1
|
Yang Y, Yuan T, Rodriguez Y Baena F, Dini D, Zhan W. Effect of infusion direction on convection-enhanced drug delivery to anisotropic tissue. J R Soc Interface 2024; 21:20240378. [PMID: 39353562 PMCID: PMC11444765 DOI: 10.1098/rsif.2024.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Convection-enhanced delivery (CED) can effectively overcome the blood-brain barrier by infusing drugs directly into diseased sites in the brain using a catheter, but its clinical performance still needs to be improved. This is strongly related to the highly anisotropic characteristics of brain white matter, which results in difficulties in controlling drug transport and distribution in space. In this study, the potential to improve the delivery of six drugs by adjusting the placement of the infusion catheter is examined using a mathematical model and accurate numerical simulations that account simultaneously for the interstitial fluid (ISF) flow and drug transport processes in CED. The results demonstrate the ability of this direct infusion to enhance ISF flow and therefore facilitate drug transport. However, this enhancement is highly anisotropic, subject to the orientation of local axon bundles and is limited within a small region close to the infusion site. Drugs respond in different ways to infusion direction: the results of our simulations show that while some drugs are almost insensitive to infusion direction, this strongly affects other compounds in terms of isotropy of drug distribution from the catheter. These findings can serve as a reference for planning treatments using CED.
Collapse
Affiliation(s)
- Yi Yang
- School of Engineering, University of Aberdeen, Aberdeen, UK
| | - Tian Yuan
- Department of Mechanical Engineering, Imperial College London, London, UK
| | | | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
2
|
Yuan T, Zhan W, Terzano M, Holzapfel GA, Dini D. A comprehensive review on modeling aspects of infusion-based drug delivery in the brain. Acta Biomater 2024; 185:1-23. [PMID: 39032668 DOI: 10.1016/j.actbio.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Brain disorders represent an ever-increasing health challenge worldwide. While conventional drug therapies are less effective due to the presence of the blood-brain barrier, infusion-based methods of drug delivery to the brain represent a promising option. Since these methods are mechanically controlled and involve multiple physical phases ranging from the neural and molecular scales to the brain scale, highly efficient and precise delivery procedures can significantly benefit from a comprehensive understanding of drug-brain and device-brain interactions. Behind these interactions are principles of biophysics and biomechanics that can be described and captured using mathematical models. Although biomechanics and biophysics have received considerable attention, a comprehensive mechanistic model for modeling infusion-based drug delivery in the brain has yet to be developed. Therefore, this article reviews the state-of-the-art mechanistic studies that can support the development of next-generation models for infusion-based brain drug delivery from the perspective of fluid mechanics, solid mechanics, and mathematical modeling. The supporting techniques and database are also summarized to provide further insights. Finally, the challenges are highlighted and perspectives on future research directions are provided. STATEMENT OF SIGNIFICANCE: Despite the immense potential of infusion-based drug delivery methods for bypassing the blood-brain barrier and efficiently delivering drugs to the brain, achieving optimal drug distribution remains a significant challenge. This is primarily due to our limited understanding of the complex interactions between drugs and the brain that are governed by principles of biophysics and biomechanics, and can be described using mathematical models. This article provides a comprehensive review of state-of-the-art mechanistic studies that can help to unravel the mechanism of drug transport in the brain across the scales, which underpins the development of next-generation models for infusion-based brain drug delivery. More broadly, this review will serve as a starting point for developing more effective treatments for brain diseases and mechanistic models that can be used to study other soft tissue and biomaterials.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Mechanical Engineering, Imperial College London, SW7 2AZ, UK.
| | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Michele Terzano
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, NTNU, Trondheim, Norway
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
3
|
Ghosh S, Bhaskar R, Mishra R, Arockia Babu M, Abomughaid MM, Jha NK, Sinha JK. Neurological insights into brain-targeted cancer therapy and bioinspired microrobots. Drug Discov Today 2024; 29:104105. [PMID: 39029869 DOI: 10.1016/j.drudis.2024.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Cancer, a multifaceted and pernicious disease, continuously challenges medicine, requiring innovative treatments. Brain cancers pose unique and daunting challenges due to the intricacies of the central nervous system and the blood-brain barrier. In this era of precision medicine, the convergence of neurology, oncology, and cutting-edge technology has given birth to a promising avenue - targeted cancer therapy. Furthermore, bioinspired microrobots have emerged as an ingenious approach to drug delivery, enabling precision and control in cancer treatment. This Keynote review explores the intricate web of neurological insights into brain-targeted cancer therapy and the paradigm-shifting world of bioinspired microrobots. It serves as a critical and comprehensive overview of these evolving fields, aiming to underscore their integration and potential for revolutionary cancer treatments.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - Richa Mishra
- Department of Computer Science and Engineering, Parul University, Vadodara, Gujrat 391760, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | | |
Collapse
|
4
|
Marcigaglia S, De Plus R, Vandendriessche C, Schiltz E, Cuypers ML, Cools J, Hoffman LD, Vandenbroucke RE, Dewilde M, Haesler S. Microfluidic Interfaces for Chronic Bidirectional Access to the Brain. Adv Healthc Mater 2024; 13:e2400438. [PMID: 38885495 DOI: 10.1002/adhm.202400438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Two-photon polymerization (TPP) is an additive manufacturing technique with micron-scale resolution that is rapidly gaining ground for a range of biomedical applications. TPP is particularly attractive for the creation of microscopic three-dimensional structures in biocompatible and noncytotoxic resins. Here, TPP is used to develop microfluidic interfaces which provide chronic fluidic access to the brain of preclinical research models. These microcatheters can be used for either convection-enhanced delivery (CED) or for the repeated collection of liquid biopsies. In a brain phantom, infusions with the micronozzle result in more localized distribution clouds and lower backflow compared to a control catheter. In mice, the delivery interface enables faster, more precise, and physiologically less disruptive fluid injections. A second microcatheter design enables repeated, longitudinal sampling of cerebrospinal fluid (CSF) over time periods as long as 250 days. Moreover, further in vivo studies demonstrate that the blood-CSF barrier is intact after chronic implantation of the sampling interface and that samples are suitable for downstream molecular analysis for the identification of nucleic acid- or peptide-based biomarkers. Ultimately, the versatility of this fabrication technique implies a great translational potential for simultaneous drug delivery and biomarker tracking in a range of human neurological diseases.
Collapse
Affiliation(s)
- Simone Marcigaglia
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| | - Robin De Plus
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, 9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
| | - Eleonore Schiltz
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| | - Marie-Lynn Cuypers
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Jordi Cools
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Current affiliation, Thermofisher Scientific (AIG/MSD), Dilbeek, 1702, Belgium
| | - Luis D Hoffman
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Current affiliation, SWave Photonics, Leuven, 3001, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, 9052, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, 9052, Belgium
| | - Maarten Dewilde
- Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
- PharmAbs-The KU Leuven Antibody Center, KU Leuven, Leuven, 3000, Belgium
| | - Sebastian Haesler
- Neuroelectronics Research Flanders (NERF), Leuven, 3000, Belgium
- Department of Neurosciences, KU Leuven, Leuven, 3000, Belgium
| |
Collapse
|
5
|
Wu C, Hormuth DA, Christenson CD, Woodall RT, Abdelmalik MRA, Phillips WT, Hughes TJR, Brenner AJ, Yankeelov TE. Image-guided patient-specific optimization of catheter placement for convection-enhanced nanoparticle delivery in recurrent glioblastoma. Comput Biol Med 2024; 179:108889. [PMID: 39032243 DOI: 10.1016/j.compbiomed.2024.108889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Proper catheter placement for convection-enhanced delivery (CED) is required to maximize tumor coverage and minimize exposure to healthy tissue. We developed an image-based model to patient-specifically optimize the catheter placement for rhenium-186 (186Re)-nanoliposomes (RNL) delivery to treat recurrent glioblastoma (rGBM). METHODS The model consists of the 1) fluid fields generated via catheter infusion, 2) dynamic transport of RNL, and 3) transforming RNL concentration to the SPECT signal. Patient-specific tissue geometries were assigned from pre-delivery MRIs. Model parameters were personalized with either 1) individual-based calibration with longitudinal SPECT images, or 2) population-based assignment via leave-one-out cross-validation. The concordance correlation coefficient (CCC) was used to quantify the agreement between the predicted and measured SPECT signals. The model was then used to simulate RNL distributions from a range of catheter placements, resulting in a ratio of the cumulative RNL dose outside versus inside the tumor, the "off-target ratio" (OTR). Optimal catheter placement) was identified by minimizing OTR. RESULTS Fifteen patients with rGBM from a Phase I/II clinical trial (NCT01906385) were recruited to the study. Our model, with either individual-calibrated or population-assigned parameters, achieved high accuracy (CCC > 0.80) for predicting RNL distributions up to 24 h after delivery. The optimal catheter placements identified using this model achieved a median (range) of 34.56 % (14.70 %-61.12 %) reduction on OTR at the 24 h post-delivery in comparison to the original placements. CONCLUSIONS Our image-guided model achieved high accuracy for predicting patient-specific RNL distributions and indicates value for optimizing catheter placement for CED of radiolabeled liposomes.
Collapse
Affiliation(s)
- Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - David A Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA; Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Chase D Christenson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ryan T Woodall
- Division of Mathematical Oncology, Beckman Research Institute, City of Hope National Medical Center, 1500 East Duarte Rd, Duarte, CA, 91010, USA
| | - Michael R A Abdelmalik
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - William T Phillips
- Department of Radiology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Thomas J R Hughes
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew J Brenner
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Thomas E Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Oncology, The University of Texas at Austin, Austin, TX, 78712, USA; Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
6
|
Noh DH, Zadeh AH, Zhang H, Wang F, Ryu S, Zhang C, Kim S. Convection-Enhanced Drug Delivery: Experimental and Analytical Studies of Infusion Behavior in an In Vitro Brain Surrogate. Ann Biomed Eng 2024; 52:1693-1705. [PMID: 38502430 DOI: 10.1007/s10439-024-03482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Convection-enhanced drug delivery (CED) directly infuses drugs with a large molecular weight toward target cells as a therapeutic strategy for neurodegenerative diseases and brain cancers. Despite the success of many previous in vitro experiments on CED, challenges still remain. In particular, a theoretical predictive model is needed to form a basis for treatment planning, and developing such a model requires well-controlled injection tests that can rigorously capture the convective (advective) and diffusive transport of an infusate. For this purpose, we investigated the advection-diffusion transport of an infusate (bromophenol blue solution) in the brain surrogate (0.2% w/w agarose gel) at different injection rates, ranging from 0.25 to 4 μL/min, by closely monitoring changes in the color intensity, propagation distance, and injection pressures. One dimensional closed-form solution was examined with two variable sets, such as the mathematically calculated coefficient of molecular diffusion and average velocity, and the hydraulic dispersion coefficient and seepage velocity by the least squared method. As a result, the seepage velocity was greater than the average velocity to some extent, particularly for the later infusion times. The poroelastic deformation in the brain surrogate might lead to changes in porosity, and consequently, slight increases in the actual flow velocity as infusion continues. The limitation of efficiency of the single catheter was analyzed by dimensionless analysis. Lastly, this study suggests a simple but robust approach that can properly capture the convective (advective) and diffusive transport of an infusate in an in vitro brain surrogate via well-controlled injection tests.
Collapse
Affiliation(s)
- Dong-Hwa Noh
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Amin Hosseini Zadeh
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Alfred Benesch & Company, Lincoln, Nebraska, USA
| | - Haipeng Zhang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Fei Wang
- Department of Radiation Oncology, University of Nebraska-Medical Center, Omaha, Nebraska, USA
| | - Sangjin Ryu
- Department of Mechanical and Materials Engineering; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Chi Zhang
- Department of Radiation Oncology, University of Nebraska-Medical Center, Omaha, Nebraska, USA
| | - Seunghee Kim
- Department of Civil and Environmental Engineering; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
| |
Collapse
|
7
|
Bhandari A, Gu B, Kashkooli FM, Zhan W. Image-based predictive modelling frameworks for personalised drug delivery in cancer therapy. J Control Release 2024; 370:721-746. [PMID: 38718876 DOI: 10.1016/j.jconrel.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Personalised drug delivery enables a tailored treatment plan for each patient compared to conventional drug delivery, where a generic strategy is commonly employed. It can not only achieve precise treatment to improve effectiveness but also reduce the risk of adverse effects to improve patients' quality of life. Drug delivery involves multiple interconnected physiological and physicochemical processes, which span a wide range of time and length scales. How to consider the impact of individual differences on these processes becomes critical. Multiphysics models are an open system that allows well-controlled studies on the individual and combined effects of influencing factors on drug delivery outcomes while accommodating the patient-specific in vivo environment, which is not economically feasible through experimental means. Extensive modelling frameworks have been developed to reveal the underlying mechanisms of drug delivery and optimise effective delivery plans. This review provides an overview of currently available models, their integration with advanced medical imaging modalities, and code packages for personalised drug delivery. The potential to incorporate new technologies (i.e., machine learning) in this field is also addressed for development.
Collapse
Affiliation(s)
- Ajay Bhandari
- Biofluids Research Lab, Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Boram Gu
- School of Chemical Engineering, Chonnam National University, Gwangju, Republic of Korea
| | | | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
8
|
Perera A, Brock O, Ahmed A, Shaw C, Ashkan K. Taking the knife to neurodegeneration: a review of surgical gene therapy delivery to the CNS. Acta Neurochir (Wien) 2024; 166:136. [PMID: 38483631 PMCID: PMC10940433 DOI: 10.1007/s00701-024-06028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024]
Abstract
Gene supplementation and editing for neurodegenerative disorders has emerged in recent years as the understanding of the genetic mechanisms underlying several neurodegenerative disorders increases. The most common medium to deliver genetic material to cells is via viral vectors; and with respect to the central nervous system, adeno-associated viral (AAV) vectors are a popular choice. The most successful example of AAV-based gene therapy for neurodegenerative disorders is Zolgensma© which is a transformative intravenous therapy given to babies with spinal muscular atrophy. However, the field has stalled in achieving safe drug delivery to the central nervous system in adults for which treatments for disorders such as amyotrophic lateral sclerosis are desperately needed. Surgical gene therapy delivery has been proposed as a potential solution to this problem. While the field of the so-called regenerative neurosurgery has yielded pre-clinical optimism, several challenges have emerged. This review seeks to explore the field of regenerative neurosurgery with respect to AAV-based gene therapy for neurodegenerative diseases, its progress so far and the challenges that need to be overcome.
Collapse
Affiliation(s)
- Andrea Perera
- Maurice Wohl Institute of Neuroscience, Department of Basic Clinical Neuroscience, King's College London, Cutcombe Road, Denmark Hill, London, SE5 9RS, UK.
- Department of Neurosurgery, King's College Hospital NHS Trust, London, UK.
| | - Olivier Brock
- Maurice Wohl Institute of Neuroscience, Department of Basic Clinical Neuroscience, King's College London, Cutcombe Road, Denmark Hill, London, SE5 9RS, UK
| | - Aminul Ahmed
- Department of Neurosurgery, King's College Hospital NHS Trust, London, UK
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Chris Shaw
- Maurice Wohl Institute of Neuroscience, Department of Basic Clinical Neuroscience, King's College London, Cutcombe Road, Denmark Hill, London, SE5 9RS, UK
- Centre for Brain Research, University of Auckland, 85 Park Road Grafton, Auckland, 1023, New Zealand
| | - Keyoumars Ashkan
- Maurice Wohl Institute of Neuroscience, Department of Basic Clinical Neuroscience, King's College London, Cutcombe Road, Denmark Hill, London, SE5 9RS, UK
- Department of Neurosurgery, King's College Hospital NHS Trust, London, UK
| |
Collapse
|
9
|
Dhanawat M, Garima, Wilson K, Gupta S, Chalotra R, Gupta N. Convection-enhanced Diffusion: A Novel Tactics to Crack the BBB. Curr Drug Deliv 2024; 21:1515-1528. [PMID: 38275045 DOI: 10.2174/0115672018266501231207095127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Although the brain is very accessible to nutrition and oxygen, it can be difficult to deliver medications to malignant brain tumours. To get around some of these issues and enable the use of therapeutic pharmacological substances that wouldn't typically cross the blood-brain barrier (BBB), convection-enhanced delivery (CED) has been developed. It is a cutting-edge strategy that gets beyond the blood-brain barrier and enables targeted drug administration to treat different neurological conditions such as brain tumours, Parkinson's disease, and epilepsy. Utilizing pressure gradients to spread the medicine across the target area is the main idea behind this diffusion mechanism. Through one to several catheters positioned stereotactically directly within the tumour mass, around the tumour, or in the cavity created by the resection, drugs are given. This method can be used in a variety of drug classes, including traditional chemotherapeutics and cutting-edge investigational targeted medications by using positive-pressure techniques. The drug delivery volume must be optimized for an effective infusion while minimizing backflow, which causes side effects and lowers therapeutic efficacy. Therefore, this technique provides a promising approach for treating disorders of the central nervous system (CNS).
Collapse
Affiliation(s)
- Meenakshi Dhanawat
- Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Garima
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| | - Kashish Wilson
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| | - Sumeet Gupta
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| | - Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Nidhi Gupta
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| |
Collapse
|
10
|
Thompson EM, Landi D, Brown MC, Friedman HS, McLendon R, Herndon JE, Buckley E, Bolognesi DP, Lipp E, Schroeder K, Becher OJ, Friedman AH, McKay Z, Walter A, Threatt S, Jaggers D, Desjardins A, Gromeier M, Bigner DD, Ashley DM. Recombinant polio-rhinovirus immunotherapy for recurrent paediatric high-grade glioma: a phase 1b trial. THE LANCET. CHILD & ADOLESCENT HEALTH 2023; 7:471-478. [PMID: 37004712 PMCID: PMC11104482 DOI: 10.1016/s2352-4642(23)00031-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Outcomes of recurrent paediatric high-grade glioma are poor, with a median overall survival of less than 6 months. Viral immunotherapy, such as the polio-rhinovirus chimera lerapolturev, is a novel approach for treatment of recurrent paediatric high-grade glioma and has shown promise in adults with recurrent glioblastoma. The poliovirus receptor CD155 is ubiquitously expressed in malignant paediatric brain tumours and is a treatment target in paediatric high-grade glioma. We aimed to assess the safety of lerapolturev when administered as a single dose intracerebrally by convection enhanced delivery in children and young people with recurrent WHO grade 3 or grade 4 glioma, and to assess overall survival in these patients. METHODS This phase 1b trial was done at the Duke University Medical Center (Durham, NC, USA). Patients aged 4-21 years with recurrent high-grade malignant glioma (anaplastic astrocytoma, glioblastoma, anaplastic oligoastrocytoma, anaplastic oligodendroglioma, or anaplastic pleomorphic xanthoastrocytoma) or anaplastic ependymoma, atypical teratoid rhabdoid tumour, or medulloblastoma with infusible disease were eligible for this study. A catheter was tunnelled beneath the scalp for a distance of at least 5 cm to aid in prevention of infection. The next day, lerapolturev at a dose of 5 × 107 median tissue culture infectious dose in 3 mL infusate loaded in a syringe was administered via a pump at a rate of 0·5 mL per h as a one-time dose. The infusion time was approximately 6·5 h to compensate for volume of the tubing. The primary endpoint was the proportion of patients with unacceptable toxic effects during the 14-day period after lerapolturev treatment. The study is registered with ClinicalTrials.gov, NCT03043391. FINDINGS Between Dec 5, 2017, and May 12, 2021, 12 patients (11 unique patients) were enrolled in the trial. Eight patients were treated with lerapolturev. The median patient age was 16·5 years (IQR 11·0-18·0), five (63%) of eight patients were male and three (38%) were female, and six (75%) of eight patients were White and two (25%) were Black or African American. The median number of previous chemotherapeutic regimens was 3·50 (IQR 1·25-5·00). Six of eight patients had 26 treatment-related adverse events attributable to lerapolturev. There were no irreversible (ie, persisted longer than 2 weeks) treatment-related grade 4 adverse events or deaths. Treatment-related grade 3 adverse events included headaches in two patients and seizure in one patient. Four patients received low-dose bevacizumab on-study for treatment-related peritumoural inflammation or oedema, diagnosed by both clinical symptoms plus fluid-attenuated inversion recovery MRI. The median overall survival was 4·1 months (95% CI 1·2-10·1). One patient remains alive after 22 months. INTERPRETATION Convection enhanced delivery of lerapolturev is safe enough in the treatment of recurrent paediatric high-grade glioma to proceed to the next phase of trial. FUNDING Solving Kids Cancer, B+ Foundation, Musella Foundation, and National Institutes of Health.
Collapse
Affiliation(s)
- Eric M Thompson
- Department of Neurological Surgery, Duke University, Durham, NC, USA; Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Daniel Landi
- Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA; Department of Pediatrics, Duke University, Durham, NC, USA
| | - Michael C Brown
- Department of Neurological Surgery, Duke University, Durham, NC, USA; Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Henry S Friedman
- Department of Neurological Surgery, Duke University, Durham, NC, USA; Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Roger McLendon
- Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA; Department of Pathology, Duke University, Durham, NC, USA
| | - James E Herndon
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA; Duke Cancer Institute Biostatistics, Duke University, Durham, NC, USA
| | - Evan Buckley
- Duke Cancer Institute Biostatistics, Duke University, Durham, NC, USA
| | | | - Eric Lipp
- Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | | | - Oren J Becher
- Department of Pediatrics, Mount Sinai Health System, New York, NY, USA
| | - Allan H Friedman
- Department of Neurological Surgery, Duke University, Durham, NC, USA; Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Zachary McKay
- Department of Neurological Surgery, Duke University, Durham, NC, USA
| | - Ashley Walter
- Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Stevie Threatt
- Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Denise Jaggers
- Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Annick Desjardins
- Department of Neurological Surgery, Duke University, Durham, NC, USA; Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Matthias Gromeier
- Department of Neurological Surgery, Duke University, Durham, NC, USA; Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Darell D Bigner
- Department of Neurological Surgery, Duke University, Durham, NC, USA; Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - David M Ashley
- Department of Neurological Surgery, Duke University, Durham, NC, USA; Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA.
| |
Collapse
|
11
|
Michiels J, Vitale F. Design and Characterization of Pressure Monitoring and Insertion system for Intraparenchymal Convection Enhanced Delivery. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082745 DOI: 10.1109/embc40787.2023.10341013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Neurological disorders are a significant societal and economic burden. Common pharmacological therapies often can only manage symptoms and have limited efficacy. Intraparenchymal convection enhanced delivery (IP CED) is a neurosurgical technique for direct brain delivery of therapeutics. Currently, the main applications of IP CED are targeted chemotherapy for glioblastoma and gene therapy. While IP CED has advantages over systemic approaches, its benefits can be drastically reduced by inadequate coverage as low as 21% of target anatomy, excessive infusion durations greater than 2 hours, and off-target effects. Addressing the limitations of IP CED requires thorough investigation and optimization of the relevant fluid dynamic and operational parameters. In this work, we present the design, fabrication, and characterization of low-cost, open-source, and fully automated CED cannula insertion control and pressure-monitoring systems. Using these automated CED control systems, we investigate the effects of pressure, insertion velocity, and flow rates on several outcome variables, including reflux, volume distribution, and infusion cloud morphology during CED infusions in brain phantoms.Clinical Relevance- CED pressure properties may be able to implicate reflux incidents and could provide clinicians with valuable, real-time information regarding ongoing infusions without the need for costly medical imaging modalities.
Collapse
|
12
|
Josowitz AD, Bindra RS, Saltzman WM. Polymer nanocarriers for targeted local delivery of agents in treating brain tumors. NANOTECHNOLOGY 2022; 34:10.1088/1361-6528/ac9683. [PMID: 36179653 PMCID: PMC9940943 DOI: 10.1088/1361-6528/ac9683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Glioblastoma (GBM), the deadliest brain cancer, presents a multitude of challenges to the development of new therapies. The standard of care has only changed marginally in the past 17 years, and few new chemotherapies have emerged to supplant or effectively combine with temozolomide. Concurrently, new technologies and techniques are being investigated to overcome the pharmacokinetic challenges associated with brain delivery, such as the blood brain barrier (BBB), tissue penetration, diffusion, and clearance in order to allow for potent agents to successful engage in tumor killing. Alternative delivery modalities such as focused ultrasound and convection enhanced delivery allow for the local disruption of the BBB, and the latter in particular has shown promise in achieving broad distribution of agents in the brain. Furthermore, the development of polymeric nanocarriers to encapsulate a variety of cargo, including small molecules, proteins, and nucleic acids, have allowed for formulations that protect and control the release of said cargo to extend its half-life. The combination of local delivery and nanocarriers presents an exciting opportunity to address the limitations of current chemotherapies for GBM toward the goal of improving safety and efficacy of treatment. However, much work remains to establish standard criteria for selection and implementation of these modalities before they can be widely implemented in the clinic. Ultimately, engineering principles and nanotechnology have opened the door to a new wave of research that may soon advance the stagnant state of GBM treatment development.
Collapse
Affiliation(s)
- Alexander D Josowitz
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, United States of America
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, United States of America
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, United States of America
- Department of Dermatology, Yale University, New Haven, CT, United States of America
| |
Collapse
|
13
|
Mehkri Y, Woodford S, Pierre K, Dagra A, Hernandez J, Reza Hosseini Siyanaki M, Azab M, Lucke-Wold B. Focused Delivery of Chemotherapy to Augment Surgical Management of Brain Tumors. Curr Oncol 2022; 29:8846-8861. [PMID: 36421349 PMCID: PMC9689062 DOI: 10.3390/curroncol29110696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Chemotherapy as an adjuvant therapy that has largely failed to significantly improve outcomes for aggressive brain tumors; some reasons include a weak blood brain barrier penetration and tumor heterogeneity. Recently, there has been interest in designing effective ways to deliver chemotherapy to the tumor. In this review, we discuss the mechanisms of focused chemotherapies that are currently under investigation. Nanoparticle delivery demonstrates both a superior permeability and retention. However, thus far, it has not demonstrated a therapeutic efficacy for brain tumors. Convection-enhanced delivery is an invasive, yet versatile method, which appears to have the greatest potential. Other vehicles, such as angiopep-2 decorated gold nanoparticles, polyamidoamine dendrimers, and lipid nanostructures have demonstrated efficacy through sustained release of focused chemotherapy and have either improved cell death or survival in humans or animal models. Finally, focused ultrasound is a safe and effective way to disrupt the blood brain barrier and augment other delivery methods. Clinical trials are currently underway to study the safety and efficacy of these methods in combination with standard of care.
Collapse
|
14
|
Mehta JN, Morales BE, Hsu FC, Rossmeisl JH, Rylander CG. Constant Pressure Convection-Enhanced Delivery Increases Volume Dispersed With Catheter Movement in Agarose. J Biomech Eng 2022; 144:111003. [PMID: 35656789 PMCID: PMC9254693 DOI: 10.1115/1.4054729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 04/27/2022] [Indexed: 11/08/2022]
Abstract
Convection-enhanced delivery (CED) has been extensively studied for drug delivery to the brain due to its inherent ability to bypass the blood-brain barrier. Unfortunately, CED has also been shown to inadequately distribute therapeutic agents over a large enough targeted tissue volume to be clinically beneficial. In this study, we explore the use of constant pressure infusions in addition to controlled catheter movement as a means to increase volume dispersed (Vd) in an agarose gel brain tissue phantom. Constant flow rate and constant pressure infusions were conducted with a stationary catheter, a catheter retracting at a rate of 0.25 mm/min, and a catheter retracting at a rate of 0.5 mm/min. The 0.25 mm/min and 0.5 mm/min retracting constant pressure catheters resulted in significantly larger Vd compared to any other group, with a 105% increase and a 155% increase compared to the stationary constant flow rate catheter, respectively. These same constant pressure retracting infusions resulted in a 42% and 45% increase in Vd compared to their constant flow rate counterparts. Using constant pressure infusions coupled with controlled catheter movement appears to have a beneficial effect on Vd in agarose gel. Furthermore, constant pressure infusions reveal the fundamental limitation of flow-driven infusions in both controlled catheter movement protocols as well as in stationary protocols where maximum infusion volume can never be reliably obtained.
Collapse
Affiliation(s)
- Jason N. Mehta
- Walker Department of Mechanical Engineering, University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX, 78712-1591
| | - Brianna E. Morales
- Department of Biomedical Engineering, University of Texas at Austin, 301 E. Dean Keeton St. C2100, Austin, TX, 78712-2100
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine Medical, Center Boulevard, Winston-Salem, NC 27157
| | - John H. Rossmeisl
- Department of Small Animal Clinical Sciences, VA-MD College of Veterinary Medicine, Virginia Tech, 205 Duckpond Drive, Blacksburg, VA 24061
| | - Christopher G. Rylander
- Walker Department of Mechanical Engineering, University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX, 78712-1591
| |
Collapse
|
15
|
Foo CY, Munir N, Kumaria A, Akhtar Q, Bullock CJ, Narayanan A, Fu RZ. Medical Device Advances in the Treatment of Glioblastoma. Cancers (Basel) 2022; 14:5341. [PMID: 36358762 PMCID: PMC9656148 DOI: 10.3390/cancers14215341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Despite decades of research and the growing emergence of new treatment modalities, Glioblastoma (GBM) frustratingly remains an incurable brain cancer with largely stagnant 5-year survival outcomes of around 5%. Historically, a significant challenge has been the effective delivery of anti-cancer treatment. This review aims to summarize key innovations in the field of medical devices, developed either to improve the delivery of existing treatments, for example that of chemo-radiotherapy, or provide novel treatments using devices, such as sonodynamic therapy, thermotherapy and electric field therapy. It will highlight current as well as emerging device technologies, non-invasive versus invasive approaches, and by doing so provide a detailed summary of evidence from clinical studies and trials undertaken to date. Potential limitations and current challenges are discussed whilst also highlighting the exciting potential of this developing field. It is hoped that this review will serve as a useful primer for clinicians, scientists, and engineers in the field, united by a shared goal to translate medical device innovations to help improve treatment outcomes for patients with this devastating disease.
Collapse
Affiliation(s)
- Cher Ying Foo
- Imperial College School of Medicine, Imperial College London, Fulham Palace Rd., London W6 8RF, UK
| | - Nimrah Munir
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Ashwin Kumaria
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham NG7 2UH, UK
| | - Qasim Akhtar
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Christopher J. Bullock
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Ashwin Narayanan
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
| | - Richard Z. Fu
- QV Bioelectronics Ltd., 1F70 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael, Smith Building, Dover St., Manchester M13 9PT, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Salford Royal, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
16
|
Partridge B, Eardley A, Morales BE, Campelo SN, Lorenzo MF, Mehta JN, Kani Y, Mora JKG, Campbell EOY, Arena CB, Platt S, Mintz A, Shinn RL, Rylander CG, Debinski W, Davalos RV, Rossmeisl JH. Advancements in drug delivery methods for the treatment of brain disease. Front Vet Sci 2022; 9:1039745. [PMID: 36330152 PMCID: PMC9623817 DOI: 10.3389/fvets.2022.1039745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022] Open
Abstract
The blood-brain barrier (BBB) presents a formidable obstacle to the effective delivery of systemically administered pharmacological agents to the brain, with ~5% of candidate drugs capable of effectively penetrating the BBB. A variety of biomaterials and therapeutic delivery devices have recently been developed that facilitate drug delivery to the brain. These technologies have addressed many of the limitations imposed by the BBB by: (1) designing or modifying the physiochemical properties of therapeutic compounds to allow for transport across the BBB; (2) bypassing the BBB by administration of drugs via alternative routes; and (3) transiently disrupting the BBB (BBBD) using biophysical therapies. Here we specifically review colloidal drug carrier delivery systems, intranasal, intrathecal, and direct interstitial drug delivery methods, focused ultrasound BBBD, and pulsed electrical field induced BBBD, as well as the key features of BBB structure and function that are the mechanistic targets of these approaches. Each of these drug delivery technologies are illustrated in the context of their potential clinical applications and limitations in companion animals with naturally occurring intracranial diseases.
Collapse
Affiliation(s)
- Brittanie Partridge
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Allison Eardley
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Brianna E. Morales
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Sabrina N. Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Melvin F. Lorenzo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Jason N. Mehta
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Yukitaka Kani
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Josefa K. Garcia Mora
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Etse-Oghena Y. Campbell
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Christopher B. Arena
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Simon Platt
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, United States
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, United States
| | - Richard L. Shinn
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Christopher G. Rylander
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - John H. Rossmeisl
- Veterinary and Comparative Neuro-Oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| |
Collapse
|
17
|
Kim E, Van Reet J, Kim HC, Kowsari K, Yoo SS. High Incidence of Intracerebral Hemorrhaging Associated with the Application of Low-Intensity Focused Ultrasound Following Acute Cerebrovascular Injury by Intracortical Injection. Pharmaceutics 2022; 14:2120. [PMID: 36297554 PMCID: PMC9609794 DOI: 10.3390/pharmaceutics14102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
Low-intensity transcranial focused ultrasound (FUS) has gained momentum as a non-/minimally-invasive modality that facilitates the delivery of various pharmaceutical agents to the brain. With the additional ability to modulate regional brain tissue excitability, FUS is anticipated to confer potential neurotherapeutic applications whereby a deeper insight of its safety is warranted. We investigated the effects of FUS applied to the rat brain (Sprague-Dawley) shortly after an intracortical injection of fluorescent interstitial solutes, a widely used convection-enhanced delivery technique that directly (i.e., bypassing the blood-brain-barrier (BBB)) introduces drugs or interstitial tracers to the brain parenchyma. Texas Red ovalbumin (OA) and fluorescein isothiocyanate-dextran (FITC-d) were used as the interstitial tracers. Rats that did not receive sonication showed an expected interstitial distribution of OA and FITC-d around the injection site, with a wider volume distribution of OA (21.8 ± 4.0 µL) compared to that of FITC-d (7.8 ± 2.7 µL). Remarkably, nearly half of the rats exposed to the FUS developed intracerebral hemorrhaging (ICH), with a significantly higher volume of bleeding compared to a minor red blood cell extravasation from the animals that were not exposed to sonication. This finding suggests that the local cerebrovascular injury inflicted by the micro-injection was further exacerbated by the application of sonication, particularly during the acute stage of injury. Smaller tracer volume distributions and weaker fluorescent intensities, compared to the unsonicated animals, were observed for the sonicated rats that did not manifest hemorrhaging, which may indicate an enhanced degree of clearance of the injected tracers. Our results call for careful safety precautions when ultrasound sonication is desired among groups under elevated risks associated with a weakened or damaged vascular integrity.
Collapse
Affiliation(s)
- Evgenii Kim
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| | - Jared Van Reet
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| | - Hyun-Chul Kim
- Department of Artificial Intelligence, Kyungpook National University, Daegu 37224, Korea
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA or
| |
Collapse
|
18
|
Coles L, Oluwasanya PW, Karam N, Proctor CM. Fluidic enabled bioelectronic implants: opportunities and challenges. J Mater Chem B 2022; 10:7122-7131. [PMID: 35959561 PMCID: PMC9518646 DOI: 10.1039/d2tb00942k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
Abstract
Bioelectronic implants are increasingly facilitating novel strategies for clinical diagnosis and treatment. The integration of fluidic technologies into such implants enables new complementary routes for sensing and therapy alongside electrical interaction. Indeed, these two technologies, electrical and fluidic, can work synergistically in a bioelectronics implant towards the fabrication of a complete therapeutic platform. In this perspective article, the leading applications of fluidic enabled bioelectronic implants are highlighted and methods of operation and material choices are discussed. Furthermore, a forward-looking perspective is offered on emerging opportunities as well as critical materials and technological challenges.
Collapse
Affiliation(s)
- Lawrence Coles
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Pelumi W Oluwasanya
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Nuzli Karam
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Christopher M Proctor
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Störi MJ, Oluwasanya PW, Proctor CM. Diffusive drug delivery in the brain extracellular space from a cellular scale microtube. MRS COMMUNICATIONS 2022; 12:654-661. [PMID: 36312901 PMCID: PMC9596563 DOI: 10.1557/s43579-022-00247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED The effectiveness of state-of-the-art systemic treatments for neurological disorders is hampered not only by the difficulty in crossing the blood brain barrier but also off-target drug interactions. In this study, a delivery method is simulated for a novel U-shaped microtube locally infusing drugs directly into the extracellular space of the brain and relying on diffusion as a transport mechanism. The influence of flow rate, drug properties and device geometry are investigated. It is anticipated that these findings will accelerate progress on both developmental and applied drug delivery and materials research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1557/s43579-022-00247-9.
Collapse
Affiliation(s)
- Marie-Joe Störi
- Engineering Department, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
20
|
Mehta JN, Rausch MK, Rylander CG. Convection-enhanced delivery with controlled catheter movement: A parametric finite element analysis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3635. [PMID: 35763587 PMCID: PMC9516958 DOI: 10.1002/cnm.3635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 05/12/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Convection-enhanced delivery (CED) is an investigational method for delivering therapeutics directly to the brain for the treatment of glioblastoma. However, it has not become a common clinical therapy due to an inability of CED treatments to deliver therapeutics in a large enough tissue volume to fully saturate the target region. We have recently shown that the combination of controlled catheter movement and constant pressure infusions can be used to significantly increase volume dispersed (Vd ) in an agarose gel brain tissue phantom. In the present study, we develop a computational model to predict Vd achieved by various retraction rates with both constant pressure and constant flow rate infusions. An increase in Vd is achieved with any movement rate, but increase in Vd between successive movement rates drops off at rates above 0.3-0.35 mm/min. Finally, we found that infusions with retraction result in a more even distribution in concentration level compared to the stationary catheter, suggesting a potential increased ability for moving catheters to have a therapeutic impact regardless of the required therapeutic concentration level.
Collapse
Affiliation(s)
- Jason N. Mehta
- Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Manuel K. Rausch
- Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
21
|
Bhandari A, Jaiswal K, Singh A, Zhan W. Convection-Enhanced Delivery of Antiangiogenic Drugs and Liposomal Cytotoxic Drugs to Heterogeneous Brain Tumor for Combination Therapy. Cancers (Basel) 2022; 14:cancers14174177. [PMID: 36077714 PMCID: PMC9454524 DOI: 10.3390/cancers14174177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although developed anticancer drugs have shown desirable effects in preclinical trials, the clinical efficacy of chemotherapy against brain cancer remains disappointing. One of the important obstacles is the highly heterogeneous environment in tumors. This study aims to evaluate the performance of an emerging treatment using antiangiogenic and cytotoxic drugs. Our mathematical modelling confirms the advantage of this combination therapy in homogenizing the intratumoral environment for better drug delivery outcomes. In addition, the effects of local microvasculature and cell density on this therapy are also discussed. The results would contribute to the development of more effective treatments for brain cancer. Abstract Although convection-enhanced delivery can successfully bypass the blood-brain barrier, its clinical performance remains disappointing. This is primarily attributed to the heterogeneous intratumoral environment, particularly the tumor microvasculature. This study investigates the combined convection-enhanced delivery of antiangiogenic drugs and liposomal cytotoxic drugs in a heterogeneous brain tumor environment using a transport-based mathematical model. The patient-specific 3D brain tumor geometry and the tumor’s heterogeneous tissue properties, including microvascular density, porosity and cell density, are extracted from dynamic contrast-enhanced magnetic resonance imaging data. Results show that antiangiogenic drugs can effectively reduce the tumor microvascular density. This change in tissue structure would inhibit the fluid loss from the blood to prevent drug concentration from dilution, and also reduce the drug loss by blood drainage. The comparisons between different dosing regimens demonstrate that the co-infusion of liposomal cytotoxic drugs and antiangiogenic drugs has the advantages of homogenizing drug distribution, increasing drug accumulation, and enlarging the volume where tumor cells can be effectively killed. The delivery outcomes are susceptible to the location of the infusion site. This combination treatment can be improved by infusing drugs at higher microvascular density sites. In contrast, infusion at a site with high cell density would lower the treatment effectiveness of the whole brain tumor. Results obtained from this study can deepen the understanding of this combination therapy and provide a reference for treatment design and optimization that can further improve survival and patient quality of life.
Collapse
Affiliation(s)
- Ajay Bhandari
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
- Correspondence: (A.B.); (W.Z.)
| | - Kartikey Jaiswal
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Wenbo Zhan
- School of Engineering, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK
- Correspondence: (A.B.); (W.Z.)
| |
Collapse
|
22
|
On the microstructurally driven heterogeneous response of brain white matter to drug infusion pressure. Biomech Model Mechanobiol 2022; 21:1299-1316. [PMID: 35717548 PMCID: PMC9283367 DOI: 10.1007/s10237-022-01592-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Delivering therapeutic agents into the brain via convection-enhanced delivery (CED), a mechanically controlled infusion method, provides an efficient approach to bypass the blood–brain barrier and deliver drugs directly to the targeted focus in the brain. Mathematical methods based on Darcy’s law have been widely adopted to predict drug distribution in the brain to improve the accuracy and reduce the side effects of this technique. However, most of the current studies assume that the hydraulic permeability and porosity of brain tissue are homogeneous and constant during the infusion process, which is less accurate due to the deformability of the axonal structures and the extracellular matrix in brain white matter. To solve this problem, a multiscale model was established in this study, which takes into account the pressure-driven deformation of brain microstructure to quantify the change of local permeability and porosity. The simulation results were corroborated using experiments measuring hydraulic permeability in ovine brain samples. Results show that both hydraulic pressure and drug concentration in the brain would be significantly underestimated by classical Darcy’s law, thus highlighting the great importance of the present multiscale model in providing a better understanding of how drugs transport inside the brain and how brain tissue responds to the infusion pressure. This new method can assist the development of both new drugs for brain diseases and preoperative evaluation techniques for CED surgery, thus helping to improve the efficiency and precision of treatments for brain diseases.
Collapse
|
23
|
Lambride C, Vavourakis V, Stylianopoulos T. Convection-Enhanced Delivery In Silico Study for Brain Cancer Treatment. Front Bioeng Biotechnol 2022; 10:867552. [PMID: 35694227 PMCID: PMC9177080 DOI: 10.3389/fbioe.2022.867552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Brain cancer therapy remains a formidable challenge in oncology. Convection-enhanced delivery (CED) is an innovative and promising local drug delivery method for the treatment of brain cancer, overcoming the challenges of the systemic delivery of drugs to the brain. To improve our understanding about CED efficacy and drug transport, we present an in silico methodology for brain cancer CED treatment simulation. To achieve this, a three-dimensional finite element formulation is utilized which employs a brain model representation from clinical imaging data and is used to predict the drug deposition in CED regimes. The model encompasses biofluid dynamics and the transport of drugs in the brain parenchyma. Drug distribution is studied under various patho-physiological conditions of the tumor, in terms of tumor vessel wall pore size and tumor tissue hydraulic conductivity as well as for drugs of various sizes, spanning from small molecules to nanoparticles. Through a parametric study, our contribution reports the impact of the size of the vascular wall pores and that of the therapeutic agent on drug distribution during and after CED. The in silico findings provide useful insights of the spatio-temporal distribution and average drug concentration in the tumor towards an effective treatment of brain cancer.
Collapse
Affiliation(s)
- Chryso Lambride
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Vasileios Vavourakis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- *Correspondence: Vasileios Vavourakis, ; Triantafyllos Stylianopoulos,
| | - Triantafyllos Stylianopoulos
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
- *Correspondence: Vasileios Vavourakis, ; Triantafyllos Stylianopoulos,
| |
Collapse
|
24
|
Role of Tissue Hydraulic Permeability in Convection-Enhanced Delivery of Nanoparticle-Encapsulated Chemotherapy Drugs to Brain Tumour. Pharm Res 2022; 39:877-892. [PMID: 35474156 PMCID: PMC9160122 DOI: 10.1007/s11095-022-03261-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Tissue hydraulic permeability of brain tumours can vary considerably depending on the tissue microstructure, compositions in interstitium and tumour cells. Its effects on drug transport and accumulation remain poorly understood. METHODS Mathematical modelling is applied to predict the drug delivery outcomes in tumours with different tissue permeability upon convection-enhanced delivery. The modelling is based on a 3-D realistic tumour model that is extracted from patient magnetic resonance images. RESULTS Modelling results show that infusing drugs into a permeable tumour can facilitate a more favourable hydraulic environment for drug transport. The infused drugs will exhibit a relatively uniform distribution and cover a larger tumour volume for effective cell killing. Cross-comparisons show the delivery outcomes are more sensitive to the changes in tissue hydraulic permeability and blood pressure than the fluid flow from the brain ventricle. Quantitative analyses demonstrate that increasing the fluid gain from both the blood and brain ventricle can further improve the interstitial fluid flow, and thereby enhance the delivery outcomes. Furthermore, similar responses to the changes in tissue hydraulic permeability can be found for different types of drugs. CONCLUSIONS Tissue hydraulic permeability as an intrinsic property can influence drug accumulation and distribution. Results from this study can deepen the understanding of the interplays between drug and tissues that are involved in the drug delivery processes in chemotherapy.
Collapse
|
25
|
Dunlap T, Cao Y. Physiological Considerations for Modeling in vivo Antibody-Target Interactions. Front Pharmacol 2022; 13:856961. [PMID: 35281913 PMCID: PMC8912916 DOI: 10.3389/fphar.2022.856961] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
The number of therapeutic antibodies in development pipelines is increasing rapidly. Despite superior success rates relative to small molecules, therapeutic antibodies still face many unique development challenges. There is often a translational gap from their high target affinity and specificity to the therapeutic effects. Tissue microenvironment and physiology critically influence antibody-target interactions contributing to apparent affinity alterations and dynamic target engagement. The full potential of therapeutic antibodies will be further realized by contextualizing antibody-target interactions under physiological conditions. Here we review how local physiology such as physical stress, biological fluid, and membrane characteristics could influence antibody-target association, dissociation, and apparent affinity. These physiological factors in the early development of therapeutic antibodies are valuable toward rational antibody engineering, preclinical candidate selection, and lead optimization.
Collapse
Affiliation(s)
- Tyler Dunlap
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
26
|
Jamal A, Yuan T, Galvan S, Castellano A, Riva M, Secoli R, Falini A, Bello L, Rodriguez y Baena F, Dini D. Insights into Infusion-Based Targeted Drug Delivery in the Brain: Perspectives, Challenges and Opportunities. Int J Mol Sci 2022; 23:3139. [PMID: 35328558 PMCID: PMC8949870 DOI: 10.3390/ijms23063139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/31/2023] Open
Abstract
Targeted drug delivery in the brain is instrumental in the treatment of lethal brain diseases, such as glioblastoma multiforme, the most aggressive primary central nervous system tumour in adults. Infusion-based drug delivery techniques, which directly administer to the tissue for local treatment, as in convection-enhanced delivery (CED), provide an important opportunity; however, poor understanding of the pressure-driven drug transport mechanisms in the brain has hindered its ultimate success in clinical applications. In this review, we focus on the biomechanical and biochemical aspects of infusion-based targeted drug delivery in the brain and look into the underlying molecular level mechanisms. We discuss recent advances and challenges in the complementary field of medical robotics and its use in targeted drug delivery in the brain. A critical overview of current research in these areas and their clinical implications is provided. This review delivers new ideas and perspectives for further studies of targeted drug delivery in the brain.
Collapse
Affiliation(s)
- Asad Jamal
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK; (T.Y.); (S.G.); (R.S.); (F.R.y.B.)
| | - Tian Yuan
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK; (T.Y.); (S.G.); (R.S.); (F.R.y.B.)
| | - Stefano Galvan
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK; (T.Y.); (S.G.); (R.S.); (F.R.y.B.)
| | - Antonella Castellano
- Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Marco Riva
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy;
| | - Riccardo Secoli
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK; (T.Y.); (S.G.); (R.S.); (F.R.y.B.)
| | - Andrea Falini
- Vita-Salute San Raffaele University, 20132 Milan, Italy; (A.C.); (A.F.)
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Lorenzo Bello
- Department of Oncology and Hematology-Oncology, Universitá degli Studi di Milano, 20122 Milan, Italy;
| | - Ferdinando Rodriguez y Baena
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK; (T.Y.); (S.G.); (R.S.); (F.R.y.B.)
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK; (T.Y.); (S.G.); (R.S.); (F.R.y.B.)
| |
Collapse
|
27
|
Kani Y, Hinckley J, Robertson JL, Mehta JM, Rylander CG, Rossmeisl JH. Biocompatibility of the fiberoptic microneedle device chronically implanted in the rat brain. Res Vet Sci 2022; 143:74-80. [PMID: 34995824 PMCID: PMC8858887 DOI: 10.1016/j.rvsc.2021.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/28/2021] [Indexed: 11/15/2022]
Abstract
The fiberoptic microneedle device (FMD) is a fused-silica microcatheter capable of co-delivery of fluids and light that has been developed for convection-enhanced delivery and photothermal treatments of glioblastoma. Here we investigate the biocompatibility of FMD fragments chronically implanted in the rat brain in the context of evaluating potential mechanical device failure. Fischer rats underwent craniectomy procedures for sham control (n = 16) or FMD implantation (n = 16) within the brain. Rats were examined daily after implantation, and at 14, 30, 90, and 180 days after implantation were evaluated via computed tomography of the head, hematologic and blood biochemical profiling, and necropsy examinations. Clinical signs of illness and distant implant migration were not observed, and blood analyses were not different between control and FMD implanted groups at any time. Mild inflammatory and astrogliotic reactions localized to the treatment sites within the brain were observed in all groups, more robust in FMD implanted groups compared to controls at days 30 and 90, and decreased in severity over days 90-180 of the study. One rat developed a chronic, superficial surgical site pyogranuloma attributed to the FMD silica implant. Chronically implanted FMD fragments were well tolerated clinically and resulted in anticipated mild, localized brain tissue responses that were comparable with other implanted biomaterials in the brain.
Collapse
Affiliation(s)
- Yukitaka Kani
- Veterinary and Comparative Neurooncology Laboratory and Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA; Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jonathan Hinckley
- Veterinary and Comparative Neurooncology Laboratory and Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA; Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | - John L Robertson
- Veterinary and Comparative Neurooncology Laboratory and Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA; Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jason M Mehta
- Veterinary and Comparative Neurooncology Laboratory and Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA; Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Christopher G Rylander
- Veterinary and Comparative Neurooncology Laboratory and Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA; Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | - John H Rossmeisl
- Veterinary and Comparative Neurooncology Laboratory and Animal Cancer Care and Research Center, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA; Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
28
|
Tang L, Feng Y, Gao S, Mu Q, Liu C. Nanotherapeutics Overcoming the Blood-Brain Barrier for Glioblastoma Treatment. Front Pharmacol 2021; 12:786700. [PMID: 34899350 PMCID: PMC8655904 DOI: 10.3389/fphar.2021.786700] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor with a poor prognosis. The current standard treatment regimen represented by temozolomide/radiotherapy has an average survival time of 14.6 months, while the 5-year survival rate is still less than 5%. New therapeutics are still highly needed to improve the therapeutic outcome of GBM treatment. The blood-brain barrier (BBB) is the main barrier that prevents therapeutic drugs from reaching the brain. Nanotechnologies that enable drug delivery across the BBB hold great promise for the treatment of GBM. This review summarizes various drug delivery systems used to treat glioma and focuses on their approaches for overcoming the BBB to enhance the accumulation of small molecules, protein and gene drugs, etc. in the brain.
Collapse
Affiliation(s)
- Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yicheng Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Sai Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Qingchun Mu
- The People’s Hospital of Gaozhou, Gaozhou, China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
29
|
Kang JH, Desjardins A. Convection-enhanced delivery for high-grade glioma. Neurooncol Pract 2021; 9:24-34. [DOI: 10.1093/nop/npab065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Glioblastoma (GBM) is the most common adult primary malignant brain tumor and is associated with a dire prognosis. Despite multi-modality therapies of surgery, radiation, and chemotherapy, its 5-year survival rate is 6.8%. The presence of the blood-brain barrier (BBB) is one factor that has made GBM difficult to treat. Convection-enhanced delivery (CED) is a modality that bypasses the BBB, which allows the intracranial delivery of therapies that would not otherwise cross the BBB and avoids systemic toxicities. This review will summarize prior and ongoing studies and highlights practical considerations related to clinical care to aid providers caring for a high-grade glioma patient being treated with CED. Although not the main scope of this paper, this review also touches upon relevant technical considerations of using CED, an area still under much development.
Collapse
Affiliation(s)
- Jennifer H Kang
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | - Annick Desjardins
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
30
|
Wembacher-Schroeder E, Kerstein N, Bander ED, Pandit-Taskar N, Thomson R, Souweidane MM. Evaluation of a patient-specific algorithm for predicting distribution for convection-enhanced drug delivery into the brainstem of patients with diffuse intrinsic pontine glioma. J Neurosurg Pediatr 2021; 28:34-42. [PMID: 33990084 DOI: 10.3171/2020.11.peds20571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/19/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE With increasing use of convection-enhanced delivery (CED) of drugs, the need for software that can predict infusion distribution has grown. In the context of a phase I clinical trial for pediatric diffuse intrinsic pontine glioma (DIPG), CED was used to administer an anti-B7H3 radiolabeled monoclonal antibody, iodine-124-labeled omburtamab. In this study, the authors retrospectively evaluated a software algorithm (iPlan Flow) for the estimation of infusate distribution based on the planned catheter trajectory, infusion parameters, and patient-specific MRI. The actual infusate distribution, as determined on MRI and PET imaging, was compared to the distribution estimated by the software algorithm. Similarity metrics were used to quantify the agreement between predicted and actual distributions. METHODS Ten pediatric patients treated at the same dose level in the NCT01502917 trial conducted at Memorial Sloan Kettering Cancer Center were considered for this retrospective analysis. T2-weighted MRI in combination with PET imaging was used to determine the distribution of infusate in this study. The software algorithm was applied for the generation of estimated fluid distribution maps. Similarity measures included object volumes, intersection volume, union volume, Dice coefficient, volume difference, and the center and average surface distances. Acceptable similarity was defined as a simulated distribution volume (Vd Sim) object that had a Dice coefficient higher than or equal to 0.7, a false-negative rate (FNR) lower than 50%, and a positive predictive value (PPV) higher than 50% compared to the actual Vd (Vd PET). RESULTS Data for 10 patients with a mean infusion volume of 4.29 ml (range 3.84-4.48 ml) were available for software evaluation. The mean Vd Sim found to be covered by the actual PET distribution (PPV) was 77% ± 8%. The mean percentage of PET volume found to be outside the simulated volume (FNR) was 34% ± 10%. The mean Dice coefficient was 0.7 ± 0.05. In 8 out of 10 patients, the simulation algorithm fulfilled the combined acceptance criteria for similarity. CONCLUSIONS iPlan Flow software can be useful to support planning of trajectories that produce intraparenchymal convection. The simulation algorithm is able to model the likely infusate distribution for a CED treatment in DIPG patients. The combination of trajectory planning guidelines and infusion simulation in the software can be used prospectively to optimize personalized CED treatment.
Collapse
Affiliation(s)
| | | | - Evan D Bander
- 2Department of Neurological Surgery, Weill Medical College of Cornell University, New York, New York
- Departments of3Neurological Surgery and
| | | | | | - Mark M Souweidane
- 2Department of Neurological Surgery, Weill Medical College of Cornell University, New York, New York
- Departments of3Neurological Surgery and
| |
Collapse
|
31
|
Naseri Kouzehgarani G, Feldsien T, Engelhard HH, Mirakhur KK, Phipps C, Nimmrich V, Clausznitzer D, Lefebvre DR. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv Drug Deliv Rev 2021; 173:20-59. [PMID: 33705875 DOI: 10.1016/j.addr.2021.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Initially thought to be useful only to reach tissues in the immediate vicinity of the CSF circulatory system, CSF circulation is now increasingly viewed as a viable pathway to deliver certain therapeutics deeper into brain tissues. There is emerging evidence that this goal is achievable in the case of large therapeutic proteins, provided conditions are met that are described herein. We show how fluid dynamic modeling helps predict infusion rate and duration to overcome high CSF turnover. We posit that despite model limitations and controversies, fluid dynamic models, pharmacokinetic models, preclinical testing, and a qualitative understanding of the glymphatic system circulation can be used to estimate drug penetration in brain tissues. Lastly, in addition to highlighting landmark scientific and medical literature, we provide practical advice on formulation development, device selection, and pharmacokinetic modeling. Our review of clinical studies suggests a growing interest for intra-CSF delivery, particularly for targeted proteins.
Collapse
|
32
|
Convection Enhanced Delivery in the Setting of High-Grade Gliomas. Pharmaceutics 2021; 13:pharmaceutics13040561. [PMID: 33921157 PMCID: PMC8071501 DOI: 10.3390/pharmaceutics13040561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
Development of effective treatments for high-grade glioma (HGG) is hampered by (1) the blood–brain barrier (BBB), (2) an infiltrative growth pattern, (3) rapid development of therapeutic resistance, and, in many cases, (4) dose-limiting toxicity due to systemic exposure. Convection-enhanced delivery (CED) has the potential to significantly limit systemic toxicity and increase therapeutic index by directly delivering homogenous drug concentrations to the site of disease. In this review, we present clinical experiences and preclinical developments of CED in the setting of high-grade gliomas.
Collapse
|
33
|
Jamal A, Mongelli MT, Vidotto M, Madekurozwa M, Bernardini A, Overby DR, De Momi E, Rodriguez Y Baena F, Sherwood JM, Dini D. Infusion Mechanisms in Brain White Matter and Their Dependence on Microstructure: An Experimental Study of Hydraulic Permeability. IEEE Trans Biomed Eng 2021; 68:1229-1237. [PMID: 32931425 DOI: 10.1109/tbme.2020.3024117] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Hydraulic permeability is a topic of deep interest in biological materials because of its important role in a range of drug delivery-based therapies. The strong dependence of permeability on the geometry and topology of pore structure and the lack of detailed knowledge of these parameters in the case of brain tissue makes the study more challenging. Although theoretical models have been developed for hydraulic permeability, there is limited consensus on the validity of existing experimental evidence to complement these models. In the present study, we measure the permeability of white matter (WM) of fresh ovine brain tissue considering the localised heterogeneities in the medium using an infusion-based experimental set up, iPerfusion. We measure the flow across different parts of the WM in response to applied pressures for a sample of specific dimensions and calculate the permeability from directly measured parameters. Furthermore, we directly probe the effect of anisotropy of the tissue on permeability by considering the directionality of tissue on the obtained values. Additionally, we investigate whether WM hydraulic permeability changes with post-mortem time. To our knowledge, this is the first report of experimental measurements of the localised WM permeability, also demonstrating the effect of axon directionality on permeability. This work provides a significant contribution to the successful development of intra-tumoural infusion-based technologies, such as convection-enhanced delivery (CED), which are based on the delivery of drugs directly by injection under positive pressure into the brain.
Collapse
|
34
|
D'Amico RS, Aghi MK, Vogelbaum MA, Bruce JN. Convection-enhanced drug delivery for glioblastoma: a review. J Neurooncol 2021; 151:415-427. [PMID: 33611708 DOI: 10.1007/s11060-020-03408-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/18/2020] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Convection-enhanced delivery (CED) is a method of targeted, local drug delivery to the central nervous system (CNS) that bypasses the blood-brain barrier (BBB) and permits the delivery of high-dose therapeutics to large volumes of interest while limiting associated systemic toxicities. Since its inception, CED has undergone considerable preclinical and clinical study as a safe method for treating glioblastoma (GBM). However, the heterogeneity of both, the surgical procedure and the mechanisms of action of the agents studied-combined with the additional costs of performing a trial evaluating CED-has limited the field's ability to adequately assess the durability of any potential anti-tumor responses. As a result, the long-term efficacy of the agents studied to date remains difficult to assess. MATERIALS AND METHODS We searched PubMed using the phrase "convection-enhanced delivery and glioblastoma". The references of significant systematic reviews were also reviewed for additional sources. Articles focusing on physiological and physical mechanisms of CED were included as well as technological CED advances. RESULTS We review the history and principles of CED, procedural advancements and characteristics, and outcomes from key clinical trials, as well as discuss the potential future of this promising technique for the treatment of GBM. CONCLUSION While the long-term efficacy of the agents studied to date remains difficult to assess, CED remains a promising technique for the treatment of GBM.
Collapse
Affiliation(s)
- Randy S D'Amico
- Department of Neurological Surgery, Lenox Hill Hospital/Northwell Health, New York, NY, USA.
| | - Manish K Aghi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Jeffrey N Bruce
- Department of Neurological Surgery, New York Presbyterian/Columbia University Irving Medical Center, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| |
Collapse
|
35
|
Chatterjee K, Atay N, Abler D, Bhargava S, Sahoo P, Rockne RC, Munson JM. Utilizing Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to Analyze Interstitial Fluid Flow and Transport in Glioblastoma and the Surrounding Parenchyma in Human Patients. Pharmaceutics 2021; 13:pharmaceutics13020212. [PMID: 33557069 PMCID: PMC7913790 DOI: 10.3390/pharmaceutics13020212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Glioblastoma (GBM) is the deadliest and most common brain tumor in adults, with poor survival and response to aggressive therapy. Limited access of drugs to tumor cells is one reason for such grim clinical outcomes. A driving force for therapeutic delivery is interstitial fluid flow (IFF), both within the tumor and in the surrounding brain parenchyma. However, convective and diffusive transport mechanisms are understudied. In this study, we examined the application of a novel image analysis method to measure fluid flow and diffusion in GBM patients. Methods: Here, we applied an imaging methodology that had been previously tested and validated in vitro, in silico, and in preclinical models of disease to archival patient data from the Ivy Glioblastoma Atlas Project (GAP) dataset. The analysis required the use of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which is readily available in the database. The analysis results, which consisted of IFF flow velocity and diffusion coefficients, were then compared to patient outcomes such as survival. Results: We characterized IFF and diffusion patterns in patients. We found strong correlations between flow rates measured within tumors and in the surrounding parenchymal space, where we hypothesized that velocities would be higher. Analyzing overall magnitudes indicated a significant correlation with both age and survival in this patient cohort. Additionally, we found that neither tumor size nor resection significantly altered the velocity magnitude. Lastly, we mapped the flow pathways in patient tumors and found a variability in the degree of directionality that we hypothesize may lead to information concerning treatment, invasive spread, and progression in future studies. Conclusions: An analysis of standard DCE-MRI in patients with GBM offers more information regarding IFF and transport within and around the tumor, shows that IFF is still detected post-resection, and indicates that velocity magnitudes correlate with patient prognosis.
Collapse
Affiliation(s)
- Krishnashis Chatterjee
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
| | - Naciye Atay
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
| | - Daniel Abler
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (D.A.); (P.S.); (R.C.R.)
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland
| | - Saloni Bhargava
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
| | - Prativa Sahoo
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (D.A.); (P.S.); (R.C.R.)
| | - Russell C. Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (D.A.); (P.S.); (R.C.R.)
| | - Jennifer M. Munson
- Department of Biomedical Engineering & Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; (K.C.); (N.A.); (S.B.)
- Correspondence: ; Tel.: +1-(540)-532-6392
| |
Collapse
|
36
|
E Quintero J, Zhang R, Pang Q, Xing Y, Hardy P, Fan X, Ai Y, Gash DM, A Gerhardt G, Grondin R, Zhang Z. Surgical methodology and protocols for preventing implanted cerebral catheters from becoming obstructed during and after neurosurgery. J Neurosci Methods 2020; 349:109020. [PMID: 33285151 DOI: 10.1016/j.jneumeth.2020.109020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/10/2020] [Accepted: 12/01/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Convection Enhanced Delivery (CED) into targeted brain areas has been tested in animal models and clinical trials for the treatment of various neurological diseases. NEW METHOD We used a series of techniques, to in effect, maintain positive pressure inside the catheter relative to the outside, that included a hollow stylet, a high volume bolus of solution to clear the line, a low and slow continuous flow rate during implantation, and heat sealing the catheter at the time of implantation. RESULTS 120 catheters implanted into brain parenchyma of 89 adult female rhesus monkeys across four sets of experiments. After experiencing a high delivery failure rate - non patent catheters - (19 %) because of tissue entrapment and debris and/or blood clots in the catheter tip, we developed modifications, including increasing the bolus infusion volume from 10 to 20 μl such that by the third experiment, the failure rate was 8 % (1 of 12 implants). Increasing the bolus volume to 100 μl and maintaining positive pressure in the catheter during preparation and implantation yielded a failure rate of 0 % (0/12 implants) by the fourth experiment. COMPARISON WITH EXISTING METHODS We provide a retrospective analysis to reveal how several different manipulations affect catheter patency and how post-op MRI examination is essential for assessing catheter patency in situ. CONCLUSIONS The results of the present study identified that the main cause of the catheter blockages were clots that rendered the catheter non-patent. We resolved this by modifying the surgical procedures that prevented these clots from forming.
Collapse
Affiliation(s)
- Jorge E Quintero
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University School of Medicine, Jinan, Shandong, 250021, China
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University School of Medicine, Jinan, Shandong, 250021, China
| | - Yi Xing
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University School of Medicine, Jinan, Shandong, 250021, China
| | - Peter Hardy
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, 40536, United States
| | - Xiaotong Fan
- Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yi Ai
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - Don M Gash
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - Greg A Gerhardt
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - Richard Grondin
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - Zhiming Zhang
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States.
| |
Collapse
|
37
|
D’Amico RS, Neira JA, Yun J, Alexiades NG, Banu M, Englander ZK, Kennedy BC, Ung TH, Rothrock RJ, Romanov A, Guo X, Zhao B, Sonabend AM, Canoll P, Bruce JN. Validation of an effective implantable pump-infusion system for chronic convection-enhanced delivery of intracerebral topotecan in a large animal model. J Neurosurg 2020; 133:614-623. [PMID: 31374547 PMCID: PMC7227320 DOI: 10.3171/2019.3.jns1963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/04/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intracerebral convection-enhanced delivery (CED) has been limited to short durations due to a reliance on externalized catheters. Preclinical studies investigating topotecan (TPT) CED for glioma have suggested that prolonged infusion improves survival. Internalized pump-catheter systems may facilitate chronic infusion. The authors describe the safety and utility of long-term TPT CED in a porcine model and correlation of drug distribution through coinfusion of gadolinium. METHODS Fully internalized CED pump-catheter systems were implanted in 12 pigs. Infusion algorithms featuring variable infusion schedules, flow rates, and concentrations of a mixture of TPT and gadolinium were characterized over increasing intervals from 4 to 32 days. Therapy distribution was measured using gadolinium signal on MRI as a surrogate. A 9-point neurobehavioral scale (NBS) was used to identify side effects. RESULTS All animals tolerated infusion without serious adverse events. The average NBS score was 8.99. The average maximum volume of distribution (Vdmax) in chronically infused animals was 11.30 mL and represented 32.73% of the ipsilateral cerebral hemispheric volume. Vdmax was achieved early during infusions and remained relatively stable despite a slight decline as the infusion reached steady state. Novel tissue TPT concentrations measured by liquid chromatography mass spectroscopy correlated with gadolinium signal intensity on MRI (p = 0.0078). CONCLUSIONS Prolonged TPT-gadolinium CED via an internalized system is safe and well tolerated and can achieve a large Vdmax, as well as maintain a stable Vd for up to 32 days. Gadolinium provides an identifiable surrogate for measuring drug distribution. Extended CED is potentially a broadly applicable and safe therapeutic option in select patients.
Collapse
Affiliation(s)
- Randy S. D’Amico
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Justin A. Neira
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Jonathan Yun
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Nikita G. Alexiades
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Matei Banu
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Zachary K. Englander
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Benjamin C. Kennedy
- Division of Neurosurgery, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy H. Ung
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Robert J. Rothrock
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Alexander Romanov
- Institute of Comparative Medicine, Columbia University Medical Center, New York, New York
| | - Xiaotao Guo
- Department of Radiology, Columbia University Medical Center, New York, New York
| | - Binsheng Zhao
- Department of Radiology, Columbia University Medical Center, New York, New York
| | - Adam M. Sonabend
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
38
|
Moura RP, Pacheco C, Pêgo AP, des Rieux A, Sarmento B. Lipid nanocapsules to enhance drug bioavailability to the central nervous system. J Control Release 2020; 322:390-400. [PMID: 32247807 DOI: 10.1016/j.jconrel.2020.03.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS), namely the brain, still remains as the hardest area of the human body to achieve adequate concentration levels of most drugs, mainly due to the limiting behavior of its physical and biological defenses. Lipid nanocapsules emerge as a versatile platform to tackle those barriers, and efficiently delivery different drug payloads due to their numerous advantages. They can be produced in a fast, solvent-free and scalable-up process, and their properties can be fine-tuned for to make an optimal brain drug delivery vehicle. Moreover, lipid nanocapsule surface modification can further improve their bioavailability towards the central nervous system. Coupling these features with alternative delivery methods that stem to disrupt or fully circumvent the blood-brain barrier may fully harness the therapeutic advance that lipid nanocapsules can supply to current treatment options. Thus, this review intends to critically address the development of lipid nanocapsules, as well as to highlight the key features that can be modulated to ameliorate their properties towards the central nervous system delivery, mainly through intravenous methods, and how the pathological microenvironment of the CNS can be taken advantage of. The different routes to promote drug delivery towards the brain parenchyma are also discussed, as well as the synergetic effect that can be obtained by combining modified lipid nanocapsules with new/smart administration routes.
Collapse
Affiliation(s)
- Rui Pedro Moura
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Catarina Pacheco
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Ana Paula Pêgo
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Anne des Rieux
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue E. Mounier 73, 1200 Brussels, Belgium
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
39
|
Zhan W, Rodriguez Y Baena F, Dini D. Effect of tissue permeability and drug diffusion anisotropy on convection-enhanced delivery. Drug Deliv 2020; 26:773-781. [PMID: 31357890 PMCID: PMC6711026 DOI: 10.1080/10717544.2019.1639844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although convection-enhanced delivery (CED) can successfully facilitate a bypass of the blood brain barrier, its treatment efficacy remains highly limited in clinic. This can be partially attributed to the brain anisotropic characteristics that lead to the difficulties in controlling the drug spatial distribution. Here, the responses of six different drugs to the tissue anisotropy are examined through a parametric study performed using a multiphysics model, which considers interstitial fluid flow, tissue deformation and interlinked drug transport processes in CED. The delivery outcomes are evaluated in terms of the penetration depth and delivery volume for effective therapy. Simulation results demonstrate that the effective penetration depth in a given direction can be improved with the increase of the corresponding component of anisotropic characteristics. The anisotropic tissue permeability could only reshape the drug distribution in space but has limited contribution to the total effective delivery volume. On the other hand, drugs respond in different ways to the anisotropic diffusivity. The large delivery volumes of fluorouracil, carmustine, cisplatin and doxorubicin could be achieved in relatively isotropic tissue, while paclitaxel and methotrexate are able to cover enlarged regions into anisotropic tissues. Results obtained from this study serve as a guide for the design of CED treatments.
Collapse
Affiliation(s)
- Wenbo Zhan
- a Department of Mechanical Engineering, Imperial College London , London , UK
| | | | - Daniele Dini
- a Department of Mechanical Engineering, Imperial College London , London , UK
| |
Collapse
|
40
|
El Demerdash N, Kedda J, Ram N, Brem H, Tyler B. Novel therapeutics for brain tumors: current practice and future prospects. Expert Opin Drug Deliv 2020; 17:9-21. [DOI: 10.1080/17425247.2019.1676227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nagat El Demerdash
- Department of Neurosurgery, Hunterian Neurosurgical Research Laboratory, Johns Hopkins University, Baltimore, MD, USA
| | - Jayanidhi Kedda
- Department of Neurosurgery, Hunterian Neurosurgical Research Laboratory, Johns Hopkins University, Baltimore, MD, USA
| | - Nivi Ram
- Department of Neurosurgery, Hunterian Neurosurgical Research Laboratory, Johns Hopkins University, Baltimore, MD, USA
| | - Henry Brem
- Department of Neurosurgery, Hunterian Neurosurgical Research Laboratory, Johns Hopkins University, Baltimore, MD, USA
- Departments of Biomedical Engineering, Oncology, and Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - Betty Tyler
- Department of Neurosurgery, Hunterian Neurosurgical Research Laboratory, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
41
|
Zhu Y, Liu C, Pang Z. Dendrimer-Based Drug Delivery Systems for Brain Targeting. Biomolecules 2019; 9:E790. [PMID: 31783573 PMCID: PMC6995517 DOI: 10.3390/biom9120790] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Human neuroscience has made remarkable progress in understanding basic aspects of functional organization; it is a renowned fact that the blood-brain barrier (BBB) impedes the permeation and access of most drugs to central nervous system (CNS) and that many neurological diseases remain undertreated. Therefore, a number of nanocarriers have been designed over the past few decades to deliver drugs to the brain. Among these nanomaterials, dendrimers have procured an enormous attention from scholars because of their nanoscale uniform size, ease of multi-functionalization, and available internal cavities. As hyper-branched 3D macromolecules, dendrimers can be maneuvered to transport diverse therapeutic agents, incorporating small molecules, peptides, and genes; diminishing their cytotoxicity; and improving their efficacy. Herein, the present review will give exhaustive details of extensive researches in the field of dendrimer-based vehicles to deliver drugs through the BBB in a secure and effectual manner. It is also a souvenir in commemorating Donald A. Tomalia on his 80th birthday.
Collapse
Affiliation(s)
- Yuefei Zhu
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (Y.Z.); (C.L.)
- Department of Biomedical Engineering, Columbia University Medical Center, 3960 Broadway, New York, NY 10032, USA
| | - Chunying Liu
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (Y.Z.); (C.L.)
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China; (Y.Z.); (C.L.)
| |
Collapse
|
42
|
Vidotto M, Dini D, Momi ED. Effective Diffusion and Tortuosity in Brain White Matter. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:4901-4904. [PMID: 30441442 DOI: 10.1109/embc.2018.8513443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Patients affected by glioblastomas have a very low survival rate. Emerging techniques, such as convection enhanced delivery (CED), need complex numerical models to be effective; furthermore, the estimation of the main parameters to be used to instruct constitutive laws in simulations represents a major challenge. This work proposes a new method to compute tortuosity, a key parameter for drug diffusion in fibrous tissue, starting from a model which incorporates the main white matter geometrical features. It is shown that tortuosity increases from 1.35 to 1.85 as the extracellular space width decreases. The results are in good agreement with experimental data reported in the literature.
Collapse
|
43
|
Convection enhanced delivery of anti-angiogenic and cytotoxic agents in combination therapy against brain tumour. Eur J Pharm Sci 2019; 141:105094. [PMID: 31626962 DOI: 10.1016/j.ejps.2019.105094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/22/2019] [Accepted: 09/28/2019] [Indexed: 01/22/2023]
Abstract
Convection enhanced delivery is an effective alternative to routine delivery methods to overcome the blood brain barrier. However, its treatment efficacy remains disappointing in clinic owing to the rapid drug elimination in tumour tissue. In this study, multiphysics modelling is employed to investigate the combination delivery of anti-angiogenic and cytotoxic drugs from the perspective of intratumoural transport. Simulations are based on a 3-D realistic brain tumour model that is reconstructed from patient magnetic resonance images. The tumour microvasculature is targeted by bevacizumab, and six cytotoxic drugs are included, as doxorubicin, carmustine, cisplatin, fluorouracil, methotrexate and paclitaxel. The treatment efficacy is evaluated in terms of the distribution volume where the drug concentration is above the corresponding LD90. Results demonstrate that the infusion of bevacizumab can slightly improve interstitial fluid flow, but is significantly efficient in reducing the fluid loss from the blood circulatory system to inhibit the concentration dilution. As the transport of bevacizumab is dominated by convection, its spatial distribution and anti-angiogenic effectiveness present high sensitivity to the directional interstitial fluid flow. Infusing bevacizumab could enhance the delivery outcomes of all the six drugs, however, the degree of enhancement differs. The delivery of doxorubicin can be improved most, whereas, the impacts on methotrexate and paclitaxel are limited. Fluorouracil could cover the comparable distribution volume as paclitaxel in the combination therapy for effective cell killing. Results obtain in this study could be a guide for the design of this co-delivery treatment.
Collapse
|
44
|
Stine CA, Munson JM. Convection-Enhanced Delivery: Connection to and Impact of Interstitial Fluid Flow. Front Oncol 2019; 9:966. [PMID: 31632905 PMCID: PMC6783516 DOI: 10.3389/fonc.2019.00966] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
Convection-enhanced delivery (CED) is a method used to increase transport of therapeutics in and around brain tumors. CED works through locally applying a pressure differential to drive fluid flow throughout the tumor, such that convective forces dominate over diffusive transport. This allows therapies to bypass the blood brain barrier that would otherwise be too large or solely rely on passive diffusion. However, this also drives fluid flow out through the tumor bulk into surrounding brain parenchyma, which results in increased interstitial fluid (IF) flow, or fluid flow within extracellular spaces in the tissue. IF flow has been associated with altered transport of molecules, extracellular matrix rearrangement, and triggering of cellular motility through a number of mechanisms. Thus, the results of a simple method to increase drug delivery may have unintended consequences on tissue morphology. Clinically, prediction of dispersal of agents via CED is important to catheter design, placement, and implementation to optimize contact of tumor cells with therapeutic agent. Prediction software can aid in this problem, yet we wonder if there is a better way to predict therapeutic distribution based simply on IF flow pathways as determined from pre-intervention imaging. Overall, CED based therapy has seen limited success and we posit that integration and appreciation of altered IF flow may enhance outcomes. Thus, in this manuscript we both review the current state of the art in CED and IF flow mechanistic understanding and relate these two elements to each other in a clinical context.
Collapse
Affiliation(s)
| | - Jennifer M. Munson
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
45
|
Elenes EY, Rausch MK, Rylander CG. Parametric Study of the Design Variables of an Arborizing Catheter on Dispersal Volume Using a Biphasic Computational Model. JOURNAL OF ENGINEERING AND SCIENCE IN MEDICAL DIAGNOSTICS AND THERAPY 2019; 2:0310021-310029. [PMID: 35833170 PMCID: PMC8597557 DOI: 10.1115/1.4042874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/28/2019] [Indexed: 06/15/2023]
Abstract
Convection-enhanced delivery (CED) is an investigational therapy developed to circumvent the limitations of drug delivery to the brain. Catheters are used in CED to locally infuse therapeutic agents into brain tissue. CED has demonstrated clinical utility for treatment of malignant brain tumors; however, CED has been limited by lack of CED-specific catheters. Therefore, we developed a multiport, arborizing catheter to maximize drug distribution for CED. Using a multiphasic finite element (FE) framework, we parametrically determined the influence of design variables of the catheter on the dispersal volume of the infusion. We predicted dispersal volume of a solute infused in a permeable hyperelastic solid matrix, as a function of separation distance (ranging from 0.5 to 2.0 cm) of imbedded infusion cavities that represented individual ports in a multiport catheter. To validate the model, we compared FE solutions of pressure-controlled infusions to experimental data of indigo carmine dye infused in agarose tissue phantoms. The Tc50, defined as the infusion time required for the normalized solute concentration between two sources to equal 50% of the prescribed concentration, was determined for simulations with infusion pressures ranging from 1 to 4 kPa. In our validated model, we demonstrate that multiple ports increase dispersal volume with increasing port distance but are associated with a significant increase in infusion time. Tc50 increases approximately tenfold when doubling the port distance. Increasing the infusion flow rate (from 0.7 μL/min to 8.48 μL/min) can mitigate the increased infusion time. In conclusion, a compromise of port distance and flow rate could improve infusion duration and dispersal volume.
Collapse
Affiliation(s)
- Egleide Y Elenes
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street, Stop C0800, Austin, TX 78712 e-mail:
| | - Manuel K Rausch
- Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, 2617 Wichita Street, Stop C0600, Austin, TX 78712-1221; Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street, Stop C0800, Austin, TX 78712 e-mail:
| | - Christopher G Rylander
- Department of Mechanical Engineering, University of Texas at Austin, 204 E. Dean Keeton Street, Stop C2200, Austin, TX 78712-1591; Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton Street, Stop C0800, Austin, TX 78712 e-mail:
| |
Collapse
|
46
|
Vidotto M, Botnariuc D, De Momi E, Dini D. A computational fluid dynamics approach to determine white matter permeability. Biomech Model Mechanobiol 2019; 18:1111-1122. [PMID: 30783834 PMCID: PMC6685924 DOI: 10.1007/s10237-019-01131-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/11/2019] [Indexed: 12/24/2022]
Abstract
Glioblastomas represent a challenging problem with an extremely poor survival rate. Since these tumour cells have a highly invasive character, an effective surgical resection as well as chemotherapy and radiotherapy is very difficult. Convection-enhanced delivery (CED), a technique that consists in the injection of a therapeutic agent directly into the parenchyma, has shown encouraging results. Its efficacy depends on the ability to predict, in the pre-operative phase, the distribution of the drug inside the tumour. This paper proposes a method to compute a fundamental parameter for CED modelling outcomes, the hydraulic permeability, in three brain structures. Therefore, a bidimensional brain-like structure was built out of the main geometrical features of the white matter: axon diameter distribution extrapolated from electron microscopy images, extracellular space (ECS) volume fraction and ECS width. The axons were randomly allocated inside a defined border, and the ECS volume fraction as well as the ECS width maintained in a physiological range. To achieve this result, an outward packing method coupled with a disc shrinking technique was implemented. The fluid flow through the axons was computed by solving Navier-Stokes equations within the computational fluid dynamics solver ANSYS. From the fluid and pressure fields, an homogenisation technique allowed establishing the optimal representative volume element (RVE) size. The hydraulic permeability computed on the RVE was found in good agreement with experimental data from the literature.
Collapse
Affiliation(s)
- Marco Vidotto
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milan, Italy.
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - Daniela Botnariuc
- Faculty of Science, University of Lisbon, Campo Grande, 1149-016, Lisbon, Portugal
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milan, Italy
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
47
|
Shi M, Sanche L. Convection-Enhanced Delivery in Malignant Gliomas: A Review of Toxicity and Efficacy. JOURNAL OF ONCOLOGY 2019; 2019:9342796. [PMID: 31428153 PMCID: PMC6679879 DOI: 10.1155/2019/9342796] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/06/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
Malignant gliomas are undifferentiated or anaplastic gliomas. They remain incurable with a multitude of modalities, including surgery, radiation, chemotherapy, and alternating electric field therapy. Convection-enhanced delivery (CED) is a local treatment that can bypass the blood-brain barrier and increase the tumor uptake of therapeutic agents, while decreasing exposure to healthy tissues. Considering the multiple choices of drugs with different antitumor mechanisms, the supra-additive effect of concomitant radiation and chemotherapy, CED appears as a promising modality for the treatment of brain tumors. In this review, the CED-related toxicities are summarized and classified into immediate, early, and late side effects based on the time of onset, and local and systemic toxicities based on the location of toxicity. The efficacies of CED of various therapeutic agents including targeted antitumor agents, chemotherapeutic agents, radioisotopes, and immunomodulators are covered. The phase III trial PRECISE compares CED of IL13-PE38QQR, an interleukin-13 conjugated to Pseudomonas aeruginosa exotoxin A, to Gliadel® Wafer, a polymer loaded with carmustine. However, in this case, CED had no significant median survival improvement (11.3 months vs. 10 months) in patients with recurrent glioblastomas. In phase II studies, CED of recombinant poliovirus (PVSRIPO) had an overall survival of 21% vs. 14% for the control group at 24 months, and 21% vs. 4% at 36 months. CED of Tf-diphtheria toxin had a response rate of 35% in recurrent malignant gliomas patients. On the other hand, the TGF-β2 inhibitor Trabedersen, HSV-1-tk ganciclovir, and radioisotope 131I-chTNT-1/B mAb had a limited response rate. With this treatment, patients who received CED of the chemotherapeutic agent paclitaxel and immunomodulator, oligodeoxynucleotides containing CpG motifs (CpG-ODN), experienced intolerable toxicity. Toward the end of this article, an ideal CED treatment procedure is proposed and the methods for quality assurance of the CED procedure are discussed.
Collapse
Affiliation(s)
- Minghan Shi
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
48
|
Hafeez U, Cher LM. Biomarkers and smart intracranial devices for the diagnosis, treatment, and monitoring of high-grade gliomas: a review of the literature and future prospects. Neurooncol Adv 2019; 1:vdz013. [PMID: 32642651 PMCID: PMC7212884 DOI: 10.1093/noajnl/vdz013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain neoplasm with median overall survival (OS) around 15 months. There is a dearth of effective monitoring strategies for patients with high-grade gliomas. Relying on magnetic resonance images of brain has its challenges, and repeated brain biopsies add significant morbidity. Hence, it is imperative to establish a less invasive way to diagnose, monitor, and guide management of patients with high-grade gliomas. Currently, multiple biomarkers are in various phases of development and include tissue, serum, cerebrospinal fluid (CSF), and imaging biomarkers. Here we review and summarize the potential biomarkers found in blood and CSF, including extracellular macromolecules, extracellular vesicles, circulating tumor cells, immune cells, endothelial cells, and endothelial progenitor cells. The ability to detect tumor-specific biomarkers in blood and CSF will potentially not only reduce the need for repeated brain biopsies but also provide valuable information about the heterogeneity of tumor, response to current treatment, and identify disease resistance. This review also details the status and potential scope of brain tumor-related cranial devices and implants including Ommaya reservoir, microelectromechanical systems-based depot device, Alzet mini-osmotic pump, Metronomic Biofeedback Pump (MBP), ipsum G1 implant, ultra-thin needle implant, and putative devices. An ideal smart cranial implant will overcome the blood-brain barrier, deliver various drugs, provide access to brain tissue, and potentially measure and monitor levels of various biomarkers.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Australia
- Latrobe University School of Cancer Medicine, Melbourne, Australia
- Department of Medical Oncology, Austin Hospital, Melbourne, Australia
| | - Lawrence M Cher
- Olivia Newton-John Cancer Research Institute, Austin Hospital, Melbourne, Australia
- Department of Medical Oncology, Austin Hospital, Melbourne, Australia
- Corresponding Author: Lawrence M. Cher, Olivia Newton-John Cancer Research Institute, Austin Health, Heidelberg, VIC 3084, Australia ()
| |
Collapse
|
49
|
In Vitro Validation of Targeting and Comparison to Mathematical Modeling. Methods Mol Biol 2019. [PMID: 30051429 DOI: 10.1007/978-1-4939-8661-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nanoparticle and other drug delivery platforms have demonstrated promising potential for the delivery of therapeutics or imaging agents in a specific and targeted manner. While a variety of drug delivery platforms have been applied to medicine, in vitro and in silico optimization and validation of these targeting constructs needs to be conducted to maximize in vivo delivery and efficacy. Here, we describe the mathematical and experimental models to predict and validate the transport of a peptide targeting construct through a mock tissue environment to specifically target tumor cells, relative to non-tumor cells. We provide methods to visualize and analyze fluorescence microscopy images, and also describe the methods for creating a finite element model (FEM) that validates important parameters of this experimental system. By comparing and contrasting mathematical modeling results with experimental results, important information can be imparted to the design and functionality of the targeting construct. This information will help to optimize construct design for future therapeutic delivery applications.
Collapse
|
50
|
Enríquez Pérez J, Fritzell S, Kopecky J, Visse E, Darabi A, Siesjö P. The effect of locally delivered cisplatin is dependent on an intact immune function in an experimental glioma model. Sci Rep 2019; 9:5632. [PMID: 30948731 PMCID: PMC6449367 DOI: 10.1038/s41598-019-42001-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Several chemotherapeutic drugs are now considered to exert anti-tumour effects, by inducing an immune-promoting inflammatory response. Cisplatin is a potent chemotherapeutic agent used in standard medulloblastoma but not glioblastoma protocols. There is no clear explanation for the differences in clinical efficacy of cisplatin between medulloblastomas and glioblastomas, despite the fact that cisplatin is effective in vitro against the latter. Systemic toxicity is often dose limiting but could tentatively be reduced by intratumoral administration. We found that intratumoral cisplatin can cure GL261 glioma-bearing C57BL/6 mice and this effect was abolished in GL261-bearing NOD-scid IL2rγnull (NSG) mice. Contrary to previous results with intratumoral temozolomide cisplatin had no additive or synergistic effect with whole cell either GL261 wild-type or GM-CSF-transfected GL261 cells whole cell vaccine-based immunotherapy. While whole tumour cell immunizations increased CD8+ T-cells and decreased F4/80+ macrophages intratumorally, cisplatin had no effect on these cell populations. Taken together, our results demonstrate that intratumoral cisplatin treatment was effective with a narrow therapeutic window and may be an efficient approach for glioma or other brain tumour treatment.
Collapse
Affiliation(s)
- Julio Enríquez Pérez
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Sara Fritzell
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jan Kopecky
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Edward Visse
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anna Darabi
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Peter Siesjö
- Glioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- Division of Neurosurgery, Department of Clinical Sciences, Skåne University Hospital, Lund, Sweden
| |
Collapse
|