1
|
Shoraka O, Syed M, Mandloi S, Thalheimer S, Kashani SN, Heller JE, Mohamed FB, Sharan AD, Talekar KS, Matias CM, Harrop JS, Krisa L, Alizadeh M. Periaqueductal gray connectivity in spinal cord injury-induced neuropathic pain. J Neuroimaging 2024. [PMID: 39252511 DOI: 10.1111/jon.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Neuropathic pain (NP) is a debilitating condition following spinal cord injury (SCI). The role of periaqueductal gray (PAG) in NP development following SCI remains underexplored. Using resting-state functional MRI (rsfMRI), our study aimed to demonstrate the alterations in functional connectivity (FC) of PAG in NP following SCI. METHODS Ten SCI patients (SCI + NP, n = 7, and SCI - NP, n = 3), alongside 10 healthy controls (HCs), were enrolled. rsfMRI was conducted followed by seed-to-voxel analysis using PAG as the seed region and then group-based analysis comprising three groups (SCI + NP, SCI - NP, and HC). Age and gender were considered as confounding variables. RESULTS Compared to HCs, SCI + NP demonstrated decreased FC between PAG and right insula, right frontal orbital cortex, right pallidum, dorsal raphe nucleus (DRN), red nuclei (RN), substantia nigra (SN), and ventral posterolateral (VPL) thalamic nuclei. Compared to SCI - NP, SCI + NP demonstrated increased FC between PAG and posterior cingulate cortex (PCC), hippocampus, cerebellar vermis lobules IV and V, and thalamic structures (posterior and lateral pulvinar, the mediodorsal nuclei, and the ventral lateral nuclei). Additionally, decreased FC between the PAG and VPL, geniculate bodies, intralaminar nuclei of thalamus, DRN, RN, SN, and prefrontal cortex was observed in this comparison. CONCLUSIONS Altered FC between PAG and right anterior insula, VPL, DRN, RN, SN, cerebellar vermis lobules IV and V, frontal cortex, and PCC was associated with NP sequelae of SCI. Additionally, SCI was independently associated with decreased FC between PAG and right posterior insula, cerebellar lobules IV and V, and cerebellar vermis lobules III, IV, and V.
Collapse
Affiliation(s)
- Omid Shoraka
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mashaal Syed
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Shreya Mandloi
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sara Thalheimer
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sara Naghizadeh Kashani
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joshua E Heller
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Feroze B Mohamed
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ashwini D Sharan
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kiran S Talekar
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Caio M Matias
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - James S Harrop
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Laura Krisa
- Department of Physical Therapy, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mahdi Alizadeh
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC), Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Zinn PO, Habib A, Deng H, Gecici NN, Elidrissy H, Alami Idrissi Y, Amjadzadeh M, Sherry NS. Uncovering Interoceptive Human Insular Lobe Function through Intraoperative Cortical Stimulation-A Review. Brain Sci 2024; 14:646. [PMID: 39061387 PMCID: PMC11274540 DOI: 10.3390/brainsci14070646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The insular cortex, a critical hub in the brain's sensory, cognitive, and emotional networks, remains an intriguing subject of study. In this article, we discuss its intricate functional neuroanatomy, emphasizing its pivotal role in processing olfactory information. Through concise exploration, we delve into the insula's diverse connectivity and its involvement in sensory integration, particularly in olfaction. Stimulation studies in humans reveal compelling insights into the insula's contribution to the perception of smell, hinting at its broader implications for cognitive processing. Additionally, we explore an avenue of research in which studying olfactory processing via insular stimulation could unravel higher-level cognitive processes. This innovative approach could help give a fresh perspective on the interplay between sensory and cognitive domains, offering valuable insights into the neural mechanisms underlying cognition and emotion. In conclusion, future research efforts should emphasize a multidisciplinary approach, combining advanced imaging and surgical techniques to explore the intricate functions of the human insula. Moreover, awake craniotomies could offer a unique opportunity for real-time observation, shedding light on its neural circuitry and contributions to higher-order brain functions. Furthermore, olfaction's direct cortical projection enables precise exploration of insular function, promising insights into cognitive and emotional processes. This multifaceted approach will deepen our understanding of the insular cortex and its significance in human cognition and emotion.
Collapse
Affiliation(s)
- Pascal O. Zinn
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Hansen Deng
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
| | - Neslihan Nisa Gecici
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Hayat Elidrissy
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
| | - Yassine Alami Idrissi
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Mohammadreza Amjadzadeh
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (H.E.); (Y.A.I.)
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Natalie Sandel Sherry
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.H.); (H.D.); (N.N.G.); (N.S.S.)
- Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Hematology, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|
3
|
Wang L, Chen X, Zheng W, Yang Y, Yang B, Chen Q, Li X, Liang T, Li B, Hu Y, Du J, Lu J, Chen N. The possible neural mechanism of neuropathic pain evoked by motor imagery in pediatric patients with complete spinal cord injury: A preliminary brain structure study based on VBM. Heliyon 2024; 10:e24569. [PMID: 38312693 PMCID: PMC10835172 DOI: 10.1016/j.heliyon.2024.e24569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/26/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
In this study, we observed pediatric complete spinal cord injury (CSCI) patients receiving MI training and divided them into different groups according to the effect of motor imagery (MI) training on neuropathic pain (NP). Then, we retrospectively analysed the differences in brain structure of these groups before the MI training, identifying brain regions that may predict the effect of MI on NP. Thirty pediatric CSCI patients were included, including 12 patients who experienced NP during MI and 18 patients who did not experience NP during MI according to the MI training follow-up. The 3D high-resolution T1-weighted images of all subjects were obtained using a 3.0 T MRI system before MI training. A two-sample t-test was performed to evaluate the differences in gray matter volume (GMV) between patients who experienced NP and those who did not experience NP during MI. Receiver operating characteristic (ROC) analysis was performed to compute the sensitivity and specificity of the imaging biomarkers for the effect of MI on NP in pediatric CSCI patients. MI evoked NP in some of the pediatric CSCI patients. Compared with patients who did not experience NP, patients who experienced NP during MI showed larger GMV in the right primary sensorimotor cortex (PSMC) and insula. When using the GMV of the right PSMC and insula in combination as a predictor, the area under the curve (AUC) reached 0.824. Our study demonstrated that MI could evoke NP in some pediatric CSCI patients, but not in others. The individual differences in brain reorganization of the right PSMC and insula may contribute to the different effects of MI on NP. Moreover, the GMV of the right PSMC and insula in combination may be an effective indicator for screening pediatric CSCI patients before MI training therapy.
Collapse
Affiliation(s)
- Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Weimin Zheng
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Yanhui Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xuejing Li
- Department of Radiology, China Rehabilitation Research Center, Beijing, 100068, China
| | - Tengfei Liang
- Department of Medical Imaging, Affiliated Hospital of Hebei Engineering University, Handan, 056008, China
| | - Baowei Li
- Department of Medical Imaging, Affiliated Hospital of Hebei Engineering University, Handan, 056008, China
| | - Yongsheng Hu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jubao Du
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, China
| |
Collapse
|
4
|
Graeff P, Ruscheweyh R, Flanagin VL. Longitudinal changes in human supraspinal processing after RIII-feedback training to improve descending pain inhibition. Neuroimage 2023; 283:120432. [PMID: 37914092 DOI: 10.1016/j.neuroimage.2023.120432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 10/15/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023] Open
Abstract
The human body has the ability to influence its sensation of pain by modifying the transfer of nociceptive information at the spinal level. This modulation, known as descending pain inhibition, is known to originate supraspinally and can be activated by a variety of ways including positive mental imagery. However, its exact mechanisms remain unknown. We investigated, using a longitudinal fMRI design, the brain activity leading up and in response to painful electrical stimulation when applying positive mental imagery before and after undergoing a previously established RIII-feedback paradigm. Time course analysis of the time preceding painful stimulation shows increased haemodynamic activity during the application of the strategy in the PFC, ACC, insula, thalamus, and hypothalamus. Time course analysis of the reaction to painful stimulation shows decreased reaction post-training in brainstem and thalamus, as well as the insula and dorsolateral PFC. Our work suggests that feedback training increases activity in areas involved in pain inhibition, while simultaneously decreasing the reaction to painful stimuli in brain areas related to pain processing, which points to an activation of decreased spinal nociception. We further suggest that the insula and the thalamus may play a more important role in pain modulation than previously assumed.
Collapse
Affiliation(s)
- Philipp Graeff
- Research Training Group (RTG) 2175 perception in Context and Its Neural Basis, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| | - Ruth Ruscheweyh
- Research Training Group (RTG) 2175 perception in Context and Its Neural Basis, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany; Department of Neurology, University Hospital Großhadern, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Virginia L Flanagin
- Research Training Group (RTG) 2175 perception in Context and Its Neural Basis, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany; German Center for Vertigo and Balance Disorders (DSGZ), University Hospital Munich, Ludwig-Maximilians-University, 81377 Munich, Germany.
| |
Collapse
|
5
|
Marino S, Jassar H, Kim DJ, Lim M, Nascimento TD, Dinov ID, Koeppe RA, DaSilva AF. Classifying migraine using PET compressive big data analytics of brain's μ-opioid and D2/D3 dopamine neurotransmission. Front Pharmacol 2023; 14:1173596. [PMID: 37383727 PMCID: PMC10294712 DOI: 10.3389/fphar.2023.1173596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction: Migraine is a common and debilitating pain disorder associated with dysfunction of the central nervous system. Advanced magnetic resonance imaging (MRI) studies have reported relevant pathophysiologic states in migraine. However, its molecular mechanistic processes are still poorly understood in vivo. This study examined migraine patients with a novel machine learning (ML) method based on their central μ-opioid and dopamine D2/D3 profiles, the most critical neurotransmitters in the brain for pain perception and its cognitive-motivational interface. Methods: We employed compressive Big Data Analytics (CBDA) to identify migraineurs and healthy controls (HC) in a large positron emission tomography (PET) dataset. 198 PET volumes were obtained from 38 migraineurs and 23 HC during rest and thermal pain challenge. 61 subjects were scanned with the selective μ-opioid receptor (μOR) radiotracer [11C]Carfentanil, and 22 with the selective dopamine D2/D3 receptor (DOR) radiotracer [11C]Raclopride. PET scans were recast into a 1D array of 510,340 voxels with spatial and intensity filtering of non-displaceable binding potential (BPND), representing the receptor availability level. We then performed data reduction and CBDA to power rank the predictive brain voxels. Results: CBDA classified migraineurs from HC with accuracy, sensitivity, and specificity above 90% for whole-brain and region-of-interest (ROI) analyses. The most predictive ROIs for μOR were the insula (anterior), thalamus (pulvinar, medial-dorsal, and ventral lateral/posterior nuclei), and the putamen. The latter, putamen (anterior), was also the most predictive for migraine regarding DOR D2/D3 BPND levels. Discussion: CBDA of endogenous μ-opioid and D2/D3 dopamine dysfunctions in the brain can accurately identify a migraine patient based on their receptor availability across key sensory, motor, and motivational processing regions. Our ML-based findings in the migraineur's brain neurotransmission partly explain the severe impact of migraine suffering and associated neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Simeone Marino
- Statistics Online Computational Resource, Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Hassan Jassar
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Dajung J. Kim
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Manyoel Lim
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Thiago D. Nascimento
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Ivo D. Dinov
- Statistics Online Computational Resource, Department of Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, United States
| | - Robert A. Koeppe
- Department of Radiology, Division of Nuclear Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Alexandre F. DaSilva
- The Michigan Neuroscience Institute (MNI), University of Michigan, Ann Arbor, MI, United States
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Yang X, Guo D, Huang W, Chen B. Intrinsic Brain Functional Activity Abnormalities in Episodic Tension-Type Headache. Neural Plast 2023; 2023:6560298. [PMID: 37266410 PMCID: PMC10232109 DOI: 10.1155/2023/6560298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 06/03/2023] Open
Abstract
Objective The neurobiological basis of episodic tension-type headache (ETTH) remains largely unclear. The aim of the present study was to explore intrinsic brain functional activity alterations in ETTH. Methods Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 32 patients with ETTH and 32 age- and gender-matched healthy controls (HCs). Differences in intrinsic brain functional activity between patients with ETTH and HCs were analyzed utilizing the fractional amplitude of low-frequency fluctuation (fALFF) approach. Correlation analyses were performed to examine the relationship between fALFF alterations and clinical characteristics. Results Compared to HCs, patients with ETTH exhibited increased fALFF in the right posterior insula and anterior insula and decreased fALFF in the posterior cingulate cortex. Moreover, the fALFF in the right anterior insula was negatively correlated with attack frequency in ETTH. Conclusions This study highlights alterations in the intrinsic brain functional activity in the insula and posterior cingulate cortex in ETTH that can help us understand its neurobiological underpinnings.
Collapse
Affiliation(s)
- Xiu Yang
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - DianXuan Guo
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
| | - Wei Huang
- Department of Medical Imaging, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Bing Chen
- Department of Neurology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
7
|
Schimmelpfennig J, Topczewski J, Zajkowski W, Jankowiak-Siuda K. The role of the salience network in cognitive and affective deficits. Front Hum Neurosci 2023; 17:1133367. [PMID: 37020493 PMCID: PMC10067884 DOI: 10.3389/fnhum.2023.1133367] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
Analysis and interpretation of studies on cognitive and affective dysregulation often draw upon the network paradigm, especially the Triple Network Model, which consists of the default mode network (DMN), the frontoparietal network (FPN), and the salience network (SN). DMN activity is primarily dominant during cognitive leisure and self-monitoring processes. The FPN peaks during task involvement and cognitive exertion. Meanwhile, the SN serves as a dynamic "switch" between the DMN and FPN, in line with salience and cognitive demand. In the cognitive and affective domains, dysfunctions involving SN activity are connected to a broad spectrum of deficits and maladaptive behavioral patterns in a variety of clinical disorders, such as depression, insomnia, narcissism, PTSD (in the case of SN hyperactivity), chronic pain, and anxiety, high degrees of neuroticism, schizophrenia, epilepsy, autism, and neurodegenerative illnesses, bipolar disorder (in the case of SN hypoactivity). We discuss behavioral and neurological data from various research domains and present an integrated perspective indicating that these conditions can be associated with a widespread disruption in predictive coding at multiple hierarchical levels. We delineate the fundamental ideas of the brain network paradigm and contrast them with the conventional modular method in the first section of this article. Following this, we outline the interaction model of the key functional brain networks and highlight recent studies coupling SN-related dysfunctions with cognitive and affective impairments.
Collapse
Affiliation(s)
- Jakub Schimmelpfennig
- Behavioral Neuroscience Lab, Institute of Psychology, SWPS University, Warsaw, Poland
| | - Jan Topczewski
- Behavioral Neuroscience Lab, Institute of Psychology, SWPS University, Warsaw, Poland
| | | | | |
Collapse
|
8
|
Caston RM, Smith EH, Davis TS, Singh H, Rahimpour S, Rolston JD. Psychophysical pain encoding in the cingulate cortex predicts responsiveness of electrical stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.18.23287266. [PMID: 36993429 PMCID: PMC10055607 DOI: 10.1101/2023.03.18.23287266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background The anterior cingulate cortex (ACC) plays an important role in the cognitive and emotional processing of pain. Prior studies have used deep brain stimulation (DBS) to treat chronic pain, but results have been inconsistent. This may be due to network adaptation over time and variable causes of chronic pain. Identifying patient-specific pain network features may be necessary to determine patient candidacy for DBS. Hypothesis Cingulate stimulation would increase patients' hot pain thresholds if non-stimulation 70-150 Hz activity encoded psychophysical pain responses. Methods In this study, four patients who underwent intracranial monitoring for epilepsy monitoring participated in a pain task. They placed their hand on a device capable of eliciting thermal pain for five seconds and rated their pain. We used these results to determine the individual's thermal pain threshold with and without electrical stimulation. Two different types of generalized linear mixed-effects models (GLME) were employed to assess the neural representations underlying binary and graded pain psychophysics. Results The pain threshold for each patient was determined from the psychometric probability density function. Two patients had a higher pain threshold with stimulation than without, while the other two patients had no difference. We also evaluated the relationship between neural activity and pain responses. We found that patients who responded to stimulation had specific time windows where high-frequency activity was associated with increased pain ratings. Conclusion Stimulation of cingulate regions with increased pain-related neural activity was more effective at modulating pain perception than stimulating non-responsive areas. Personalized evaluation of neural activity biomarkers could help identify the best target for stimulation and predict its effectiveness in future studies evaluating DBS.
Collapse
Affiliation(s)
- Rose M Caston
- University of Utah Department of Biomedical Engineering
- University of Utah Department of Neurosurgery
| | - Elliot H Smith
- University of Utah Department of Neurosurgery
- University of Utah Interdepartmental Program in Neuroscience
| | | | - Hargunbir Singh
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School
| | - Shervin Rahimpour
- University of Utah Department of Biomedical Engineering
- University of Utah Department of Neurosurgery
| | - John D Rolston
- University of Utah Department of Biomedical Engineering
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School
| |
Collapse
|
9
|
Labrakakis C. The Role of the Insular Cortex in Pain. Int J Mol Sci 2023; 24:ijms24065736. [PMID: 36982807 PMCID: PMC10056254 DOI: 10.3390/ijms24065736] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The transition from normal to chronic pain is believed to involve alterations in several brain areas that participate in the perception of pain. These plastic changes are then responsible for aberrant pain perception and comorbidities. The insular cortex is consistently found activated in pain studies of normal and chronic pain patients. Functional changes in the insula contribute to chronic pain; however, the complex mechanisms by which the insula is involved in pain perception under normal and pathological conditions are still not clear. In this review, an overview of the insular function is provided and findings on its role in pain from human studies are summarized. Recent progress on the role of the insula in pain from preclinical experimental models is reviewed, and the connectivity of the insula with other brain regions is examined to shed new light on the neuronal mechanisms of the insular cortex’s contribution to normal and pathological pain sensation. This review underlines the need for further studies on the mechanisms underlying the involvement of the insula in the chronicity of pain and the expression of comorbid disorders.
Collapse
Affiliation(s)
- Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece;
- Institute of Biosciences, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
10
|
Chen B, Guo Q, Zhang Q, Di Z, Zhang Q. Revealing the Central Mechanism of Acupuncture for Primary Dysmenorrhea Based on Neuroimaging: A Narrative Review. Pain Res Manag 2023; 2023:8307249. [PMID: 36852393 PMCID: PMC9966569 DOI: 10.1155/2023/8307249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 02/20/2023]
Abstract
Objective The central mechanism of acupuncture for primary dysmenorrhea was explored by summarizing the changes in different regional networks of the brain induced by acupuncture stimulation by analyzing the existing studies. Methods The original studies were collected and selected from three English databases such as PubMed and four Chinese databases as China Knowledge Network (CNKI). The main keyword clusters are neuroimaging, acupuncture, and primary dysmenorrhea. Results The literature review yielded 130 possibly qualified studies, and 23 articles fulfilled the criteria for inclusion. Regarding the type of acupuncture studies, 6 moxibustion studies and 17 manual acupuncture studies for primary dysmenorrhea were included. Based on functional magnetic resonance imaging (fMRI), perfusion-weighted imaging (PWI), and positron emission tomography-computer tomography techniques (PET-CT), one or more analysis methods such as amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), functional connectivity (FC), and independent components analysis (ICA) were used. The results are summarized. To summarize the high-frequency brain area alterations observed in patients with acupuncture-induced primary dysmenorrhea were the anterior cingulate gyrus, thalamus, insula, precentral gyrus, middle frontal gyrus, postcentral gyrus, putamen, and cerebellum. Conclusion The results suggest that the mechanism of acupuncture in the treatment of primary dysmenorrhea is the involvement of networks regulating different areas of the brain in the analgesic effects of acupuncture. The brain regions involved in primary dysmenorrhea acupuncture analgesia were mainly located in the pain matrix, default mode network, salience network, and limbic system.
Collapse
Affiliation(s)
- Benlu Chen
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Guo
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiwen Zhang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Di
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Quanai Zhang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Nigro C, Koroshetz WJ. NINDS Corner: The Helping to End Addiction Long-Term Initiative and Pain Neurology. Ann Neurol 2023; 93:213-215. [PMID: 36479980 DOI: 10.1002/ana.26567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Cristina Nigro
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Walter J Koroshetz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Lubejko ST, Graham RD, Livrizzi G, Schaefer R, Banghart MR, Creed MC. The role of endogenous opioid neuropeptides in neurostimulation-driven analgesia. Front Syst Neurosci 2022; 16:1044686. [PMID: 36591324 PMCID: PMC9794630 DOI: 10.3389/fnsys.2022.1044686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Due to the prevalence of chronic pain worldwide, there is an urgent need to improve pain management strategies. While opioid drugs have long been used to treat chronic pain, their use is severely limited by adverse effects and abuse liability. Neurostimulation techniques have emerged as a promising option for chronic pain that is refractory to other treatments. While different neurostimulation strategies have been applied to many neural structures implicated in pain processing, there is variability in efficacy between patients, underscoring the need to optimize neurostimulation techniques for use in pain management. This optimization requires a deeper understanding of the mechanisms underlying neurostimulation-induced pain relief. Here, we discuss the most commonly used neurostimulation techniques for treating chronic pain. We present evidence that neurostimulation-induced analgesia is in part driven by the release of endogenous opioids and that this endogenous opioid release is a common endpoint between different methods of neurostimulation. Finally, we introduce technological and clinical innovations that are being explored to optimize neurostimulation techniques for the treatment of pain, including multidisciplinary efforts between neuroscience research and clinical treatment that may refine the efficacy of neurostimulation based on its underlying mechanisms.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Graham
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert Schaefer
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Matthew R. Banghart,
| | - Meaghan C. Creed
- Department of Anesthesiology, Pain Center, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, United States
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Meaghan C. Creed,
| |
Collapse
|