extended, 3-month Disability Rating Scale, 1-year Glasgow Outcome Scale-Extended, and 1-year Disability Rating Scale. We examined 373 subjects with moderate-severe traumatic brain injury. The mean (sd) Glasgow Coma Scale in the emergency department was 5.8 (3.2), with 280 subjects (75%) classified as severe traumatic brain injury (Glasgow Coma Scale 3-8). Among subjects with moderate-severe traumatic brain injury, 252 (68%) developed early multiple organ dysfunction syndrome. Subjects that developed early multiple organ dysfunction syndrome had a 75% decreased odds of a favorable outcome (Glasgow Outcome Scale-Extended 5-8) at 6 months (adjusted odds ratio, 0.25; 95% CI, 0.12-0.51) and increased disability (higher Disability Rating Scale score) at 6 months (adjusted mean difference, 2.04; 95% CI, 0.92-3.17). Subjects that developed early multiple organ dysfunction syndrome experienced an increased hospital length of stay (adjusted mean difference, 11.4 d; 95% CI, 7.1-15.8), with a nonsignificantly decreased survival to hospital discharge (odds ratio, 0.47; 95% CI, 0.18-1.2). CONCLUSIONS Early multiple organ dysfunction following moderate-severe traumatic brain injury is common and independently impacts multiple domains (mortality, function, and disability) over the year following injury. Further research is necessary to understand underlying mechanisms, improve early recognition, and optimize management strategies.
Collapse
Affiliation(s)
- Vijay Krishnamoorthy
- Department of Anesthesiology, Duke University, Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Department of Population Health Sciences, Duke University, Durham, NC
| | - Nancy Temkin
- Department of Neurosurgery, University of Washington, Seattle, WA
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Jason Barber
- Department of Neurosurgery, University of Washington, Seattle, WA
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
| | | | - Fred K. Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI
| | - Daniel T. Laskowitz
- Department of Anesthesiology, Duke University, Durham, NC
- Department of Neurosurgery, Duke University, Durham, NC
- Department of Neurology, Duke University, Durham, NC
| | | | | | - John Sampson
- Department of Neurosurgery, Duke University, Durham, NC
| | - Michael L. James
- Department of Anesthesiology, Duke University, Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Department of Neurology, Duke University, Durham, NC
- Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA
| | - Raquel Bartz
- Department of Anesthesiology, Duke University, Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA
| | - Karthik Raghunathan
- Department of Anesthesiology, Duke University, Durham, NC
- Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University. Durham, NC
- Department of Population Health Sciences, Duke University, Durham, NC
| | | | - Amy J. Markowitz
- Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA
| | - Monica S. Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA
| | | |
Collapse
|
10
|
Luu D, Komisarow J, Mills BM, Vavilala MS, Laskowitz DT, Mathew J, James ML, Hernandez A, Sampson J, Fuller M, Ohnuma T, Raghunathan K, Privratsky J, Bartz R, Krishnamoorthy V. Association of Severe Acute Kidney Injury with Mortality and Healthcare Utilization Following Isolated Traumatic Brain Injury. Neurocrit Care 2021; 35:434-440. [PMID: 33442812 DOI: 10.1007/s12028-020-01183-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND/OBJECTIVE Traumatic brain injury (TBI) is a leading cause of morbidity, mortality, and disability in the USA. While cardiopulmonary dysfunction can result in poor outcomes following severe TBI, the impact of acute kidney injury (AKI) is poorly understood. We examined the association of severe AKI with hospital mortality and healthcare utilization following isolate severe TBI. METHODS We conducted a retrospective cohort study using the National Trauma Data Bank from 2007 to 2014. We identified a cohort of adult patients with isolated severe TBI and described the incidence of severe AKI, corresponding to Acute Kidney Injury Network stage 3 disease or greater. We examined the association of severe AKI with the primary outcome of hospital mortality using multivariable logistic regression models. In secondary analyses, we examined the association of severe AKI with dialysis catheter placement, tracheostomy and gastrostomy utilization, and hospital length of stay. RESULTS There were 37,851 patients who experienced isolated severe TBI during the study period. Among these patients, 787 (2.1%) experienced severe (Stage 3 or greater) AKI. In multivariable models, the development of severe AKI in the hospital was associated with in-hospital mortality (OR 2.03, 95% CI 1.64-2.52), need for tracheostomy (OR 2.10, 95% CI 1.52-2.89), PEG tube placement (OR 1.88, 95% CI 1.45-2.45), and increased hospital length of stay (p < 0.001). CONCLUSIONS The overall incidence of severe AKI is relatively low (2.1%), but is associated with increased mortality and multiple markers of increased healthcare utilization following severe TBI.
Collapse
Affiliation(s)
- David Luu
- Duke University Medical Center, Department of Anesthesiology, DUMC 3094, Duke University, Durham, NC, 27710, USA.,Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, USA
| | - Jordan Komisarow
- Department of Neurosurgery, Duke University, Durham, USA.,Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, USA
| | - Brianna M Mills
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, USA.,Department of Epidemiology, University of Washington, Seattle, USA
| | - Monica S Vavilala
- Harborview Injury Prevention and Research Center, University of Washington, Seattle, USA.,Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| | | | - Joseph Mathew
- Duke University Medical Center, Department of Anesthesiology, DUMC 3094, Duke University, Durham, NC, 27710, USA
| | - Michael L James
- Duke University Medical Center, Department of Anesthesiology, DUMC 3094, Duke University, Durham, NC, 27710, USA.,Departments of Neurology, Duke University, Durham, USA.,Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, USA
| | - Adrian Hernandez
- Departments of Medicine, Duke University, Durham, USA.,Population Health Sciences, Duke University, Durham, USA
| | - John Sampson
- Department of Neurosurgery, Duke University, Durham, USA
| | - Matt Fuller
- Duke University Medical Center, Department of Anesthesiology, DUMC 3094, Duke University, Durham, NC, 27710, USA.,Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, USA
| | - Tetsu Ohnuma
- Duke University Medical Center, Department of Anesthesiology, DUMC 3094, Duke University, Durham, NC, 27710, USA.,Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, USA
| | - Karthik Raghunathan
- Duke University Medical Center, Department of Anesthesiology, DUMC 3094, Duke University, Durham, NC, 27710, USA.,Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, USA.,Population Health Sciences, Duke University, Durham, USA
| | - Jamie Privratsky
- Duke University Medical Center, Department of Anesthesiology, DUMC 3094, Duke University, Durham, NC, 27710, USA.,Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, USA
| | - Raquel Bartz
- Duke University Medical Center, Department of Anesthesiology, DUMC 3094, Duke University, Durham, NC, 27710, USA.,Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, USA
| | - Vijay Krishnamoorthy
- Duke University Medical Center, Department of Anesthesiology, DUMC 3094, Duke University, Durham, NC, 27710, USA. .,Critical Care and Perioperative Population Health Research (CAPER) Unit, Department of Anesthesiology, Duke University, Durham, USA. .,Population Health Sciences, Duke University, Durham, USA.
| |
Collapse
|
11
|
Awan N, DiSanto D, Juengst SB, Kumar RG, Bertisch H, Niemeier J, Fann JR, Kesinger MR, Sperry J, Wagner AK. Evaluating the Cross-Sectional and Longitudinal Relationships Predicting Suicidal Ideation Following Traumatic Brain Injury. J Head Trauma Rehabil 2021; 36:E18-E29. [PMID: 32769828 PMCID: PMC10280901 DOI: 10.1097/htr.0000000000000588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Characterize relationships among substance misuse, depression, employment, and suicidal ideation (SI) following moderate to severe traumatic brain injury (TBI). DESIGN Prospective cohort study. SETTING Inpatient rehabilitation centers with telephone follow-up; level I/II trauma centers in the United States. PARTICIPANTS Individuals with moderate to severe TBI with data in both the National Trauma Data Bank and the Traumatic Brain Injury Model Systems National Database, aged 18 to 59 years, with SI data at year 1 or year 2 postinjury (N = 1377). MAIN OUTCOME MEASURE Primary outcome of SI, with secondary employment, substance misuse, and depression outcomes at years 1 and 2 postinjury. RESULTS Cross-lagged structural equation modeling analysis showed that year 1 unemployment and substance misuse were associated with a higher prevalence of year 1 depression. Depression was associated with concurrent SI at years 1 and 2. Older adults and women had a greater likelihood of year 1 depression. More severe overall injury (injury severity score) was associated with a greater likelihood of year 1 SI, and year 1 SI was associated with a greater likelihood of year 2 SI. CONCLUSIONS Substance misuse, unemployment, depression, and greater extracranial injury burden independently contributed to year 1 SI; in turn, year 1 SI and year 2 depression contributed to year 2 SI. Older age and female sex were associated with year 1 depression. Understanding and mitigating these risk factors are crucial for effectively managing post-TBI SI to prevent postinjury suicide.
Collapse
Affiliation(s)
- Nabil Awan
- Departments of Physical Medicine and Rehabilitation (Messrs Awan and DiSanto and Dr Wagner), Biostatistics (Mr Awan), Surgery (Dr Sperry), and Neuroscience (Dr Wagner), University of Pittsburgh, Pittsburgh, Pennsylvania; Center for Neuroscience (Dr Wagner), Safar Center of Resuscitation Research (Dr Wagner), School of Medicine (Mr Kesinger), and Clinical and Translational Science Institute (Dr Wagner), University of Pittsburgh, Pittsburgh, Pennsylvania; Institute of Statistical Research and Training, University of Dhaka, Dhaka, Bangladesh (Mr Awan); Departments of Physical Medicine & Rehabilitation (Dr Juengst) and Rehabilitation Counseling (Dr Juengst), University of Texas-Southwestern Medical Center, Dallas; Department of Rehabilitation Medicine, Brain Injury Research Center, Icahn School of Medicine at Mount Sinai, New York, New York (Dr Kumar); Department of Psychology, NYU Rusk Rehabilitation, Brooklyn (Dr Bertisch); Department of Physical Medicine & Rehabilitation, UAB Spain Rehabilitation Center, Birmingham, Alabama (Dr Niemeier); and Departments of Psychiatry and Behavioral Sciences (Dr Fann), Epidemiology (Dr Fann), and Rehabilitation Medicine (Dr Fann), University of Washington, Seattle
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhou RX, Dai W, Hu CL. Differential clinical benefits of continuous blood purification treatment in critically ill patients with variable APACHE II scores. Exp Ther Med 2019; 18:741-746. [PMID: 31281452 DOI: 10.3892/etm.2019.7617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/27/2018] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to assess whether the Acute Physiology And Chronic Health Evaluation (APACHE) II score may be used to predict whether critically ill patients benefit from continuous blood purification (CBP) treatment. A total of 115 critically ill patients were retrospectively reviewed and grouped according to their baseline APACHE II scores. Each group was further divided into 2 groups based on whether they received CBP or not. At 72 h after CBP treatment, clinical indicators comprising the plasma levels of inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-8, as well as endotoxin and procalcitonin (PCT), and severity scores (APACHE II, multiple organ dysfunction syndrome and systemic inflammatory response syndrome), were analyzed in all patients. It was observed that while CBP slightly reduced the severity scores in all patients, it significantly improved those in patients with an APACHE II score of 20-29 (P<0.05). Similarly, the plasma levels of TNF-α, IL-6, IL-8, endotoxin and PCT were significantly lower in patients receiving CBP than in those without CBP when the APACHE II score was 20-29 (P<0.05). Furthermore, CBP treatment significantly decreased the fatality rate and length of stay at the intensive care unit (ICU) for critically ill patients with an APACHE II score of 20-29 (P<0.05). In conclusion, CBP significantly decreases the inflammatory response, shortens the length of stay at the ICU and improves the prognosis for critically ill patients with an APACHE II score of 20-29 points. This observation suggests that the APACHE II score is an important clinical indicator to determine the potential benefit of CBP therapy in critically ill patients.
Collapse
Affiliation(s)
- Rui-Xiang Zhou
- Intensive Care Unit of The First Hospital of Wuhan, Wuhan, Hubei 430022, P.R. China
| | - Wei Dai
- Intensive Care Unit of The First Hospital of Wuhan, Wuhan, Hubei 430022, P.R. China
| | - Chao-Liang Hu
- Intensive Care Unit of The First Hospital of Wuhan, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|